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Twistronic heterostructures have recently emerged as a new class of quantum electronic materials
with properties determined by the twist angle between the adjacent two-dimensional materials.
Here we study moiré superlattice minibands in graphene (G) encapsulated in hexagonal boron nitride
(hBN) with an almost perfect alignment with both the top and bottom hBN crystals. We show that,
for such an orientation of the unit cells of the hBN layers that locally breaks inversion symmetry
of the graphene lattice, the hBN/G/hBN structure features a Kagomé network of topologically
protected states with energies near the miniband edge, propagating along the lines separating the
areas with different miniband Chern numbers.

Recently, graphene-based systems have been shown
to host various topological effects [1] among their elec-
tronic properties [2–21], which stem from the Berry
phase/curvature in the electronic band structure of
mononolayer graphene [22, 23] or its Bernal bilayers [3,
11, 16, 18, 21, 24–28]. The topological effects manifest
themselves in states forming at the edges of the system
or around internal structural defects, and propagating
in opposite directions in the two valleys of graphene.
These states have been studied in detail in gapped
bilayer graphene with either AB/BA domain bound-
aries [7, 8, 29], or an electrostatically inverted interlayer
asymmetry gap [9, 30].

Topological zero line states have also emerged in the
context of twistronic graphene systems [6, 13, 15, 31–34]
and in heterostructures of graphene (G) and hexagonal
boron (hBN). As a result of the G-hBN lattice mismatch,
δ ≈ 0.018, the latter system features a moiré superlat-
tice [35–38] (mSL), even at zero misalignment angle θ.
The electronic properties of this system are qualitatively
modified by the mSL with a period λ ≈ a/

√
δ2 + θ2,

reaching 14 nm for small misalignment angles θ → 0. The
system features a well-defined first miniband edge on the
valence side of the graphene layer’s dispersion [36, 37], as
illustrated in Fig. 1.

The encapsulation of graphene between two hBN crys-
tals with a high-precision alignment [39] leads to a fur-
ther refinement of the superlattice effects, caused by the
interference of Dirac electrons Bragg-scattered off the
moiré superlattice (mSL) determined by the top and
bottom G/hBN interfaces. Here, we study the influ-
ence of the relative lateral offset τ between the top
and bottom hBN crystals on moiré minibands in double-
aligned hBN/G/hBN structures, considering the orien-
tation (parallel versus antiparallel) of the unit cells in
the hBN lattices. For graphene’s minibands, the unit
cell orientation matters due to the lack of inversion sym-
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Figure 1. A typical miniband spectrum of graphene encapsu-
lated into mutually aligned hBN crytals. Top inset. Map of
locally-defined v-miniband Chern number, Q. Bottom inset.
Dispersion and Berry curvature at the v/v′ miniband edge
in the gaped regions and 1D modes counter-propagating in
K± valleys along a Kagomé network of locally gapless v/v′

miniband edges.

metry in the hBN monolayer, which is maximally passed
onto graphene encapsulated between two hBN layers with
parallel unit cell orientations but mutually cancels in the
antiparallel case.

The inversion asymmetry, induced by hBN in
graphene, leads to minigaps at the moiré miniband
edges [36] (in particular, at the bottom edge of the first
miniband on the valence band side, v, corresponding
to graphene doping of 4 holes per moiré supercell), of
graphene’s dispersion in Fig. 1, whose size, together with
the Chern numbers of the minibands [40, 41], depends on
the lateral offset between the top and bottom hBN crys-
tals. For hBN/G/hBN structures with a small misalign-

ment angle, θ̃ � δ, between the top and bottom hBN
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layers, this offset varies across the coordinate space, as

τ (r) = θ̃ez × r, (1)

which leads to a long-period, Λ ≈ a/|θ̃|, variation of the
mSL properties (see Fig. 2). A peculiar feature of this
modulation is the closing and reopening of a minigap
at the v/v′ miniband edge, which occurs along the lines
forming a Kagomé structure in the real space, sketched in
Fig. 1. Below, we study electron states at the v/v′ mini-
band edge, confined to this Kagomé network and discuss
how one-dimensional states (propagating in opposite di-
rections in the K± valleys) provide this system with a
finite conductivity even when its Fermi level would be
set between the v and v′ miniband edges in the gapped
areas of the structure, with a characteristic pattern of
Aharanov-Bohm oscillations.

Figure 2. Right. Graphene encapsulated between bottom and
top hBN layers with twists θ ± 1

2
θ̃ , respectively (|θ̃| � δ).

The interference of the layers results in a mSL of period λ,
featuring a long-period variation of period Λ, whose unit cells
are shown. Inset. The offset vector τ between the unit cells
of the top and bottom hBN layers has components (τx, τy)
along the zigzag and armchair axes, respectively. Inset. The
valley Chern number Q of miniband v, the gap ∆cv and the
minigap ∆vv′ against offset for aligned hBN layers (θ̃ = 0).

The above statement is based on the analysis of lo-
cal miniband characteristics of the trilayer structure de-

picted in Fig. 2. Here, the bottom/top hBN monolayers
with parallel orientation of their non-symmetric unit cells
are twisted with respect to graphene by θ ± 1

2 θ̃, respec-

tively, with small mutual misalignment |θ̃| � δ, which
determines the spatial variation of their local offset in
Eq. 1. For each fixed offset τ , the Hamiltonian [36, 42–
44] of electrons in the Kξ valley (ξ = ±) of graphene
is

Ĥ = −i~vσ · ∇+ 2
∑
P=±

5∑
m=0

Cme
iGm·rUP,m +

1

2
∆cvσz,

UP,m = uP0 Pm+ 1
2 + (−P)m+ 1

2 (uP3 σz − iξuP1 em · σ)

σ = (ξσx, σy), ∆cv ≈
2

3

5∑
m=0

(C2
m∆u −S2

m∆h),

Cm = cos( 1
2gm · τ ), Sm = sin( 1

2gm · τ ). (2)

The values of the parameters used are given in Table S1 in
the Supplemental Material (SM) [45], and the expression
for graphene encapsulated between hBN monolayers with
antiparallel orientation of their unit cells is given in SM
S2 [45].

The first term in Eq. (2) is the Dirac Hamiltonian
for electrons in monolayer graphene [42]. The second
term describes the mSL produced by the layers, with
the reciprocal mSL vectors, Gm ≈ δgm − θez × gm,
expressed in terms of the reciprocal lattice vectors of
graphene, gm = 4π√

3a
ez × em, em = (cos mπ3 , sin mπ

3 ),

m = 0, 1, ..., 5. This term includes mSL potentials, sub-
lattice asymmetry gaps and gauge fields of parity P = ±
(under spatial inversion), quantified using the parameters
uP0 , uP3 and uP1 , respectively.

The orientation and offset τ of the unit cells in each
hBN layer determine the magnitude of the odd-parity
terms in Eq. (2), which are responsible for the inversion
symmetry breaking features in the dispersion, such as
the opening of a minigap between minibands v and v′.
This corresponds to graphene doping of 4 holes per moiré
supercell, with electron density −4n0 (n0 = 2/

√
3λ2).

In the parametrisation of Hamiltonian (2), we take into
account that the positions of the graphene atoms rear-
range to minimise graphene’s adhesion energy with the
hBN layers while maintaining the mSL period [44, 46–48].
The in-plane and out-of-plane rearrangements combine
with the second term to give the respective contributions,
∆u and ∆h, to the sublattice asymmetry gap ∆cv. This
gap appears in the odd parity, non-oscillatory third term,
which breaks the sublattice symmetry of graphene. In an-
tiparallel alignment, the contributions to the odd parity
terms from each layer cancel, and inversion symmetry is
preserved. Instead, we focus on parallel alignment where
the inversion symmetry breaking is enhanced, depending
strongly on the offset τ .

To study minibands of Dirac electrons in this sys-
tem, we diagonalise Hamiltonian (2) using the basis of
plane-wave Dirac states, folded onto the mSL Brillouin
zone shown in Fig. 1. An example of a typical mini-
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band dispersion is shown in Fig. 1, with other exam-
ples displayed in SM S3 [45]. Similarly to single-interface
G/hBN heterostructures [35–37, 49–52], this system fea-
tures a well-defined first valence miniband, v for twists
|θ| ≤ 1◦, whereas on the conduction band side the mini-
bands strongly overlap on the energy axis. The inversion
symmetry breaking produces a minigap, ∆vv′ , at the edge
between minibands v and v′, whose magnitude, together
with the v/v′ edge position in the Brillouin minizone,
depends on the offset τ . The dependence of the mini-
gap ∆vv′ on the offset τ is shown in the bottom inset
of Fig. 2. This panel shows that ∆vv′ (which is formally
defined below) takes zero value and also changes sign on
the lines which approximately correspond to the condi-
tion Cm = 0. This variation should be contrasted with
the τ -dependence of the gap ∆cv across the main Dirac
point at the c/v miniband edge shown on the top inset,
where one can see that ∆cv never changes sign.

Along the lines on the τ maps, where the minigap at
the v/v′ miniband edge closes and reopens as a function
of τ , the Chern number ξQ [40, 41] of miniband v also
changes (note that the miniband’s Chern number has op-
posite sign in the Kξ valleys, ξ = ±). Here, Q is found
by computing the integral of the minibands Berry curva-
ture over the mSL Brillouin minizone (see SM S4 [45] for
details). The resulting map of Q(τ ) dependence is dis-
played as the middle inset in Fig. 2. The correlation be-
tween the behavior of the inversion-asymmetry gap ∆vv′

at its edge with miniband v′ and of its Chern number
suggests a simultaneous change of quantum topological
properties of states in both v and v′, captured by the
effective Hamiltonian [53] applicable to the part of the
Brillouin minizone in the vicinity of this edge,

Hvv′

q =εvv′ + 1
2∆vv′σz

+ ~(ξvxs qxσx + vys qyσy) + ξ~va · q, (3)

whose basis is minibands v and v′. Here, q is the wave
vector relative to the position of the band edge, vs and
va are the symmetric and antisymmetric velocity, respec-
tively, (the latter of which tilts the dispersion along the
axis parallel to va [53]) and εvv′ is a constant energy shift.
The parameters in Eq. (3) are fitted numerically to the
minibands computed using Eq. (2) SM S5 [45]. The sign
of ∆vv′ is determined by the sign of the Berry curvature
at the miniband edge, which changes simultaneously with
the change of the Chern number.

The variation of the offset τ over the plane of a
hBN/G/hBN structure, given by Eq. (1), enables us to
map the the computed dependence of miniband charac-
teristics displayed on the insets in Fig. 2 onto the real
space: for this, we only need to rotate those plots by
90◦ and rescale then by a factor 1/θ̃. This produces a
Kagom network of lines where the secondary minigap,
∆vv′ , closes and then inverts its sign, and where the
Chern number of miniband v changes (from 0 to 1). We
show in SM S6 [45] that the shape of this network is in-
dependent of the model parameters. Topologically pro-

tected channels form along these lines, supporting spin-
degenerate, one-dimensional states which propagate in
opposite directions in the time-reversed valleys.

The form and dispersion of these states can be
found (in SM S7 [45]) by analyzing Hamiltonian (3)
with q ≈ (q‖,−i∂x⊥) and ∆vv′ ≈ x⊥∂x⊥∆vv′ |x⊥=0

(∂x⊥∆vv′ |x⊥=0 ∼ |u−3 |/Λ > 0) where x‖ and x⊥ are local
coordinates along and perpendicular to the Kagomé net-
work line. These states have a Jackiw-Rebbi [54] form

ϕq‖ ≈ eiq‖x‖e−x
2
⊥/2ℵ

2

ζq‖ (ζq‖ is a two-component vec-

tor), with Gaussian confinement within a length ℵ ∼√
2~vxsΛ/|u−3 | perpendicular to the interface, and dis-

perse linearly, ε(q‖) = ξ~Vq‖, with a 1D velocity V ∼ vxs .
To consider these states independently for each segment
of the Kagomé network, we should require λ < ℵ � Λ,
which is satisfied for mismatches |θ̃| < 0.1◦.

Figure 3. Top left. The hexagonal structural element of the
Kagom network of channels of area A =

√
3Λ2/2 and con-

taining one Q = 0 bowtie and one Q = 1 hexagon. The prop-
agation of electrons in the K+ valley is shown, scattering at
the three nodes. Clockwise from top right. The five shortest
paths for an electron wave packet to propagate from an injec-
tion position “i” to “f” (double arrows indicate a channel is
traversed twice).

For a gapped moiré miniband spectrum, one could
expect insulating behavior of a perfectly aligned
hBN/G/hBN doped to the v/v′ miniband edge. For

slightly (|θ̃| � δ) misaligned hBN crystals, the long-
range variation of the local hBN-hBN offset and a net-
work of states, which it generates inside the minigap
∆vv′ , quenches the resistivity of the hBN/G/hBN struc-
ture. While the exact calculations of the limiting resis-
tivity would require a more rigorous consideration, based
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on the previous experiences of two-dimensional models
for the network of 1D states [31, 32, 55], we expect its
value to correspond to a conductivity σxx ∼ e2/h and
to exhibit Aharonov-Bohm oscillations as a function of
an out-of-plane magnetic field B. To describe the lat-
ter, we consider coherent electron waves (separately in
the K± valleys) on a network sketched in Fig. 3, where
the structural element includes three nodes connected by
channels. At each node, an incoming wave packet scat-
ters left or right according to the scattering matrix(

b
b′

)
= S

(
a
a′

)
, S = eiη/3

(√
PR i

√
PL

i
√
PL
√
PR

)
(4)

whose factor of i takes into account the Maslov’s phase,
and whose scattering probabilities, PR and PL (PR +
PL = 1), can be considered as energy-independent within
the narrow energy window of ∆vv′ (see SM S8 [45] for
details).

As a monochromatic wave of energy ε propagates
across the network, its amplitude evolves according to
the scattering matrix at the nodes and acquiring phase
factors, eiεΛ/2V , after passing each ballistic segment of
the network. At longer distances, partial waves, e.g.,
split from an incoming wave at “i” (see the side panels
in Fig. 3), rejoin and interfere in another ballistic seg-
ment “f”. An important feature of a periodic and C3

rotationally symmetric network, such as in Figs. 1 and
3, is that the effect of the interference, constructive or
destructive, of edge states that travel from “i” to “f”
along paths containing the same number, N , of segments
does not depend on the exact energy (or wavelength)
of the electron. This is because their ballistic phases,
eiNεΛ/2V , are the same, producing the interference con-
tribution determined only by their shapes through the
energy-independent scattering amplitudes in Eq. (4). On
the contrary, the interference of waves brought together
by paths with a different number of segments, such as
I and IV in Fig. 3), oscillates from constructive to de-
structive (and back) upon energy variation at the scale
of ~V/Λ.

Therefore, in the high-temperature regime, where
kBT � ~V/Λ, the interference effects between waves ar-
riving from “i” to “f” along paths of different lengths
would be wiped out by the smearing of the Fermi step
for electrons. The interference between waves brought
from “i” to “f” by same-length paths (such as IIa, IIb, III
and IV in Fig. 3) would survive thermal averaging, with-
out suppression, though this contribution would be sensi-
tive to the external magnetic field, due to the Aharonov-
Bohm phases from magnetic field fluxes encircled by the
pairs of same-length paths.

When discussing the interference effects in electronic
transport at high temperatures, we are also conscious of
the inelastic decoherence of electron waves, which effi-
ciently destroys interference effects for the longer paths.
For a system with decoherence length `, this can be ac-
counted by a suppression factor e−Λ/4` applied to each
ballistic segment of the Kagomé network. Therefore, to

discuss the high-temperature limit, we consider the short-
est paths that can contribute to the interference effect in
transport, shown in the side panels of Fig. 3. These
paths are related to the ‘forward’ electron propagation
from a segment in one network unit cell to the equiva-
lent segment in the next one, counted in the direction of
the propagation of the edge state (for valley K). These
shortest paths contain three (I) and six (IIa, IIb, III, IV)
ballistic segments of length Λ/2, and the interfering am-
plitude at the point “f” for a wave starting at “i” with
unit amplitude would be

ψ ≈− eiπφ/4φ0

√
P 2
LPRz

3 + z6eiπφ/2φ0×

(−2PLP
2
R + P 2

LPR + e−i2πφ/φ0P 2
LPR),

where z = eiη/3eiεΛ/2~Ve−Λ/4`. We also account for addi-
tional phases, induced by the out-of-plane magnetic field
and described in terms of magnetic field flux, φ = BA
through the unit cell area, A =

√
3λ2/2, of the Kagomé

network (φ0 = h/e is the flux quantum).
Then, we express the probability 〈W〉T for the electron

to get from the segment “i” to “f”, averaged over the kBT
energy interval near the Fermi level, as

〈W〉T ≈P 2
LPR|z|6 + [4P 2

LP
4
R + 2P 4

LP
2
R]|z|12

+ 2[P 4
LP

2
R − 2P 3

LP
3
R]|z|12 cos

(
2πφ

φ0

)
, (5)

whose second line originates from the encircled
Aharonov-Bohm phases, which, for the pairs of short-
est paths, are all determined by the magnetic field flux
through the unit cell area of the Kagomé network. As the
probability, described by Eq. (5), is a characteristic of the
forward propagation of electrons, its oscillations also de-
termine the Aharonov-Bohm oscillations in the network
conductivity (see SM S9 [45] for backwards propagation),

σxx(φ) ≈ e2

h

[
α+ βe−5Λ/2` cos

(
2πφ

φ0

)]
, (6)

where α, β ∼ 1.
Overall, we have demonstrated the existence of a

Kagomé network of states lying in the minigap at the
edge of the first moiré miniband on the valence band
side of graphene encapsulated between hBN with par-
allel unit cells. This edge state network gives rise to
quenched resistivity, ∼ h/e2, of graphene even when its
Fermi level doping reaches that minigap. This conduc-
tivity, in Eq. (6), exhibits Aharonov-Bohm oscillations,
whose period is determined by the area of the unit cell
of the Kagomé network and, consequently, the misalign-
ment. For the networks with a longer decay length ` (or
a shorter period), the magnitude of the Aharonov-Bohm
oscillations should increase, accompanied by the emer-
gence of a finer structure, composed of higher frequency
harmonics corresponding to rational factor between the
magnetic field flux through the Kagomé network cell and
flux quantum, φ0. Such edge state networks emphasize
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the role of twistronic heterostructures as hosts of topolog-
ical phenomena and deserve further theoretical studies,
e.g., taking into account electron-electron interactions in
the channels [56–60], as well as the effects of edge states
at the physical edge of a finite system [61].
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accompanying this publication.
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