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Abstract  9 

Classical active flow control (AFC) methods based on solving the Navier-Stocks equations are laborious and 10 

computationally intensive even with the use of reduced-order models. Data-driven methods offer a promising 11 

alternative for AFC and they have been applied successfully to reduce the drag of two-dimensional bluff bodies, 12 

such as a circular cylinder, using deep reinforcement learning (DRL) paradigms. However, due to onset of weak 13 

turbulence in the wake the standard DRL method tends to result in large fluctuations in the unsteady forces acting 14 

on the cylinder as the Reynolds number increases. In this study, a Markov decision process (MDP) with time 15 

delays is introduced to model and quantify the action delays on the environment in a DRL process due to the time 16 

difference between control actuation and flow response along with the use of a first-order autoregressive policy 17 

(ARP). This hybrid DRL method is applied to control the vortex shedding process from a two-dimensional circular 18 

cylinder using four synthetic jet actuators at a freestream Reynolds number of 400. This method has yielded a 19 

stable and coherent control which results in a steadier and more elongated vortex formation zone behind the 20 

cylinder hence a much weaker vortex shedding process and less fluctuating lift and drag forces.  Compared to the 21 

standard DRL method, this method utilizes the historical samples without additional sampling in training and it is 22 

capable of reducing the magnitude of drag and lift fluctuations by approximately 90% while achieving a similar 23 

level of drag reduction in the deterministic control at the same actuation frequency. This study demonstrates the 24 

necessity of including a physics-informed delay and regressive nature in the MDP and the benefits of introducing 25 

ARPs to achieve a robust and temporal-coherent control of unsteady forces in active flow control. 26 

 27 

Key words: Flow control, reinforcement learning, artificial neural networks, autoregressive model, circular 28 

cylinder, drag reduction. 29 
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1. Introduction  1 

Flow control has attracted a great deal of research attentions since 1990’s because of its potential in 2 

improving the aerodynamic performance of transport vehicles beyond a level that could be achieved through 3 

optimising the vehicles’ geometry alone1–3.  Passive flow control (PFC) and open-loop active flow control (AFC) 4 

methods have been extensively investigated due to their simplicity in implementation and low maintenance need4–5 

6. However, these methods cannot always yield desired control effects, especially at off-design conditions7. 6 

Therefore, more research attentions have begun to be directed towards developing closed-loop AFC methods in 7 

recent years in pursuit of higher flow control effectiveness across a larger operation envelope8–10.  8 

Due to the high dimensional and nonlinear nature of the governing equations of complex fluid flows, reduced-9 

order models are often required to implement optimization or control with classical AFC methods. Although some 10 

physics-based and mathematics-based models11,12 have shown good feasibility and reliability in practice, 11 

achieving a good balance between high fidelity and efficiency remains to be a laborious task. By contrast, machine 12 

learning (ML) methods are data-driven and allow engineers to perform AFC without complete prior knowledge 13 

of fluid physics.  In complex AFC problems with multi-input and multi-output, ML can be applied to develop a 14 

computationally efficient surrogate model for predicting control parameters to minimize cost function13.  15 

A number of studies have been undertaken to develop effective and reliable ML methods for AFC in recent 16 

years, e.g. Shimomura et al.14, Li et al.15 and Fukami et al16. Among these ML methods, supervised learning (SL) 17 

and reinforcement learning (RL) have been widely adopted17–19. SL aims to establish an optimal model based on 18 

existing knowledge and hence requires a sufficient amount of representative labeled data. Recent SL applications 19 

in AFC have made use of either artificial neural networks (ANNs), genetic algorithms20,21 (GAs) or Gaussian 20 

process22,23 (GP) to develop algorithms for modelling complex patterns, flow prediction and control problems. 21 

The fully-connected neural networks (FCNNs) and convolutional neural networks (CNNs) are widely-used in 22 

ANNs-based AFC methods24–26. A comparison of FCNNs and CNNs have been made by Han and Huang27,28 in 23 

opposition control of turbulent channel flows. Some hybrid models combining CNNs with multi-layer 24 

perceptron16 or autoencoder (AE)29–31 have been proposed for spatial reconstruction, dimensionality reduction and 25 

flow estimation in the flow field. To describe the spatial-temporal flow evolution, a combined model of long short-26 

term memory (LSTM) networks and CNN-AE has been proposed32 and tested33 for its capability and robustness 27 

in controlling the flow around a circular cylinder at a Reynolds number (Re) from 20 to160.  28 

In most AFC tasks with SL, controls are hard to be labeled as ‘correct’ or ‘wrong’ even by an expert. Besides, 29 

the amount of representative labelled data (such as controlled variables and actuator signals) required by SL may 30 



3 

 

be unrealistic to obtain. In contrast, RL does not need the ‘correct’ strategy as supervisory information but 1 

generates its own data by exploring and evaluating actions against a reward function34. Benefiting from its capacity 2 

of modelling policies and value functions in complex RL tasks with continuous state and action space, deep 3 

reinforcement learning (DRL) which combines RL and deep learning has been applied to automatically perform 4 

AFC strategies35–38. In DRL, an RL agent samples action-state pairs through interacting with an environment and 5 

adopts ANNs as function approximators to estimate a value function or a policy from the sampled histories. Two 6 

popular DRL methods, i.e. proximal policy optimization (PPO)39 and twin delayed deep deterministic policy 7 

gradients (TD3)40, have been widely adopted in AFC to process continuous action space with high dimensions41–8 

45.  9 

The application of DRL on the AFC of a bluff body is a sequential decision-making process, and the control 10 

difficulty increases with the complexity of the flow state. In view of the PPO method’s satisfactory training 11 

efficiency and little demand for hyperparameter tuning, Rabault et al.46 applied a DRL paradigm combining a 12 

PPO method with a fully connected ANN to control the Karman vortex street behind a two-dimensional circular 13 

cylinder using two synthetic jets, one located on the top surface and the other on the bottom surface of cylinder, 14 

at a Reynolds number of 100. Directed by a reward function which minimizes the drag while keeping the lift low, 15 

the DRL agent found a control strategy which suppresses the vortex shedding process and achieves a drag 16 

reduction of approximately 8%. The control strategy discovered using the PPO method was capable of 17 

counteracting against the vortex shedding with the synthetic jet actuation hence stabilizing the fluctuations of 18 

aerodynamic forces while reducing drag 19 

Adopting learning parallelization through a multi-environment approach proposed by Rabault et al.47, Tang 20 

et al.48 implemented the DRL paradigm to control the vortex shedding process behind a two-dimensional cylinder 21 

using four synthetic jets over a range of Reynolds numbers from 100 to 400. A drag reduction of 20.4% and 33.1% 22 

were achieved at Re = 200 and 400, respectively. However, random fluctuations in drag and lift appeared to 23 

develop at Re = 200 and increase in magnitude at Re = 400. Tang et al.48 attributed the unstable control to the 24 

inherent instability of the flow at Re=400. This is because when Re exceeds about 260, turbulence starts appearing 25 

in the shear layer and begins to affect in the state space observed in the near wake49. They then introduced global 26 

training and smooth action updates to improve the robustness of a DRL paradigm. Although the control becomes 27 

more stable at Reynolds numbers of 200, 300 and 400, a considerable level of irregular fluctuations in drag and 28 

actuation is still present48. 29 
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Ren et al.50 also encountered a similar problem in applying DRL control at a higher Reynolds number. Using 1 

the lattice-Boltzmann method (LBM) to simulate the flow environment, they applied DRL to the same flow setup 2 

as in Rabault et al.46 at a Reynolds number of 1000. The DRL agent was able to find effective AFC strategies with 3 

more training required than at Re = 100. Nevertheless, the temporal variations in drag exhibit much more random 4 

and significant fluctuations at Re = 1000 and this was also attributed by the authors to the presence of the weakly 5 

turbulence in the flow at this higher Reynolds number.  6 

Overall, the results from the aforementioned studies have revealed that although a considerable amount of 7 

reduction in the time-averaged drag can be achieved through AFC with DRL, as the Reynolds number increases 8 

the level of temporal fluctuations in drag tends to become increasingly more random and severe. At Reynolds 9 

numbers higher than 200, the standard PPO method tends to find a ‘cheating’ policy under which although the 10 

time-averaged reward is maximized, random fluctuations and sudden large extremes in drag and lift caused by 11 

irregular control appear at some instants. This inferior control policy can be difficult to avoid by modifying the 12 

reward function since an instant return of the reward at each numerical time step is too expensive and not practical. 13 

Due to the appearance of turbulence in the state space, insufficient regression of the ANN of the time series in the 14 

decision process may result in a deteriorating robustness and temporal-coherence of control trained through the 15 

PPO method. 16 

In this study, a Markov decision process (MDP) with time delays is introduced to quantify the action delays 17 

in the DRL process due to the time elapse between actuation and response of flow along with the use of a first-18 

order autoregressive policy (ARP). This hybrid DRL method is applied to control the vortex shedding process 19 

from a two-dimensional circular cylinder using four synthetic jet actuators at a freestream Reynolds number of 20 

400. This method has yielded a stable and coherent control which results in a steadier and more elongated 21 

recirculation zone behind the cylinder hence a much weaker vortex shedding process.  Compared to the standard 22 

PPO method, this method utilizes the historical samples without additional sampling in training and it is capable 23 

of reducing the magnitude of drag and lift fluctuations by approximately 90% while achieving a similar level of 24 

drag reduction in the deterministic control at the same actuation frequency. This study demonstrates the necessity 25 

of including a physics-informed time delay in the MDP and the benefits of introducing ARP to achieve a robust 26 

and temporal-coherent control of unsteady forces in active flow control. Reduction of high-level temporal 27 

fluctuations in drag or lift will help to decrease dynamic loads and structural fatigue leading to an improved 28 

structural durability and operational safety51–53. 29 
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2. Methodology and implementation  1 

2.1. Numerical setup 2 

The flow configuration in this study is a two-dimensional laminar flow passing around a circular cylinder at 3 

a Reynolds number (Re) of 400, where 𝑅𝑒 = 𝑈𝐷/𝜈 , 𝑈 is the average velocity of inflow, 𝜈  is the kinematic 4 

viscosity of the fluid, and D is the cylinder diameter. Tang et al.48 applied DRL control within the range of Re = 5 

100 – 400 and they obtained the largest amount of drag reduction as well as the highest level of drag force 6 

fluctuations at Re = 400. Therefore, Re = 400 is selected in this study to enable a comparison of flow control 7 

results using different DRL strategies. In this study, the length, velocity, time and vorticity are nondimensionalized 8 

with 𝐷, 𝑈, 𝑡 = 𝐷/𝑈 and 1/𝑡, respectively. 9 

To enable a direct comparison, the same numerical setup used by Tang et al.48, which has already been 10 

validated for simulating this flow, is also applied in our CFD simulations. The size of the rectangular 11 

computational domain is chosen to be 22𝐷(𝑙𝑒𝑛𝑔𝑡ℎ) × 4.1𝐷(ℎ𝑒𝑖𝑔ℎ𝑡). As shown in Fig. 1, the cylinder centre is 12 

placed with an offset of 0.05D from the centreline of the computational domain to initiate vortex shedding in the 13 

simulations at this Reynolds number. A no-slip condition is applied on the top and bottom boundary as well as on 14 

the surface of the cylinder. The inflow boundary is located at 2D upstream of the cylinder centre, and a velocity 15 

inlet condition with a parabolic velocity profile is applied at this boundary so as to match with the wall boundary 16 

conditions imposed on the top and bottom of the computational domain. An outflow boundary condition is set at 17 

the outlet boundary.  18 

Four control jets (𝐽1, 𝐽2, 𝐽3, 𝐽4) are symmetrically installed on the cylinder surface with an angular position of 19 

(𝜑1, 𝜑2, 𝜑3, 𝜑4) = (75°, 105°, 255°, 285°) respectively. The velocity profile at each jet exit follows the cosine 20 

distribution defined in Eq. (1) to ensure the velocity continuity between the velocity inlet of jets and no-slip 21 

surfaces of cylinder, 22 

 𝑈𝑖(𝜑, 𝑄𝑖) =
𝜋

𝛼𝐷
𝑄𝑖 cos (

𝜋

𝛼
(𝜑 − 𝜑𝑖)) (1) 

where 𝜑 is the angle measured from the positive semi-axis of X-axis, 𝛼 is the angular width of each jet which is 23 

set as 𝜋/18, 𝑄𝑖  is the maximum mass flow rate of 𝐽𝑖 taken at its centre location, 𝜑𝑖. Let 𝑄𝑖
∗ = 𝑄𝑖/𝑄𝑟𝑒𝑓 , where 24 

𝑄𝑟𝑒𝑓  is the reference mass flow rate, 𝑄𝑟𝑒𝑓 = ∫ 𝜌𝑈(𝑦)𝑑𝑦
𝐷/2

−𝐷/2
, in which 𝑈(𝑦) is the inlet velocity profile upstream 25 

of the cylinder. A constraint of |𝑄𝑖
∗| ≤ 0.05 is applied to each jet to avoid large power consumption and non-26 

physical actuations. A constraint of zero total mass flow rate of the four jets is applied to avoid adding and 27 
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subtracting mass directly from the environmental flow. This condition ensures that control strategies learned by 1 

the agent are more realistic and the numerical scheme is more stable.  2 

 3 

Fig. 1. Schematics showing computational domain, boundary conditions and control jet locations. 4 

In the present work, the flow is assumed to be viscous and incompressible. The incremental pressure 5 

correction scheme54 based on the finite element method is adopted to perform the numerical simulations using the 6 

open-source computing platform FEniCS55. The same computational mesh and solution methods used by Tang et 7 

al.48 are applied in our study to eliminate discrepancies in results due to the use of different numerical methods. 8 

An unstructured mesh composed of 25865 triangular grids is established for the domain discretization where the 9 

grids near the cylinder surface are refined, see Fig. 2. To avoid duplications, the detailed computational setting 10 

will not be repeated here. For more details of the numerical setup, please refer to Tang et al.48 11 

 12 

Fig. 2. Computation mesh used in the simulations. (a) The whole domain; (b) near the cylinder surface. 13 

The drag 𝐹𝐷 and lift 𝐹𝐿 acting on the circular cylinder are obtained via surface integrations of the viscous 14 

stress and pressure acting around the cylinder. The drag coefficient, 𝐶𝐷, and the lift coefficient, 𝐶𝐿, are calculated 15 

using Eqs. (2) and (3) from 𝐹𝐷 and 𝐹𝐿. The standard deviation of 𝐶𝐷 and 𝐶𝐿 are defined as 𝜎𝐷 and 𝜎𝐿, 16 

 𝐶𝐷 =
2𝐹𝐷

𝜌𝑈2𝐷
 (2) 

 𝐶𝐿 =
2𝐹𝐿

𝜌�̅�2𝐷
 (3) 
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The Strouhal number, 𝑆𝑡ℎ = 𝑓𝐷/�̅�, is used to represent the non-dimensional frequency in this study. The 1 

Strouhal number corresponding to the dominant frequency of 𝐶𝐷  and 𝐶𝐿  are denoted as 𝑆𝑡ℎ𝐷  and 𝑆𝑡ℎ𝐿 . The 2 

Strouhal number corresponding to the period of vortex shedding  𝑇𝑆 is denoted as 𝑆𝑡ℎ𝑆. 3 

The same code for flow simulations used by Tang et al48 was adopted in this study, for which case validation has 4 

been presented by Tang et al48. Nevertheless, we have conducted our own simulations using different mesh 5 

configurations and time-step discretization to validate the spatio-temporal convergence of our simulations and 6 

provided the results in Table 1. The numerical solver adopts the direct solution of lower-upper (LU) decomposition 7 

and hence the iterative residuals do not exist in the computations. Configuration 2 has the identical mesh 8 

configuration and time step used by Tang et al48. As it can be seen in the table, the results produced with the 9 

medium mesh (Configuration 2) are within 0.1% of those with the fine mesh (configuration 3) except for a slightly 10 

larger discrepancy in 𝑆𝑡ℎ of less than 0.5%. At to the convergence of time step, when 𝛿𝑡 is reduced from 0.001 to 11 

0.0005 (the smallest time step) the discrepancies of all results are within 0.1%. Based on our independent study, 12 

the mesh density and time step used in Configuration 2, which are identical to those used by Tang et al, have 13 

produced converged results. Therefore, they are used in the simulations in our work. This will ensure that any 14 

possible discrepancies due to differences in the numerical setup can be eliminated when different DRL methods 15 

are compared.  16 

Table 1 Results of spatiotemporal convergence study. 𝛿𝑡 is the numerical time step. 17 

Reynold 

number 
Configuration Mesh resolution 𝛿𝑡 𝐶𝐷̅̅̅̅  𝐶𝐷,𝑚𝑎𝑥 |𝐶𝐿|̅̅ ̅̅ ̅ 𝐶𝐿,𝑚𝑎𝑥  𝑆𝑡ℎ𝑆 

400 

1 Coarse 7166 0.001 3.166 3.501 1.852 2.962 0.3416 

2 Medium  25865 0.001 3.170 3.467 1.810 2.919 0.3417 

3 Fine 128442 0.001 3.171 3.468 1.809 2.919 0.3400 

4 Medium 25865 0.0005 3.168 3.467 1.808 2.918 0.3417 

5 Medium 25865 0.0015 3.172 3.471 1.813 2.925 0.3451 

 18 

2.2. DRL procedure 19 

The DRL framework used in this study is presented in Fig. 3. The DRL methods used in this study are based 20 

on the PPO algorithms implemented through TensorForce API56. The DRL framework considers the AFC problem 21 

as a goal-seeking agent interacting with an uncertain flow environment. The agent is a computer program 22 

representing a learner and decision-maker. The environment is the flow system simulated by the CFD solver, 23 

responding to the agent’s actions and presenting new states. In each training case, the agent starts observing the 24 

initial state and act when the vortex shedding is fully developed in the uncontrolled wake flow. In each episode, 25 
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the PPO agent samples a sequence 𝜏 defined in Eq. (4) composed of 𝑁𝑎 combinations of state (𝑠𝑡), action (𝑎𝑡) and 1 

reward (𝑟𝑡) through interactions with the environment,  2 

 𝜏 = (𝑠1, 𝑎1, 𝑟1), (𝑠2, 𝑎2, 𝑟2),⋯ (𝑠𝑁𝑎 , 𝑎𝑁𝑎 , 𝑟𝑁𝑎),  
(4) 

where 𝑁𝑎 is the number of times the DRL agent applying the policy 𝜋 each episode. A small 𝑁𝑎 corresponds to a 3 

large update interval of action, leading to inefficient sampling and training, while a large 𝑁𝑎 may produce the jet 4 

actuation too frequently and affect the numerical stability. In the present work, 𝑁𝑎 is set following the experience 5 

of Tang et al48. The agent pauses learning by 𝜏 at the end of each episode. Once learning is complete, the agent 6 

resumes the paused flow environment and proceed to a new episode. The state space consists of the velocity vector 7 

of 236 probes with the same arrangement as in the study of Tang et al.48. The action space consists of four action 8 

factors corresponding to the mass flow rates of four jets with zero total mass flow rate. The reward is defined by 9 

the following equation aiming to minimize the drag while keeping the lift low, 10 

 𝑟 = −〈𝐶𝐷〉𝑎 −𝑤 ∙ |〈𝐶𝐿〉𝑎| + 𝐶 (5) 

where 〈∙〉𝑎 is the time average over an action time step 𝑇𝑎. 𝑤 is a weighting coefficient used for adjusting the 11 

pursue of agent in large drag reduction and keeping lift low. In the present work, 𝑤 is set as 0.2, the same as in 12 

the study of Tang et al48. 𝐶 is a constant of 4 for plotting more intuitive learning curves in the results and does not 13 

affect training. Instead of focusing on the current reward, the agent aims to maximize the average cumulative 14 

reward 𝑅(𝑡)  =  ∑ 𝛾𝑖−𝑡𝑟𝑖𝑖>𝑡 , where 𝛾 ∈ (0,1) is a discount factor used for adjusting the interest of the agent to 15 

focus on long-term or short-term goals and should be set close to but not exceed 1. Following the same setup of 16 

Tang et al, 𝛾 is set as 0.97 in the present study.  17 

The PPO algorithms are policy gradient method. The policy function, 𝜋𝜃  is represented by an ANN where 18 

all weights are collectively given by the variable, 𝜃. Fig. 4 presents the network architectures of the standard and 19 

hybrid PPO methods. The PPO algorithms in this study have two networks: an actor network and a critic network. 20 

Both actor and critic networks comprise an input layer, an output layer and two fully connected hidden layers. 21 

The size of each hidden layer is set to 512, following an empirical test by Rabault et al.46 with both modeling 22 

ability and training efficiency. 23 

In the actor network, the input is the state set, and the output is the action distribution. The critic network is 24 

used to approximate the state-value function 𝑉(𝑠). The state-action value function 𝑄(𝑠, 𝑎) is replaced by an 25 

advantage function 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) to reduce its variability and accelerate training. When the decision-26 

making horizon is infinite, the advantage function can be represented as Eq. (6). 27 
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 �̂�𝑡 = 𝑅(𝑡)  − 𝑉(𝑠𝑡) 
(6) 

where �̂�𝑡 is an estimator of 𝐴 at time step 𝑡. The PPO algorithms, proposed by Schulman et al.39 as a optimization 1 

of the TRPO algorithms, aim to maximize a “surrogate” objective defined in Eq. (7). 2 

  𝐿𝐶𝑃𝐼(𝜃) = �̂�𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃old(𝑎𝑡|𝑠𝑡)
�̂�𝑡] = �̂�𝑡[𝑟𝑡(𝜃)�̂�𝑡] (7) 

where �̂�𝑡[∙] indicates the empirical expectation over time, 𝑟𝑡(𝜃) denotes the probability ratio of current policy 𝜋𝜃  3 

to previous policy 𝜋𝜃old. To avoid an excessively large policy update, a clipped surrogate objective defined in Eq. 4 

(8) is applied to the actor network. 5 

  𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)�̂�𝑡 , clip(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡)] (8) 

where the hyperparameter 𝜖 is chosen as 0.2 as suggested by Schulman et al.39. The objective of the critic network 6 

is defined as �̂�𝑡[−�̂�𝑡
2]. 7 

In the present study, the duration of each episode is set as  𝑇𝑒 = 20, and the number of action updates per 8 

episode 𝑁𝑎 is set to 200. 𝑇𝑎 = 𝑇𝑒/𝑁𝑎 equals to 100 numerical time steps, corresponding to 3.3%𝑇𝑆, which is the 9 

shedding period in the baseline case. Between two action updates, the value of jet control at each numerical time 10 

step is given by a linear interpolation defined in Eq. (9) to avoid jumps of computing pressure and velocity in the 11 

numerical procedure.  12 

 𝑗𝑙,𝑘 = 𝑎𝑙−1 + 𝑘
𝑎𝑙 − 𝑎𝑙−1
𝑁𝑛

 (9) 

where 𝑁𝑛 = 100 is the total number of numerical time steps for an action time step. 𝑘 = 1,2⋯𝑁𝑛 is the current 13 

numerical time step of the current action. 𝑙 = 1,2⋯𝑁𝑎 is the current action time step. 𝑗𝑙,𝑘 is the control value of 14 

the jet at k-th numerical time step of l-th action time step. 𝑎𝑙 is the action space updated by DRL agent for the l-15 

th action time step. A multi-environment approach proposed by Rabault and Kuhnle47 is used for parallelizing the 16 

training into 32 processes.  17 

 18 

Fig. 3. Schematic of the DRL framework in the present work 19 
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 1 

Fig. 4. Network architectures. (a) Standard PPO method. Since the effect of previous actions is not considered 2 

in the modelling of policy 𝜋, the environmental state transition may become random due to untreated action 3 

delays in the deterministic mode. (b) Proposed hybrid PPO method. A first-order autoregressive policy is 4 

applied to the extended state space with previous actions. 𝑁𝑣 is the number of velocity probes. 5 

2.3. MDP with delays 6 

In real-world applications of reinforcement learning, three types of delays may exist in the MDPs57. They 7 

are: (1) observation delay, which exists when the state is not observed immediately; (2) action delay, which exists 8 

when an action does not affect the environment immediately but with a time delay; and (3) cost delay, which 9 

exists when the action-induced reward is not fully collected till after a certain time has elapsed.  10 

An MDP with constant time delays in observation, action and cost can be denoted as a seven-tuple, i.e. 𝑀𝑑 =11 

< 𝑆,  𝐴,  𝑃𝐴,  𝑟,  𝑜𝑑 ,  𝑎𝑑 ,  𝑐𝑑 > , where 𝑆  and 𝐴  are the state and action sets, respectively, 𝑃𝐴  is the transition 12 

probability, and 𝑜𝑑, 𝑎𝑑 and 𝑐𝑑 represent the time delays in observation, action and cost, respectively. In this study, 13 

the states and the rewards are collected instantly leading to no observation and cost delays. However, an action 14 

delay is inherently present because a jet actuation taking place on the cylinder surface cannot affect the wake flow 15 

immediately since a finite period of time is required for its effect to propagate downstream. Therefore, the 16 

aforementioned MDP with constant action delays can be reduced to a five-tuple, i.e. 𝑀𝑎𝑑1 =< 𝑆,  𝐴,  𝑃𝐴,  𝑟,  𝑎𝑑 >. 17 

Simple ANN is not able to model 𝑎𝑑 in the decision process on its own. As shown in Fig. 4 (a), in the standard 18 

PPO method, since the effect of the previous actions is not considered in the modelling of policy, the 19 

environmental state transition becomes random for the same current state and action. For example, in the present 20 

AFC system, since the flow environment is influenced by the current and previous actions, if an agent under a 21 

deterministic policy acts only based on an isolate observation of the current state 𝑠𝑡 at a discrete time step 𝑡, the 22 

environment may transit to different 𝑠𝑡+1. Such learnt policy is bound to result in fluctuations in lift and drag, 23 
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especially when turbulence occurs in the near wake. Therefore, a sufficient ANN’s modelling of the control system 1 

should account for these action delays. 2 

In the regression processes shown in Fig. 4 (a), the action distribution and the advantage at each time step 3 

are determined by the current states in an MDP without delays. However, when an action delay exists the 4 

information of previous jet actuation should be taken into account in the agent’s current decision. Therefore, at 5 

each discrete time step the previous control actions should be added into the input layer of each network to correct 6 

the state-action transition and advantage estimation. According to Katsikopoulos and Engelbrecht57, 𝑀𝑎𝑑1 can be 7 

converted into an MDP without time delays, i.e. 𝑀𝑎𝑑2 =< 𝐼𝑎𝑑 ,  𝐴,  𝑃𝐴,  𝑟 > through state space augmentation, 8 

where 𝐼𝑎𝑑 = (𝑎𝑡−𝑎𝑑 ,  ⋯ , 𝑎𝑡−1,  𝑠𝑡  )  and 𝑎𝑡−𝑖  with 𝑖 = 1, 2, 3, … 𝑎𝑑  are a series of action sets, i.e. the jet 9 

actuations which took place before the present time at which the state, st, is collected.  10 

Given enough time a jet actuation will eventually reach the outlet of the computational domain. However, to 11 

ensure the efficiency of the training process the number of previous jet actuations to be included in the MDP has 12 

to be limited. In this study, these previous jet actuations are taken to be those which would have affected the near 13 

field flow within the vortex formation zone. This is a reasonable assumption since the lift and drag, which are 14 

used for defining the reward function, are mainly affected by the wake flow in the vortex formation zone. In the 15 

present work, the vortex formation length 𝐿𝑓 is defined as the streamwise distance from the centre of cylinder to 16 

the point of maximum 𝑢𝑥
′ 𝑢𝑥

′̅̅ ̅̅ ̅̅ , where 𝑢𝑥
′  is the fluctuation in the streamwise component of velocity with respect to 17 

the time averaged flow58,59. For the low Reynolds number flow studied in this paper, 𝐿𝑓 of uncontrolled flow is 18 

calculated as 0.98. As reported in previous studies48,50, the AFC strategies discovered that using DRL may increase 19 

the vortex formation length. Thus, a longer distance 𝑑𝑎 = 6𝐿𝑓 is selected to avoid missing delay information 20 

during the learning process. To estimate the amount of action delay in time, the convection velocity of jet actuation 21 

is also required and can be reasonably taken as the convection velocity of shedding vortices from the cylinder. 22 

The convection velocity of shedding vortices is found to decrease rapidly in the flow direction within a distance 23 

of 6D and it then becomes nearly constant60. To aid the determination of the averaged convection velocity of the 24 

shedding vortices in the vortex formation region, two velocity probes are placed at (1, 0) and (5, 0). Once the lift 25 

of the cylinder becomes periodically stable in the uncontrolled case, the velocity histories containing 20 vortex 26 

shedding cycles are sampled by the two probes. The averaged vortex convection velocity in the vortex formation 27 

region, �̅�𝑠, can be deduced given the axial spacing between the two probes and the time that it has taken the 28 

vortices to travel from the upstream probe to the downstream one found by a cross-correlation analysis of the 29 

velocity histories. With both the vortex formation zone length and the vortex convection velocity determined, the 30 
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time of action delay can now be calculated, i.e.𝑡𝑑 = (𝑑𝑎 − 𝐷/2)/�̅�𝑠. Finally, the normalised action delay 𝑎𝑑 can 1 

be determined as 𝑎𝑑 = 𝑡𝑑/𝑇𝑎. In the present work, 𝑎𝑑 = 63, and therefore the extended state space can be written 2 

as 𝐼𝑎𝑑 = (𝑎𝑡−63,  ⋯ , 𝑎𝑡−1,  𝑠𝑡  ). 3 

2.4. ARPs for continuous control DRL 4 

In continuous control DRL, stochastic policy gradient algorithms generally depend on exploration with 5 

continuous probability distribution, such as Gaussian distribution, to discover new control strategies. However, 6 

Gaussian policies do not usually generate samples with temporal coherence thus cannot provide explorations with 7 

smooth trajectories corresponding to secure and rewarding behaviours in most practical continuous control tasks. 8 

In addition, due to the lack of historical information and experience memory in the state, the action update of the 9 

policy may not lead to effective exploration of the environment, and it becomes more and more inefficient as the 10 

action rate increases. Korenkevych et al.61 introduced a series of stationary autoregressive processes (ARPs) to 11 

promote agent’s exploration in continuous RL control tasks. These processes exhibit two main characteristics: 12 

subsequent process observations are temporally coherent with a continuously adjustable degree of coherence, and 13 

the process stationary distribution is normal.  14 

When the complexity of the AFC problem increases, the sampling inefficiency of DRL and complicated state 15 

and action spaces may result in a more difficult exploration of the agent. A regression or time series model is 16 

expected to improve the utilization efficiency of samples and improve the temporal prediction of ANN. Therefore, 17 

the present work deploys a modified first-order ARP into the DRL paradigm. In the Gaussian policy, the actions 18 

are sampled through 𝜋𝜃(𝑎𝑡 , 𝑠𝑡) ~𝒩 (𝜇𝜃(𝑠𝑡), 𝜎𝜃
2(𝑠𝑡)). 𝜃 is the parameter factor of 𝜋𝜃 . 𝜇𝜃 and 𝜎𝜃

2 are both vectors 19 

parametrized by ANNs. When the episode is not updated, the policy 𝜋𝜃  does not change. Sampling by the same 20 

policy, the action mean will gradually approximate the expectation. We replaced the original observations 𝑠𝑡 with 21 

extended observations 𝑠�̃� = (𝑠𝑡−𝑝, 𝑎𝑡−𝑝, ⋯ , 𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡)  of an 𝑝  order ARP, while the substitute in 22 

(Korenkevych et al. 2019) is chosen as the white noise component. This modification allows ARP to improve the 23 

whole action update, rather than the noise term. As illustrated in Fig. 11 (b) later, the modified ARP is aimed to 24 

find the optimal control with overall temporal coherence. To implement the ARP, a history-dependent policy 25 

𝜋𝜃(𝑎𝑡|𝑠𝑡 ,  ℎ𝑡
𝑝
) is defined, where ℎ𝑡

𝑝
= (𝑠𝑡−𝑝, 𝑎𝑡−𝑝,  ⋯ , 𝑠𝑡−1, 𝑎𝑡−1) includes past 𝑝 states and actions. The new 26 

policy form replaces the original form of policy 𝜋𝜃(𝑎𝑡 , 𝑠𝑡) during the descent process of policy gradient, which is 27 

a Markov stochastic process. According to the Markov property, the probability distribution of future states 28 

depends only on the current state but not on the entire historical path. Therefore, history-dependent policies with 29 

state space ℎ𝑡
𝑝

 do not necessarily induce Markov stochastic processes even if the environmental transition 30 
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probabilities are Markovian62. However, with an extended state space (ℎ𝑡
𝑝
, 𝑠𝑡) where ℎ𝑡

𝑝
 is fixed in size, such 1 

history-dependent policy induces a Markov stochastic process. Denote �̃�𝑝 = (�̃�, �̃�, �̃�𝐴(∙ |𝑎, �̃�), �̃�(�̃�, 𝑎))  as a 2 

modified MDP with 𝑝 order ARP. �̃� = 𝐴. �̃�, �̃�𝐴(∙ |𝑎, �̃�) and �̃�(�̃�, 𝑎) are defined as follows: 3 

 ∀ �̃�,  �̃�′ ∈ �̃�:  

 �̃� = (𝑠1, 𝑎1, ⋯ , 𝑠𝑝 , 𝑎𝑝, 𝑠𝑝+1),  𝑎𝑘 ∈ 𝐴, 𝑠𝑘 ∈ 𝑆 ∀𝑘 (10) 

 �̃�′ = (𝑠1
′ , 𝑎1

′ , ⋯ , 𝑠𝑝
′ , 𝑎𝑝

′ , 𝑠𝑝+1
′ ), 𝑎𝑘

′ ∈ 𝐴, 𝑠𝑘
′ ∈ 𝑆 ∀𝑘 (11) 

 �̃�(�̃�′|𝑎, �̃�) =

{
 

 
�̃�(𝑠𝑝+1

′ |𝑎, 𝑠𝑝+1),   𝑖𝑓 𝑠𝑘
′ = 𝑠𝑘+1, 𝑘 ≤ 𝑝

                                              𝑎𝑘
′ = 𝑎𝑘+1,  𝑘 < 𝑝

                          𝑎𝑝
′ = 𝑎

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

 �̃�(�̃�, 𝑎) = 𝑟(𝑠𝑝+1, 𝑎) (13) 

The applicability of existing learning algorithms on �̃�𝑝 has already been validated by Korenkevych et al61. 4 

Therefore, it can be implemented into the present PPO algorithms through augmentation of the state space. In 5 

�̃�𝑎𝑑2
𝑝

, the original state space 𝐼𝑎𝑑,𝑡  in 𝑀𝑎𝑑2  is then replaced by 𝐼𝑎𝑑,𝑡 = (𝐼𝑎𝑑,𝑡−𝑝, 𝑎𝑡−𝑝, ⋯ , 𝐼𝑎𝑑,𝑡−1, 𝑎𝑡−1, 𝐼𝑎𝑑,𝑡). A 6 

corresponding initial state of �̃�𝑎𝑑2
𝑝

 is defined as 𝐼𝑎𝑑,0 = (𝐼𝑎𝑑,0, 𝑎0, ⋯ , 𝐼𝑎𝑑,0, 𝑎0, 𝐼𝑎𝑑,0), where 𝐼𝑎𝑑,0  is the initial 7 

states of 𝑀𝑎𝑑2, 𝑎0 is any element of action set 𝐴 because it does not affect future transitions and rewards. The 8 

sequence 𝐼𝑎𝑑,𝑡 considers time-delays and possesses better temporal coherence in the regression process of NNs 9 

but does not change the noise proportion in actions. In the present work, we use a first-order ARP in which 𝑝 = 1 10 

and 𝐼𝑎𝑑,1 = (𝐼𝑎𝑑,𝑡−1, 𝑎𝑡−1, 𝐼𝑎𝑑,𝑡) as shown in Fig. 4 (b). 11 

3. Results and Discussion 12 

3.1. The baseline flow 13 

Before the evaluation of the performance of different DRL methods in training agents and implementing 14 

active control, a baseline case of uncontrolled flow is performed first. The flow passing around the cylinder 15 

without active control (i.e., 𝑄𝑖
∗ = 0, 𝑖 = 1,2,3,4 ) is simulated, and the baseline case is monitored for 20 16 

nondimensional time when 𝐶𝐷  and 𝐶𝐿  begin to vary periodically. Figure 5 (Multimedia view) presents the 17 

instantaneous and time averaged vorticity contours and a video showing the flow evolution in the baseline case. 18 

Figure 5 (a) is captured at the time corresponding to the minimum 𝐶𝐿 during a vortex shedding period, 𝑇𝑆, and the 19 

subsequent snapshots are captured at every quarter of a cycle. All results of velocity and vorticity are normalized 20 
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by 𝑈 and  𝑈/𝐷 respectively, in this study. In a vortex shedding period, two vortices with an opposite rotation are 1 

shed in an alternate manner, leading to periodic pressure variations on the cylinder surface.  2 

 3 

Fig. 5. Contours of instantaneous vorticity at t = (a) 𝑇𝑆/4, (b) 𝑇𝑆/2, (c) 3𝑇𝑆/4 and (d) 𝑇𝑆 in the baseline case. 4 

(Multimedia view) 5 

Figure 6 illustrates the time series of 𝐶𝐷 and 𝐶𝐿 in the baseline case and their frequency spectra obtained with 6 

Fast Fourier Transform (FFT). The time averaged 𝐶𝐷 and 𝐶𝐿 over a period are 3.17 and 0.0273, respectively. Note, 7 

to enable a direct comparison of the oscillatory properties of the variables of interest, the time averaged value of  8 

𝐶𝐷 and 𝐶𝐿 have been subtracted before the FFT analysis. The vortex shedding frequency corresponds to 𝑆𝑡ℎ𝐷 =9 

0.333. In a single vortex shedding period, 𝐶𝐿 experiences one cycle, while 𝐶𝐷 experiences two cycles, i.e. 𝑆𝑡ℎ𝐷 =10 

0.683 ≈ 2𝑆𝑡ℎ𝑆. Due to a slight difference in the vortices shed from the top and bottom of the cylinder, the two 11 

circles of 𝐶𝐷  becomes different, resulting in a local maximum obtained at 𝑆𝑡ℎ = 𝑆𝑡ℎ𝑆  in the spectrum of 𝐶𝐷 . 12 

Furthermore, 𝐶𝐿 is asymmetrical about the time axis.  13 

 14 
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Fig. 6. Temporal variation of 𝐶𝐷 (a) and 𝐶𝐿 (b) and FFT analyses of𝐶𝐷 (c) and 𝐶𝐿 (d) in the baseline case. In 1 

FFT, the time series of 𝐶𝐷 and 𝐶𝐿 have their temporal mean subtracted. 2 

3.2. Responses of 𝑪𝑫 and 𝑪𝑳 to different DRL methods 3 

In the present work, four methods are tested and compared for their performance in AFC. The test consists 4 

of two phases: training and deterministic control. In the training phase, each method is used to train an agent until 5 

the policy learned by the neural networks of the agent reaches the convergence that is the reward has nearly 6 

stopped increasing as the episode number increases. After meeting the convergence, all agents have been trained 7 

to episode 3200. To accelerate training, each agent simultaneously samples the state-action-reward sets in 32 8 

parallel environments to update a single policy. After training, the last environment is selected for comparison. 9 

For the four DRL methods tested, we denote the vanilla PPO algorithms as the PPO method, the PPO method 10 

considering delays in the MDP as the DMDP-PPO method, the PPO method employing first-order ARP as the 11 

ARP-PPO method, and the PPO algorithms combining MDP with delays and first-order ARP as the ARP-DMDP-12 

PPO method. To avoid random effect, the PPO and ARP-DMDP-PPO methods have been used to perform training 13 

five times. While both ARP-PPO and DMDP-PPO methods have been adopted for training two times, due to their 14 

high training costs. Averaged performances are plotted for comparison. 15 

In training, the average reward per episode is defined as 〈𝑟〉𝑒. The averaged learning curve represented by 16 

variations of 〈𝑟〉𝑒 with episode number and the confidence interval are illustrated in Fig. 7.  All four methods can 17 

be applied to achieve robust training. In the initial stage of training, the average rewards of PPO and ARP-DMDP-18 

PPO increase rapidly with the number of episodes. During the main exploration stage, the learning curve of PPO 19 

has a large confidence interval corresponding to the training instability exceeding the effect of exploration. The 20 

convergence differences by more than 20 episodes may indicate that the learnt policies finally reaching the 21 

maximum reward in different training repeats are inconsistent, which may also reflect the insufficient ability of 22 

ANN in time series regression for approximating the policy. The learning curves indicate that learning occurs 23 

consistently in about 50 episodes, then keeps tuned to 100 episodes to reach fine convergence. The maximum 〈𝑟〉𝑒 24 

of the averaged learning curves through the PPO and ARP-DMDP-PPO method is 1.75 and 1.79, respectively. 25 

Since the ARP-DMDP-PPO method improves the ANN’s regression through embedding the historical data 26 

without additional sampling, it requires only a slightly larger training time than the PPO method under the same 27 

number of episodes. 28 
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 1 

Fig. 7. Learning curves of different methods in the last environment to indicate the training robustness. For 2 

each DRL method, the training repeats have been performed using the same hyperparameters but different 3 

random seeds. For the PPO (a) and the ARP-DMDP-PPO method (b) with five training repeats, the 4 

averaged learning curve and the 95% confidence interval are presented. For the ARP-PPO (c) and DMDP-5 

PPO method (d) with two training repeats, the averaged learning curve is presented. 6 

In the deterministic control phase, each agent selects the best policy (the policy that achieved the greatest 7 

reward) in its training history to start control from the same initial state of the baseline case and updates the jet 8 

actuation with the same frequency as action updates in training. All results in the control phase are obtained by 9 

agents deterministically acting without exploration. The actions are not sampled for training since all agents do 10 

not update their policy during the control phase. The nondimensional time 𝑡 of a complete control process is 120. 11 

Figure 8 and 9 presents the temporal variations of 𝐶𝐷 and 𝐶𝐿 controlled by four agents, respectively. It is noted 12 

that all agents produce a significant decrease in 𝐶𝐷 within 𝑡 = 20. The PPO and ARP-PPO agents cannot maintain 13 

a stationary 𝐶𝐷 since their policies are learned by the networks without information of action delays. By contrast, 14 

when considering action delays, 𝐶𝐷  controlled by the DMDP-PPO and ARP-DMDP-PPO agents has become 15 

nearly stationary after 𝑡 = 40. Table 2 summarizes 𝜎𝐷 and 𝜎𝐿 controlled by four agents after 𝑡 = 40.  16 

The drag reduction in control is defined as (〈𝐶𝐷〉𝑏 − 〈𝐶𝐷〉𝑑)/〈𝐶𝐷〉𝑏, where 〈𝐶𝐷〉𝑑 is the time averaged 𝐶𝐷 in 17 

the DRL cases. Similar to the results of the same flow configuration by Tang et al48, the PPO agent has obtained 18 

a rapid 𝐶𝐷 reduction , but then 𝐶𝐷 and 𝐶𝐿 keep fluctuating significantly and randomly in the remaining time. The 19 
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drag reduction by the PPO agent is 36.8%, greater than the drag reduction of 33.1% achieved by Tang et al48. This  1 

difference of control may indicate the training of the PPO agent in Tang et al48 can still be tuned by more episodes 2 

to reach a better convergence. As the number of episodes increases, the best policy during training will be more 3 

probable to close to the optimal policy. Therefore, we choose a higher number of training episodes than Tang et 4 

al. based on the available computational resources to avoid the potential influence of insufficient training. The 5 

result shows that sufficient training of PPO method still cannot find a stable control strategy to reduce the 6 

fluctuations of 𝐶𝐷 and 𝐶𝐿 in subsection 3.3. 7 

After considering action delays in MDP, the DMDP-PPO agent controls 𝐶𝐷 and |𝐶𝐿| rapidly decrease, and 8 

then fluctuate with a much lower 𝜎𝐷 and 𝜎𝐿 than the PPO agent. After the rapid decrease of 𝐶𝐷, the DMDP-PPO 9 

agent tends to find a stationary control with small fluctuations at the beginning. But the opposite is true, and 𝐶𝐷 10 

and 𝐶𝐿 fluctuate in an increasing variance, which indicates the control effects cannot be maintained but gradually 11 

worsen as fluctuation accumulate.  12 

Historical states and actions are valuable for the neural networks to estimate advantages 𝐴𝑡  and output 13 

smooth and temporal coherent actions. Autoregressive models are popular and effective tools to perform a 14 

regression of the variable utilizing past values. Here, the ARP-PPO method and PPO method are compared to 15 

investigate the effects of first-order ARP. As shown in Fig. 8 (b) and Fig. 9 (b), after the rapid decrease in the 16 

initial time, 𝐶𝐷 and 𝐶𝐿 controlled by the ARP-PPO agent fluctuate in a lower variance than the PPO agent, but 17 

they are non-stationary with an unsteady trend. As shown in Table 2, the ARP-PPO agent produces smaller 𝜎𝐷 18 

and 𝜎𝐿 than the PPO agent but larger 𝜎𝐷 and 𝜎𝐿 than the DMDP-PPO agent. The performance of the ARP-PPO 19 

agent illustrates the positive effect of ARP, but also indicates that ARP cannot replace DMDP to quantify delays. 20 

Therefore, ARPs should be deployed into the DMDP-PPO method instead of directly adopted in the PPO method. 21 

Finally, a hybrid ARP-DMDP-PPO method is used to implement effective control in the AFC system of this 22 

study. After the ARP-DMDP-PPO agent performs control, 𝐶𝐷 rapidly decreases to reach convergence and begins 23 

to change with a small amplitude after 𝑡 = 40. The drag reduction by the ARP-DMDP-PPO agent is 38%, which 24 

is higher than the drag reduction obtained by the PPO agent. The ARP-DMDP-PPO agent spends the same time 25 

as the PPO agent to reach around the minimum 𝐶𝐷 but maintains a steadier flow state with a much lower 𝜎𝐷 and 26 

𝜎𝐿 of 87% and 90%, respectively. 27 
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 1 

Fig. 8. Real-time control by different agents showing temporal variations in 𝐶𝐷. (a) the DMDP-PPO agent, (b) 2 

the ARP-PPO agent, (c) the ARP-DMDP-PPO agent. 3 

 4 

Fig. 9. Real-time control by different agents showing temporal variations in 𝐶𝐿. (a) the DMDP-PPO agent, (b) 5 

the ARP-PPO agent, (c) the ARP-DMDP-PPO agent. 6 

Table 2 Comparison of 𝜎𝐷 and 𝜎𝐿 sampled from 𝑡 = 40 to 120 in four controlled cases. 7 

Agent 𝜎𝐷 𝜎𝐿 

PPO 0.0928 0.811 

DMDP-PPO 0.0273 0.546 

ARP-PPO 0.0464 0.663 

ARP-DMDP-PPO  0.0121 0.081 

 8 

Figure 10 presents the FFT of the time series data of 𝐶𝐷 and 𝐶𝐿 sampled from 𝑡 = 60 to 120 in the PPO case 9 

and ARP-DMDP-PPO case. 𝐶𝐷 and 𝐶𝐿 are subtracted by their mean value before FFT analysis. Similar to the 10 

results of Tang et al.48, amplitudes of 𝐶𝐷 and 𝐶𝐿 at their dominant frequencies have been significantly reduced by 11 

the PPO agent. However, the PPO agent has introduced a considerable amount of fluctuation of 𝐶𝐷 and 𝐶𝐿 at the 12 

Strouhal numbers lower than 𝑆𝑡ℎ𝐷  and 𝑆𝑡ℎ𝐿  in the baseline case. Through the modification of jet actuation 13 
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controlled by the ARP-DMDP-PPO agent, 𝑆𝑡ℎ𝐷  and 𝑆𝑡ℎ𝐿  become consistent with 𝑆𝑡ℎ1  corresponding to the 1 

actuation frequency presented in Fig. 11. Compared to the baseline case, the ARP-DMDP-PPO agent has led to 2 

not only the dominant frequency being shifted to a slightly higher frequency but also its amplitude being reduced 3 

substantially. Compared to the PPO agent, the ARP-DMDP-PPO agent suppresses the amplitude of 𝐶𝐷 and 𝐶𝐿 4 

more effectively and meanwhile avoids introducing unnecessary random interference at other Strouhal numbers.  5 

 6 

Fig. 10. FFT analysis of 𝐶𝐷 and 𝐶𝐿 sampled from 𝑡 = 60 to 120 in the baseline case and two controlled cases. 7 

Time series of 𝐶𝐷 and 𝐶𝐿 have been subtracted by their temporal mean. (a) 𝐶𝐷. (b) 𝐶𝐿. 8 

A realistic AFC system usually requires DRL agents to output smooth and temporal coherent jet control due 9 

to the physical constraints of jet actuators. Figure 11 compares the mass flow rates of all jets and their FFT between 10 

the PPO case and ARP-DMDP-PPO case during control. The FFT is sampled from the time series data of 𝑄1
∗ to 11 

𝑄4
∗ (nondimensional mass flow rates of four jets) from 𝑡 = 60 to 120 in both cases. To directly compare the pure 12 

oscillatory properties of the variables of interest, 𝑄1
∗ to 𝑄4

∗ are subtracted by their mean value before the FFT 13 

analysis. The PPO agent keeps outputting stochastic jet signals during the entire control process. Similar to the 14 

control strategy discovered by Rabault et al. at Re = 100, the ARP-DMDP-PPO agent changes the flow 15 

configuration into a low-drag state through large-amplitude jet actuation. From 𝑡 = 20 to 𝑡 = 40, since the main 16 

𝐶𝐷 reduction has already been obtained, each jet signal gradually converges and oscillates to slightly modify the 17 

ambient flow. After 𝑡 = 40, all jet signals begin to settle in a stationary trend, resulting in a small pseudo-periodic 18 

oscillation of 𝐶𝐷 and 𝐶𝐿 shown in Fig. 8 (c) and Fig. 9 (c). All jet signals by the ARP-DMDP-PPO agent have 19 

almost the same spectral distribution where the amplitudes are mainly concentrated at 𝑆𝑡ℎ1 = 0.4167 and 𝑆𝑡ℎ2 =20 

0.0833. On the contrary, the PPO agent has introduced many fluctuations at frequencies lower than 𝑆𝑡ℎ𝑆 to each 21 
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jet signal. Furthermore, all control signals are inconsistent with each other and have much larger amplitudes than 1 

the control signals by the ARP-DMDP-PPO agent. 2 

 3 

Fig. 11. Temporal variation of 𝑄1
∗ to 𝑄4

∗ (The nondimensional mass flow rates of four jets) in (a) PPO case and 4 

(b) ARP-DMDP-PPO case. FFT analysis of 𝑄1
∗ to 𝑄4

∗ sampled from 𝑡 = 60 to 120 in (c) PPO case and (d) 5 

ARP-DMDP-PPO case, the time series have been subtracted by their temporal mean. 6 

 7 

Since the pressure drag and lift are the x-integral and y-integral of cylinder surface pressure in the numerical 8 

computation, the optimization mechanism by the agents is specifically analysed from the temporal variation of 9 

the pressure distribution on the cylinder surface. Figure 12 presents the time-averaged distribution of pressure and 10 

the standard deviation of surface pressure on the cylinder surface through the whole control process. 𝜃 = 180° 11 

corresponds to the stagnation point of the cylinder face. �̅�  is the time-averaged pressure normalized by the 12 

dynamic pressure 𝑞 = 𝜌𝑈2/2, 𝜎𝑝 is the standard deviation of surface pressure. Compared with the baseline case, 13 

both agents significantly reduce the absolute value of time-average negative pressure and 𝜎𝑝 on the leeward side 14 

of the cylinder, resulting in a large reduction of 𝐶𝐷 and 𝜎𝐷. However, the PPO agent cannot stabilize the controlled 15 

flow because its policy lacks the information of delays and historical states-actions sequences. Compared to the 16 

baseline case, the large jet actuation in the PPO case increases the pressure fluctuation around 𝜃 = 105° and 255° 17 

even though it reduces the fluctuation in the flow direction. Furthermore, the PPO agent causes a more asymmetric 18 
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pressure distribution at the upper and lower surfaces of the cylinder, resulting in a higher time averaged 𝐶𝐿. On 1 

the contrary, the ARP-DMDP-PPO agent performs a more precise control to reduce the pressure difference 2 

between the upper and lower surfaces along the horizontal axis of the cylinder. The ARP-DMDP-PPO agent is 3 

capable of identifying the asymmetry in the vortex structure in the wake caused by the offset of the cylinder 4 

relative to the centerline of inflow shown and outputs an asymmetric jet actuation to maintain a symmetric time 5 

averaged pressure distribution. As a result of the asymmetric jet actuation, 𝜎𝑝 is asymmetrically distributed around 6 

the cylinder. Compared to the PPO agent, the ARP-DMDP-PPO agent reduces 𝜎𝑝 at most angles especially at 7 

𝜃 = 105° and 255°, resulting in a lower fluctuation of drag and lift. 8 

 9 

Fig. 12. Distribution of �̅�/𝑞 and 𝜎𝑝 on the cylinder surface calculated over the whole control process. (a) �̅�/𝑞. 10 

(b) 𝜎𝑝. 11 

3.3. Effects of flow control on vortex formation 12 

The effects of controlling jets on the vortex shedding are further analysed in this section. Figure 13 13 

(Multimedia view) presents the instantaneous vorticity contours and a video of the flow evolution during the entire 14 

control process in the baseline, PPO and ARP-DMDP-PPO case. In the ARP-DMDP-PPO case, the first image is 15 

captured at a time corresponding to the minimum 𝐶𝐿 in a single period 𝑇𝑆_𝐴𝐷𝑃, and the subsequent figures are 16 

captured every quarter of a cycle. The vorticity contours of the baseline case have been presented in Fig. 13 (a1) 17 

– (a4). It can be seen clearly that in the baseline case, formation of the shedding vortices takes place within a 18 

distance much closer to the cylinder than in the controlled cases and the strength of vortices in remains high 19 

towards the computational domain. In the PPO case, the formation zone has clearly been extended further 20 

downstream compared to the baseline case and the vortices further downstream are much weaker. The ARP-21 

DMDP-PPO agent seems to produce the longest and most steady formation zone with the vortex shedding taking 22 

place at the end of it. The location of vortex shedding is closer to the centreline of the cylinder and the width of 23 

the vortex street behind it appears narrower than in the other two cases. A longer and steadier formation zone is 24 
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expected to lead to a less fluctuating pressure in the near wake resulting in a lower vortex-induced drag. Similar 1 

phenomena were reported by researchers using passive flow control techniques63,64, such as fairings and splitter 2 

plates. 3 

 4 

Fig. 13. Contours of instantaneous vorticity at (a1) - (a4): t =  𝑇𝑆/4, 𝑇𝑆/2,  3𝑇𝑆/4 and 𝑇𝑆 in the baseline case, 5 

(b1) - (b4): t = 86.5, 87.1, 87.7 and 88.3 in the PPO case and (c1) - (c4): 𝑡 = 𝑇𝑆_𝐴𝐷𝑃/4, 𝑇𝑆_𝐴𝐷𝑃/2, 3𝑇𝑆_𝐴𝐷𝑃/4 6 

and 𝑇𝑆_𝐴𝐷𝑃 in the ARP-DMDP-PPO case. (Multimedia view) 7 

Figure 14 presents the contours of time-averaged velocity magnitude and vorticity over the entire control 8 

process (t=120) in the baseline case (40𝑇𝑆 ), the PPO case and the ARP-DMDP-PPO case (50𝑇𝑆_𝐴𝐷𝑃 ). In 9 

comparison to the baseline case, with the jet control the recirculation bubble in the near wake is extended 10 

substantially in length, resulting in a reduced pressure drop shown in Fig. 12 (a). Compared to the PPO agent, the 11 

ARP-DMDP-PPO agent gives arise to a more streamlined recirculation zone within which the magnitude of 12 

vorticity is smaller and the regions of high vorticity are located further away from the cylinder, leading to a steady 13 

pressure distribution on the cylinder surface.  14 

Figure 15 shows the streamwise 𝑢𝑥
′ 𝑢𝑥

′̅̅ ̅̅ ̅̅  over the entire control process in the three cases. The location of peak 15 

streamwise 𝑢𝑥
′ 𝑢𝑥

′̅̅ ̅̅ ̅̅  gives of good indication of where the vortex formation zone ends. In the baseline case, the length 16 

of vortex formation zone is 𝐿𝑓 = 0.98. In the PPO controlled case, the vortex formation zone is extended to 𝐿𝑓 =17 

2.34  and the distance between the centres of vortex formation region and the central line of cylinder is 18 

significantly reduced. Compared to the PPO case, the vortex formation length 𝐿𝑓 in the ARP-DMDP-PPO case is 19 

even greater and the vortex formation region of two side eddies almost overlap, resulting in a longer and steadier 20 

recirculation zone. 21 



23 

 

In summary, in comparison to the PPO agent, the ARP-DMDP-PPO agent is more effective in extending the 1 

length of the recirculation zone and moving the location of vortex shedding substantially downstream. This results 2 

in a much steadier near wake flow and the significant reduction of  𝜎𝐷 and 𝜎𝐿 as presented in Table 2. 3 

 4 

Fig. 14. Contours of time-averaged velocity over the entire control process in (a) Baseline case; (b) PPO case; 5 

(c) ARP-DMDP-PPO case. Contours of time-averaged vorticity over the entire control process in (d) 6 

baseline case; (e) PPO case; (f) ARP-DMDP-PPO case. 7 

 8 

Fig. 15. Contours of 𝑢𝑥
′ 𝑢𝑥

′̅̅ ̅̅ ̅̅  over the entire control process in (a) baseline case, (b) PPO case and (c) ARP-9 

DMDP-PPO case. 10 

4. Conclusions 11 

In this study, we have developed a new hybrid DRL method which combines a Markov decision process 12 

(MDP) with time delays with the use of a first-order autoregressive policy (ARP), i.e. the ARP-DMDP-PPO 13 
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method. This hybrid DRL method is applied to control the vortex shedding process from a 2D circular cylinder 1 

using four synthetic jet actuators at a freestream Reynolds number of 400. The aim of this work is to improve the 2 

time series regression of ANN and control stability by reducing the large fluctuations in lift and drag 3 

accompanying the drag reduction; a problem which remains unsolved in the existing work and tends to escalate 4 

as the Reynolds number increases.  5 

The Markov decision process (MDP) with time delays is introduced to quantify the action delays in the DRL 6 

process due to the time elapse between actuation and response of flow. A cross-correlation analysis has been 7 

performed between signals of the actuation jets and the velocity probes in the wake to validate the action delay in 8 

the decision process of DRL. The ARP-DMDP-PPO method has trained an agent successfully to implement a 9 

smooth and temporal coherent control. Compared to the standard DRL method, this method utilizes the historical 10 

samples without additional sampling in training and it is shown to be capable of reducing the magnitude of drag 11 

and lift fluctuations by approximately 90% while achieving a similar level of drag reduction in the deterministic 12 

control at the same actuation frequency.  13 

In comparison to the existing the standard PPO method, this new method has yielded a stable and coherent 14 

control which results in a steadier and more elongated vortex formation zone behind the cylinder hence a much 15 

weaker vortex shedding process and less fluctuating lift and drag forces. This study demonstrates the necessity of 16 

including a physics-informed time delay in the MDP and the benefits of introducing ARPs to achieve a robust and 17 

temporal-coherent control of unsteady forces in active flow control. The pseudo-periodic control signals that the 18 

control strategy produced by the DRL algorithms are also more regular making them more applicable to AFC in 19 

real settings. Reduction of high-level temporal fluctuations in drag and lift will help to decrease dynamic loads 20 

and structural fatigue leading to an improved structural durability and operational safety which will benefit many 21 

industrial applications. 22 
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