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Abstract

In this study, we introduce a new network feature for detecting suicidal ideation
from clinical texts and conduct various additional experiments to enrich the state of
knowledge. We evaluate statistical features with and without stopwords, use lexi-
cal networks for feature extraction and classification, and compare the results with
standard machine learning methods using a logistic classifier, a neural network, and
a deep learning method. We utilize three text collections. The first two contain
transcriptions of interviews conducted by experts with suicidal (n=161 patients that
experienced severe ideation) and control subjects (n=153). The third collection con-
sists of interviews conducted by experts with epilepsy patients, with a few of them
admitting to experiencing suicidal ideation in the past (32 suicidal and 77 control).
The selected methods detect suicidal ideation with an average area under the curve
(AUC) score of 95% on the merged collection with high suicidal ideation, and the
trained models generalize over the third collection with an average AUC score of

Published by The Open Repository @ Binghamton (The ORB), 2022



Northeast Journal of Complex Systems (NEJCS), Vol. 4, No. 1 [2022], Art. 2

69%. Results reveal that lexical networks are promising for classification and fea-
ture extraction as successful as the deep learning model. We also observe that a
logistic classifier’s performance was comparable with the deep learning method
while promising explainability.

1 Introduction

Suicide and its prevention is a problem of growing importance according to the in-
creasing global suicide statistics [1, 2]. Meanwhile, the aftermath of the COVID-19
pandemic on suicide rates has started to surface the dire effects of social isolation,
lock-downs, stress, and anxiety factors affecting mental health and triggering suici-
dal events [3, 4, 5]. Approximately 70% of the suicidal individuals needing urgent
mental health services remain helpless because of the shortage of caregivers, lack
of health insurance, or by choice [6, 7]. Meanwhile, accessing these services can-
not guarantee suicide prevention either. Healthcare providers without good training
who solely rely on standardized questionnaires may fail to see the nuances of sui-
cide [8, 9, 10]. Also, suicidal individuals often deny and hide their suicidal thoughts
[11]. A solution considered by many has been to adopt machine learning technol-
ogy for suicide prevention [12].

Many studies evaluate the possibility of identifying suicidal ideation from texts
using machine learning [13, 14, 15, 16]. Deep learning methods such as convolu-
tional neural networks (CNN) [17, 18], long-short term memory networks (LSTM)
[17, 19], and BERT models [20] have also been used for identifying the presence
of suicidal ideation. The reported scores reach as high as above 90% AUC over
within-corpus evaluations [8, 21]. Due to the reported success of these methods,
some social media domains already started to use such models in real-time detec-
tion and prevention of suicide [12]. These studies made it possible to demonstrate
the plausibility of suicidal ideation detection using supervised models.

Despite the developments in the machine learning applications, the current state
of research is far from completion. There are only a few studies that attempt to
utilize complex networks in the task of text classification [22, 23], especially in the
mental health domain. Also, there is an insufficiency of studies that use expert-
labeled data collections due to the expensive and difficult nature of collecting clin-
ical data. Plus, there is a need for studies that perform fair method comparisons
instead of reporting results from a single approach or perform simple comparisons
with methods that were not properly tuned. Most importantly, literature needs stud-
ies that report how the trained models with high within-dataset results would gen-
eralize over other collections and studies that demonstrate the interpretability of the
methods. In this study, we respond to these demands.

In this study, we use three clinical data collections available to us. The first two
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collections comprise interview transcripts of individuals in the hospital due to sui-
cidal events and control individuals. Meantime, the third collection has interview
transcripts of patients that received epilepsy treatment in the past, some of them
admitting having suicidal ideation currently or in the past. We use the third one for
studying the generalization/transferability of the machine learning methods trained
by a subset of the first two collections, focusing on determining the generalization
of the high-scoring models in a real-life scenario. The significance of this third
collection is the low-level suicidal ideation and the small number of suicidal indi-
viduals it contains compared to the first two, making it a realistic experimentation
framework.

In the following sections, we discuss our contributions, summarize the methods,
demonstrate and discuss the results, and finalize the main findings in the conclu-
sions.

2 Related Work

The majority of the suicidal ideation detection research domain is dominated by
machine learning and deep learning studies [13, 14, 15, 16, 8]. Using networks for
analyzing or identifying suicidal ideation have been covered by a few studies. In one
study, De et al. constructs a network to analyze the interactions between different
theoretical components of suicidal ideation [24]. In addition to the theoretical stud-
ies, there are others that focus on utilizing the power of cognitive network science.
One recent study constructs a lexical network from the suicide notes to study and
analyze the associations between the terms in these notes [23]. They find clusters
of positive words dominating their networks, while they find negative terms highly
clustered around the self-related terms in the networks. As such analyses provide
a grasp of the strength of constructing networks from the data, some studies fo-
cused on using this strength to distinguish a suicidal texts from the others, using
the networks as a classifier [22]. In this study, we introduce lexical networks as a
resourceful domain for feature extraction. The rationale is that these features reflect
more subtle lexical relationships than are captured by standard statistical features
(e.g., bi-grams) and can be used to augment or replace these features in machine
learning applications for detecting suicidal ideation. Additionally, we introduce an
analysis on the effects of handling stopwords, i.e. frequent words that are mean-
ingless alone, in the feature set as there is no consensus regarding their removal.
Next, we perform a feature analysis to address the issue regarding the lack of in-
terpretability of the machine learning methods, especially the neural models [12].
Getting the top features from a trained method allows us to understand and make
sense of the information these methods process in the auto-separation of data into
suicidal versus non-suicidal classes.
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The limited number of available benchmarks is a challenge in suicide research
[12]. Collecting data, especially under clinical supervision, is difficult and expen-
sive. Meanwhile, social media data with actual ground-truth availability are limited,
share-restricted, and come with other challenges. Community efforts are dedicated
to attacking these challenges like working on small gold-standard, share-restricted
data [13]. Due to these challenges, studies are limited to work on a single, lim-
ited collection and report only within-dataset evaluations. One drawbacks of this
limitation is how the trained models would generalize to other data in a real-life
setting remains unknown. Also, due to the lack of generalization experiments, re-
searchers cannot determine whether their methods learn patterns or clues related to
suicide. Ribeiro et al. shows how the deep learning models can “learn” false fea-
tures while returning high scores on within-corpus evaluations [25]. Evaluating the
trained models on other data would allow researchers to realize whether the models
have been overfitting to the training dataset.

3 Materials and Methods

3.1 Data

Each of the three collections comprises transcribed interviews conducted by clini-
cal experts asking five “ubiquitous questions” to the volunteering patients. These
questions were developed to initiate a conversation to harvest language from them:
“Do you have hope, fear, secrets? Are you angry? Does it hurt emotionally?” [26].
The patient responses are long, containing more than one sentence, and are of free
form. In this study, only the patient responses are used. These three collection
studies have been approved by the Cincinnati Children’s Hospital Medical Center’s
(CCHMC) Institutional Review Board.

Table 1: For each corpus used in the study, the average age of the patients, and the number
of participants in each class.

Dataset ‘ Average age  Suicide Control
First corpus 155(x1.4) 31 30
Second corpus | 33.5 (£ 16.4) 130 123
Third corpus 19.2 (£ 3.0) 32 77

The first corpus in Table 1 contains data from patients in the Emergency Depart-
ment admitted for suicide-related events, and the control set comprises orthopedic
injury patients with no recent or past suicidal ideation [27]. The second corpus
is similar to the first, except it was obtained from three hospitals in two cities:
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CCHMC, University of Cincinnati Medical Center, and Princeton Community Hos-
pital [21]. This corpus also includes follow-up interviews conducted a month after
discharge. A recent longitudinal study found no significant difference in language a
month after discharge [15], so the follow-up responses are also included in the cor-
pus. Since our subject area is the detection of suicidal ideation, mentally ill patient
interviews are excluded from the collection. Next, these two collections are merged
into a single corpus to increase the training set size, containing 470 texts where the
number of suicidal and control texts are balanced.

The third corpus is different from the first two as the participants are adolescent
epilepsy patients of CCHMC. The original aim of this collection was to identify
psychiatric comorbidities in these patients [28]. The number of suicidal and control
subjects in this collection are in Table 1. The ideation levels for the suicidal group
are lower than those of the previous two corpora like in a real-life population. Most
of the suicidal group patients admit having suicidal thoughts in the past, which
does not mean they are currently suffering from suicidal ideation, similar to real-
life, i.e. fewer suicidal individuals, varying ideation levels [29]. It also includes
some follow-up interviews, overall comprising 213 texts.

3.2 Statistical Features

We apply the standard text pre-processing methods (lowercase conversion, punctua-
tion removal - prohibited for bigrams, and tokenization) before extracting features.
The first feature set has unigrams, i.e. individual word frequencies. We exclude
words occurring in fewer than five training set texts (< 1.3% of the set) to eliminate
misspellings or infrequent words. We also experiment with stopwords to evaluate
their effect as there is no consensus on removing or keeping them. For ease, we
use the stopwords list in the NLTK library and use them as unigrams [30]. Subse-
quently, we experiment with bigram features that are concurrently occurring word
pairs. For their extraction, we also employ the NLTK library [30]. The end-of-
sentence punctuations are kept during pre-processing before bigram extraction to
include the information on which words are at the beginning or end of a sentence.
We used the same threshold as before (< 5) to remove the infrequent bigrams. Fi-
nally, we obtain the n-grams features (n = {1, 2}), which are the most popular tex-
tual features in clinical studies ([15, 21, 31]) by merging the unigram and bigram
features. After the statistical feature extraction, we transform the feature values into
their natural logarithms to decrease differences in magnitude, especially in n-gram
features where frequent words might bias the performance. Finally, we normalize
each vector to unit length.
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3.3 Lexical Associative Networks

One way to determine associations from textual data is to obtain joint usage infor-
mation, i.e., two words that are frequently used together in the same textual neigh-
borhood are considered to be more related [32, 33, 34, 35]. Building networks from
a training corpus is a way of condensing the word relations, ideally capturing the
shared thoughts and ideas they represent. Connecting the words or tokens in a text
corpus based on such associations results in a lexical associative network. Two
sub-sets of suicidal and control, undirected and weighted networks created from
word associations are present in Figure 1 where the weights are computed as the
correlation coefficient:

W ( j) piPj
Z?J
Vil =p)p;(1—p;)

p(i,j) is the probability of two words i and j to co-exist in the same sentence, while
p; and p; are the individual occurrence probabilities.

One way of using these networks is for text classification. A method named ex-
cess weight density (EWD) has been proposed a semi-supervised approach [22, 36].
It estimates how well the words in a given text fit either network using the connec-
tion weights and the network density computation. For classification, it assigns the
label of the network with the highest connection density to the text. We use this
method as a baseline in this study.

ey

input : G(V,W?') and G(V,W?); // Lexical networks of two
classes
output: 7, f; // Feature vector, label vector
r=[1; //
[=11; //
forV(i,j) e V; // For all node (word) pairs
do
if (wj; > XeWhH vV (wi; > xeW?); // X threshold
then
T = wz{j — wi2,j ; // Compute the feature value
T +=[x;5]; // Add the feature
4=, )] // Add the labels
end

end

Algorithm 1: Algorithm for extracting lexical associative network features.
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p.5162

ssed
00292 0.0170

(b) A sample control network

Figure 1: Randomly selected subsets from the suicide and control networks constructed us-
ing the associations between the words, where numbers on the connections are association
weights.

Alternative to the text classification, these networks can also be used for feature
extraction so they can be used together in machine learning tasks. For two networks
G(V, W) and G(V, W?) with the same nodes V/, Algorithm 1 shows how the net-
work features are extracted. For two words that exist in the networks as nodes (i, j),
their connection weights are subtracted from one another to obtain the final feature
value. A positive feature value means the words are strongly connected in the first
(suicidal) network compared to the other (control), and vice versa for the negative
values.
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3.4 Supervised Classifiers

In the experiments, three supervised methods are used. The first method is a logistic
softmax. Logistic regression is popular in clinical studies [37, 31, 11], and the lo-
gistic classifier constructed as a neural network with no hidden layers is equivalent
to logistic regression when the softmax is used in the output layer. Using the Ten-
sorflow API [38], we create this no hidden layer network and apply standard feed-
forward back-propagation for training. To increase the complexity, a multilayer
perceptron (MLP) is created by adding a hidden layer with a thousand neurons and
hyperbolic tangent as the activation function, and a dropout rate of 0.98. Finally, to
further increase the model complexity, a Convolutional Neural Network (CNN) is
selected for its popularity in suicide research [17, 18, 12]. We use Kim’s approach
for sentence classification [39], which contains five layers (an input layer convert-
ing words into numbers representing their location in the vocabulary, an embedding
layer that learns the semantic relations between the words, a convolution layer that
applies convolution filters of different window sizes on embedding vectors, a max-
pooling layer where the maximum value - assumed to be the most important feature
- is extracted and returns “important” dense features, and finally, the softmax layer
makes a classification decision). We modify this model to learn and classify com-
plete texts instead of sentences. We initialize the embedding layer with pre-trained
word2vec vectors that were trained by the Google News corpus, containing 100 bil-
lion words!. We keep the remaining parameters at default: the dropout rate of 0.5,
the decay rate of 2.5, the batch size of 64, the number of filters as 128, and the filter
sizes {3, 4, 5}. To avoid overfitting, we use early stopping with the patience of 25
epochs on the validation set during training.

4 Results

For the experiments, from the merged two collections containing 470 interviews,
we randomly select 25 suicidal and 25 control texts as the excluded test set. Next,
we divide the remaining 420 texts into training and validation sets repeatedly ten
times (ten-fold) at random as part of a Monte Carlo cross-validation to ascertain
different texts become training set at each fold. Followingly, we perform the fol-
lowing operations at each fold: we randomly select 60 suicidal and 60 control texts
for validation, and the remaining becomes the training set, and subsequently, we
use the validation sets to tune the models during training and then classify the ex-
cluded test set and the third generalization corpus. At the end of the ten folds, we
average the classification scores. Since the validation set is used for parameter tun-
ing. To make sure there is no overfitting, validation set classification results are

"https://code.google.com/archive/p/word2vec/
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compared to those of the test sets. Later, the validation sets are fully excluded from
the remaining experiments.

Table 2: Average AUC scores and the standard deviation over ten-fold within-corpus and
generalization evaluations.

Test set (within-corpus) results

unigrams n-grams lexical
Methods | unigrams stopwords  without  bigrams (n < 2) network
stopwords - features
Logistic 92.0 74.8 92.5 87.8 90.7 85.5
(2.0) (5.7 (1.0) (1.9) (3.0) 2.1
MLP 95.1 77.9 94.4 89.3 92.4 86.1
(1.2) (3.7 (1.1) (1.8) (1.8) (2.9)
Third (generalization) set results
unigrams lexical
Methods | unigrams stopwords  without  bigrams Iz;lg?r;)s network
stopwords - features
Logistic 66.1 59.3 66.5 68.8 68.5 62.5
(1.2) (2.0) (1.8) (1.4) (1.4) (2.0)
MLP 65.8 58.7 65.3 68.5 68.7 62.0
(1.8) (1.5) (1.5) (1.5) (1.4) (1.9)

Table 3: Average AUC scores and the standard deviation over ten-fold within-corpus and

generalization evaluations of the methods not trained by statistical features.

Test set (within-corpus) results

Third (generalization) set results

Methods Results Methods Results
EWD 77.6 (3.1) EWD 64.3 (2.1)
CNN 88.5(2.2) CNN 61.6 (2.5)

Table 2 and Table 3 illustrate the within-corpus evaluation results and the gen-
eralization results as average and standard deviation of AUC values on the test set
and on third set. The following items are the main observations we captured from
these results:

* Results show that machine learning methods trained by lexical associative
network features provide high performance, but fall short compared to the
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models trained by standard features (unigrams, bigrams, n-grams). When
used together with n-gram features to increase the heterogeneity of the feature
space, these features may enhance the performance.

* The comparison of machine learning methods shows that neural networks and
logistic classifier provide high performance independent of the feature type
on within-corpus or generalization experiments. Also, CNN performs high
on within-corpus experiments but fails to generalize over the third corpus as
effectively as the MLP, or the EWD. Overall, no single method outperforms
the rest under all circumstances, but the MLP seems to be the best.

* A notable observation from the results is that the simple, no hidden layer
neural network, which is the logistic classifier, has performance comparable
to and often not far behind the CNN and the MLP. This observation is sig-
nificant for clinical applications because logistic classifier is explainable and
computationally simple. These results also indicate that complex approaches
are driven more by historical practice than tangible benefits. The superiority
of simple methods over the deep learning methods on small suicide corpora
is commonly observed [14].

In addition to the classification experiments, we also take advantage of the fact
that some machine learning methods are not black-boxes. The learned weights of
the trained logistic classifier can be used to determine which words were most im-
portant for returning the above AUC scores. Thus, we use the trained logistic clas-
sifier and return top ten features for each feature set in Table 4. The top unigrams
contain suicidal words like “depression,” “feeling,” and “pill”. Meantime, the top
suicidal stopwords are “you” and “we.” Top bigrams and n-grams also have word
pairs associated to depression, anger, feeling, while the control features have hap-
piness and laughter-related words. Overall, the statistical features are interpretable.
Yet, interpreting the top lexical associative network features is not as straightfor-
ward due to their computational nature. For example, the word pair “hope-role”,
unlike bigrams, does not mean it was more frequent in the suicidal set. It means,
its feature value, which could be negative, was more significant for identifying the
suicidal interview transcripts. Thus, the negative correlations are also in effect in
these network features.

5 Discussion

Perhaps the most interesting observation from the results is the performance of
the extremely simple logistic classifier. Over the years, researchers have applied in-
creasingly sophisticated machine learning methods to text classification - often with
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Table 4: Top ten features from to the trained logistic classifier of the remaining feature sets
(S: top suicidal, C: top control class features.)

Feature Top ten features per class (left to right: most to less important)
unigrams | S: depression, feeling, feels, medication, depressed, thoughts,
kinda, pills, met, working

C: role, laughs, play, healthy, say, fine, something, sports, upset,
passed

stopwords | S: than, or, does, if, you, can, we, further, you’ve, over

C: here, hasn’t, which, against, how, this, herself, himself, was,
did

bigrams S: i’'m-angry, depressed-and, yeah-it, it-feels, because-of, feels-
like, 1’m-at, feel-like, i-need, this-to

C: laughs-i, .-laughs, me-angry, big-role, role-., close-., no-it,
plays-a, happy-person, i-like

n-grams S: feeling, depression, working, thoughts, i’'m-angry, yeah-it,
because-of, depressed-and, medication, pills

C: laughs-i, role, .-laughs, laughs, play, big-role, role-., me-angry,
close-., they-say

lexical S:role-really, hope-role, role-secrets, life-role, role-um, things-
network role, people-role, anything-stupid, much-role, better-role
features C: laughs-god, think-depression, feeling-um, good-point, feeling-

that’s, something-good, life-something, takes-see, get-working,
laughs-secrets

good results. However, the experiments show that its performance is competitive
with more complex machine learning methods such as MLP, though the latter did
show slightly better average AUC. More notably, the logistic classifier produces the
best generalization performance across the board. The generalization results also
showed that different features (except stopwords only) made relatively little differ-
ence. Together, these observations indicate that the essential information used for
inference by the machine learning classifiers is relatively simple and is almost en-
tirely captured by simple (unigram) features and a simple (logistic) classifier. In
addition to the computational advantage conferred by these simpler models, their
use also leads to greater explainability. When unigrams are used as features in a
non-hidden-layer logistic classifier, it is very straightforward to determine the dif-
ferential value of words (or word combinations if n-grams are used) through feature
analysis as demonstrated earlier.

The experiments on stopwords indicate that: a) machine learning classifiers can
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achieve performance using only stopwords as features, suggesting that the stopword
distribution alone does provide some information about the suicidality of a text; b)
When machine learning classifiers are trained by unigrams, including or excluding
stopwords makes no significant difference, suggesting that whatever information
is carried by stopwords is also available in the unigrams (see Table 4). One can
conclude from (b) that choosing either approach is accurate. Since classifying the
stopwords alone shows some benefit, it might be beneficial to include them. Mean-
while, the lexical associative network features alone failed to overpower the perfor-
mance of the statistical features, which are powerful. Yet, these network features
alone provided comparable performance to the well-established statistical features.
Especially in the generalization experiment, the lexical network features trained by
either machine learning method provides better performance than CNN. Also, the
network-based classifier EWD also performs better than CNN, and is comparable
to the other machine learning methods in the generalization experiment. These
findings show that such networks deserve further studying and improvement.

A key point of this study is that it provides a comparison between two different
clinical datasets. Most studies use clinical collections that cannot be released for
legal reasons. This limitation eliminates the possibility of other researchers inves-
tigating methods on the same corpus. Nevertheless, this can be overcome to some
extent by testing methods developed on one corpus on another available collection,
giving a sense of how transferable such models can be. It also illustrates the classi-
fiability of the collection used for training compared to other studies. Classification
results reaching as high as AUC=95 + 1.2% on the test set confirm the previous
literature reporting high within-corpus results from these collections [21, 27, 15].
Meanwhile, the generalization of the trained models on the third collection returns
around AUC=68.8 + 1.4%. Although it may seem low compared to the within-
collection results, it is necessary to remember that the methods were not trained
on this collection. The contents of this corpus are different from the previous two
datasets as the reported suicidal ideation levels are low or were in the past. A
previous study reports an AUC score of 71% on within-corpus evaluation using n-
grams and SVM on this third set [28]. The trivial difference between 68.8 and 71
confirms the low levels of suicidal ideation. The fact that the models trained on
different datasets could classify this distinct collection almost as good as its past
within-dataset results is a rich contribution for the future of suicide risk detection
applications. This outcome proves that the identifiers of suicidal ideation present
within the features are transferable to other collections. These results are especially
significant considering the size of the training data since working with machine
learning methods on small datasets is a challenge [14]. Overall, these observations
confirm that trained machine learning methods and the networks together have a
great potential for use in future mental health datasets.
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6 Conclusion

Implementing machine learning methods is becoming a common practice in suicide
research. Yet, the literature needs more experiments for enhancing the confidence
towards these research studies. The current state of research is far from perfection
for the lack of clinically-labeled data, lack of generalization experiments, and lack
of different method evaluations. This study responds to these issues by experiment-
ing with statistical text features, and constructing networks for feature extraction
and classification. Among the results of many folds, machine learning methods
prove to be successful in detecting suicidal ideation with an average AUC of 95%
on within-corpus evaluations on the merged two collections. Most essentially, the
trained models achieve success in classifying the low ideation levels in the third
collection. Tests on lexical networks also show promise as a classifier and as a
source of features. Meantime, logistic classifier performs almost as well as, and at
times even better than complex, deep learning methods, and in addition, promises
explicability through feature analysis. However, extensive future work with more
methods and more data is needed before clinicians start utilizing these models in
practice. Until then, these experiments help improve confidence in employing them
so new studies can explore these aspects further and enhance the state of knowledge.
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