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with  SINDy  AUTOENCODERS. Undergraduate  Thesis,  Federal  University  of
Uberlandia, Uberlandia, 2022.

Abstract

This work presents a numerical methodology to obtain a reduced order model

–  ROM –  of  a  linear  time-invariant  aeroelastic  model.  The  airfoil  section  of  the

aeroelastic  model,  considering only  the pitch–plunge motion is  studied in  a fluid-

structure  interaction  scheme  using  Computational  Fluid  Dynamics  –  CFD.  The

structural parameters of the linear mechanical system and the necessary data are

taken from COMSOL Multiphysics®.  In  a first  analysis,  it  is  shown what  is  most

common  in  current  ROM  approaches,  a  Deep  Neural  Network  -  DNN.  Such  a

concept  has  a  high  predictive  capacity,  however,  it  becomes  unfeasible  for

interpretation  and  extrapolation  of  the  equations.  The  Sparse  Identification  of

Nonlinear  Dynamics  –  SINDy –  methodology is  presented.  In  order  to  show the

details of the proposed technique, the SINDy technique is implemented in a sparse

identification algorithm, Chaotic Lorenz system. Finally, the SINDy methodology is

applied to the case of the proposed aeroelastic model. It was possible to identify the

system and discover their equations with high accuracy.

Keywords: aeroelasticity,  system  identification,  machine  learning,  reduced

order model, deep neural network, sindy.
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Resumo

Este trabalho apresenta uma metodologia numérica para a obtenção de um

modelo  de  ordem reduzida  –  ROM  –  de  um  modelo  aeroelástico  invariante  no

tempo.  A  seção  de  aerofólio,  do  modelo  aerolástico,  considerando  apenas  os

movimentos de translação-rotação, é estudada em um esquema de interação fluido-

estrutura  usando  Dinâmica  dos  Fluidos  Computacional  –  CFD.  Os  parâmetros

estruturais  do sistema mecânico linear  e  os dados necessários são retirados do

COMSOL Multiphysics®. Em uma primeira análise é mostrado o que há de mais

comum nas abordagens de ROMs atuais, uma Rede Neural Profunda - DNN. Tal

conceito possui elevada capacidade de predição, entretanto, torna-se inviável para

interpretação e extrapolação das equações. A metodologia Sparse Identification of

Nonlinear  Dynamics  –  SINDy  –  é  apresentada.  Inicialmente,  com  o  objetivo  de

mostrar  os detalhes da técnica proposta implementa-se a técnica SINDy em um

algoritmo de identificação esparsa, Chaotic Lorenz system. Finalmente, aplica-se a

metodologia  SINDy  para  o  caso  do  modelo  aerolástico  proposto.  Foi  possível

identificar o sistema e descobrir suas equações com alta precisão.

Palavras-chave:  Aeroelasticidade,  Identificação  de  sistemas,  Machine

Learning, Modelo de Ordem Reduzida, Rede Neural Profunda, SINDy.
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1 INTRODUCTION

In the last decades there has been a great demand for the development of

tools to facilitate work involving simulations. With the idea of solving this problem,

Computational Fluid Dynamics (CFD) emerged. The computational basis of the CFD

is a grouping of numerical methods based on the Navier-Stokes equations that help

in  fluid  flow  simulations  (Kot  Engenharia,  2020).  From  data  obtained  in  CFD

simulations it is possible to obtain consistent and valid results. However, CFD still

faces  many  challenges  mainly  in  terms  of  computational  expensiveness  and

accuracy.  With  the  increasing  availability  of  large  amounts  of  data,  data-driven

models are starting to be investigated to replace, improve or assist CFD simulations

(Calzolari et al, 2021).

Much  has  been  discussed  recently  about  the  great  evolution  of  Artificial

Intelligence and the capacity for computational simulations and predictions. We saw

the emergence of new methods that enabled machines to "learn by themselves" to

solve  problems  and  make  predictions,  such  as  Machine  Learning.  The  Machine

Learning aproach consists in a combination of algorithms and statistical methods,

which, upon receipt of a data entry, the algorithm, after analyzing and manipulating

them,  is  capable  of  generating  a  data  output,  which  makes  it  possible  to  solve

problems,  forecasts  and  classifications  in  different  areas,  both  in  the  field  of

medicine,  financial  market,  sports  and  especially  in  engineering.

With  the  evolution  discussed  above,  we  have  several  machine  learning

methods, in this work, we use Machine Learning and Deep Neural Network, in which

both are complementary. As an example, Pure Machine Learning is a system that is

capable of making predictions by reproducing data from the past, that is, it uses a

wide history of input data to be able to generate output data based on that input, and

the Deep Neural Network, where layers of data are added, forming an interconnected

network between them, which through this vast database, the algorithm is able to

identify patterns, that is, the machine begins to “think alone”, that is, the output data

are not based on the input, the algorithm is able to generate the output according to

the need, in other words, the data output adapts according to the situation(Brunton et

al,(2016)).

Also  with  the  technological  evolution,  the  SINDy  method  emerged,  an



algorithm that allows us to identify linear and/or non-linear dynamics systems, using

a one-dimensional system described by:

                                                   (1.1)

This system is an illustration of the linear combination of some terms, which

we call candidates, with the rate of change of the system's state Ẋ. These candidate

terms are functions that can be calculated from the measured data. From this, there

was the motivation to carry out this work, where, based on the Machine Learning

method combined with the SINDy method, we proved the ability to solve and predict

complex  problems  and  identify  non-linear  models.

Thus, with the help of all these tools described so far, in this work we will show

the reduced-order model based on machine learning with SINDy Autoencoders in the

next chapters.

Ẋ = f (X )



2 BACKGROUND THEORY

This  chapter  presents  the  numerical  methodologies  for  construction  of

reduced-order models (ROMs) of  an aerolastic  system. Firstly,  the reduced order

model definition is presented, and the aeroelastic model is introduced. Secondly, the

DNN  concept  is  presented.  Next,  ML  with  SINDy  Autoencoders  concept  and

properties  are  described.  Finally,  the  identification  procedure  applied  to  the

aeroelastic model is presented in detail.

2.1 REDUCED-ORDER MODEL

The  concept  of  a  reduced  order  model  is  as  simplistic  as  its  purpose  is

supposed to be: Simplify a more complex model. Reduced-order models must be

able to reproduce the main physical aspects of full-scale models, while preserving

the expected fidelity within a controlled error. It is convenient to quote:

A Reduced order model is  (ROM) is a simplification of high-fidelity, complex
models. They capture the behavior of these source models so that engineers
can quickly study a system’s dominant effects using minimal computational
resources.  ROM  can  be  used  to  simplify  various  models  from  full  3D
simulations,  systems  simulations  or  embedded  software.  As  an  added
bonus, a ROM ability to simplify complex models means that they can often
obfuscate proprietary information. (Ansys, 2019).

The reduced-order model approach presented in this work is based on the

SINDy algorithm.

2.2 AEROLASTIC MODEL

The  aeroelastic  model  was  built  in  COMSOL Multiphysics®.  Figure  2.2.1

presents the structural model of the aeroelastic system, which is based in the cross

section of a wing, represented by the NACA 0010 airfoil.  The structural  model  of

chord  c  and  wingspan  s (considered  for  mass  calculations)  has  two  degrees  of

freedom (h and θ) with a flexural rigidity kh and torsional rigidity kθ. The elastic axis is



defined as the locus of shear centers along a wing (Cooper et al, 2016), clarifying,

the elastic axis is the position where only bending happens when the loads is applied

on it. In this work the elastic axis is located at a distance e ahead the airfoil center of

mass.

The aerodynamic model was defined as a turbulent stream in the s direction,

conceived by the  k - ϵ model. Various forms of the k - ϵ  model have been in use for

several decades, becoming the most used turbulent model for industrial applications

(Spalding,  1974).  For  the  fluid-structure  interaction,  a  fully  coupled  FSI  (Fluid-

Structure  Interaction)  solver  was  used.  This  solver  computes  the  couplings  that

appear at the limits between the fluid and the structure (fluid pressure and viscous

forces). For the numerical solution, the Generalized Alpha method was used. The

Generalized Alpha method is similar to the Backward Differentiation Formula method

(BDF), but differs in its ability to control the degree of damping added by the solver,

making the solution more accurate, but less numerically stable (Chung and Hulbert,

1993). 

The values for the structural dynamic matrices were obtained with COMSOL®.

These matrices can be verified by determining the differential equations of motion of

the system using the Lagrange Equation, given by:

                                     (2.1)
d
dt ( ∂L

∂ q̇ j
) −

∂L
∂q j

= Q j

Figure 2.2.1: Structural representation of the aerolastic system(extracted from
BONNAS, MORAIS. 2021)



                 (2.2)

where T is  the  kinetic  energy,  V is  the potential  energy,  q j  are the generalized

coordinates and  Q j  are the generalized external  forces, where  j is the minimum

coordinates  number  that  represents  the  system (j =  1;  2;  3…).  The  kinetic  and

potential  energy  of  the  structural  system  are  given  by  Eq.  (2.3)  and  Eq.  (2.4),

respectively.

 (2.3)

  (2.4)

where m is the airfoil mass and I is the moment of inertia. Substituting Eq. (2.3) and

Eq.  (2.4)  into  Eq.(2.2)  and  Eq.  (2.1)  we  obtain  the  equations  of  motion  of  the

structural model:

    (2.5)

                                              

Equation (2.5) can be written as follows:

(2.6)

where  M and  K are  the  structural  mass and  stiffness matrices,  L is  the  vertical

aerodynamic force at the center of pressure, Τ is the moment caused by L in the

elastic axis and x(t) is the state vector. Applying the simplified unstable aerodynamics

to the dynamic model in Equation 2.6 it is possible to obtain the expression of the full

aeroelastic equation of motion subjected to aerodynamics forces f(t), given by:

[M ] ẍ (t ) + [K ] x (t ) = f (t )

L = T − V

T =
1
2

m(ḣ(t ) + eθ̇ (t))2 +
1
2

I θ̇ (t )2

[ m me

me I +me2 ]{ḧ(t )
θ̈ (t )} + [k h 0

0 k θ ]{h (t )
θ (t )} = {−L (t )

Τ (t ) }

V =
1
2

K h h (t )2 +
1
2

kθ θ (t )2



(2.7)

where  [Caero] and  [Kaero] are the aerodynamic damping and aerodynamic stiffness

matrices,  ρ is the air density and  V is the stream velocity. From the identification

methodology, the main objective is to determine the aerodynamic damping [Caero] and

the aerodynamic stiffness [Kaero] added by the fluid – structure interaction.

2.3 DEEP NEURAL NETWORK - DNN

DNN is a kind of Machine Learning that is inspired by the human brain. More

precisely:

The  concept  of  deep  neural  network  is  a  neural  network  formed  by  a
combination of a large number of neurons, which simulates the behavior of
the  human  brain  to  transmit  and  process  information  through  neuronal
connections to respond or solve problems.  In  the basic architecture of  a
deep neural  network,  there are multiple  hidden layers between the input
layer and the output layer, and each layer is composed of a large number of
neurons, and all the neurons in the input layer are individually connected to
the neurons in the hidden layer, and the neurons in the hidden layer are also
individually connected to the output layer. (Yi-Ren Wang and Yi-Jyun Wang,
2021).

DNN is composed of many artificial neurons, in which each artificial neuron is

connected with a weight value, and each artificial neuron has a bias value. The DNN

used in this work is an autoencoder type. An autoencoender  is a type of multilayer

feedfoward neural network that can be used to learn a compressed represetantion of

a data. An autoencoder is composed of an  with r nodes, followed by a hidden layer

with p nodes. 

The schematic diagram of a DNN with autoencoder is shown in Figure 2.3.1. 

[M ] ẍ (t ) + ρV [Caero ] ẋ (t ) + [ρV 2 K
aero

+K ] x (t ) = f (t )



The neurons  (input-output)  are  connected  by  the  activation  functions.  The

activation functions used in this work are tanh (hiperbolic tangent) and Linear. The

Linear and tanh activation functions can be represented as follows: 

(2.8)

(2.9)

where  W1  and W2  are the encoder and decoder weight matrices, and b1 ,

b2   are the encoder and decoder biases vectors. Once the optimal { W1 ; W2 ;

b1 ; b2 }  are  found,  we can  construct  an  encoder  to  reduce  the  input  into  a

reduced order data using { W1 ; b1 } and a decoder to convert the encoded data

back to its original dimension using { W2 ; b2 }(Alyssa Novelia et al. 2021). In a

different  form,  the  encoder  compresses  the  input  and  the  decoder  attempts  to

recreate the input from the compressed version provided by the encoder. 

Y1 = W2(W1 y1 + b1) + b2

Figure 2.3.1: The architecture of a DNN.The number of hidden layers is optional.
(extracted from MathWorks)

Y2 = W2tanh(W1 y2 + b1) + b2



2.4 SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS - SINDY

Brunton et. al (2016) introduced the SINDy algorithm which identifies ordinary

differential equations from data. SINDy follows the assumption that there are only a

few important terms that define the dynamics of a system, so that the equations are

sparse  in  the  space  of  candidate  functions.  Sparse  regression  is  then  used  to

determine the features required to accurately reproduce the system dynamics.

Here, we consider a dynamical system of the form:

(2.10)

 

where  X(t) is the state of a system at time t and the function  f(X, t) represents the

features that define the system dynamics. To determine the function f from data, we

collect a time history of state X(t) and its derivative Ẋ (t ) . The derivatives Ẋ (t )  can

be obtained numerically using the data X(t). The data are stored into two matrices X

and Ẋ :

  (2.11)

      (2.12)

where i is the number of time samples and n the dimension of the system. Next, we

construct  a  library  Θ(X) of  candidate  non  linear  functions.  Each  column of  Θ(X)

represents a candidate function for the right-hand side of (2.10). Brunton et. al (2016)

suggest that Θ(X) may consist of constant, polynomial, exponential and trigonometric

Ẋ = [
Ẋ T ( t1)
Ẋ T (t2)

⋮

Ẋ T (t i )
] = [

Ẋ 1( t1) Ẋ 2 (t1) ⋯ Ẋ n (t1)
Ẋ 1(t2 ) ˙̇X 2 ( t2) ⋯ Ẋ n( t2)

⋮ ⋮ ⋱ ⋮
Ẋ 1 (t i ) Ẋ 2 (t i ) ⋯ Ẋ n (t i )

]

dX (t )
dt

= f (X,t)

X = [
X T ( t1)
X T (t2)

⋮

X T (t i )
] = [

X 1( t1) X 2 (t1) ⋯ X n (t1)
X 1(t2 ) X 2 ( t2) ⋯ X n( t2)

⋮ ⋮ ⋱ ⋮
X 1 (t i ) X 2 (t i ) ⋯ X n (t i )

]



terms. The choice of candidate functions normally requires some prior knowledge

about the dynamical system. An example of Θ(X) is shown below:

  (2.13)

Now,  one  can  set  up  a  regression  problem  to  determine  the  unknown

parameters.

                    (2.14)

By using sparse regression, we are able to find what right-hand side terms are

small  (close to zero), resulting in sparse models. There are a number of algorithms

for computing sparse regression. At the present time, the least absolute shrinkage

and selection operation (LASSO) (Tibshirani, 1996) is the most popular technique for

this type of regression.  An alternative algorithm is proposed by Brunton et. al (2016),

the sequential thresholded least-squares algorithm. In this algorithm, one starts with

a  least-squares  solution  for  the  unknown  parameters  and  then  threshold  all

parameters that are smaller than some cutoff value.

Θ ( X ) = [
1 X 1( t1) X 1(t1) X 2 (t1) … X 2

2 (t1) … sin (X n (t1))
1 X 1( t2) X 1(t2) X 2 (t2) … X 2

2( t2) … sin( X n(t2))
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

1 X 1 (t i ) X 1 (t i ) X 2 (t i ) … X 2
2 (t i ) … sin (X n (t i ))

]

Ẋ = Θ ( X ) Ξ



Figure 2.4.1 shows a schematic of the SINDy algorithm demonstrated for the

solution of the Lorenz attractor system. First,  data are collected, including a time

history of the state X and its derivatives Ẋ . Next, a library of candidate functions of

the states, X, is constructed. Then, sparse regression (fit function) is used to find the

fewest terms needed to satisfy Eq. 2.14. After fit the model is possible to see if the

identified equations are satisfactory. For that, we compute the derivatives from the

model using the predict function in the SINDy. Assume that the model is capable of

the reproduce the derivatives with higly precision, we can use the simulate function to

evolve initial conditions forward in time using the learned model. 

One of the possibilities for the SINDy is work with the scikit-learn library. With

that  library  we  be  able  to  use  perform  a  cross-validation  using  GridSearchCV

function.  The  GridSearchCV function  perform a  exhaustive  search over  specified

parameter values for an estimator. Then,  we can perform some tests searching for

the bests parameters before fit the SINDy model.

Figure 2.4.1: Schematic of the SINDy algorithm(extracted from Brunton et al,(2016)).



3 RESULTS

In this chapter we present the obtained results. Recently, several authors have

proposed algorithms for the prediction of complex dynamical systems using Deep

Neural  Network.  Jiaqing  et  al.  (2019)  used  a  DNN  to  capture  the  dynamic

characteristics  of  aerodynamic  and  aeroelastic  systems  for  varying  flow  and

structural parameters.  Hugo et al. (2019) show that DNN approach is able to learn

transient features of a flow. Ling et. al (2016) presented a DNN to improve RANS

turbulence models.  First,  exploring these same methodology we build a DNN with

Autoencoder  for  the  aerolastic  model.  Due  to  the  insufficiency  in  this  model  to

generate interpretable equations, we focused our efforts on the SINDy methodology.

In order to familiarize and facilitate understanding, the SINDy methodology is used to

reconstruct a Chaotic Lorenz System. Finally, the obtained results using SINDy for

the aerolastic system is presented.

3.1 DEEP NEURAL NETWORK WITH AUTOENCODER

Using  the  concept  of  Deep  Neural  Network,  it  was  possible  to  obtain

satisfactory  reconstruction  results  for  the  proposed  aeroelastic  model.

For the implementation of this type of Machine Learning it is necessary to choose

parameters. The most relevant parameters are presented in Table 3.1.1. 

Table 3.1.1: DNN relevant parameters

DNN 

Autoencoder

Architecture

σENTRY σEXIT Optimizer α λ 𝜂ITER 𝜖

4-2-2 Tanh Linear Adam 1x10-3 5.723x10-5 50 3.953x10-5

First, an input with four layers with hyperbolic tangent activation function was

considered, after that two layers with linear activation function for the Encoder. The

Decoder had two layers with a hyperbolic tangent function at the first output and two

layers with a linear function at the second output. In both layers multiple regularizers



were  used.  We  use  for  the  training  of  the  DNN  the  vertical  and  rotational

displacement data acquired from COMSOL Multiphysics®. Data were divided into a

random state.  Sixty  percent  of  the  data  was  used  for  training  the  DNN.  As  the

optimizer, Adam was chosen. Machine Learning training was done with the no mean

squared error metric. Figure 3.1.1 shows the loss by the number of iterations.

The obtained results for the vertical and rotational displacement can be seen

in the Figure 3.1.2 and Figure 3.1.3.

Figure 3.1.1: Loss per number of epochs



Figure 3.1.2: CFD Aerolastic Response and DNN Aerolastic Response at V = 40 m/s

Figure 3.1.3: CFD Aerolastic Response and DNN Aerolastic Response at V = 40 m/s



Results  show  that  the  Deep  Neural  Network  with  Autoencoder  accurately

reproduces  the  aerolastic  system.  The  Table  3.1.2 shows  the  accuracy  value

obtained,   the  time  for  training  DNN from the  data  and  the  specification  of  the

hardware used for this case.

Table 3.1.2: DNN results and properties

DNN
Autoencoder

Accuracy Time [s] Processor Memory

0.9992 144.07 Ryzen 5 5600G
8gb ddr4
4200mhz

The DNN Autoencoder method presents satisfactory results in a shorter time

than the COMSOL Multiphysics® software, mentioned in item 2.2, what was already

expected whereas “In all  of these recent studies, DNN  representations have been

shown to be more flexible and exhibit higher accuracy than other leading methods on

challenging  problems”  (Brunton  and  Kutz,  2019,  p.220). However,  the  proposed

method does not produce an interpretable equation as a result, being, simply, a linear

equation, since this was chosen in the DNN output layer.

3.2 CHAOTIC LORENZ SYSTEM – SINDY METHODOLOGY

For this  example,  we consider  a canonical  model  in dynamics,  the Lorenz

system given by:

 (3.3)

 (3.4)

 (3.5)

with σ = 10, ρ = 28, and β = 
8
3

for this example. The generate training data starting

from the initial conditions (-8, 8, 27). using the odeint function in 3.3, 3.4 and 3.5

ẏ = x (ρ − z) − y

ż = xy − βz

ẋ = σ (y − x )



Equantions. We also consider a time of twenty seconds with a five point zero times

ten to the negative five power of timestep. Data are collected and stacked into two

large data matrices X and Ẋ , where each row of X is a snapshot of the state X in

time, and each row of Ẋ  is a snapshot of the time derivative of the state Ẋ  in time.

The main approach is given in 2.4 section. 

Figure 3.2.1  show the measurement  data  numerically  simulated using  the

Lorenz  equations  versus  the  identified  system  with  SINDy  methodology  for  the

chaotic Lorenz system.

Using the predict function is possible to evaluate the derivatives computed by

SINDy. Figure 3.2.2, Figure 3.2.3 and Figure 3.2.4 presents derivatives of variables

from the Lorenz equation via numerical differentiation and using a learned SINDy

model. 

Figure 3.2.1: Full Simulation vs Identified System with SINDy



Figure 3.2.2: Numerical derivative and SINDy derivative for ẋ

Figure 3.2.3: Numerical derivative and SINDy derivative for ẏ



Analyzing  the derivatives,  it  is  concluded that  the system identified by  the

SINDy methodology reproduces with high precision the chaotic lorenz system. 

But, rather than predicting derivatives, we will be interested in using the model

to evolve initial  conditions forward in time using the learned model.  The simulate

function does just that.

Figure 3.2.5,  Figure 3.2.6 and Figure 3.2.7 shows the simulated trajectories

against the true trajectories forward in time.

Figure 3.2.4: Numerical derivative and SINDy derivative for ż



Figure 3.2.5: Lorenz trajectory and the learned SINDy trajectory for x

Figure 3.2.6: Lorenz trajectory and the learned SINDy trajectory for y



As  we  expected,  until  sixteen  seconds  (aproximatelly),  the  trajectories  of

SINDy  agree  with  the  numerical  forward  in  time  calculation,  but  they  eventually

diverge  due  to  the  chaotic  nature  of  the  Lorenz  equations  (Lorenz,  1963).

Remembering that a chaotic problem is always a deterministic problem, so, for a

known input, random responses arise (SAVI, 1997).

Table 3.2.1 presents the most relevant parameters used by ROM in Charotic

Lorenz System with SINDy methodology.

Table 3.2.1: ROM Chaotic Lorenz System with SINDy results

ROM - SINDy Accuracy Library Optimizer

0.9999
Polynomial
(degree 3)

STLSQ (Threshold 0.05)

Figure 3.2.7: Lorenz trajectory and the learned SINDy trajectory for z



The derivatives equations obtained can be written in the form:

 (3.6)

 (3.7)

 (3.8)

Results obtained from the Equations 3.6, 3.7 and 3.8 shows that the proposed

SINDy algorithm accurately reproduces the chaotic Lorenz system dynamics.

Next,  we  generalize  the  SINDy  method  to  develop  a  methodology  for

construction a reduced-order mode for the proposed aerolastic system in section

2.2.

3.3 AEROLASTIC MODEL IDENTIFICATION WITH SINDY

In this case,  the aeroelastic  model  proposed in  section 2.2  is  considered.

First, it was necessary to process the data. So, we change the data for a state space

representation. The vertical and rotational displacement data from COMSOL, along

with the values of their first derivatives, were placed in a matrix X. The values of the

first and second order derivatives, respectively, were placed in a matrix Ẋ . In order

to  obtain  the  best  accuracy  optimizers  STLSQ,  Lasso  and  Orthogonal  Matching

Pursuit were tested. Since the Lasso and Orthogonal Matching Pursuit are sparse

optimizers,  they  presented  better  results.  In  the  features  library  were  tested  the

polynomial and Fourier function. The last one presented better results, however, in

order to obtain an equation similar to Equation 2.7,  we opted for the polynomial

function. 

Figure 3.3.1, Figure 3.3.2, Figure 3.3.3, Figure 3.3.4 presents derivatives of

variables from the aerolastic model via numerical differentiation and using a learned

SINDy model computed by the predict function. 

ẏ = 28 .000x − 1.000y − 1.000xy

ż = −2. 667z + 1.000xy

ẋ = −10. 000x + 10.000y



Figure 3.3.1: Numerical derivative and SINDy derivative for ḣ

Figure 3.3.2: Numerical derivative and SINDy derivative for θ̇  



Figure 3.3.3: Numerical derivative and SINDy derivative for ḧ

Figure 3.3.4: Numerical derivative and SINDy derivative for θ̈



These derivatives shows that the SINDy methodology is higly capable of that

identify the Aerolastic system.

For  the  aeroelastic  system we tested  some parameters  in  SINDy like  the

variation of the optimizer  (with their intrinsic possibilities) and function libraries. After

some tests, a library was used in python – scikit learn. With the help of this library, it

was possible to use some tools such as GridSearchCV to find the best parameters to

be used. 

Table 3.3.1 presents the most relevant parameters used in this methodology

for the Aerolastic System proposed found with the scikit learn help.

Table 3.3.1: SINDy relevant parameters

ROM
Aerolastic
System -

SINDy

Derivative
Method

Accuracy Library Optimizer

Smoothed
Finite

Difference
0.9900

Polynomial
(degree 3)

Orthogonal Matching Pursuit
(coefficients 5)

Then, the ODEs equations obtained can be written in the form:

           (3.9)

                                  (3.10)

        (3.11)

(3.12)

These  results  show  that  the  proposed  methodology  –  ROM  SINDy  –  is

capable of to identify and represent the proposed Aerolastic model.

ẇ = −813.566 y + 0.618 w − 4.942yw − 33.111 zw − 1.976w2

ẏ = 1.000 w

ż = 48.235 + −0.198 w + 1.419 zw + 0.088 w2

ẋ = 1.000z



4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

We present a methodology for constructing ROM using SINDy. Alternatively,

the  implementation  of  a  ROM  using  the  DNN  concept  was  shown.  The  SINDy

methodology was implemented following what it was proposed in the literature. In

order to facilitate the understanding we present as an example a Chaotic Lorenz

system.  The details  used are  described  including  the  algorithms,  charts  and the

equations.

Considering the use of DNN for the aeroelastic model, a high precision was

found for the ROM built in a much smaller time interval than those used by current

CFD simulators. However, using a DNN framework brings two problems. The first

one is  that  it  prevents  us from extrapolating the result  to  other  cases,  since the

resulting equations are just a linear regression with weights and biases, therefore,

they are not interpretable. The second is that it was not possible to disentangle or

change the training data to other values to predict new results. Still, as it proves to be

a highly effective method, we chose to show that results.

Regarding the SINDy model applied to the Lorenz system, it is noted that it is

not  necessary  to  do  many  adaptations.  Even  so,  it  was  possible  to  obtain  an

excellent level of precision for the proposed SINDy method.

Even  with  the  best  parameters  available  for  the  aerolastic  system,  it  was

chosen to use some predetermined parameters. An example is cited in the use of the

library.  The  Fourier  library  presented  better  precision,  however,  with  an  idea  of

extending the problem variables and modifying them to the already known ones, we

choose the polynomial library. Regarding the chosen optimizer, the optimizers that

did not produce a sparse result were abandoned. Thus, the Lasso and Orthogonal

Matching Pursuit optimizers were tested to decide which one is more efficient. The

Orthogonal Matching Pursuit was chosen due to its capacity in being able to control

the amount of terms in final equations.

Unfortunately, due to the method of solution that we choose it was not possible

to  change the  terms of  the  equations obtained for  the  known variables  such  as



velocity,  mass  and  stiffness.  We  believe  that  is  can  solutionated  changing  the

solution mode.

4.2 RECOMMENDATIONS FOR FUTURE WORK

The  following  improvements  could  increase  the  ability  of  the  proposed

methodologies to construct ROMs from CFD data.

 To acquire the data for an initial value problem. In the case of DNN or SINDy,

acquiring  the  data  as  an  initial  value  problem  would  solve  the  problem

regarding the possibility of not interpreting the data, since, thus, it would only

be necessary to change the initial values to obtain new data.

 Improvement  in  the  hyper-parameter  optimization  process  may  lead  to  a

speed up in training time and better results. For DNN is equivalent to optimize

the values of process like batch size, number of iterations, learning rate and

weight  decay.  In  SINDy  we  can  consider  another  optimizes  with  their

properties.

 Change  solution  mode.  By  changing  the  solution  mode,  new  equations

proposed by SINDy are obtained, thus, it may be possible to change the terms

of the ROM equation to terms known as velocity, mass and stiffness.
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