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ABSTRACT

Machine translation (MT) systems have become indispensable tools allowing for the auto-

matic translation of texts from one language to another. Earlier MT models ranged from

rule-based systems to statistical MT (SMT) models. However, in recent years, neural ma-

chine translation (NMT) has attracted greater attention within the MT research community.

The strength and success of NMT models over prior systems can be attributed to their abil-

ity to automatically learn the linguistic features required for the translation task without

explicit feature engineering. Typically, NMT systems employ an encoder-decoder archi-

tecture to model and learn the target translation. The encoder learns the semantic repres-

entation of the source sentence from which the decoder generates the target translation.

Therefore, the translation performance of an NMT model relies heavily on the representa-

tion and generation ability of both encoder and decoder subnetworks. Besides, the overall

performance of any MT system is also affected by the linguistic structures and proper-

ties of the language pairs under consideration. This implies that the architectural design of

the NMT system is of significant importance to efficiently learn the necessary linguistic

information to achieve higher translation performance across different language pairs. Ac-

cordingly, the overall aim of this thesis is to design and build architectures to perform

the translation task more efficiently. The contributions of the thesis are in two main folds:

(1) To ensure minimal loss of source information during the target translation, two main

joint attention strategies are presented in Chapter 3 to allow the decoder access to source

information captured by different encoding layers. (2) Enhancing the sentence represent-

ational ability of the encoder and decoder subnetworks using strategies including (a) ex-

ploiting the strengths of multitask learning and auxiliary training approaches to design an

encoder-based multi-level supervision framework in Chapter 4; (b) improving the perform-

ance of the self-attention mechanism at capturing efficiently the local and global contextual

information and dependencies in Chapter 5. Evaluations on multiple language translation

tasks show that the approaches proposed in this work significantly enhance the sentence

representation and generation ability of the encoder-decoder architecture consequently im-

proving the overall translation performance of the NMT model.
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the overall context vector across the n source representations in F s. . . . . 52

3.2 Evaluation of translation performance on the WMT’14 English-German

(En→De). #Params and Train denotes the number of trainable model

parameters and the training speed measured in terms of the steps per second,

respectively. In parentheses are the progressive gain between JASS models

and the reimplementation of the Transformer baseline. “†” and “‡” indicate

statistically significant difference with ρ < 0.05 and ρ < 0.01, respectively. 55

3.3 Evaluation of translation performance of the JASs models on the IWSLT

En→Vi, and Es→En translation tasks. . . . . . . . . . . . . . . . . . . . . 56

3.4 Impact of n (the number of encoding layers considered by the Source Fea-

ture Collector module) on the performance of the JASs based models. B0,

B1 and B2 refers to the Transformer baseline model trained with differ-

ent configurations in terms of the number of layers and the filter size FFN

sublayer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Difference in BLEU scores for each encoding layer masked (i.e. replacing

the corresponding f i ∈ F s with zeros) with respect to the models when n =

L. “‡” and “†” indicate statistically significant difference with ρ < 0.01 and

ρ < 0.05, respectively. The base-BLEU scores for the Layer Aggregation

and Multi-Layer Attention models are shown in Table 3.2. . . . . . . . . . 73

xii



4.1 Evaluation of translation performance on the IWSLT English-Vietnamese

(En→Vi) compared with Transformer baseline and other existing models.

“MS-1”, “MS-2” and “MS-3” detonates the multi-level supervision (MS)

with the auxiliary decoder connected to encoding layer 1, 2, and 3, respect-

ively. “+ AIF” detonates training the MS-l model with (i.e. MS-l+AIF).

The values in parentheses indicate the progressive gains between the MS-

l models and the corresponding MS-l+AIF models and the performance

gains in the case of the JASs models. . . . . . . . . . . . . . . . . . . . . 87

4.2 Evaluation of translation performance on the IWSLT German-English (De→En)

compared with Transformer baseline and other existing models. . . . . . . 88

4.3 Evaluation of translation performance on the IWSLT Spanish-English (Es→En)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Evaluation of translation performance on the WMT14 English-German (En→De).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Sample translations from the baseline, MS-l and MS-l+AIF models on the

(a) En→Vi task,(b) Es→En task and (c) De→En task. ym and yal denote

the output translations from the Main-Decoder and Aux-Decoder l subnet-

works, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Encoder-based MS models with multiple auxiliary decoders on the IWSLT’15

En→Vi translation task. “#Aux-Decs” indicates the number of auxiliary

decoders employed. (a) Complexities of the MS models: “#Params” de-

notes the number of trainable model parameters. “Train” and “Decode” re-

spectively denote the training speed (steps per second) and decoding speed

(tokens per second) on GTX Geforce GPU. (b) Impact on translation qual-

ity based on the choice of encoding layers. . . . . . . . . . . . . . . . . . 95

4.7 Comparison of the performance of the Main-Decoder (denoted as MD) and

Aux-Decoder l (denoted by AD) subnetworks on the En→Vi, De→En, and

Es→En translation tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiii



4.8 Performance on the 10 probing tasks to evaluating the linguistic informa-

tion (“Surface”, “Syntactic” and “Semantic”) learned by the encoding sub-

network of the Transformer baseline and our MS-l models. #AVG denotes

the mean across each category . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Model hyperparameters: L, Nh, dmodel, dff and Pdrop respectively denote

the number of layers, number of attention heads, the hidden size, filter of

dimension of the FFN sublayer and the dropout rate. . . . . . . . . . . . . 117

5.2 Evaluation of translation performance on the WMT’14 English-German

(En→De). The progressive gain between our implementation of the Trans-

former baseline and our approach is shown in parenthesis. #Params de-

notes the number of trainable parameters per model. Train indicates the

training speed (steps/second). “†” and “‡” indicate statistically significant

difference with ρ < 0.05 and ρ < 0.01, respectively. . . . . . . . . . . . . 118

5.3 Evaluation of translation performance on the IWSLT tasks ({Vi, Es, Fr, Ro

}↔En) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Existing Results on the IWSLT (a) En→Vi and (b) Es→En translation

tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Classification performance on the 10 probing tasks to evaluating the lin-

guistic information (“Surface”, “Syntactic” and “Semantic”) learned by the

encoding subnetwork of the Transformer baseline and our proposed model.

“#Avg” indicates the average score across the sub-tasks under each category. 124

5.6 Translation performance of different combination of encoder layers of the

Enc-DC model. [i-j] denotes limiting the application of the DC module to

the encoding subnetwork from layer i to layer j. ∆ indicates the difference

in performance between the [1-6] and the [i-j] encoder layer combinations. . 128

xiv



List of Figures

1.1 Vauquois Triangle showing the levels of translation abstractions. . . . . . . 3

2.1 An illustration of a multi-layer Recurrent Neural Network (RNN) based

language model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Structure of the LSTM cell unit comprising of a memory unit (ct) and three

gating units ( the input gate it, forget gate ft and the output gate ot) to

control the flow of information. . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Encoder-Decoder framework for the task of sequence to sequence gener-

ation. X = [x1, x2, · · · ;xM ] is the input source sequence. v ∈ Rd is the

fixed hidden representation of the source sequence. yt is the target token at

decoding step t and y<t = [y1, y2, · · · ; yt−1] denotes the partial sequence

of target tokens generated before time step t. . . . . . . . . . . . . . . . . 17

2.4 Illustration of the attention computation at decoding step t. ct is the contex-

tual representation generate from the source representationHe = [he1, h
e
2, · · · , heM ],

where hei is the hidden representation of xi. αt is the attention weight dis-

tribution. st denotes the decoder’s hidden state. . . . . . . . . . . . . . . . 18

2.5 Architecture of the Bi-directional RNN sequentially processing the source

tokens in both the forward (denoted by the orange nodes ) and backward

(denoted by the light green nodes) directions.w(·) is the embedding lookup

operator employed to generate the word embedding for the input tokens.

He = [he1, h
e
2, · · · , heM ] is the output representation of the source sequence. 20

2.6 The architecture of the Transformer Network. Both the encoder and de-

coder consist of an identical stack of L layers. . . . . . . . . . . . . . . . . 22

xv



3.1 Illustration of the Joint Attention Strategies to exploiting source repres-

entations from multiple encoding layers. F s is a list of source sentence

representations obtained by the Source Feature Collector module from the

encoding layers. n is the number source representations exposed to the de-

coder subnetwork.X is the input sequence.H l−1
d andH l

d denotes the output

representations from the decoding layers l − 1 and l, respectively. . . . . . 43

3.2 Feature aggregation strategies employed by the Merging Module to gen-

erates the joint source representation Ha from representations in F s =

[f 1, f 2, · · · , fn−1, fn]. (a), (b), (c) and (d) illustrate the Linear Feature

Summation, Iterative Feature Summation, Linear Feature Concatenation

and Iterative Feature Concatenation strategies, respectively. The WS and

AGG are the units employed to combine the input features in F s. . . . . . 45

3.3 Illustration of the aggregation unit (AGG) generating the joint representa-

tion Ha based on the input representations or features r = [r1, · · ·, ri, · · ·, rb] 47

3.4 Illustration of a decoding layer with Multi-Layer Multi-Head Attention

(MLMHA) sublayer to perform the attention computation across multiple

features F s received from the encoding stack. α = [α1, α2, · · · , αn] is the

list of attention weights (where αi corresponds to attention weight with re-

spect to f i in F s), and Oc is the joint context vector across all features in

F s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Distribution of the number of sentences from the WMT’14 En→De test set

across the different sentence length groups. . . . . . . . . . . . . . . . . . 60

3.6 BLEU scores on the WMT’14 En→De test set for the Transformer baseline

model, the Layer Aggregation based models, and the M-ij models with

respect to the different source sentence lengths. Left: Transformer baseline

vs Layer Aggregation models. Right: Transformer baseline vs Multi-Layer

Attention (M-ij) models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Impact of n (the number of encoding layers considered by the Source Fea-

ture Collector module) on the performance of the JASs. Left: Layer Ag-

gregation models. Right: Multi-Layer Attention models . . . . . . . . . . 64

xvi



3.8 Variation of the mean attention distance span and attention distribution en-

tropy with respect to the encoding layers and the attention heads for the

Transformer baseline. Left: Mean attention distance. Right: Entropy of at-

tention distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Variation of the mean attention distance and entropy of attention distribution for

the attention heads across the encoding layers with respect to the Layer Aggrega-

tion models. For each plot, Left: Mean attention distance. Right: Mean entropy of

attention distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 Variation of the mean attention distance and entropy of attention distribution for

the attention heads across the encoding layers with respect to the Multi-Layer At-

tention models. For each plot, Left: Mean attention distance. Right: Mean entropy

of attention distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 Variation of the average mean attention distance and entropy of head at-

tention distribution across the encoding layers for the Transformer baseline

model and the Layer Aggregation based models: (a) Feature Summation and

(b) Feature Concatenation. For each plot, Left: the average of all the at-

tention head mean distance with respect to each encoder layer. Right: the

average entropy of head attention distribution per encoder layer. . . . . . . 71

3.12 Variation of the average mean attention distance and entropy of head at-

tention distribution across the encoding layers for the Transformer baseline

model and our Multi-Layer Attention models: (a) M-ij models trained with
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Ū0 = 1, layer-specific-attention weights. For each plot, Left: the average

of all the attention head mean distance with respect to each encoder layer.

Right: the average entropy of head attention distribution per encoder layer. 72

xvii



4.1 Illustration of encoder-decoder framework for sequence generation tasks

such as NMT, and document summarization. X denotes the input source

sequence. yt target token at time step t and y<t = y1, · · · , yt−1 denotes

the partial target sequence generated before step t. Embedding denotes the

word embedding layers employed to generate input representations for the

encoder and decoder subnetworks. . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Encoder-based Multi-level supervision approach for sequence generation

where X is the input sequence. Main-Decoder denotes decoding subnet-

work connected to the top most layer in a L-layers encoding network and

Aux-Decoder l denotes the auxiliary decoder connected to the l-th encoding

layer (where l < L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Illustration of the Main-Decoder exploiting auxiliary representations F a

aggregated by the Auxiliary Feature Collector module based on the target

representations, [HL
a1
, HL

a2
, HL

a3
], from three connected auxiliary decoders.

For simplicity, we denote the word embedding layer as E. . . . . . . . . . 82

4.4 A layer of the Main-Decoder subnetwork with the Auxiliary Information

Fusion (AIF) module to processes the auxiliary feature representations

F a = [f 1, f 2, · · · , fn]. H l−1
d and H l

d are the input and output of the Main-
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Chapter 1

Introduction

Machine Translation (MT) is a field of natural language processing (NLP) that investigates
the automatic translation of texts from a source language to texts in a target language.
The primary goal of MT research is to achieve translation quality comparable to human
translators. However, this is a challenging task mainly due to reasons such as the ambiguity
and flexibility of human language.

1.1 Brief overview of Machine Translation

The building of machine translation systems has been the theme of many research works
and contributions since the late 1940s. The beginning of MT can be traced to Warren
Weaver’s proposals for computer-based machine translation (Raley, 2003; Hutchins, 1993).
Machine translations systems can be categorised along two possible dimensions: (1) depth
of analysis and generation and (2) the linguistic level at which transfer is performed. The
Vauquois triangle in Figure 1.1 defines three main levels of translation abstractions (San-
godkar and Damani, 2012; Saers, 2011).

• Direct translation: the words in the input sentence or text are directly translated
without any intermediary representation. The translation is performed with little to
no linguistic knowledge. For each source word, a dictionary specifying a set of rules
for translating the word is employed.

2
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Figure 1.1: Vauquois Triangle showing the levels of translation abstractions.

• Transfer-based translation: generates the translation based on intermediate repres-
entation in three stages: analysis, transfer and generation. The analysis stage converts
the source sentence into an abstract or intermediate representation. During the trans-
fer stage, the abstract representation of the source sentence is converted into the cor-
responding abstract representation of the target using a set of transfer rules. Finally,
the generation stage converts the target-language representation from the transfer
stage into the output translation.

• Interlingua-based translation: unlike the transfer-based approach, this approach
generates the output translation using only the analysis and generation stages. Here,
the analysis performed on the source language text produces a language-independent
representation of meaning. The generation phase converts the meaning representation
of the sentence into the output translation. This approach allows for the easy devel-
opment of a multilingual system. Despite the beauty of this approach, it is difficult to
compose a truly language-independent representation.

Over the years, different types of translation systems have been proposed. These are the
Knowledge-driven (Rule-based), and data/corpus-driven (Example-based, Statistical-based
and most recently the Neural network-based systems) approaches.
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Rule-based: This is one of the earliest machine translation systems. As the name implies,
it employs a set of rules designed by linguistic experts to guide the translation process.
These sets of rules are usually used along with word dictionaries to translate a source text
into the corresponding target text. Notable examples of rule-based systems include the
Apertium (Forcada et al., 2011) and Lucy LT (Alonso and Thurmair, 2003). Rule-based
systems are employed to translate at either the interlingua or transfer levels. Generally, the
rules are applied in 3 phases: analysis, transfer, and generation. The rules are language pair
specific as such, cannot generalise to new language pairs. This requires extensive human
effort to define the translation rules and the word dictionaries. Despite the above pitfall,
rule-based systems usually generate translations with well defined grammatical structures.

Example-based MT (EBMT): This is a data-driven approach to MT, which does not
rely on linguistic rules to perform the translation task. EBMT systems such as (Zhang et al.,
2001, 2011; Rana and Atique, 2016; Chua et al., 2017) build a source fragments translation
database from a bilingual parallel corpus. The translation of any given sentence is gener-
ated using example translations of similar source language texts found within the database.
The translation is performed in three steps: matching, retrieval/extraction, and recombina-
tion. Under EBMT, the input sentence is segmented into fragments/phrases, which are then
matched against source text fragments in the database. The final target sentence is gen-
erated from the recombination of the translations of the matched phrases in the database.
To achieve higher translation performance, EBMT systems require larger parallel corpora,
which in most cases, is not readily available.

Statistical-based MT (SMT): Similar to the EBMT, statistical MT systems (Gimpel and
Smith, 2008; He et al., 2008; Huang et al., 2006) do not rely on translation rules to convert
the source sentence into the corresponding target sentence. The translation is performed
via statistical models obtained by analyzing source-target pairs in bilingual text corpora.
There are different types of SMT models which are word-based MT (Tillmann and Ney,
2003; Germann et al., 2004), phrase-based MT (PBMT) (Gimpel and Smith, 2008; Zens
and Ney, 2004), and Syntax-based MT models (He et al., 2008; Huang et al., 2006). PBMT
models have been shown to significantly best performance among the SMT systems. A
typical SMT system consists of the language model and the translation model. The trans-
lation model trained on the bilingual corpus is employed to generate target hypotheses for
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the given source sentence. In contrast, the language model trained on a monolingual cor-
pus of the target language is employed to estimate the probability of each target hypothesis
and playing a significant role in ensuring fluency of the output translations. The decod-
ing unit combines the estimates from the two sub-models to generate translations for new
sentences. Although SMT models, in general, produce high-quality translations, statistical
anomalies can significantly degrade its performance. Besides, SMT has problems dealing
with different word-order in different source and target languages.

Neural network-based MT (NMT): The recent advances in AI applications to problem-
solving and the advent of high-performance computing devices and resources have given
rise to new machine translation models based on deep neural networks. The NMT models
such as (Bahdanau et al., 2015; Sutskever et al., 2014; Gehring et al., 2017; Vaswani et al.,
2017) have been shown to outperform the statistical-based models, including Syntax-based
and PBMT on shared translation tasks and different data settings. Furthermore, the work by
Hassan et al. (2018) shows that it is possible to achieve professional human-level translation
with deep NMT models. The translation problem is formulated as a sequence to sequence
(Seq2Seq) problem, where the NMT model is trained on a large parallel corpus to learn the
target sentence generation from a given source sentence. NMT models are generally based
on the Encoder-Decoder architectural framework. The encoder component is employed
to generate the semantic representation of the source sentence. Based on the generated
source representation, the decoder generates the corresponding target translation. Different
from SMT models, NMT directly models the machine translation as a conditional language
model without the explicit use of language models trained on the target monolingual cor-
pus. To date, the majority of NMT systems are recurrent neural network-based models
(Bahdanau et al., 2015; Sutskever et al., 2014; Wu et al., 2016). However, recent research
works by Gehring et al. (2017) and Vaswani et al. (2017) have successfully paved the way
for new models based entirely on convolutional neural networks and attention mechan-
isms. These are further discussed in Section 2.3.3. Despite the potential performance gain
of NMT, it suffers from many issues common to all deep learning models including:

• Generally, the translation performance of any NMT model is significantly affected by
the amount of training data. It requires a large amount of training data to efficiently
and effectively optimise the model parameters, which are usually in the millions.
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This makes it difficult to train any reasonable MT models on language pairs with
extremely low amounts of parallel data. Recent attempts made to improve the per-
formance on low-resource languages involve incorporating monolingual corpora to
train the model (Siddhant et al., 2020; Currey et al., 2017).

• The network structure and the number of trainable parameters affect the overall
computational complexity of the NMT model during both the training and decod-
ing phases. Generally, the more complicated the network, the slower the decoding
and training processes. Speedup can be achieved via model and data parallelization
techniques using specialised hardware such as GPUs and TPUs.

NMT is built upon the ability of deep neural networks to automatically learn the required
features for the translation task directly from the source-target parallel corpus with little
to no external linguistic features. This is different from SMT and EBMT systems which
usually require high-quality linguistic features such as the parts-of-speech (POS) tags, and
orthographic features to achieve higher translation performance.

1.2 Research Questions

The translation performance of an NMT system depends to a large extent on the repres-
entation and generation ability of both encoder and decoder subnetworks. Besides, the
translation performance of any MT system is also affected by the linguistic structures and
properties of the language pairs under consideration. Therefore, the design of NMT archi-
tectures is of crucial importance to effectively and efficiently learn the necessary linguistic
information to further enhance the quality of the sentence translations across different lan-
guage pairs. This thesis aims to study and design deep neural architectures for performing
sequence to sequence learning more effectively. Below is the list of research questions
considered:

Question 1: Each encoding layer captures a different level of abstraction of the source
sentence (Raganato et al., 2018; Belinkov et al., 2017; Peters et al., 2018). The en-
coder employs the entire stack of layers to learn the hidden source representation for
the translation task. However for a deeper network, there is no guarantee that the last
encoder layer’s output is the best representation for the target generation due to the
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nature of information flow across the time-steps and layers of the encoder subnet-
work (Wang et al., 2018a; Dou et al., 2018; Ampomah et al., 2019b). An interesting
question here is: How can we ensure minimal loss of information when mapping
from the source sequence to the target sequence? The main focus of this research
question is improving the target generation ability of the decoder subnetwork by
leveraging source representations from multiple encoding layers.

Question 2: NMT frameworks generally have a single decoding subnetwork (re-
ferred to the Main-Decoder) connected to the final encoding layer. The ability of
encoder subnetwork at learning the source information can significantly affect the
overall performance of the translation model. To improve the source sentence rep-
resentational ability of the encoder subnetwork, what motivation or inspiration
can be drawn from both deep representational learning and multi-task learning
(MTL) approaches to NMT and sequence labelling tasks such as Named Entity
Recognition? The focus here is to evaluate whether the translation performance of
the Main-Decoder can be improved by jointly training along with auxiliary decoders
connected to lower-level encoder layers on the same target sequence generation task.

Question 3: How to leverage the local contextual information provided by sur-
rounding words effectively without sacrificing the global context learning ability
of the self-attention mechanism? This research question focuses on improving the
sentence representational ability of the self-attention mechanism by leveraging both
the global and local contextual information.

1.3 Research Objectives

1. To explore neural attention computation strategies to leverage the source representa-
tions from multiple encoding layers.

2. To improve the source representation ability of the encoder subnetwork via Multi-
level supervision.

3. To implement the Dual Contextual module, an extension to self-attention operation
to leverage the global and local contextual information without restricting the scope
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or span of the self-attention mechanism.

1.4 Thesis Outline

This chapter introduced the task of machine translation (MT), the research questions and
our contributions to NMT. The subsequent chapters are tailored towards answering the re-
search questions under consideration. The primary contributions of this thesis are presented
in the Chapters 3 to 5. The outline of the reminder of this thesis are follows:

• Chapter 2 Background: This chapter provides background knowledge on the se-
quence to sequence application for the task of NMT. The chapter starts with a brief
overview of neural language models. The subsequent sections explore the neural
architecture and the techniques, including the data preprocessing and inference al-
gorithms employed for the task of sequence to sequence learning. The last section of
the chapter presents the discussion on the relevant related works.

• Chapter 3 JASs: Joint Attention Strategies: This chapter introduces the Joint At-

tention Strategies to leveraging source representations from multiple encoding layers.
The goal is to ensure the minimal loss of source information when generating the tar-
get sequence from the source sequence. The experimental results on three language
pairs confirm the potential performance gain over models exploiting the source rep-
resentation from only the final encoder layer.

• Chapter 4 Multi-level Supervision Strategies: An approach to further enhance the
source representation ability of the encoding subnetwork by connecting multiple de-
coding subnetworks to different encoding layers is presented. This training strategy
benefits from the inductive bias aspect of conventional multi-task learning (MTL).
Specifically, the encoder receives gradient signals from all connected decoders during
training. Therefore, to support the target generation from each connected decoder, the
lower-level layers are forced to capture the necessary source linguistic information.
The experimental results and analysis on four language pairs demonstrate consistent
improvement over models with a single decoder connected to only the final encoder
layer.
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• Chapter 5 Dual Contextual Modelling: In this chapter, we introduce the Dual Con-

textual (DC) module to leverage the local contextual information without restricting
the performance of the self-attention mechanism in terms of learning the long-range
dependencies between the tokens. Further analysis suggests the proposed DC module
improves the model’s performance at learning the surface (such as the word content
and sentence length) and syntactic features without sacrificing the ability to learning
deeper semantic features required for the translation task.

• Chapter 6 Conclusion and Future work: This chapter provides the summary of our
findings and contributions of research works presented in this thesis. Furthermore,
possible avenues of future work are also presented.



Chapter 2

Background: Neural Machine
Translation

This chapter provides the background knowledge for neural network-based sequence gen-
eration. The main focus of this thesis is to improve the performance of the application of
deep neural networks to the task of machine translation. However, most of the discussions
presented here are applicable to other sequence generation problems such as paraphrase
generation (Hasan et al., 2016; Ampomah et al., 2019b), image caption generation (Hossain
et al., 2019; Su et al., 2020) and document summarization (Gui et al., 2019; Song et al.,
2019b; Mohd et al., 2020). Brief introductions to the n-gram language model and the neural
language model are provided in Sections 2.1 and 2.2 respectively. Section 2.3 presents an
overview of Sequence to Sequence (Seq2Seq) architectures and Section 2.7 briefly reviews
the relevant related works.

2.1 Language Modelling

A language model (LM) predicts the next likely word in a sequence based on the preceding
context. Given a sentenceX = (x0, x1, · · · , xM) (where xt is the tth token in the sequence),
the probability of the sentence P(X) is estimated as:

P(X) =
M∏
t=0

P(xt | x<t) (2.1)

10
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where P(xt | x<t) is the conditional probability of the current token xt conditioned on
the context provided by the partial sequence of tokens x<t = x0, · · · , xt−1. However, it is
difficult to directly estimate P(xt | x<t) as the size of the context provided by x<t increases.
A simple solution can be derived via the Markov assumption, where the context to consider
is limited to a fixed window of size n − 1 words. The LM based on this assumption is
termed as the n-gram LM. For example, the Unigram LM is where n = 1. Formally, for
the n-gram LM, the P(X) is reformulated as:

P(X) =
M∏
t

P(xt | xt−n+1:t−1) (2.2)

It is possible to have (t − n + 1) smaller than 0 especially when t ≤ n− 2. To handle
this, Bengio et al. recommends using a special token (e.g. <BOS>1) to represent the tokens
where t ≤ n− 2. The n-gram LM has to keep track of (or store) all possible n-grams
available within the training corpus to achieve higher performance. This is both memory
and computationally expensive especially on larger corpus (Pibiri and Venturini, 2019).
Specifically, the number of possible word sequences grows exponentially as the size of
the vocabulary employed to train the LM increases. Furthermore, n-gram based statistical
language models such as Niesler et al. (1998); Stolcke (2002); Buck et al. (2014); Federico
et al. (2008) do not generalise well across different domains and also on unknown n-gram
sequences not explicitly present in the training corpus.

2.2 Neural Language Models

To address the above problems of the n-gram LM, recent language models (Bengio et al.,
2003; Mikolov and Zweig, 2012; Kim et al., 2016; Peters et al., 2018; Devlin et al., 2019)
are based on the neural network architecture. Generally, the input to the network is a se-
quence of discrete tokens which are then mapped into their corresponding continuous vec-
tor representation (word vector) space. This is known as the word embedding technique.
The embedding approach captures the linguistic information, including the syntactic and
semantic properties of words within the input sentence (Collobert et al., 2011). Therefore,
it can provide a good generalization over unseen words or sequences. The neural LMs are

1Beginning Of Sentence
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Function Formula

Hyperbolic Tangent (tanh) g(z) = exp(z)−exp(−z)
exp(z)+exp(−z)

Sigmoid (σ) g(z) = 1
1+exp(−z)

Rectified Linear Units (ReLu) g(z) = max(0, z)

Table 2.1: Non-linear activation functions widely used.

usually based on either the Feed-Forward Network (FFN) (Bengio et al., 2003) or Recur-

rent Neural Networks (RNNs) (Mikolov and Zweig, 2012; Kim et al., 2016). These neural
LMs are presented in the following subsections.

2.2.1 Feed-Forward Network

The earliest neural LM was proposed by (Bengio et al., 2003) where a L-layer feed-forward
network was trained to estimate P(xt|xt−n+1:t−1). A word embedding lookup table w(·)
(with a vocabulary size of V tokens) is employed to generate the continuous representa-
tion for each token in the preceding n − 1 sequence. The resulting embedding vectors are
concatenated to generate the representation h0t which is passed as input to the FFN:

h0t = [w(xt−n+1);w(xt−n+2); · · · ;w(xt−1)] ∈ R(n−1)·d

where w(xt) is the embedding vector of the xt token and [·; ·] denotes the vector concat-
enation operation. Based on the generated h0t , the L-layer network computes the hidden
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representation hLt through a series of non-linear transformations as:

h1t = g
(
h0tW

1 + b1
)

h2t = g
(
h1tW

2 + b2
)

...
hlt = g

(
h
(l−1)
t W l + bl

)
...

hLt = h
(L−1)
t W o + bo

(2.3)

where W l and bl are, respectively, the trainable weight and bias employed by the l-th layer
(where l < L) to transform the input representation h

(l−1)
t . The parameters of the out-

put layer L are W o ∈ Rd×V and bo ∈ RV . g(·) is a non-linear activation function (see
Table 2.1). Given hLt , the probability of the next word is computed as:

P(xt|xt−n+1:t−1) ≈ P(xt|x1, · · · , xt−1) = softmax
(
hLt
)

where
softmax (z)j =

exp(zj)∑K
k=1 exp(zk)

for j = 1,. . . ,K and z=(z1, . . . , zK)

Optimisation algorithms including the Stochastic Gradient (SGD) and Adam (Kingma
and Ba, 2014) are employed to train the neural network by minimizing the negative log-
likelihood of the training corpus. The FFN achieved significant improvement over state-of-
the-art n-gram models (Niesler et al., 1998; Chen and Goodman, 1999).

2.2.2 Recurrent Neural Networks (RNN) based LM

Despite the performance gain over traditional n-gram LMs, FFN based LM predicts the
next word based on a fixed-length context. The fixed-length contextual constraint on the
FFN can be alleviated with RNN. In theory, RNN can leverage unlimited contextual in-
formation (Mikolov and Zweig, 2012). Motivated by this, (Mikolov and Zweig, 2012;
Mikolov et al., 2013) proposed the Recurrent LM based on the Elman network (Elman,
1990) (simple RNN). The network architecture of the Recurrent LM is illustrated in Fig-
ure 2.1.

Similar to the FFN, the RNN model employs a word embedding layer to generate the
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Figure 2.1: An illustration of a multi-layer Recurrent Neural Network (RNN) based lan-
guage model.

continuous representation of each token in the input sequence. However, the output of the
l-th layer is calculated as:

hlt = g(hlt−1U
l + hl−1t W l) (2.4)

where g(·) is the non-linear activation which is usually a logistic sigmoid or tanh. hlt is the
hidden state at time step t ∈ [1, 2, . . . , T ]. The hidden state hlt−1 provides the summary of
the contextual information with respect to tokens processed before the time step t. For the
depth zero (i.e. l = 0), the input to the network is h0t = w(xt), the embedding vector for
the xt token. {W l, U l} ∈ Rd×d are the model weights of layer l shared across all the time
steps. The output from the L-th layer is used to estimate the probability over the next token:

P(xt|x1, · · · , xt−1) = softmax(hLtW
o) (2.5)

where W o ∈ Rd×V is the weight matrix employed to project the hidden state hLt before
the application of the softmax activation function. Backpropagation through time (BPTT)
(Werbos, 1988) is generally employed to train the RNN model efficiently. Due to the nature
of information flow across the time steps, the simple RNN is generally difficult to train
mainly due to the exploding and vanishing gradient problems (Bengio et al., 1994). In
(Pascanu et al., 2012), the gradient norm clipping technique is shown to be effective in
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Figure 2.2: Structure of the LSTM cell unit comprising of a memory unit (ct) and three
gating units ( the input gate it, forget gate ft and the output gate ot) to control the flow of
information.

dealing with the exploding gradient problem. Specifically, the gradient γ is clipped based
on its norm ||γ|| if γ is greater than a predefined threshold η (i.e. γ ← ηγ

||γ|| ).

2.2.3 Long Short-term Memory Networks (LSTM)

LSTM is a variant of RNN introduced by Hochreiter and Schmidhuber (1997) to tackle the
vanishing gradient problem of the simple RNN. The main difference between the simple
RNN and LSTM is the computation of the hidden state ht at time step t. Specifically, the
RNN node is replaced with an LSTM cell. Figure 2.2 illustrates the network architecture
of the LSTM cell. As shown, the LSTM cell employs a memory unit (ct) and three gating
units (the forget gate ft, the input gate it and the output gate ot) to control the flow of
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information. Unlike Equation (2.4), the hidden state hlt is reformulated as:

it = σ
(
Wih

l−1
t + Uih

l
t−1 + bi

)
ft = σ

(
Wfh

l−1
t + Ufh

l
t−1 + bf

)
Ĉ = tanh

(
Wch

l−1
t + Uch

l
t−1 + bc

)
ct = ft � ct−1 + it � Ĉ
ot = σ

(
Woh

l−1
t + Uoh

l
t−1 + bo

)
hlt = ot � tanh (ct)

(2.6)

where σ(·) is sigmoid activation function and � denotes the element-wise multiplication.
The {Wi,Wf ,Wc, Ui, Uf , Uc,Wo} and {bi, bf , bc, bi, bf , bc, bo} are, respectively, the train-
able weights and biases employed to compute the hidden state hlt. ct is the memory cell
state for the current time step t and Ĉ is the information used to update the memory cell.
The ft decides the part of the memory ct−1 to be discarded (forgotten) and it controls the
amount of information in ĉ to be considered in the computation of ct. Finally, the output
gate ot determines the part of ct to use to generate hlt.

A simplified alternative of LSTM, the Gated Recurrent Unit (GRU) (Cho et al., 2014;
Chung et al., 2015), has been shown to achieve comparable performance to the LSTM cell
with a fewer number of parameters. A notable difference between GRU and LSTM is that
the “update” gate unit of the GRU combines the operations of the input and forget gates.

2.3 Sequence to Sequence (Seq2Seq) Models

The Seq2Seq model generates a target sequence Y = [y1, y2, · · · , yZ ] of length Z from a
given source sequence X = [x1, x2, · · · , xM ], where xi and yt are the ith and tth tokens of
X and Y respectively. For the task of NMT, x is termed as a sentence in the source lan-
guage and Y is the corresponding sentence in the target language. Figure 2.3 illustrates the
network architecture employed to generate the target sequence from the source sentence.
As shown, the architecture comprises the encoder and decoder subnetworks. The goal of
the encoder subnetwork is the generation of the hidden representation v ∈ Rd (where d is
the dimension) based on the source sentence. On the other hand, the decoder subnetwork
takes as input the source representation v to predict the probability distribution of each
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Figure 2.3: Encoder-Decoder framework for the task of sequence to sequence genera-
tion. X = [x1, x2, · · · ;xM ] is the input source sequence. v ∈ Rd is the fixed hid-
den representation of the source sequence. yt is the target token at decoding step t and
y<t = [y1, y2, · · · ; yt−1] denotes the partial sequence of target tokens generated before time
step t.

target token yt. Therefore, the decoder subnetwork can be considered as a language model
generating the target tokens conditioned on the source sequence.

2.3.1 Attention Mechanism

As shown in Figure 2.3, the encoder subnetwork encodes the source sentence of any ar-
bitrary length into a fixed-length vector passed to the decoder for the target generation.
However, learning a fixed-length representation v creates a bottleneck during the target
generation especially on longer sentences (Bahdanau et al., 2015). This is because as in-
formation flows through the encoder, the local contextual information gets diluted which
results in loss of information and consequently resulting in poor performance. As a remedy,
Bahdanau et al. (2015) proposed exploiting the neural attention mechanism, further improv-
ing the performance. Under the neural attention mechanism, the contextual information of
each source token is kept and is referenced during the generation of each target token yt.
Specifically, during the decoding step t, the attention mechanism allows the decoder subnet-
work to peak through encoder outputs to utilise the local contextual information to improve
the mapping from the source sequence to the target sequence.
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Figure 2.4: Illustration of the attention computation at decoding step t. ct is the contextual
representation generate from the source representation He = [he1, h

e
2, · · · , heM ], where hei

is the hidden representation of xi. αt is the attention weight distribution. st denotes the
decoder’s hidden state.

A typical attention mechanism is visualised in Figure 2.4. As shown, the encoder gen-
erates the hidden representation He = [he1, h

e
2, · · · , heM ], where hei ∈ Rd is the hidden

representation of the source token xi. The decoder computes the probability distribution of
the target token yt based on the decoder’s hidden state st and the contextual representation
ct obtained via a neural attention over He ∈ RM×d:

P(yt|y1, · · · , yt−1) = softmax(Wo[ct; st] + bo) (2.7)

where Wo and bo are trainable parameters and [·; ·] denotes the concatenation operation.
The contextual vector ct is obtained from the weighted summation of all the hei vectors of
source tokens:

ct =
M∑
i=1

αtih
e
i (2.8)

where αt = [αt1, α
t
2, · · · , αtM ] is the attention weight distribution over the source tokens at

the decoding step t. αti is the attention weight with respect to the ith source token calculated
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as:
αti =

exp(score(st, h
e
i ))∑M

k=1 exp(score(st, hek))

where score(·) is the scoring function to model the alignment between the st and hei . A
number of scoring functions have been explored in literature. The three most widely used
ones are:

• Additive: score(a, b) = vᵀ tanh(W1a+W2b)

• Bilinear: score(a, b) = aᵀW1b

• Dot-Product: score(a, b) = aᵀb

where W1 and W2 are the weight matrices employed to compute the attention score.

2.3.2 Training Objectives

NMT networks are conditional language models trained to model the probability P(Y |X)

of generating the sequence Y in the target language based on the given source sentence X .
Given a parallel corpus (X̂, Ŷ ) of N training sentence pairs (where X ∈ X̂ and Y ∈ Ŷ are
the source sentence and target sentence pair), the training objective can be formulated as
minimizing the negative log-likelihood across the training corpus:

J((X̂, Ŷ ), θ) = − 1

N

N∑
i

logP(Ŷ i|X̂ i; θ) (2.9)

where θ = {θe, θd} is the set of trainable model parameters. θe and θd are the parameters of
the encoder and decoder subnetworks, respectively.

2.3.3 Network Architectures

A number of deep neural architectures have been proposed for the NMT task. These mod-
els can be categorised into three main groups; RNN (LSTM/GRU) based models (Luong
et al., 2015b; Bahdanau et al., 2015; Britz et al., 2017), convolutional network (CNN)
based (Gehring et al., 2017; Kaiser et al., 2018) and self-attention networks (SAN) such
as the Transformer network (Vaswani et al., 2017). Recent architectures also proposes a
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Figure 2.5: Architecture of the Bi-directional RNN sequentially processing the source
tokens in both the forward (denoted by the orange nodes ) and backward (denoted by the
light green nodes) directions. w(·) is the embedding lookup operator employed to generate
the word embedding for the input tokens. He = [he1, h

e
2, · · · , heM ] is the output representa-

tion of the source sequence.

combination of these baseline models. For example, (Chen et al., 2018, 2019) explored the
combination of RNN and self-attention to achieve a near state-of-the-art performance on
NMT.

All experiments conducted in this thesis are performed on the recently proposed Trans-
former network (Vaswani et al., 2017). However, the approaches introduced are model
agnostic hence can be applied to any generic encoder-decoder framework. This section
discusses the major building blocks of the RNN and Transformer based NMT models.

RNN based models

To date, the majority of NMT models (Sutskever et al., 2014; Bahdanau et al., 2015; Luong
et al., 2015b; Wu et al., 2016) have RNN as the backbone architecture. Both the encoder and
decoder subnetworks are implemented using RNN and its variants such as GRU (Cho et al.,
2014; Chung et al., 2015) and LSTM (Hochreiter and Schmidhuber, 1997). The encoder
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is usually implemented with bi-directional RNNs (Bi-RNN/ Bi-LSTM/ Bi-GRU). The bi-
directional RNN consists of two independent RNNs, one (the Forward RNN) processing
the input sequence from left to right and the other (the Backward RNN) to generate the
sentence representation from right to left. As shown in Figure 2.5, the input to the Bi-RNN
is the word embeddings of the source tokens generated via the embedding lookup w(·). The
Bi-RNN network generates the source representation He = [he1, h

e
2, · · · , heM ], where each

hei = [
−→
hei ;
←−
hei ]. {

−→
hei ,
←−
hei } are the hidden states of xi generated by the forward and backward

RNN respectively.
The decoder is usually a unidirectional RNN generating the target sequence based on

the source sentence hidden representation. In non-attention based RNN models, the fixed-
length vector v = [

−→
heM ;
←−
he1]. However with an attention mechanism, the hidden states of all

the source tokens are exposed to the decoder subnetwork, as shown in Figure 2.4.

Transformer model

Similar to RNN (LSTM/GRU) (Bahdanau et al., 2015; Cho et al., 2014) and CNN (Gehring
et al., 2017) based NMT models, the Transformer network (Vaswani et al., 2017) is based
on the Encoder-Decoder architectural structure. As mentioned in Section 2.2.2, RNN based
models to some extent can leverage contextual information across sequences of arbitrary
length. Figure 2.6 illustrates the architectural structure of the Transformer network. As
shown, the Transformer architecture does not employ RNN to learn the contextual inform-
ation of the source and target sequences. Therefore, to model the contextual representation
of an input sequence, the encoder and decoder subnetworks employ an attention mechanism
and a feed-forward network across the multiple layers. Similar to conventional neural NLP
models, the inputs to the encoder and decoder subnetworks are the continuous represent-
ations of the source sequence X and the target sequence y<t generated by the Embedding

units.
The encoder subnetwork is composed of a stack of L layers. Each encoding layer

consists of a self-attention sublayer and a position-wise feed-forward network sublayer
(FFN(·)). Residual connection (He et al., 2016) and layer normalization layer (LayerNorm(·))
(Ba et al., 2016) are employed around each sublayer to ease training and further improve
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Figure 2.6: The architecture of the Transformer Network. Both the encoder and decoder
consist of an identical stack of L layers.

performance. Formally, the output of each layer l (H l
e ∈ RM×dmodel) is computed as:

Sle = LayerNorm
(
MHA(H l−1

e , H l−1
e , H l−1

e ) +H l−1
e

)
H l
e = LayerNorm

(
FFN(Sle) + Sle

) (2.10)

where MHA(·) refers to the multi-head attention unit employed by the self-attention sub-
layer. Sle is the output of the self-attention sublayer computed based on the H l−1

e (source
sentence representation of the preceding encoder layer (l − 1)).

The decoder subnetwork is also a stack of L identical layers. However, unlike the en-
coder subnetwork, each decoding layer comprises three sublayers. Similar to the encoding
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layer, it has multi-head self-attention and FFN sublayers but in between these sublayers
is an encoder-decoder MHA sublayer. The encoder-decoder MHA sublayer is employed
to perform multi-head attention computations over the output of the encoding subnetwork
HL
e . Specifically, the target representation (H l

d ∈ RZ×dmodel) from each decoding layer l is
computed as:

Sld = LayerNorm
(
MHA(H l−1

d , H l−1
d , H l−1

d ) +H l−1
d

)
,

El
d = LayerNorm

(
MHA(Sld, H

L
e , H

L
e ) + Sld

)
,

H l
d = LayerNorm

(
FFN(El

d) + El
d

) (2.11)

where Sld ∈ RZ×dmodel is the output of the self attention sublayer generated from the target
representation of the preceding decoder layer (l − 1), H l−1

d . El
d ∈ RZ×dmodel is the output

of the multi-head attention generated based on Sld ∈ RZ×dmodel and HL
e ∈ RM×dmodel .

A linear transformation layer with a softmax activation is employed to convert the out-
put representationHL

d from the final decoder layer into output probability distributions over
the target vocabulary. Recent works (Pappas et al., 2018; Inan et al., 2016) propose sharing
the same weights between the word embedding layer of the decoder subnetwork and the
linear transformation layer to further improve the model’s performance. This strategy re-
duces the size of the model in terms of the number of trainable parameters. Therefore, the
models presented in this thesis are trained using this strategy.

Embedding Module
As shown in Figure 2.6, the Transformer network employs an Embedding module to gener-
ate the continuous representations of the source and target tokens. The Embedding module
consists of two sub-units, namely an embedding lookup table and a position embedding

unit. The embedding lookup table maps a given token to its corresponding continuous vec-
tor. The position embedding unit is a very important component employed to encode the
positions of tokens (word order information) in the input sequence. This is because, unlike
RNNs, the Transformer network cannot directly capture the position information of the in-
put tokens (Vaswani et al., 2017). The embedding of a token u (eu ∈ Rdmodel) in the input
sequence s is computed as:

eu = w(u) + PE(su, f)
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where w(·) is the conventional embedding lookup table, PE(·) is the position embedding

unit and su is the index or position of token u in the given sequence s. f is a dimensional
parameter employed PE.

The position embedding unit can be fixed or learnable (Gehring et al., 2017). Experi-
mental analysis performed by Vaswani et al. (2017) showed that both the fixed and learnable
variants achieve comparable performance. However, the fixed variant is usually preferred
as it introduces no new trainable parameters into the model. Therefore following (Vaswani
et al., 2017), in this thesis the position embedding of the kth input token is calculated as:

PE(k, 2i) = sin

(
k

10002i/dmodel

)
PE(k, 2i+ 1) = cos

(
k

10002i/dmodel

)
Fully connected Feed-forward network (FFN)
The FFN, as shown in Figure 2.6, is employed as the final sublayer of each layer within
the encoder and decoder subnetworks. The network structure of the FFN comprises two
linear transformation layers with ReLu activation across the output of the first layer. This
structure is identical to a stack of two convolutions with a filter or kernel size of 1:

FFN(x) = OWo + bo

O = ReLu(xWx + bx)

where {Wx ∈ Rdmodel×dff , bx ∈ Rdff} and {Wo ∈ Rdff×dmodel , bo ∈ Rdmodel} are the
trainable parameters of the first layer and the second layer respectively.

Multi-Head Attention (MHA)
As mentioned in Section 2.3.1, the neural attention mechanism is a crucial component
in the Seq2Seq architecture for many sequence generation problems including NMT (He
et al., 2018; Bahdanau et al., 2015), paraphrase generation (Ampomah et al., 2019b; Hasan
et al., 2016) and document summarization (Song et al., 2019b; Al-Sabahi et al., 2018). The
Transformer model uses the Scale dot-product attention scoring function which takes three
vectors as input, namely the query Q, value V and key K. It maps a given query and key-
value pairs to an output which is the weighted sum of the values. The attention weights
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indicate the correlation between each query and key. This attention is shown as follows:

Attention(Q,K, V ) = softmax(α)V

α = score (Q,K)

score(Q,K) =
Q×Kᵀ

√
dk

(2.12)

where K ∈ RJ×dk is the key, V ∈ RJ×dv is the value and Q ∈ RZ×dk is the query. Z and
J are the lengths of the sequences represented by the Q and (V,K), respectively. dk and dv
are the dimensions of the key and value vectors, respectively. The dimension of the query
is also set as dk to allow for the dot-product operation between Q and K. The division of
Q × Kᵀ by

√
dk is done to scale the result of the product operation hence stabilizing the

computation (Vaswani et al., 2017). Applying the softmax(·) operator to the attention score
α ∈ RZ×J produces the attention weight distribution for the context generation.

For better performance, the Transformer architecture employs a multi-head attention
(MHA) composing of Nh (number of attention heads) scaled dot-product attention oper-
ations. Given the Q,K, and V , the multi-head attention computations are performed as
follows:

MHA(Q,K, V ) = O

O = ĈWo

Ĉ = Concat (head1, head2, · · · , headNh
)

headh = Attention(QWQ
h , KW

K
h , V W

V
h )

(2.13)

where {QWQ
h , KW

K
h , V W

V
h } are projections of the query, key and value vectors respect-

ively for the hth head. The projections are performed with the matrices WQ
h ∈ Rdmodel×dk ,

WK
h ∈ Rdmodel×dk and W V

h ∈ Rdmodel×dv . The inputs to the MHA(·) are K ∈ RJ×dmodel ,
V ∈ RJ×dmodel and Q ∈ RZ×dmodel . headh ∈ RZ×dv is the result of the scaled dot-
product operation for the hth head. The Nh scaled dot-product operations are combined
by the concatenation function Concat(·) to generate H ∈ RZ×(Nh·dv). Finally, the out-
put O ∈ RZ×dmodel is generated from the projection of Ĉ using the weight matrix Wo ∈
R(Nh·dv)×dmodel . The multi-head attention has the same number of trainable parameters as
the vanilla (single-head) attention when dk = dv = dmodel/Nh.
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2.4 Data Preparation and Preprocessing

The early stages of solving NLP problems include data collection and preprocessing. Data
collection mainly involves curating the training corpus tailored to the problem at hand. Un-
like sentence classification problems such as Sentiment Analysis (Kathuria et al., 2019) and
Topic Modelling (Song et al., 2019a), the NMT task requires a parallel corpus consisting of
sentence pairs in the source and target languages. Deep NMT is a data-intensive task and,
as such, requires a larger amount of “clean” sentence pairs to achieve higher translation per-
formance. The preprocessing steps include activities such as cleaning the data to remove
noisy information such as incomplete translation pairs, unknown symbols, and numbers.

The data cleaning step is followed by the creation of the vocabulary for each language
under consideration. The training corpus typically contains millions of words, therefore
training the NMT model with a vocabulary containing all the words in the training cor-
pus is unfeasible. This is because larger vocabulary increases the model size causing an
increase in the overall computational complexity of the model, especially in terms of the
training speed and the memory or space requirement. A conventional solution is to limit the
vocabulary to a fixed size of words selected based on the corresponding word frequencies
in the training dataset. Rare words or words not in the vocabulary are represented with the
“<UNK>” token. Despite the solution presented, this approach makes the translation model
less robust to words not seen in the training corpus. For example, the model can generate
target translations containing only <UNK> tokens. The above phenomenon is referred to
as the Out-Of-Vocabulary (OOV) problem.

Recent works (Sennrich et al., 2016; Kudo, 2018) suggest using subword level informa-
tion rather than training the model based on the word-level vocabulary. For all experiments
presented in this thesis, the sentences are tokenized by breaking the words into subword
units using byte-pair encoding (BPE) (Sennrich et al., 2016). Under BPE, the vocabulary
is created from the training corpus as follows:

1. Initialise the vocabulary with all characters in the training data.

2. Split each word into a sequence of characters.

3. Iteratively compute the frequency of character pairs within the words in the corpus.

4. Merge and add the most frequent character n-gram pairs to the subword vocabulary.
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5. Repeat step (4) until the desired vocabulary size is achieved.

Subword level information presents a form of open vocabulary to improve the generaliz-
ation performance of the NMT model on unseen words in the training datasets (Sennrich
et al., 2016). This is because a word not in the training corpus can be segmented into a se-
quence of character n-grams present in the subword vocabulary. Following common prac-
tice, a shared subword vocabulary for both the target and source sentences is employed to
train our NMT models. For language pairs (such as German-English and Spanish-English)
sharing a common alphabet, learning the BPE operation jointly on both the source and tar-
get languages improves the consistency of word segmentation. Besides, this reduces the
problem of character deletion or insertion, which usually occurs during transliteration of
names (Sennrich et al., 2016).

2.5 Inference Algorithms

The NMT network is trained to maximise the likelihood P(Y |X). The probability distribu-
tion for each target token is generated, as shown in Equation (2.7). Given a target vocab-
ulary VT of size |VT |, the number of probable translations of the source sequence grows
exponentially with the length of the target sequence Z (i.e. |VT |Z). Due to the size of |VT |Z ,
search algorithms such as greedy search and beam search are usually employed to approx-
imate P(Y |X). The goal of these algorithms is to find the target translation in the search
space of size |VT |Z that maximizes the conditional probability:

arg max
y

P(y1, y2, · · · , yZ |X)

Greedy Search

During the target generation, greedy search approximates the best translation by consider-
ing only the tokens in VT with the highest probability at each decoding step t. This search
algorithm is computationally inexpensive in terms of both time and memory space required.
However, the greedy search is sub-optimal, often producing low-quality translations.
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Beam Search

Unlike greedy search, beam search expands and considers all possible choices for the next
target token. During the search, the algorithm keeps track of the B most likely token se-
quences. B is termed as the beam size and is a parameter that determines the number of
candidate tokens with the highest probability to consider at each decoding step. The greedy
search algorithm is a variant of beam search with B = 1. The value of B has a greater
impact on the translation performance of the NMT model. To achieve higher performance,
state-of-the-art models generally employ larger values of B to generate the sentence trans-
lation. However, beam search is a computationally expensive technique. This is because
the algorithm evaluates B × VT probable token sequences at each step which requires a lot
of memory. At each decoding step t, the algorithm computes the score P(yft |X) for each
possible path f (of length t) in the search space of size B × VT :

P(yft |X, yf<t) = P(yf1 |X)P(yf2 |X) · · ·P(yft |X) =
t∏
i=1

P(yfi |X)

where yf is the target sequence for the f th search path (hypothesis). Based on the scores
P(yft |X), the algorithm selects the top B hypotheses for the next generation step t+ 1.
The stopping criterion of the search algorithm is generally indicated by the generation of
the <EOS>2 token for all theB best paths or when the maximum target length Z is reached.
Among the topB hypotheses, the target translation is the hypothesis with the highest score.
That is, the search algorithm selects the hypothesis that maximizes the likelihood, P(Y |X).
This can be expressed as:

arg max
y

Z∏
t=1

P(yt|X)

Since the probabilities are usually small numbers, the multiplication operation can result
in numerical underflow of the floating-point numbers (Wu et al., 2016). As a remedy, the
natural logarithm of the probabilities are multiplied:

arg max
y

Z∏
t=1

logP(yt|X) = arg max
y

Z∑
t=1

logP(yt|X)

2A special token denoting end of the sequence.



CHAPTER 2. BACKGROUND 29

A well-known weakness of the vanilla beam search algorithm is, it tends to favour
shorter sentences over longer sentences. This problem can be attributed to how the score
for each probable sentence is obtained from the multiplication of token probabilities (addi-
tion of negative log-probabilities). Longer sentences usually have lower scores than shorter
sentences. Generating shorter sentences than the desired target length can result in low
translation quality. To further improve the performance of the search algorithm, Length

Normalization (Wu et al., 2016) is usually employed to reduce the penalties of generating
longer translations. With Length Normalization, the search objective is reformulated as:

arg max
y

1

LN(Z)

Z∑
t=1

logP(yt|X)

where LN(·) is the length normalization function. The three most widely used normaliza-
tion functions are:

LN(Z) = Zα

LN(Z) = (1 + Z)α

LN(Z) =
(5 + Z)α

6α

where α is termed as the length penalty.

2.6 Automatic Evaluation

Estimating the translation quality of a given NMT system is usually performed by com-
paring the candidate translations from the system to one or more reference translations.
The automatic evaluation metrics are designed to achieve a reasonable correlation with
a human-based judgement of the translation quality of the candidate translations. Over
the years, several automatic evaluation metrics have been explored, including the BiLin-
gual Evaluation Understudy (BLEU) (Papineni et al., 2002), Translation Edit Rate (TER)
(Snover et al., 2006), and Metric for Evaluation of Translation with Explicit ORdering
(METEOR) (Banerjee and Lavie, 2005). These metrics primarily differ by how they handle
the token synonyms and the order of tokens within the system translations and the reference
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translations. In this thesis, the performance of the proposed models is evaluated based on
the BLEU score metric.

BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002) designed by IBM
scores the performance of NMT models based on the percentage of exact n-gram overlaps
between the reference translations and systems translations. The score is calculated from
the geometric mean of the n-gram precisions computed based on different n-gram sequence
lengths. The final score is obtained by scaling the geometric mean by a brevity penalty (BP).
The BP is calculated from the comparison of the length of the candidate translations (T)
and the reference translations (R):

BP = min
(
1.0, e1−len(R)/ len(T )

)
where len(R) and len(T ) are the lengths of the reference and the candidate translations
respectively. It is noteworthy that BP is equal to 1.0 when len(R) ≤ len(T ). The BP is
employed to penalise models for generating shorter translations. Formally, the BLEU score
of n-gram sequences up to the length N for any given candidate translations and reference
translations is calculated as:

BLEU = BP ·
(

N∏
n=1

n-grams(R ∩ T )

n-grams(T )

)
(2.14)

The BLEU score is on a scale of 0 to 100, and the higher the score, the better the model
performance. Despite the simplicity and popularity of BLEU, it has some weaknesses.
The order of the matching n-grams is not considered hence it does penalise models for n-
gram scrambling. Furthermore, synonyms of words are ignored, resulting in the unfortunate
penalisation of translations of similar in meaning.

2.7 Related Works

This section presents an overview of existing and related neural approaches to machine
translation. These related approaches are categorised under Multi-Task Learning (MTL),
Deep Representational Learning and Contextual Modelling.
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2.7.1 Multi-Task Learning (MTL) for NMT

Following the work by Caruana (1998), multi-task learning (MTL) has been extensively
applied to NLP problems including sequence tagging (Peng and Dredze, 2017; Rei, 2017;
Ampomah et al., 2019a), document summarization (Li et al., 2018), and NMT (Luong
et al., 2015a; Dong et al., 2015; Anastasopoulos and Chiang, 2018). Some of the earlier
works on MTL application to NMT were Luong et al. (2015a); Dong et al. (2015). In
(Luong et al., 2015a), the authors examine three MTL settings for Seq2Seq, where encoder
and decoder subnetworks are shared between several different sequence generation tasks.
To perform multi-lingual translation from a single source language, (Dong et al., 2015)
connected multiple decoders to a single encoding subnetwork. Each decoder is trained to
generate a target translation in a different language based on the common source repres-
entation from the top-level layer of the encoding subnetwork. To exploit a large amount
of target-side monolingual data, (Domhan and Hieber, 2017) applied MTL to the decoder
subnetwork to jointly learn the bilingual language translation task along with the target-
side language modelling task. While the proposed approach by Domhan and Hieber (2017)
seeks to strengthen the decoder subnetwork with the target-side monolingual dataset, (Zoph
and Knight, 2016) investigates MTL for Seq2Seq learning with source-side monolingual
data to further improve the performance of the encoder subnetwork. Motivated by the find-
ings of (Luong et al., 2015a; Niehues and Cho, 2017; Baniata et al., 2018; Nadejde et al.,
2017) introduce linguistic knowledge to enhance the translation quality of the NMT model
by jointly training an MTL architecture to simultaneously learn target language translation
along with linguistic tasks such as CCG supertags, chunking, and POS tagging. To leverage
target-side syntactic structures, the SD-NMT model (Wu et al., 2017) jointly learns both the
target word sequence generation and its corresponding dependency tree structure. Specific-
ally, two decoding RNNs were connected to the encoder subnetwork, with one generating
the target translation and the other constructing the dependency parse tree for the target sen-
tence. For the task of cross-lingual information retrieval (search query translation), (Sarwar
et al., 2019) argues that NMT systems usually fail to perform well due to the vocabulary
mismatch between the vocabulary employed to train the NMT and the vocabulary distribu-
tion of the documents in the retrieval corpus. In response, an MTL-based NMT model is
trained with a Relevance-based Auxiliary Task (RAT). The RAT is employed to make the
NMT aware of the vocabulary of the retrieval corpus.
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In (Tu et al., 2017), an auxiliary decoder is connected on top of the main decoding
subnetwork for the task of source sentence reconstruction. This MTL strategy enhances
translation performance by encouraging the main decoder to exploit the complete source
representation along with learning the target sentence translation. The experimental results
proved that exploiting the complete source information improves the adequacy of the output
translations. Similarly, the approach proposed by Zhou et al. (2019) employs two decoders
connected to a single encoding subnetwork to improve the robustness of the Transformer
network to noisy source sentences. The two decoders are trained with two different learn-
ing objectives. Specifically, the first decoder is employed as a denoising unit generating
clean source sentences. On the other hand, the target translation task is done by the second
decoder based on the hidden representation of the noisy source sentence from the encoder
and the clean sentence representation from the denoising decoder.

In Chapter 4, the proposed Multi-level Supervision (MS) schemes employ multiple de-
coders connected to a single encoder subnetwork similar to MTL architectures proposed by
Dong et al. (2015); Zoph and Knight (2016) for the task of NMT. In contrast, all decoders
employed in our multi-level supervision network generate target translations in the same
language based on source representations from different encoder layers. The encoder sub-
network receives gradient signals from all connected decoders. Therefore, the lower-levels
are encouraged to capture the necessary source semantic information to support the target
generation from each connected decoder. This presents a form of regularisation effect to
further improve the source representation ability of the encoder subnetwork. Furthermore,
unlike conventional multi-task NMT models (Niehues and Cho, 2017; Baniata et al., 2018;
Luong et al., 2015a; Malaviya et al., 2017), all the decoders connected to the encoding sub-
network are trained jointly end-to-end on the same target language generation task based
on source representation captured by the corresponding or connected encoding layers.

2.7.2 Deep Representation Learning

The Joint Attention Strategies and the MS schemes presented in Chapters 3 and 4 respect-
ively are motivated by research and advances in deep representation learning. Effective
propagation of gradient information across the multiple layers of a neural network can sig-
nificantly improve its performance at learning a given task (Srivastava et al., 2015; He et al.,
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2016; Huang et al., 2017). To achieve this, several techniques, including residual connec-
tions (He et al., 2016), highway network connections (Srivastava et al., 2015), and dense
connections (Huang et al., 2017), have been extensively explored in areas such as computer
vision and NLP. These approaches improve the propagation of features and error informa-
tion across the multiple layers of the neural network via direct information paths between
the layers. The simplicity and effectiveness of these skip-connection techniques allow for
easy integration and have become the standard for state-of-the-art models for learning prob-
lems employing neural networks. With respect to NMT, models such as the self-attention
based Transformer model (Vaswani et al., 2017), CNN based ConvS2S (Gehring et al.,
2017) and LSTM/GRU based model (Wu et al., 2016) achieved state-of-the-art perform-
ance by employing residual connections between the layers. As noted by Irie et al. (2019)
and Vaswani et al. (2017), the performance of the Transformer model significantly degrades
when trained without residual connections between the multiple sublayers. Across these
models, source representations from the lower-level encoding layers are not considered
during the target generation as only the top-level encoder layer’s output is passed to the
decoder subnetwork.

Making use of source representations from multiple encoding layers can improve the
generalization performance of deep NMT models. Each layer captures a different level of
abstraction of the source representation (Raganato et al., 2018; Belinkov et al., 2017; Peters
et al., 2018). For example, analysing a multi-layer LSTM based network, (Peters et al.,
2018) shows that the LSTM states within the lower-level layers are useful for syntax-based
tasks such as POS while the states across the top-level layers capture the semantic meaning
of the input sentence and its constituent tokens, making them useful for NLP tasks such
as word sense disambiguation. Similar observations were made by Raganato et al. (2018)
and Belinkov et al. (2017). The findings of these works motivate the idea of exploiting
the representations captured by the layers within a multi-layer neural network to solve a
given NLP task. A linear combination approach was proposed by Peters et al. (2018) to
generate a single sentence representation based on the representations aggregated from the
multiple layers. To learn better source representation, (Wang et al., 2018a) presents three
information fusion techniques to combine representations from multiple encoding layers
via a single information fusion layer. Similarly, (Dou et al., 2018) explored different rep-
resentation aggregation approaches to combine source features generated from different
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encoder layers. Besides, they proposed training the NMT model with a diversity promot-
ing auxiliary learning objective to ensure that the layers encode diverse source informa-
tion. The static layer aggregation approaches from (Dou et al., 2018; Wang et al., 2018a;
Peters et al., 2018) (such as the linear feature combination method) as argued by Dou et al.
(2019) sometimes ignores useful contextual information that can improve performance. In
response, they propose dynamic layer aggregation with routing-by-agreement mechanisms
where each decoding layer receives a different aggregation of source representations from
each of the encoding layers. Similarly, Bapna et al. (2018) proposed Transparent Atten-

tion Mechanism where different joint source representation is generated for each decoding
layer. Specifically, for a model with M encoding and N decoding layers, N different joint
source representations are generated (one for each decoding layer) from the weighted com-
bination of outputs from all the encoding layers, including the word embedding layer. Via
the Transparent Attention Mechanism, Bapna et al. (2018) were able to train (2-3x) deeper
NMT models. The performance gain is attributed to the Transparent Attention Mechanism

easing the optimisation of deeper models.
A common theme among these works is the generation of a single source feature rep-

resentation as an aggregation of output representations from different encoder layers. The
decoder performs the source-target attention based on the aggregated joint source repres-
entation. These approaches provide a simplistic mechanism to enhance the source-target
attention mechanism while improving the flow of gradient information from the decoding
subnetwork to the encoding layers. In contrast, the work presented in Chapter 3 hypothes-
ises that providing the decoder network more direct access to representations from multiple
encoding layers can further improve the performance of the model and further enhance
gradient flow to each encoder layer, especially for deeper encoder networks. Specifically,
we propose to perform the neural attention computations directly across source represent-
ations from different encoding layers via a Multi-Layer Multi-Head Attention module. In
Chapter 3 both the Layer Aggregation strategies explored in (Dou et al., 2018; Wang et al.,
2018a; Peters et al., 2018; Ampomah et al., 2019b) and the proposed Multi-Layer Multi-

Head Attention are referred to as the Joint Attention Strategies (JASs). For each of these
approaches, a joint source-target attention computation is performed directly (Multi-Layer

Multi-Head Attention) and indirectly (Layer Aggregation) across the output representations
from multiple encoding layers.
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The primary goal of the JASs is to enhance the performance of the connected decoder
subnetwork by exposing source representations from multiple encoding layers. However,
the performance of an encoder-decoder architecture does not only rely on the generation
ability of the decoding unit but also the ability of the encoder to learn the best source
representation. The MS schemes presented in Chapter 4 seek to improve the performance
of the encoder subnetwork by connecting auxiliary decoders to some of the lower-level
layers, which are then trained along with the decoder subnetwork connected to the top-
level layer. These decoders are trained to learn the generation of the same target sequence.
The proposed MS forces the encoder to learn the necessary source semantic information to
support the target generation from all the connected decoders.

2.7.3 Contextual Modelling

Exploiting the useful contextual information has been shown to be critical to achieving
higher translation performance in machine translation models (Gimpel and Smith, 2008;
He et al., 2008; Marton and Resnik, 2008; Luong et al., 2015b). During the target gener-
ation, contextual information is required by the translation model to effectively perform
tasks such as the phrase and word sense disambiguation (Wu et al., 2014; Marvin and
Koehn, 2018). To leverage the rich source side information, (Gimpel and Smith, 2008) pro-
posed augmenting the phrase-based SMT model with contextual features of the phrases
to be translated. They employed contextual features such as parts-of-speech (POS) tags,
local syntactic features, and lexical features based on nearby words. The work by He et al.
(2008) argues that a weakness of conventional syntax-based SMT models (Chiang, 2005;
Huang et al., 2006) is their failure to distinguish and exploit the different structures of
the source sentence. In response, they proposed maximum entropy-based rule selection
(MaxEnt RS) model combined with rich context features such as POS, lexical features, and
length information. The MaxEnt RS allows the decoder to leverage the source contextual
information required to efficiently select the best translation rules. Similarly, (Marton and
Resnik, 2008) proposed to guide the rule selection process with automatically induced syn-
tactic features. In (Wu et al., 2014), the quality of the bilingual word embedding for SMT
is improved by exploiting discrete contextual information such as the position and POS
features.

One of the earlier works leveraging both the local and global contextual information
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to improving the performance of NMT was (Luong et al., 2015b). Specifically, to utilise
the local and global information of the source tokens, the authors employ two attention
mechanisms, namely, the global and local attention units. During the decoding step t, the
global attention considers all the source tokens while the local attention computation is per-
formed across a subset of the source tokens. The performance improvement highlights the
importance of capturing both global and local contextual information. Motivated by this,
recent works (Yang et al., 2018; Xu et al., 2019; Sperber et al., 2018) investigate strategies
to learning both the long-distance and short-range dependencies between the tokens to fur-
ther enhancing the sentence representational ability of the self-attention mechanism. To
model localness, (Yang et al., 2018) proposed a modification of the self-attention mech-
anism with a learnable Gaussian bias which specifies the central position and window of
tokens neighbourhood to pay more attention to. Similarly, (Sperber et al., 2018) explored
two masking techniques for controlling the contextual range of self-attention for the task
of acoustic modelling. Other works (Wu et al., 2018; Yang et al., 2019b) explored convo-
lutional concepts to restricting the attention scope or span to a window of neighbouring
tokens.

The ability of self-attention to effectively capture the global contextual information has
been identified as one of its salient strengths improving the performance downstream NLP
tasks such as semantic modelling (Yang et al., 2019a), and constituency Parsing (Kitaev and
Klein, 2018). However, the approaches by Wu et al. (2018); Yang et al. (2019b) restricting
the attention scope to some degree can result in loss of important global and long-distance
dependencies (Xu et al., 2019). In (Xu et al., 2019), the authors proposed a hybrid attention
mechanism to learn the local contextual information without restricting the self-attention
mechanism’s ability to model the global and long-distance dependencies. The QANet pro-
posed by Yu et al. (2018a) employs a multi-layer depth-wise separable CNN to initially
model the local contextual representation before the application of the self-attention unit.
The resulting model significantly outperformed RNN based models for the task of machine
comprehension. In a similar direction, Chapter 5 proposes the Dual Contextual (DC) mod-
ule to leverage both the local and global information to further improve the performance of
NMT. However unlike Xu et al. (2019); Shen et al. (2018); Yu et al. (2018a), the DC module
employs two separate attention units to generate the sentence representations. Furthermore,
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this thesis argues that the decoder subnetwork requires rich contextual source representa-
tion to achieve higher translation quality. This implies that the output of the encoder sub-
network has to “fully” encapsulate both the local and global contextual information of the
source tokens. Therefore, the modelling of the local and global contextual information is
applied to all layers within the encoder and decoder subnetworks.

2.8 Summary

This chapter presented an overview of the basic neural LM as well as the Seq2Seq ap-
plication to Neural Machine Translation (NMT). Furthermore, a review of existing related
works is also provided. The remainder of this thesis presents the contributions to achieving
our aim to study and design neural architectures to perform sequence generation effect-
ively. The next chapter presents the JASs to exploit the source representations generated by
multiple layers of the encoder subnetwork.



Part II

Leveraging Multiple Source
Representations
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Chapter 3

JASs: Joint Attention Strategies for
Neural Machine Translation

The encoder-decoder network frameworks employed for the task of Neural Machine Trans-
lation (NMT) usually consist of a stack of multiple layers. Each encoding layer learns
a different level of abstraction of the input source sequence. However, only the source
representation from the top-level encoder layer is leveraged by the decoder subnetwork
during the generation of the target sequence. These models do not fully exploit the use-
ful source representations learned by the lower-level encoder layers. Leveraging these
source representations has the potential to further enhance the translation performance of
the NMT model. Inspired by recent advances in deep representation learning, this chapter
addresses the goal of improving the performance of the decoding subnetwork by exploit-
ing the source linguistic information captured across multiple encoding layers. Two Joint

Attention Strategies (JASs) are explored:

• Layer Aggregation: the decoder generates the target sequence based on a joint source
representation computed as the combination of source representations from multiple
encoding layers. This provides the decoder subnetwork indirect access to the layers
of the encoder subnetwork

• Multi-Layer Attention: provides the decoder subnetwork more direct access to the
multiple encoder layers via a Multi-Layer Multi-Head Attention module to improve
the translation performance.

39
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This chapter is based on the work presented in (Ampomah et al., 2019a, 2020).

3.1 Introduction

The neural approaches to solving sequence to sequence (Seq2Seq) problems including
Neural Machine Translation (NMT) (Luong et al., 2015b; Vaswani et al., 2017; Gehring
et al., 2017), Document Summarization (Al-Sabahi et al., 2018; Song et al., 2019b) and
Paraphrase Generation (Hasan et al., 2016; Ampomah et al., 2019b) have achieved signific-
ant improvement over traditional machine learning approaches (Och et al., 1999; Callison-
Burch et al., 2011; Celikyilmaz and Hakkani-Tur, 2010; Litvak and Last, 2008) without the
need for extensive feature engineering. The backbone of these neural architectures is the
encoder-decoder framework. The task of the encoding subnetwork is the generation of the
semantic information from the source sequence. On the other hand, the decoder is charged
with the target sequence generation based on the source semantic representation captured
by the encoder.

The basic Seq2Seq model first encodes an input sentence of arbitrary length into a
fixed-length hidden representation which is then processed by the decoder in order to gen-
erate a satisfactory target sentence. As observed by Bahdanau et al. (2015), learning the
fixed-length hidden representation creates a bottleneck during the decoding phase. The
local contextual information gets diluted as information flows through the encoder network
resulting in the loss of information and consequently poor target sentence generation. To
improve the performance, the attention neural mechanism (Bahdanau et al., 2015; Luong
et al., 2015b) was introduced to compute the alignment between the encoder network’s
output and the current decoding step. That is, instead of learning a fixed-length vector, the
contextual information for every source token is kept and later referenced by the decoder.
During decoding, this mechanism makes it possible for the decoder to peek through the
encoder to utilise the local and global contextual information for better mapping of the in-
put sequence to the output sequence. Recent state-of-the-art NMT models (Vaswani et al.,
2017; Gehring et al., 2017) implement each of the encoder and decoder subnetworks as
a stack of multiple layers. The propagation of information between the two subnetworks
becomes difficult as the number of layers increases. To minimise this problem, these mod-
els use shortcut connections such as residual units (He et al., 2016) between the layers to
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enhance the flow of information across the multiple layers.
Leveraging source representations from multiple layers can further improve the Seq2Seq

generation task. However, current NMT models generate the target sequence based on rep-
resentation from only the final encoding layer. These models fail to fully explore the poten-
tially useful representations generated by the lower-level encoder layers during the target
generation. A problem with this approach is that there is no guarantee that the necessary
source information required by the decoder subnetwork is encoded in the final encoder
layer. Each layer within the encoding sub-network learns a particular set of features, which
are then passed to the upper layers for further processing and feature extraction (Raganato
et al., 2018; Belinkov et al., 2017; Peters et al., 2018). These layers extracts different levels
of abstraction of the source representation. For example, Belinkov et al. (2017) evaluated
source representations from different encoder layers on NLP tasks such as part-of-speech
tagging (POS) and semantic tagging. They argue the lower-level encoder layers tend to
focus more on learning word-level information or properties while the higher-level lay-
ers encode more semantic information. Therefore it seems reasonable to leverage source
representations captured across the multiple layers within the encoding subnetwork. Fur-
thermore, research works from the field of computer vision (Yu et al., 2018b; Huang et al.,
2017) have proven the benefits and the performance impact of exploiting representations
from multiple top-level and lower-level layers.

This chapter investigates the Joint Attention Strategies (JASs) to exploit the source rep-
resentations extracted from multiple encoding layers. Specifically, during the target gen-
eration, the techniques presented generate the source-target contextual information based
on n source representations obtained from the encoding subnetwork. The n source repres-
entations are aggregated by a Source Feature Collector module based on the outputs from
the top-n encoding layers. Two JASs are explored to better exploit the source representa-
tions collected by the Source Feature Collector module. These are the Layer Aggregation

(Dou et al., 2018; Wang et al., 2018a; Peters et al., 2018; Ampomah et al., 2019b) and
Multi-Layer Attention (Ampomah et al., 2020) strategies.

For the Layer Aggregation approach, each decoding layer receives a joint source rep-
resentation generated from the combination of the n representations returned by the Source

Feature Collector module. The decoding subnetwork performs the neural attention compu-
tation across the generated joint source representation providing indirect access to multiple
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encoding layers. Even though the Layer Aggregation provides a simple way to leverage
the multiple source representations, the work presented in this chapter argues that allowing
the decoder more direct access to the encoding layers can significantly improve the flow of
gradient information and enhance the overall translation performance of the model.

Under the Multi-Layer Attention approach, a more direct access to the encoding layers
is provided by performing attention computations directly across the outputs from the top-
n encoding layers. The Multi-Layer Attention is performed via a Multi-Layer Multi-Head

Attention (MLMHA) module, which allows each decoding layer to directly interact with
different levels of abstraction of the source sequence to further improve the translation
quality. For a deeper encoder subnetwork, this also enhances the propagation of gradient
information between the encoder-decoder subnetworks as each encoder layer receives error
signals directly from all the decoding layers.

All experiments and analyses conducted in this chapter are based on a current state-of-
the-art model, namely the Transformer architecture (Vaswani et al., 2017). Experimental
results on two IWSLT language translation tasks (Spanish-English and English-Vietnamese)
and WMT’14 English-German translation demonstrate the effectiveness of allowing each
decoding layer access to representations from multiple encoding layers. The main contri-
butions of this chapter are:

• Proposing the Multi-Layer Multi-Head Attention (MLMHA) module which allows
the decoding layers to directly exploit source representations captured by multiple
encoding layers.

• Demonstrating consistent improvement over models exploiting only the source rep-
resentation from the top-level encoder layer.

• Providing analysis on the encoding subnetwork to understand the impact of exposing
all encoder layers to the decoder subnetwork.

• Providing analysis on the impact of varying the number of encoder layers outputs (n)
that are considered by the Source Feature Collector.

The remainder of the chapter is organised as follows: The next section presents the JASs
explored. Section 3.3 presents the experiments conducted on the datasets under consider-
ation. Furthermore, the experimental results are compared and discussed in Section 3.4.
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(a) Layer Aggregation Approach: Each decoding layer l performs the source-
target neural attention mechanism across a joint source representation Ha gen-
erated via a Merging Module.
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(b) Multi-Layer Attention: Each decoding layer l performs the source-target neural attention com-
putation directly across multiple encoding layers. Ū = [Ū0, Ū1] (where Ūi ∈ {0, 1}) controls how
alignment computations are performed across the source representations in F s.

Figure 3.1: Illustration of the Joint Attention Strategies to exploiting source representations
from multiple encoding layers. F s is a list of source sentence representations obtained by
the Source Feature Collector module from the encoding layers. n is the number source
representations exposed to the decoder subnetwork. X is the input sequence. H l−1

d and H l
d

denotes the output representations from the decoding layers l − 1 and l, respectively.
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Section 3.5 presents the extensive analyses performed to investigate the impact of exploit-
ing multiple source representations from the encoding subnetwork via the JASs. Finally,
the conclusion is presented in Section 3.6.

3.2 JASs: Joint Attention Strategies

In a conventional encoder-decoder architecture (Vaswani et al., 2017; Gehring et al., 2017;
Bahdanau et al., 2015) withL number encoding layers, only the representation of the source
sequence1 from the final encoding layer (HL

e ∈ RJ×dmodel) is passed to the decoding sub-
network during the target sequence generation. As the depth of the network increases, it
becomes difficult to efficiently and effectively train the model due to vanishing and explod-
ing gradients.

The encoder employs the entire stack of layers to learn the source semantic information.
For a deeper network, there is no guarantee that the last encoder layer’s output is the best
representation for the target generation (Wang et al., 2018a; Dou et al., 2018; Ampomah
et al., 2019b). To enhance the flow of information between the encoder and decoder sub-
network during the forward and backward propagation, two approaches to exploiting the
source representations learned by multiple layers in the encoding subnetwork are investig-
ated in this chapter. Besides, the proposed strategies allow the model to fully exploit the
structural composition of the source sentence.

To this end, a list of source representations F s = [f 1, f 2, · · · , fn−1, fn] is obtained
by a Source Feature Collector module from the encoding subnetwork as shown in Fig-
ure 3.1. Specifically, the Source Feature Collector returns a list of source representations
F s aggregated from outputs of the top n encoding layers2. It is noteworthy that F s con-
tains source representations from all layers in a L-layer encoder subnetwork when n = L.
The Seq2Seq models (Vaswani et al., 2017; Bahdanau et al., 2015; Gehring et al., 2017)
using only the top-level encoder output HL

e corresponds to setting n = 1. To exploit the
multiple source representation F s, two JASs are explored in this chapter. The first is the
Layer Aggregation strategy which generates a joint source representation Ha ∈ RJ×dmodel

as a combination of features in F s via a Merging Module as displayed in Figure 3.1a. The

1The representation from an encoder layer consists of the hidden states of all source tokens.
2n is considered as a hyperparameter in this work.
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(a) (b)

(c) (d)

Figure 3.2: Feature aggregation strategies employed by the Merging Module to generates
the joint source representation Ha from representations in F s = [f 1, f 2, · · · , fn−1, fn].
(a), (b), (c) and (d) illustrate the Linear Feature Summation, Iterative Feature Summation,
Linear Feature Concatenation and Iterative Feature Concatenation strategies, respectively.
The WS and AGG are the units employed to combine the input features in F s.
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combination functions explored in this work are Feature Summation based (Linear Feature
Summation and Iterative Feature Summation) and Feature Concatenation based (Linear
Feature Concatenation and Iterative Feature Concatenation). These are illustrated in Fig-
ure 3.2. Each decoding layer receives the Ha instead of HL

e ∈ RJ×dmodel during the target
generation. The second technique is the Multi-Layer Attention. Here, each decoding layer
l receives the list source representations F s as shown in Figure 3.1b. A Multi-Layer Multi-

Head Attention (MLMHA) module is employed within each decoding layer to perform the
neural attention computation directly and jointly across all source representations in F s.
Unlike the Layer Aggregation strategies, this approach provides more direct access to the
representations learned by each encoding layer.

3.2.1 Layer Aggregation

Feature Summation

Feature Summation is the simplest approach to combining multiple source features. A joint
source representation Ha is computed by the Merging Module as the weighted summa-
tion of source representations in F s via a Weighted Summation (WS) unit, as shown in
Figures 3.2a and 3.2b. Given the input representations r = [r1, r2, · · ·, ri, · · ·, rb], the WS

generates the Ha as the weighted summation of elements in r:

Ha = WS(r)

WS(r) =
b∑
i

W iri
(3.1)

where W i ∈ Rdmodel×dmodel is a weight parameter used to control the contribution of the
ith representation ri ∈ RJ×dmodel . Two feature summation approaches are explored in this
work, namely, the Linear Feature Summation and Iterative Feature Summation. As shown
in Figure 3.2a, the Linear Feature Summation employs a single WS unit to combine all the
features in F s. That is each f i corresponds to the WS’s input representation ri.

Alternatively, multiple WS units can be used to combine the source representations F s

in an iterative fashion, as shown in Figure 3.2b. This approach is termed as Iterative Feature
Summation. As shown, WS takes as input the two representations f i and Ha

i−1 (the output
from the previous WS unit in the stack). Given r = [f i, Ha

i−1], the output after the Iterative
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Figure 3.3: Illustration of the aggregation unit (AGG) generating the joint representation
Ha based on the input representations or features r = [r1, · · ·, ri, · · ·, rb]

Feature Summation step i, Ha
i can be formulated as:

Ha
i = WS([f i, Ha

i−1]) (3.2)

It should be noted that under Iterative Feature Summation, the Ha
1 = f 1 and Ha = Ha

b .

Feature Concatenation

As noted by Dou et al. (2018) and Wang et al. (2018a), the Feature Summation approaches
employing weights [W 1,W 2,W ···,W b] usually tend to ignore important source contextual
information that could further enhance the performance of the model. Furthermore, the
summation can prevent the efficient flow of gradient information across the network, as ar-
gued by Huang et al. (2017). Therefore, to preserve much of the source contexts captured by
encoding layers, two Feature Concatenation approaches (the Linear Feature Concatenation
and Iterative Feature Concatenation) are explored. Specifically, the Ha is generated based
on the concatenation of the source representations in F s. As displayed in Figure 3.2c and
Figure 3.2d, the Merging Module employs the aggregation unit (AGG) to perform the fea-
ture combination. Given an input list of features (of length b), r = [r1, r2, · · ·, ri, · · ·, rb],
the AGG unit generates the Ha as illustrated in Figure 3.3. As displayed, position-wise
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feed-forward network (FFN) processes the concatenation of the input representations r̂c
producing the hidden representation rc; this is followed by residual connections from input
representations in r. Finally, the outputHa is generated by the LayerNorm.Ha is computed
as:

Ha = AGG (r)

AGG (r) = LayerNorm(Ĥa)

Ĥa = rc +
b∑
i=1

ri

rc = FFN
(
Concat

(
r1, r2, · · ·, rb

))
(3.3)

Unlike Dou et al. (2018), the FFN employed by the AGG is a two-layer feed-forward
network with ReLu activation in between the layers. The Linear Feature Concatenation
(shown in Figure 3.2c) uses a single AGG unit to combine the representations in F s and
each ri corresponds to f i:

Ha = AGG
(
[f 1, f 2, · · · , fn]

)
(3.4)

The Iterative Feature Concatenation approach employs multiple AGG units to combine
source representations in an iterative fashion. Similar to the Iterative Feature Summation
approach, each AGG unit takes as input two representations f i and Ha

i−1 (the output from
the previous AGG unit combining representations from the lower-level of source abstrac-
tion) as shown in Figure 3.2d. The Iterative Feature Concatenation is formulated as:

Ha
i = AGG

(
[f i, Ha

i−1]
)

(3.5)

where Ha
1 = f 1 and Ha = Ha

b . The Iterative Feature Concatenation and Iterative Feature
Summation approaches are motivated by the iterative stacking employed by the Trans-
former model.

3.2.2 Multi-Layer Attention

The goal of the Multi-Layer Attention is to allow the decoder subnetwork more direct
access to multiple encoding layers to further enhance the translation performance of the
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Feed Forward
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Attention Aggregation Unit

Context  Generator

Figure 3.4: Illustration of a decoding layer with Multi-Layer Multi-Head Attention
(MLMHA) sublayer to perform the attention computation across multiple features F s re-
ceived from the encoding stack. α = [α1, α2, · · · , αn] is the list of attention weights (where
αi corresponds to attention weight with respect to f i in F s), and Oc is the joint context
vector across all features in F s.

model. To this end, each decoding layer receives a list of source sentence representations
F s = [f 1, f 2, · · · , fn] aggregated by the Source Feature Collector module as shown in
Figure 3.1.

In addition to F s, each decoder layer receives a binary vector Ū = [Ū0, Ū1], where
Ūi ∈ {0, 1}. Ū controls how the attention computation is performed across the multiple
encoder representations in F s. Specifically, the values of Ū0 and Ū1 determine the strategy
employed to generate the contextual representation base on all the source representations in
F s. Formally, the encoder-decoder multi-head attention (encoder-decoder MHA) sublayer
is extended to consider the multiple source representations F s. To this end, the encoder-
decoder MHA sublayer is replaced with a Multi-Layer Multi-Head Attention (MLMHA)



CHAPTER 3. JASS: JOINT ATTENTION STRATEGIES 50

module, as illustrated in Figure 3.4. The computations across each decoder layer (see Equa-
tion (2.11)) are re-formulated as follows:

Sld = LayerNorm
(
MHA(H l−1

d , H l−1
d , H l−1

d ) +H l−1
d

)
,

El
d = LayerNorm

(
MLMHA(Sld, F

s, Ū) + Sld
)
,

H l
d = LayerNorm

(
FFN(El

d) + El
d

) (3.6)

Multi-Layer Multi-Head Attention (MLMHA)

MLMHA employs two sub-modules, namely the Attention Aggregation Unit and the Con-

text Generator, to perform the attention computations across all representations in F s as
shown in Figure 3.4. The Attention Aggregation Unit outputs a list of attention weights
α = [α1, α2, · · · , αn], where αi is the multi-head attention weight with respect to f i. Spe-
cifically, αi ∈ RNh×Z×J is calculated as:

αi = Concat
(
αi1, α

i
2, · · · , αiNh

)
αih = score

(
QW q

h , KW
k
h

) (3.7)

where αih ∈ RZ×J is the attention score with respect to the attention head h based on f i.
QW q

h , andKW k
h are, respectively, the projections of the query (Sld) and key (f i) vectors for

the hth attention head. The projections are performed with the matrices W q
h ∈ Rdmodel×dk ,

W k
h ∈ Rdmodel×dk . score(·) is the attention score function defined in Equation (2.12).

Based on the α and F s, the Context Generator computes the joint contextual repres-
entation Oc. The operation of the Context Generator is controlled by the values of Ū0

and Ū1. To be specific, Ū0 controls the generation of the context vector ci with respect to
f i. Depending on the value of Ū0, the MLMHA module computes the ci using either a
representation-specific-attention weight or a joint-attention weight. For the case of Ū0 = 1,
the contextual vector for the hth attention head with respect to f i, cih ∈ RZ×dk is calculated
using the representation-specific-attention weight softmax(αih):

cih = softmax(αih) · VW v
h (3.8)

where VW v
h is the transformation of the value vector (f i) with the projection weight W v

h ∈
Rdmodel×dk . In contrast, for the case of Ū0 = 0, a joint-attention weight α̂ ∈ RNh×Z×J is
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employed to obtain cih for each f i and attention head h. α̂ is computed as:

α̂ = softmax(
n∑
i=1

αi)

Analogous to Equation (3.8), cih is generated with α̂ as:

cih = α̂h · VW v
h (3.9)

where α̂h ∈ RZ×J is the joint-attention weight with respect to the attention head h. In
summary, the ci with respect to f i is calculated as:

ci = Concat
(
ci1, c

i
2, · · · , ciNh

)
cih =

softmax(
∑n

i=1 α
i)h · VW v

h Ū0 = 0

softmax(αih) · VW v
h Ū0 = 1

(3.10)

As shown above, when Ū0 = 0, the cih is generated with the joint-attention weight (α̂h) with
respect to each f i. In contrast, cih is computed with the representation-specific-attention

weight (softmax(αih)).
Given the contexts C = [c1, c2, · · · , cn] computed across F s, a joint context Oc is

generated as a combination of all vectors in C. The choice of contexts combination func-
tion (either contexts-summation or contexts-concatenation) is determined by the Ū1. When
Ū1 = 1, Oc is generated via the summation of all the contexts representations (contexts-

summation) in C. However for Ū1 = 0, Oc is obtained from the concatenation of all the
contexts (contexts-concatenation) in C. The Oc is formulated as:

Oc = ĈWo

Ĉ =

Concat (c1, c2, · · · , cn) Ū1 = 0∑n
i=1 c

i Ū1 = 1

(3.11)

where Wo ∈ Rdc×dmodel is the projection matrix for transforming the intermediate context
representation Ĉ ∈ RZ×dc into Oc ∈ RZ×dmodel . It is noteworthy that the dimension size
dc is equal to n · dmodel when contexts-concatenation is employed. However when Oc is
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Models Ū0 Ū1 cih Ĉ

M-00 0 0 softmax(
∑n

i=1 α
i)h · VW v

h Concat (c1, c2, · · · , cn)

M-01 0 1 softmax(
∑n

i=1 α
i)h · VW v

h

∑n
i=1 c

i

M-10 1 0 softmax(αih) · VW v
h Concat (c1, c2, · · · , cn)

M-11 1 1 softmax(αih) · VW v
h

∑n
i=1 c

i

Table 3.1: Configurations of the MLMHA as determined by the values of Ū0 and Ū1. cih is
the context vector for the attention head h with respect to f i and Ĉ is the overall context
vector across the n source representations in F s.

generated via contexts-summation (Ū1 = 1), dc is equal to dmodel. In summary, the value of
the binary vector Ū = [Ū0, Ū1] (where Ūi ∈ {0, 1}) presents four possible configurations
of the MLMHA module in the decoding layer. For simplicity, the model M-ij denotes the
configuration where Ū0 = i and Ū1 = j as summarized in Table 3.1. As shown, the M-10

and M-11 models compute the context cih using the representation-specific-attention weight

while the joint-attention weight is employed by the M-00 and M-01 models. The contexts-

summation approach is employed by the M-01 and M-11 models to output contextual rep-
resentation Oc. In contrast, for the M-00 and M-10 models, the contexts-concatenation

approach is employed.

3.3 Experimental Setup

3.3.1 Datasets

The effectiveness of the JASs explored in this chapter are evaluated on the following lan-
guage translation tasks: WMT’14 English-German (En→De), Spanish-English (Es→En),
and English-Vietnamese (En→Vi).

For the En→De task, the models are trained on the widely-available WMT’14 data-
set comprising about 4.56 million sentence pairs for training. Following (Dou et al., 2018;
Gehring et al., 2017), the newstest2013 and newstest2014 are used as the validation and test
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sets, respectively. For the Es→En task, the dataset employed is from the IWSLT 2014 eval-
uation campaign3 (Cettolo et al., 2014). The training set consists of 183k training sentences
pairs, and the tst 2014 split is used as the test set. The validation set consisting of about 5593
sentence pairs is created by concatenating dev2010, tst2010, tst2011, and tst2012 splits.
The dataset for the En→Vi translation task is from the IWSLT 2015 English-Vietnamese
track (Cettolo et al., 2015). The training set comprises 133k sentence pairs. The validation
and test sets are from the TED tst 2012 (1553 sentences) and TED tst 2013 (1268 sentence
pairs), respectively.

To alleviate the Out-of-Vocabulary (OOV) problem, a shared vocabulary4 generated
via byte-pair-encoding (BPE)5 (Sennrich et al., 2016) is employed to encode the source
and target sentences. In the case of the En→De translation task, the shared vocabulary
comprises about 32k subword tokens. For the En→Vi and Es→En translation tasks, the
shared vocabulary consists of 21k and 34k subword tokens, respectively.

3.3.2 Model Setup, Training and Inference

For experiments on the WMT’14 En→De, the base configuration of the the Transformer
architecture (Vaswani et al., 2017) is employed due to the size of the dataset. Specifically,
the hidden size, filter size, and the number of attention heads are 512, 2048, and 8, respect-
ively. Both the encoder and decoder subnetworks have 6 layers. The experiments on the
Es→En and En→Vi tasks are conducted based on the small configuration with the word
embedding dimension, hidden state size, and the number of attention heads set as 256, 256,
and 4, respectively. The position-wise FFN has a filter of a dimension of 1024. The regu-
larization dropout rate is 0.1. A label smoothing (Vaswani et al., 2017; Pereyra et al., 2017)
with 0.1 weight is applied to obtain the uniform prior distribution over the target vocabu-
lary to further improve the translation quality. Finally, The models trained on each IWSLT
task consists of a 4-layer encoder subnetwork and 4-layer decoder subnetwork. On each
language translation task under consideration, the same model configuration (in terms of
the number of layers and hidden dimensions) is employed to train the Transformer baseline
model for a fair comparison.

3https://wit3.fbk.eu/mt.php?release=2014-01
4The original casing for the tokens in each sentence is preserved.
5https://github.com/rsennrich/subword-nmt
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For experiments on each dataset, the value of the hyperparameter n for the Source

Feature Collector is set to the number of layers present in the encoding subnetwork i.e.
n = L. That is, on the WMT’14 En→De, and IWSLT tasks n is set as 6 and 4, respectively.
As mentioned in Section 3.2.2, the model M-ij denotes the configuration where Ū0 = i

and Ū1 = j. Similarly, C-Agg, Iter-C-Agg, S-Agg and Iter-S-Agg, denote respectively,
the models employing the Linear Feature Concatenation, Iterative Feature Concatenation,
Linear Feature Summation, and Iterative Feature Summation approaches to combining the
representations in F s.

For the WMT’14 En→De task, the models are trained for 160k iterations with a batch
size of 4960 tokens. Evaluations are performed every 10k iterations. On the IWSLT tasks
(En→Vi and Es→En), all models are trained with a batch size of 2048 tokens for a total of
200k iterations with evaluations performed at every 4k iterations. The maximum sequence
length is limited to 200 subword tokens for the En→De task and 150 subword tokens for
the IWSLT tasks. The optimizer employed to train the models in this chapter is the Adam
optimizer (Kingma and Ba, 2014) (with β1 = 0.9, β2 = 0.98, ε = 109). Varying the value
of the learning rate over the course of training has been shown to yield higher performance.
The choice of learning rate scheduling algorithm has a high impact on the convergence of
the learning model. Following (So et al., 2019), a preliminary experiment was performed
using the En→Vi dataset to select the best scheduling algorithm among the linear decay,
single-cosine-cycle (Loshchilov and Hutter, 2017) and the noam (Vaswani et al., 2017)
given by:

lrt = d−0.5model ·min
(
t−0.5, t−0.5 · warmup_steps

)
where lrt is the learning rate for the training step t. Using the performance on the En→Vi
development set, we found both the Transformer baseline and our models performed well
when trained with the single-cosine-cycle with warmup steps. Therefore all experiments
are performed using the single-cosine-cycle scheduling algorithm.

During inference, the target sentences are generated by the models via beam search
algorithm. On the En→De task, the beam size and the length penalty are 4 and 0.6, respect-
ively. For the IWSLT translation tasks, a beam size of 6 and a length penalty of 1.1 is em-
ployed. Following common practice, the translation quality on the En→De, case-sensitive
detokenized BLEU (Papineni et al., 2002) computed with mteval-v13a.pl6 is employed as

6https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl
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Model #Params (M) Train BLEU

8-Layer RNN (Wu et al., 2016) - - 26.30

ConvSeq2Seq (Gehring et al., 2017) - - 26.36

Transformer-Base (Vaswani et al., 2017) - - 27.31

Transformer+EM Routing (Dou et al., 2019) - - 28.81

Transformer+Layer Aggregation (Dou et al., 2018) - - 28.78

Our NMT Systems

Transformer 61.2 3.66 28.37

With Layer Aggregation

S-Agg 62.8 3.55 28.24(-0.13)

Iter-S-Agg 63.9 3.52 28.29(-0.08)

C-Agg 68.6 3.38 28.17(-0.20)

Iter-C-Agg 77.0 3.11 28.81(+0.44)†
With MLMHA

M-00 92.7 2.66 28.80 (+0.43)†
M-01 84.9 2.74 28.54 (+0.17)

M-10 92.7 2.59 29.08 (+0.71)‡
M-11 84.9 2.70 28.51 (+0.14)

Table 3.2: Evaluation of translation performance on the WMT’14 English-German
(En→De). #Params and Train denotes the number of trainable model parameters and
the training speed measured in terms of the steps per second, respectively. In parentheses
are the progressive gain between JASS models and the reimplementation of the Trans-
former baseline. “†” and “‡” indicate statistically significant difference with ρ < 0.05 and
ρ < 0.01, respectively.

the evaluation metric. For the Es→En, case-sensitive BLEU metric with multi-bleu.pl7 is
used for the evaluations. Finally, the translation quality for the En→Vi is reported based on
the case-sensitive BLEU score computed with sacreBLEU89. The BLEU score measures
the translation quality based on the exact matching between the system generated transla-
tions and reference translations by considering the n-gram overlaps. The higher the BLEU

7https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
8https://github.com/mjpost/sacrebleu
9with the signature BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.13
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Models
BLEU Scores

En→Vi Es→En
Transformer 30.58 39.80

With Layer Aggregation
S-Agg 30.91 (+0.33) 39.92 (+0.12)
Iter-S-Agg 31.01 (+0.43) 39.77 (−0.03)
C-Agg 31.03 (+0.45) 39.71 (−0.09)
Iter-C-Agg 31.13 (+0.55) 40.31 (+0.51)

With MLMHA
M-00 30.88 (+0.30) 40.99 (+1.19)
M-01 31.07 (+0.49) 40.61 (+0.81)
M-10 30.71 (+0.13) 40.57 (+0.77)
M-11 30.78 (+0.17) 40.55 (+0.75)

Existing NMT Systems
Luong & Manning (Luong and Manning, 2015) 23.30 -
NPMT (Huang et al., 2018) 27.69 -
NPMT + LM (Huang et al., 2018) 28.07 -
CNN + Reinforcement learning (Edunov et al., 2018) - -
LSTM + Variational Attention (Deng et al., 2018) - -
Model-level dual learning (Xia et al., 2018) - -
Tied Transformer (Xia et al., 2019) - 40.51
Layer-wise Coordination (He et al., 2018) - 40.50
UEDIN (Cettolo et al., 2014) - 37.29

Table 3.3: Evaluation of translation performance of the JASs models on the IWSLT En→Vi,
and Es→En translation tasks.

score, the better the model. Compare-mt10 (Neubig et al., 2019) is employed to evaluate
and measure the statistical significance using paired bootstrap resampling (Koehn, 2004).
The sample size is set as 1000 reference and model-generated sentence pairs. In this ap-
proach, 1000 pairs of (reference, hypothesis) are sampled with-replacement from the refer-
ence translations and our model-generated translations. The sampling was performed 1000

times resulting in 1000 different new test sets. Computing the BLEU score for each of the
new test sets produces a distribution over the BLEU scores that can be employed as a good
substitute for evaluating the performance of the models on a very large number of sentences
that is more representative of all possible reference sentences. To quantify the significance

10https://github.com/neulab/compare-mt
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of the difference in the performance between the baseline model and one of our models,
the BLEU metric score is computed for each of these sampled test sets with respect to
each model under consideration. Under this paired bootstrap resampling performance eval-
uation, the best model is the one that performed better across the trials with 1000 sampled
test sets. Following (Koehn, 2004), we conclude that a model is better than the other with
γ% statistical significance if it achieved higher performance γ% of the time. For simplicity,
the statistical significance test is performed on the WMT’14 En→De task mainly due to
the size of the test dataset.

3.4 Results

This section presents the performance evaluations of the strategies to leverage the multiple
source representations presented in this chapter on the three language translation tasks.
For each language pair under consideration, the performance obtained by each of the M-

ij models and the Layer Aggregation models (S-Agg, C-Agg, Iter-S-Agg and Iter-C-Agg)
is compared to results from existing NMT models. Tables 3.2 and 3.3 summarizes the
translation performance on the WMT’14 En→De task and the IWSLT tasks (Es→En and
En→Vi), respectively. In each table, the value in parentheses represents the performance
gain over the Transformer baseline model (Vaswani et al., 2017) re-implemented in this
chapter.

For the WMT’14 En→De task, the Iter-C-Agg model and all the configurations of the
MLMHA outperform the standard Transformer model (Vaswani et al., 2017) as shown
in Table 3.2. Furthermore, the M-10 model outperform all existing models. As shown,
our reimplementation of the Transformer baseline outperforms the original model from
(Vaswani et al., 2017). The S-Agg, Iter-S-Agg and the C-Agg models failed to match the
performance of our reimplementation of the baseline model. Only the Iter-C-Agg model
produced a statistically significant gain over the Transformer baseline among the Layer

Aggregation approaches. For the Transformer models trained with MLMHA module, only
the two contexts-concatenation based models (M-10 and M-00) achieved significant gains
of +0.71 BLEU and +0.43 BLEU in the translation quality. In contrast, the performance
gains of the contexts-summation models (M-10 and M-11) are statistically insignificant.
Lower performance gains were obtained with the M-01 (+0.17 BLEU) and M-11 (+0.14
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BLEU). Table 3.3 summarizes the performance gains of the joint attention models on the
IWSLT tasks. For the Es→En translation task, only the Iter-C-Agg model and MLMHA
based models further improved the performance of the Transformer baseline. Compared
to the Layer Aggregation models, the M-ij models produced a higher improvement in the
translation quality. On this dataset, the M-00 model achieved the overall best performance
with a 40.99 BLUE (+1.19 increase in translation quality). Finally, On the En→Vi task,
only the M-00, M-01, and the Layer Aggregation models produced a higher performance
improvement in the BLEU score.

The translation results presented in Tables 3.2 and 3.3 demonstrate the potential per-
formance gain of leveraging source representations from multiple encoding layers. How-
ever, the improvement in translation performance is shown to be dependent on the approach
employed to leverage the multiple source representations. On the En→De and Es→En
tasks, providing the decoder direct access to the multiple encoder layers via the MLMHA
is shown to outperform (in most cases) the indirect access provided by the Layer Ag-

gregation techniques. However, on the En→Vi dataset, only the M-00 and M-01 models
achieved comparable performance to the Layer Aggregation models. On average, the M-11
achieved the overall worse performance among the M-ij models with the only higher gain
achieved on the Es→En task. In contrast, the M-00 demonstrates a better generalization
ability than M-11 as it consistently achieved higher translation performance gains across
the different translation tasks. The translation performance can be attributed to the joint-

attention weight and contexts-concatenation techniques employed by the M-00 model as
shown Table 3.1. The joint-attention weight is collaboratively computed across the mul-
tiple encoder layers’ outputs. Compared to employing the representation-specific-attention

weight, generating the context representation ci via this strategy enhances information shar-
ing across the encoder layers, further improving the robustness of the NMT model. Unlike
contexts-summation (Ū1 = 1), the contexts-concatenation technique preserves much of the
contextual information required for the translation task (see Section 3.5.2). Finally, among
the Layer Aggregation based models, the Iter-C-Agg produced consistent performance gain
over the baseline model, demonstrating better generalization.

The performance gain via the MLMHA comes at a higher computational cost in terms
of the number of parameters and training speed, as shown in Table 3.2. The Layer Aggreg-

ation approaches have a lower impact on the training speed. For example, the S-Agg and
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Iter-S-Agg techniques degrade the speed by about 0.12 steps per second. The MLMHA in-
troduces additional trainable parameters as each decoder layer employs11 n different set of
weights to compute the attention weights. The M-00 and M-10 models have larger number
of parameters due to the contexts-concatenation strategy. Consequently, this decreases the
training speed as more effort is required to optimise the parameters of the M-ij models
effectively. Section 3.5.2 further explores the impact of n on the translation performance
and training speed of the JASs based models.

3.5 Analysis

This section presents further analyses performed to better understand the impact of the
JASs on the performance of the Transformer model. This includes analysis to understand
the impact of:

• the source sentence length on the translation performance for the joint attention mod-
els.

• varying the number of source representations considered (the hyperparameter n from
the Source Feature Collector module) on the performance of the joint attention mod-
els.

• exposing all the encoding layers to the decoding subnetwork on encoder subnetwork.

All the above analyses are performed on the En→De due to the size of the dataset as well
as the number of layers employed to train the models.

3.5.1 Length of source sentence

Capturing effectively the contextual information, as well as the long-distance dependencies
between the tokens of the source sentence, can further enhance the translation quality on
longer sentences (Dou et al., 2018). Following (Luong et al., 2015b), sentences of similar
lengths (in terms of the number of source tokens) are grouped. The choice of range for the
grouping is based on the sentence lengths (the number of subword tokens in each source

11See
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Figure 3.5: Distribution of the number of sentences from the WMT’14 En→De test set
across the different sentence length groups.
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Figure 3.6: BLEU scores on the WMT’14 En→De test set for the Transformer baseline
model, the Layer Aggregation based models, and the M-ij models with respect to the dif-
ferent source sentence lengths. Left: Transformer baseline vs Layer Aggregation models.
Right: Transformer baseline vs Multi-Layer Attention (M-ij) models.

sentence) across the En→De test set. About 62% of the sentences (1.8k) have a sequence
length of less than 31 subword tokens. Therefore, the comparison presented in this section
is based on the following sentence length groups: <10, 10-20, 20-30, 30-40, 40-50, and
>50. Figure 3.5 shows the distribution of the number of sentences across the different
sentence length groups. For each group, the BLEU score is calculated for outputs from
the models under consideration. As can be seen in the Figure 3.6, the performance of the
baseline model (Transformer) generally improves with increasing input sentence lengths,
especially for sentence lengths between 10 and 40 subword tokens. The Transformer model
via the self-attention sublayers is able to model or capture the contextual information and
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global dependencies between the tokens irrespective of their distances or locations within
the input sentence.

Among the Layer Aggregation models, the Iter-C-Agg model is shown to consistently
outperform the baseline across the sentences with length greater than 40. The variations
across the groups clearly explains why the Iter-S-Agg, C-Agg, and S-Agg models per-
formed poorly on the En→De as shown in Table 3.2. On average, the Iter-S-Agg and S-
Agg models achieved higher translation quality on lengths less than 21 tokens. For sentence
lengths greater than 21, these models achieved the worst performance among all the JASS
models introduced in this chapter. On the other hand, the performance of the C-Agg and
Iter-C-Agg models generally improved with increasing sentence length. Surprisingly, the
C-Agg model achieved the worst performance for sequences with fewer than 20 tokens.

As shown in Figure 3.6, across the sentences with lengths greater than 10, some of the
M-ij models generally outperform the baseline model. This is true especially in the case of
the M-10 model. It achieves the overall best translation performance for sentences longer
than 20 tokens. The performance of the M-10 and M-00 models improve consistently with
increasing sentence length. The M-01 achieved the best translation quality on sentences
with fewer than ten tokens. However, similar to the baseline, performance degrades for
sentences with lengths between 10 and 20 before improving for a longer sentence. Besides,
among the M-ij models, it has the overall worse performance on sentences with lengths
between 10 and 40. The M-11 model, on the other hand, performed poorly on the shorter
sentences (fewer than ten tokens) with the lowest BLEU score (25.91). This might explain
the lower BLEU score of the contexts-summation based models (M-01 and M-11) as shown
in Table 3.2.

Overall, the performance of the M-ij models and the Layer Aggregation models ob-
tained across the different groups motivates the hypothesis that the JASs further improves
the performance of the self-attention sublayers of the encoder at capturing effectively the
global and long-range dependencies between tokens of the input sentence hence improving
the translation performance even on longer sentences. Section 3.5.3 explores the impact of
these JASs on the self-attention unit of each encoding layer.
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Models #Params (M) Train BLEU

Baseline
B0 61.2 3.65 28.37

B1 86.5 2.95 28.49

B2 90.7 2.60 28.59

S-Agg

n=2 61.8 3.64 28.57

n=3 62.1 3.63 28.13

n=4 62.3 3.63 28.02

n=5 62.6 3.59 28.37

n=6 62.8 3.57 28.24

Iter-S-Agg

n=2 61.8 3.63 28.57

n=3 62.3 3.61 28.50

n=4 62.8 3.61 28.48

n=5 63.4 3.54 28.33

n=6 63.4 3.52 28.29

C-Agg

n=2 64.4 3.56 28.60

n=3 65.5 3.53 28.80

n=4 66.5 3.49 28.76

n=5 67.6 3.46 28.49

n=6 68.6 3.41 28.15

Iter-C-Agg

n=2 64.4 3.56 28.60

n=3 67.6 3.45 28.36

n=4 70.7 3.33 28.81

n=5 73.9 3.22 28.57

n=6 77.0 3.11 28.82

(a)

Models #Params (M) Train BLEU

M-00

n=2 67.5 3.41 28.43

n=3 73.8 3.18 28.53

n=4 80.2 3.03 28.72

n=5 86.4 2.77 28.66

n=6 92.7 2.65 28.80

M-01

n=2 66.0 3.45 28.82

n=3 70.7 3.20 28.76

n=4 75.4 3.06 28.66

n=5 80.2 2.93 28.46

n=6 84.9 2.74 28.54

M-10

n=2 67.5 3.39 28.42

n=3 73.8 3.15 28.41

n=4 80.2 3.01 28.59

n=5 86.4 2.76 29.12

n=6 92.7 2.59 29.08

M-11

n=2 66.0 3.44 28.72

n=3 70.7 3.16 28.71

n=4 75.4 3.01 28.60

n=5 80.2 2.83 28.62

n=6 84.9 2.70 28.51

(b)

Table 3.4: Impact of n (the number of encoding layers considered by the Source Feature
Collector module) on the performance of the JASs based models. B0, B1 and B2 refers to
the Transformer baseline model trained with different configurations in terms of the number
of layers and the filter size FFN sublayer.

3.5.2 Impact of the hyperparameter n

As summarized by the Tables 3.2 and 3.3, the decoder subnetwork exploiting the multiple
source representations extracted from different encoding layer (in most cases) significantly
improves the performance of the NMT model. This section investigates the impact of vary-
ing the value of n (i.e. using only the representations from the top n encoding layers) from
2 to 6. As mentioned in Section 3.2, n = 1 corresponds to the Transformer baseline model,
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which employs source representation from only the final encoder layer. Specifically, each
model under consideration is trained with different values of n. It is noteworthy that when
n = 2, the iterative feature combination approaches Iter-S-Agg and Iter-C-Agg become the
same as the corresponding linear approach S-Agg and C-Agg, respectively.

Model Complexity

The training speed or computation speed of any given model is affected by the model size
(number of trainable model parameters), the optimizer employed as well as any other com-
putations that directly modify or alter the formulation of the network structure (Popel and
Bojar, 2018). The Layer Aggregation approaches employ an additional set of weights to
generate the joint source representation from the outputs of the encoder layers. Besides, the
MLMHA approach introduces new trainable parameters as each decoding layer employs n
different set of weights to perform the attention computations across the multiple encod-
ing layers as shown in Section 3.2.2. Therefore, to investigate the impact of the number
of parameters on the overall training speed, we train two additional Transformer baseline
models (B1 and B2) with different configurations. Specifically, the model B0 is the original
Transformer presented in Table 3.2. The baseline B1 is trained with hidden size, filter size,
and the number of attention heads set as 512, 4098, and 8, respectively. The main difference
between B0 and B2 models is that B2 employs four additional encoding and decoding lay-
ers to generate the target translations. The configurations of the B0, B1, and B2 models res-
ult in a comparable increase in the number of trainable parameters as that of the MLMHA
and Layer Aggregation models (when n = 6). For example, the B1 model has roughly
the same number of parameters as the M-01 and M-11 models. As shown in Table 3.4,
increasing the number of parameters generally results in a decrease in the training speed.
The new parameters introduced by B1 and B2 configurations degrade the training speed by
about 19.2% and 28.77%, respectively. For the Layer Aggregation models, the extra model
parameters introduced depend on the technique employed to generate the joint source rep-
resentation Ha. Compared to the linear combination strategies, the iterative source feature
combination approaches resulted in bigger model size. For example, C-Agg approach in-
creases the model size by about 7.41M parameters while the Iter-C-Agg had about twice
the increase in the number of trainable parameters.

Among the M-ij models, the M-00 and M-10 have the worst training speed compared
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Figure 3.7: Impact of n (the number of encoding layers considered by the Source Feature
Collector module) on the performance of the JASs. Left: Layer Aggregation models. Right:
Multi-Layer Attention models

.

to the M-01 and M-11 models. Similar to the Layer Aggregation models, the number of
new parameters is dependent on the strategy employed to generate the joint context Oc (see
Equations (3.7) to (3.11)) across the multiple representations from the encoder subnetwork.
When n = 6, the MLMHA introduces about 23.7M new parameters due to the n different
weights employed to perform the MHA operations across each encoder output as shown in
Equations (3.7) and (3.8). For the contexts-concatenation based M-ij models (with Ū1 =

0), a further 7.8M new parameters are introduced due to the concatenation operation on
the context representations C = [c1, c2, · · · , cn]. As shown in Table 3.4, for our MLMHA
models, there is a corresponding reduction in the training speed from about 7.13% (when
n = 2) to 29.04% (for n = 6) as the value of n increases. Finally, the B1 model has roughly
the same number of parameters as the M-01 and M-11 models. However, the training speed
for these contexts-summation models is (slightly) slower than B1. This is attributed to the
additional attention computations and aggregations across the multiple decoding layers.
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Translation Quality

The variation in the translation performance with respect to the values of n is illustrated in
Figure 3.7. As seen, for all the Layer Aggregation and Multi-Layer Attention models, there
is a significant change in performance as the value of n increases from 1 to 6. Similar to
the observations in Table 3.2, the value of Ū is shown to significantly affect the overall per-
formance of the Multi-Layer Attention models. The performance of the models with Ū1 = 0

(M-00 and M-10) improves as the number of encoder layers considered (n) increases. For
the value of n > 4, these Multi-Layer Attention models achieve their best performance. In
contrast, the M-01, and M-11 models (Ū1 = 1) achieved their highest translation perform-
ance when n = 2, but the quality of the output translation degrades for n > 3 (with the
minimum BLEU score at n = 6 for M-11 and at n = 5 for the M-01 model). Specific-
ally, the M-01 and M-11 models achieve their highest performance when only the top two
encoder layer outputs are considered.

For the Layer Aggregation models, the concatenation based feature combination ap-
proaches (Iter-C-Agg and C-Agg) are shown to outperform the summation based methods
(Iter-S-Agg and S-Agg) for the values of n ≤ 4. The performance of the C-Agg degrades
rapidly when the value n increases especially for n > 3. On the other hand, the Iterative
Feature Concatenation approach (Iter-C-Agg) is able to effectively utilise the contextual
source information obtained across the multiple encoding layers resulting in higher per-
formance than the C-Agg model for n ≥ 4. Similarly, the Iter-S-Agg performs better than
the S-Agg model across the different values of n except at n ≥ 5 (there is no significant
difference in their performance when n = 5). However, similar to the M-01, and M-11
models, the performance of these summation based Layer Aggregation models is peaked
when using source representations from only the top two encoding layers (i.e. HL−1

e and
HL
e ). Among the Layer Aggregation models, the S-Agg and C-Agg produced worse per-

formance for the values of 2 ≤ n ≤ 5 and n = 6, respectively.
Overall, the results obtained by the joint attention-based models indicate that perform-

ing the encoder-decoder attention across multiple encoder layers can significantly improve
the performance of the NMT model. This is dependant on the value n in the case of both the
Layer Aggregation and Multi-Layer Attention approaches and the values of Ū for the Multi-

Layer Attention strategies as shown in Figure 3.7. However, the performance gain comes at
a higher computational cost, especially in the case of M-00, M-10, and Iter-C-Agg models.
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Finally, unlike the context concatenation based models (Iter-C-Agg, M-00, and M-10), the
performance of context summation based models (S-Agg, Iter-S-Agg, M-01, and M-11)
decreases as the value of n increases.

3.5.3 Impact on the Encoder’s Self-attention

The performance of the encoding layers depends on the ability of the multiple heads of the
self-attention unit within each layer to capture the necessary structural information of the
input source sequence. These attention heads capture structural information of the source
sequence at varying degrees. As noted by Vig and Belinkov (2019); Raganato et al. (2018),
while some self-attention heads focus on long-distance relationships, other attention heads
capture the shorter distance relationships between the input tokens. This allows the trans-
former model to capture the structural information for the given source sentence to im-
prove the translation performance effectively (Raganato et al., 2018). As stated earlier, the
operations of the MLMHA module within each decoding layer and the Layer Aggregation

approaches affect how the source information is processed across the layer of the encoder
subnetwork. Following (Vig and Belinkov, 2019), this hypothesis is tested by analysing the
attention entropy and the attention distance spanned by the multiple attention heads within
each encoding layer’s self-attention unit.

The mean distance D̄l
h spanned by the attention head h with respect to the encoding

layer l is computed as the weighted average distance between token pairs in all sentences
in a given corpus X. That is:

D̄l
h =

∑
x∈X

∑|x|
i=1

∑i
j=1w

h
i,j · (i− j)∑

x∈X
∑|x|

i=1

∑i
j=1w

h
i,j

where whi,j is attention weight from the input token xi to xj for the attention head h. i
and j denotes the locations of tokens xi and xj in the source sentence x. Aggregating the
attention distance for each head, the mean attention distance spanned D̄l with respect to the
encoding layer l is calculated as:

D̄l =
1

Nh

·
Nh∑
h=1

D̄l
h
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Figure 3.8: Variation of the mean attention distance span and attention distribution entropy
with respect to the encoding layers and the attention heads for the Transformer baseline.
Left: Mean attention distance. Right: Entropy of attention distribution.

where Nh denotes the number of attention heads employed within the layer.
The mean attention distance does not offer any information on the distribution of the

attention weight across the input tokens for a given attention head. The attention head with
a higher mean attention distance can be concentrating on similar token sequences, which
might be further apart from each other (Vig and Belinkov, 2019; Ghader and Monz, 2017).
To measure the concentration or the dispersion pattern of an attention head h within layer
l for the input token xi, the entropy of the attention distribution (Ghader and Monz, 2017),
El
h(xi) for the attention head h is computed as:

El
h(xi) = −

i∑
j=1

whi,j logwhi,j

Similar to the attention distance spanned, the mean entropy of attention distribution for the
encoding layer l is calculated as:

El(xi) =
1

Nh

Nh∑
h=1

El
h(xi)

Attention heads with higher entropy are termed as having a more dispersed attention pattern
while the lower the entropy, the more concentrated the attention weight distribution.

The attention distance and entropy of attention distribution analysis are performed
based on the attention weights generated for 1500 randomly sampled sentences from the
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(a) S-Agg
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(b) Iter-S-Agg
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(c) C-Agg

1 2 3 4 5 6 7 8
Attention Heads

1

2

3

4

5

6

La
ye

rs

6.37 10.4 7.4 4.94 5.23 6.1 6.19 10.27

5.72 5.95 2.38 12.95 10.7 9.76 1.06 12.47

1.03 7.14 3.04 10.12 13.7 8.38 9.19 3.85

12.06 17.98 9.16 1.1 7.87 4.87 2.48 2.36

6.1 6.46 5.0 10.73 2.46 6.67 9.99 1.44

6.1 4.47 3.2 4.71 6.0 13.62 10.69 8.91

1 2 3 4 5 6 7 8
Attention Heads

1

2

3

4

5

6

La
ye

rs

0.88 1.37 1.0 0.73 0.74 0.63 0.81 1.24

0.43 0.05 0.6 1.46 0.03 0.32 0.16 1.28

0.05 0.03 1.07 1.13 0.58 1.6 0.51 0.98

0.47 0.06 0.26 0.07 1.12 1.34 0.74 0.65

1.2 0.14 1.1 1.31 0.71 0.97 0.52 0.17

0.28 0.05 0.99 0.1 0.97 1.02 1.14 1.44

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) Iter-C-Agg

Figure 3.9: Variation of the mean attention distance and entropy of attention distribution for the
attention heads across the encoding layers with respect to the Layer Aggregation models. For each
plot, Left: Mean attention distance. Right: Mean entropy of attention distribution.
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(c) M-10
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(d) M-11

Figure 3.10: Variation of the mean attention distance and entropy of attention distribution for the
attention heads across the encoding layers with respect to the Multi-Layer Attention models. For
each plot, Left: Mean attention distance. Right: Mean entropy of attention distribution.
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En→De task’s test split (newstest2014). Figures 3.8 to 3.10 show the mean attention dis-
tance span and mean entropy of attention distribution for every attention head with respect
to each encoding layer for the Transformer baseline and the JASs based models, respect-
ively. As shown, while some heads focus on the shorter-distance relationships, other heads
capture the longer-distance relations among the input tokens. Similarly, the entropy of the
attention distribution also varies across the layers and even for attention heads within the
same layer. This is consistent with the findings of both Vig and Belinkov (2019); Ghader
and Monz (2017). Figures 3.11 and 3.12 show the mean average attention distance and
entropy for all the self-attention heads across the layers of the encoding subnetwork. Each
plot compares the Transformer baseline and a joint attention-based model, the variations of
the attention distance span, and attention entropy across the encoding layers.

For the Transformer baseline, the majority of attention heads with a higher mean at-
tention span and a more diverse attention distribution are across the first layer. However,
a higher mean attention distance does not always imply a diverse attention distribution. In
the subsequent layers, there are a number of attention heads with a higher distance span
but with a much more concentrated attention weight distribution. For example, layer 2
attention head 1 and head 8 have the highest mean attention spans (14.34 and 14.87 re-
spectively) but with the lowest mean entropy scores (0.0085 and 0.0094). As noted by Vig
and Belinkov (2019), these attention heads with higher mean attention distance span con-
centrate their attention on words in repeated phrases at different locations within the input
sentence. This could explain their lower entropy of weight distribution across the sequence
of input tokens. Attention heads with diverse or concentrated weight distribution and lower
attention distance span focus more on nearby tokens. Clearly, these heads with varying
mean attention distance and entropy allow the Transformer to effectively learn and capture
variable structural information across its layers. This explains the superiority of the Trans-
former model over other Seq2Seq architectures such as RNN (Luong and Manning, 2015;
Bahdanau et al., 2015), and CNN (Gehring et al., 2017).

For the Layer Aggregation and the Multi-Layer Attention based models, the impact of
the different strategies on the self-attention unit within the associated encoding layer is of
greater interest. Exposing all the encoding layers to the decoding subnetwork significantly
alters how the source information is learned across the encoder subnetwork, as displayed
in Figures 3.9 to 3.12. Compared to the Transformer baseline, the attention heads of the
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Figure 3.11: Variation of the average mean attention distance and entropy of head attention
distribution across the encoding layers for the Transformer baseline model and the Layer
Aggregation based models: (a) Feature Summation and (b) Feature Concatenation. For
each plot, Left: the average of all the attention head mean distance with respect to each
encoder layer. Right: the average entropy of head attention distribution per encoder layer.

Feature Summation approaches (i.e. S-Agg and Iter-S-Agg) generally have higher attention
distance span and entropy across the top-level encoding layers l ≥ 2. As illustrated in
Figure 3.11a, for the S-Agg model, the entropy of the attention distribution and attention
distance span is maximum across the layers 1 and 6. The attention heads across the second
layer are more concentrated than all the other encoding layers. The model trained via the
Iterative Feature Summation displays a similar variation with respect to the entropy of
attention distribution. However, across the encoding layers of the Iter-S-Agg model, the
majority of attention heads have higher attention distance and are more diverse than that of
the S-Agg.
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Figure 3.12: Variation of the average mean attention distance and entropy of head attention
distribution across the encoding layers for the Transformer baseline model and our Multi-
Layer Attention models: (a) M-ij models trained with joint-attention weight (when Ū0 = 0)
and (a) M-ij models trained with Ū0 = 1, layer-specific-attention weights. For each plot,
Left: the average of all the attention head mean distance with respect to each encoder layer.
Right: the average entropy of head attention distribution per encoder layer.

The changes in the average mean attention distance and entropy of attention distribution
across the encoder layers of the Feature Concatenation approaches (i.e. C-Agg and Iter-C-
Agg) is summarized in Figure 3.11b. Under C-Agg, the attention distance increases rapidly
across the layers 3 ≤ l ≤ 6. The final layer has the highest distance span, with the highly
concentrated attention heads with the entropy of about 8e−4. Compared to C-Agg, the Iter-
C-Agg produces a moderate variation in the attention distance span and entropy across
the layers. This allows the Iter-C-Agg to effectively model both the long and short-term
interactions and dependencies between the source tokens. This might explain the difference
in performance between the C-Agg and Iter-C-Agg across the different sentence groups, as
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Models
Layer

1 2 3 4 5 6

Layer Aggregation
S-Agg -27.01‡ -0.12 +0.10 -0.20 -0.11 -0.94‡
C-Agg -21.56‡ -0.14 +0.06 -0.26 -0.37 1.85‡
Iter-S-Agg -0.03 -0.01 -0.12 -0.05 0.0 -28.29‡
Iter-C-Agg -4.53‡ -0.54‡ -0.59‡ -2.21‡ -4.0‡ -27.16‡

Multi-Layer Attention
M-00 -15.25‡ -0.49† -0.27 0.03 -1.79‡ -9.85‡
M-01 -24.99‡ -0.19 -0.09 0.13 -0.81‡ -1.49‡
M-10 -0.83‡ -1.32 ‡ -1.05 ‡ -1.0 ‡ -1.50‡ -1.09‡
M-11 -0.26 -1.13‡ -0.83 ‡ -1.43‡ -1.34‡ -0.1

Table 3.5: Difference in BLEU scores for each encoding layer masked (i.e. replacing the
corresponding f i ∈ F s with zeros) with respect to the models when n = L. “‡” and “†”
indicate statistically significant difference with ρ < 0.01 and ρ < 0.05, respectively. The
base-BLEU scores for the Layer Aggregation and Multi-Layer Attention models are shown
in Table 3.2.

shown in Figure 3.6.
As evident from Figure 3.12, for the Multi-Layer Attention models, the change in terms

of the average mean attention distance span and entropy of attention weight distribution for
the multiple attention heads across the different encoder layers is dependent on the value of
the Ū0. The M-00 and M-01 models (with Ū0 = 0) have concentrated attention heads with
shorter attention distance span across the intermediate layers 3 ≤ l ≤ 5. These intermediate
layers are used to learn the local contextual information within the neighbourhood of the
input source tokens. In contrast, the M-10 and M-11 models (with Ū0 = 1) employs the
first few layers (l ≤ 3) to learn the short-term information while the upper layers model the
long-distance interaction between the input tokens.

Overall, each joint strategy significantly modifies how the source information is cap-
tured across the multiple attention heads and layers within the encoding subnetwork, as
shown by attention distance and entropy of attention weight distribution. This further en-
hances the network’s performance at learning the deeper source semantic information needed
to improve the translation quality, especially in the case of the Iter-C-Agg and M-ij models.
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3.5.4 An ablation study: Encoder Layer Dependency

The translation performance of the Layer Aggregation and Multi-Layer Attention models
reported in Table 3.2 are based on exposing all the encoding layers to the decoder (i.e.
n = L). However, it is worth understanding the contribution of each encoder layer to the
overall performance of each Layer Aggregation and Multi-Layer Attention models. To this
end, the translation quality of each model is evaluated while masking the entry in F s cor-
responding to the encoder layer of interest. Here, masking an entry in F s implies replacing
the corresponding f i with zeros. If the performance without the output of the encoder layer
l (i.e. H l

e) is significantly worse than the full model, then the H l
e is clearly important. In

contrast,H l
e is considered redundant if the difference in translation performance is compar-

able.
Table 3.5 shows the difference in the performance of the models for each masked out-

put of the encoder. As shown, masking one of the outputs of the encoder layers (in most
cases) degrades the translation quality significantly. The S-Agg and C-Agg models have
identical dependencies on the representations from the different encoder layers. For these
models, only the first and last encoder layers are shown to have a significant impact on
translation performance. Masking the source representations from the intermediate layers
(3 ≤ l ≤ 5) does not significantly affect the performance. Interestingly, the translation
performance of the Iter-C-Agg is shown to be dependent outputs from all the encoder lay-
ers. In contrast, only the output from the final encoder layer significantly contributes to the
overall performance of the Iter-S-Agg model.

The performance M-ij models also show different dependencies on the representations
from the encoder subnetwork. For example, without the output of the first encoder layer,
the performance of both M-00 and M-01 model decreases by −15.25 BLEU and −24.99

BLEU, respectively. Surprisingly without the output from the encoder layer 4, there is a
marginal improvement (not statistically significant) in the translation quality of these mod-
els. Notably, the source representations from first and final encoding layers are shown to
be redundant to the translation performance of the M-11 model, however, the outputs from
these layers have a statistically significant impact on the overall performance of the M-00,
M-01 and M-10 models. The results in Table 3.5 demonstrates that for S-Agg, Iter-S-Agg,
C-Agg, M-00, M-01, and M-11 models, the outputs from some of the encoder layers are
redundant during testing and can be removed without significantly reducing the translation
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quality. Consistent with the observation in Section 3.5.2, the translation performance of the
Iter-C-Agg and M-10 models is shown to be highly dependent on source representations
from all encoder layers. Removing the output of any of these layers causes a statistically
significant change in performance. Overall, the Multi-Layer Attention models are shown to
effectively utilise the multiple representations from the encoder subnetwork compared to
all the Layer Aggregation models (except Iter-C-Agg model).

3.6 Summary

In this chapter, the performance of the Transformer model is improved by leveraging mul-
tiple source representations captured by different encoding layers. Specifically, the decod-
ing subnetwork is allowed access to the entire stack of encoding layers to extract better
source-target contextual information. Experimental results on the IWSLT tasks (Spanish-
English and English-Vietnamese) and the WMT’14 English-German translation task show
that the JASs can further improve the performance of the NMT model. The value of n
(number of encoding layers considered) is shown to affect the performance of all the joint
attention strategies (Layer Aggregation and MLMHA based models) explored. However,
for the M-ij models, the performance gain is also dependent on the values of the bin-
ary vector Ū . Further analysis also demonstrates that exposing the layers of the encoding
subnetwork significantly alters how the global and local source contextual information is
captured by the self-MHA sublayer employed within each encoder layer.



Chapter 4

Encoder-based Multi-level Supervision
for Neural Machine Translation

The work presented in the previous chapter emphasised specifically on improving the target
generation ability of the decoding subnetwork by leveraging source representations from
multiple encoder layers. However, compared to the decoder, the encoding subnetwork has
to some extent a greater impact on the overall performance of the NMT model. There-
fore, enhancing the source representation ability of the encoder can significantly improve
the performance of the model. Similar to the previous chapter, the work presented in this
chapter also leverages multiple source representations from the encoder subnetwork. How-
ever, the goal here is to exploit the strengths of MTL, auxiliary training, and deep repres-
entational learning to improve the performance of the encoder subnetwork. To this end, the
chapter presents Encoder-based Multi-level Supervision strategies whereby multiple de-
coding subnetworks (connected to different encoding layers) are jointly trained end-to-end
on the same target generation task. Via inductive bias, the lower-level encoder layers are
trained to learn the necessary source information to support the target generation from all
the connected decoders.

76
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Figure 4.1: Illustration of encoder-decoder framework for sequence generation tasks such
as NMT, and document summarization. X denotes the input source sequence. yt target
token at time step t and y<t = y1, · · · , yt−1 denotes the partial target sequence generated
before step t. Embedding denotes the word embedding layers employed to generate input
representations for the encoder and decoder subnetworks.

4.1 Introduction

State-of-the-art NMT models (Vaswani et al., 2017; Gehring et al., 2017) usually imple-
ment the encoder subnetwork with multiple layers to learn the source semantic features ef-
ficiently and effectively. The target sequence generation is performed by the decoding sub-
network based on only the source semantic features from the final encoding layer, as shown
in Figure 4.1 with or without the neural attention mechanism. Each encoding layer cap-
tures different linguistic levels of source representations, including word-level, syntactic,
and semantic information (Belinkov et al., 2017; Hashimoto et al., 2017; Raganato et al.,
2018). The lower layers are best at learning word-level properties such as parts-of-speech
tagging (POS) and morphological tags. In contrast, the higher-level layers focus more on
learning semantic information based on the properties encoded by the bottom encoding lay-
ers. This implies that understanding the kind of information encoded across the different
layers can further enhance the performance of sequence generation models. Based on these
findings, the previous chapter explored the Joint Attention Strategies (JASs) to leverage the
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different levels of abstractions of source sequence generated from the multi-layer encoder
subnetwork. The Layer Aggregation and Multi-Layer Attention strategies achieved (in most
cases) significant performance improvement over the conventional architecture that gener-
ates the target sequence based on the source representation from only the final encoder
layer. The common theme among these approaches is improving the performance of the
decoding subnetwork. However, the translation performance of an NMT system relies on
the sentence representation and generation ability of both encoder and decoder subnet-
works. Since the decoder subnetwork largely depends on the encoder subnetwork to learn
the necessary source information for the target generation task, the encoder has to some
extent has a greater impact on the overall translation performance of the NMT model.

Inspired by recent advances in multi-task learning (MTL) and deep representation learn-
ing, this chapter investigates approaches to enhance the source representation ability of the
encoding subnetwork by exploiting the multiple source representations across the layers
via Multi-level Supervision (MS). Specifically, multiple decoders are connected to differ-
ent layers of the encoder. Unlike conventional multi-task NMT models (Niehues and Cho,
2017; Baniata et al., 2018; Luong et al., 2015a; Malaviya et al., 2017), all the decoders
connected to the encoding subnetwork are jointly trained end-to-end on the same target
language generation task based on source representation captured by the corresponding
encoding layers. The decoder connected to the final encoding layer is termed as the Main-

Decoder while other decoders attached to any of the lower-level layers are termed the
auxiliary decoders. During training, the encoder subnetwork receives gradient signals from
all connected decoders. Therefore, to support the target generation from each connected
decoder, the lower-level layers are forced to capture the necessary source semantic inform-
ation. This presents a form of inductive bias effect on the encoder subnetwork, further im-
proving its ability to generate high-quality source representations effectively. Finally, this
work argues that further performance improvement can be achieved by sharing information
directly between the Main-Decoder and the auxiliaries. Specifically, an Auxiliary Informa-

tion Fusion module is employed by the Main-Decoder to exploit the target representations
learned by the auxiliary decoders.

The MS approaches explored in this chapter are model-agnostic as such they can be ap-
plied to most existing encoder-decoder architectures including CNN (Gehring et al., 2017),
RNN (Luong et al., 2015b; Wu et al., 2016) and Transformer (Vaswani et al., 2017). As
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with the experiments presented in the previous chapter, all experiments and analyses are
conducted using the Transformer model. The MS approaches explored here are evaluated
on four language translation tasks: IWSLT’14 German-English, Spanish-English, English-
Vietnamese from IWSLT’15, and the WMT’14 English-German. The results on these trans-
lation tasks demonstrate the performance gain from training the original encoder-decoder
model with an auxiliary decoder connected to any of the lower-level encoder layers. The
improvement achieved is attributed to the enhancement of the source representational abil-
ity of the encoder subnetwork via the multi-level supervision. This hypothesis is verified
by the results based on ten linguistic probing tasks (Conneau et al., 2018) presented in
Section 4.5.4. The contributions of this chapter are:

• Proposing multi-level supervision approaches to improve the source representation
ability of the encoding subnetwork.

• Demonstrating consistent improvement over models with a single decoder connected
to the final encoder layer.

• Providing analysis on the impact of the auxiliary decoder connected to any of the
lower-level layers on the entire encoder.

• Providing analysis on the impact of the Auxiliary Information Fusion module on the
Main-Decoder.

The remainder of the chapter is organised as follows: The multi-level supervision ap-
proaches are presented in Section 4.2. The experiments conducted are presented in Sec-
tion 4.3, and the results are compared and discussed in Section 4.4. Furthermore, Sec-
tion 4.5 presents a detailed analysis on the impact of connecting an auxiliary decoder to
any lower-level encoder layer and the conclusion is presented in Section 4.6.

4.2 Approach

The vanilla Seq2Seq architecture employs a single decoder subnetwork to generate the
target sequence based on the output of only the final encoder layer (HL

e ), as shown in Fig-
ure 4.1. However, a multi-layer encoder network can provide multiple levels of abstraction
of the source sequence, and each of these abstractions can be used to generate the target
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Figure 4.2: Encoder-based Multi-level supervision approach for sequence generation where
X is the input sequence. Main-Decoder denotes decoding subnetwork connected to the top
most layer in a L-layers encoding network and Aux-Decoder l denotes the auxiliary decoder
connected to the l-th encoding layer (where l < L).

sequence. In this section, an Encoder-based MS approach to leverage the source represent-
ations from multiple encoding layers is introduced.

Multi-level Supervision (MS)

Multi-level supervision is a learning technique where predictors connected to some or all of
the lower-level layers of a neural network are trained along with the predictor connected to
the final layer. Auxiliary training (Szegedy et al., 2015; Gehlot et al., 2020; Nekrasov et al.,
2019) and some multi-task learning (MTL) approaches (Hashimoto et al., 2017; Ampomah
et al., 2019a) are typical examples of multi-level supervisions. The auxiliary training ap-
proach improves the convergence of deep networks by attaching auxiliary classifiers to cer-
tain intermediate layers. In addition to the original network, the network structures of these
auxiliary classifiers, as noted by Song and Chai (2018) and Jin et al. (2016) require specific
new designs. Under MTL, multiple different tasks can be supervised simultaneously across
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multiple layers. This approach has been shown to produce better performance, especially
when there is some form of linguistic hierarchies between the main and auxiliary tasks
(Hashimoto et al., 2017; Ampomah et al., 2019a).

The encoder-decoder architecture of the Seq2Seq model provides two possible direc-
tions to performing multi-level supervision, namely the Encoder-based MS and Decoder-

based MS. The Encoder-based MS approach seeks to exploit the features learned from
the input source sequence across multiple encoding layers to further improve the target
generation. On the other hand, the Decoder-based MS approach uses the representation of
both the target and source sequences captured across each decoder layer to improve the
model’s performance. In this chapter, only Encoder-based MS is considered1. Specifically,
this work mainly investigates whether the performance of the main generator connected
to the final encoder layer can be improved by jointly training with auxiliary generators
attached to any of the bottom or intermediate encoding layers.

Encoder-based Multi-level Supervision

The Encoder-based multi-level supervision as shown in Figure 4.2 leverages multiple out-
puts of the encoder subnetwork. To this end, auxiliary decoding subnetworks are added to
the original network, which utilises outputs from some selected lower-level encoding lay-
ers. The decoder generating the target based on the final encoding layer’s output (HL

e ) is
termed the Main-Decoder. Unlike typical auxiliary training-based models (Szegedy et al.,
2015; Nekrasov et al., 2019), each of the connected auxiliary generators has an identically
similar network structure as the Main-Decoder. Y m = (ym1 , y

m
2 , · · · , ymM) is the output of

the Main-Decoder and Y al = (yal1 , y
al
2 , · · · , yalM) is the output of auxiliary decoder attached

to the lower-level encoding layer l (i.e. Aux-Decoder l). It is noteworthy that these decoders
are different target generation subnetworks connected to different encoding layers. There-
fore, ideally we expect ymt = yalt = Yt. For simplicity, the auxiliary decoders are depicted
with dotted lines to indicate that they are optional, as shown in Figure 4.2.

The number of parameters of the resulting model increases as the number of auxiliary
decoders connected to the encoder increases. Therefore to reduce the number of trainable
parameters of the resulting model, the same output linear layer is employed to generate the

1This is because the encoder subnetwork has a greater impact on the performance of the model compared
to the decoding subnetwork.
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gregated by the Auxiliary Feature Collector module based on the target representations,
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], from three connected auxiliary decoders. For simplicity, we denote the

word embedding layer as E.

target sequence from the Main-Decoder and the auxiliaries. The resulting model is trained
jointly end-to-end using multi-output cross-entropy loss computed across each decoder
under consideration. The joint learning objective J (Y |X; θ) is formulated as:

J (Y |X; θ) = Lm (Y |X; θ) + γ
∑
l

Lal (Y |X; θ) (4.1)

where Lm (Y |X; θ) is the loss from the Main-Decoder, and Lal (Y |X; θ) is the loss com-
puted across the outputs of Aux-Decoder l. γ is a hyper-parameter or a discount weight
controlling the impact of the auxiliary decoders. For simplicity, the discount weight is set
to 1 in all our experiments. This implies that all decoding subnetworks have an equal impact
on the learning process.

Learning the target sequence generation from multiple layers serves as an inductive bias
mechanism to improve the source representation ability of the encoder subnetwork. During
backpropagation, the lower layers receive error signals from not only the Main-Decoder but



CHAPTER 4. MULTI-LEVEL SUPERVISION STRATEGIES 83

Masked MHA

AIF

Add & Norm

MHA

Add & Norm

Feed Forward

Add & Norm

A

Figure 4.4: A layer of the Main-Decoder subnetwork with the Auxiliary Information Fusion
(AIF) module to processes the auxiliary feature representations F a = [f 1, f 2, · · · , fn].
H l−1
d and H l

d are the input and output of the Main-Decoder’s layer l. ĥl is the output of
the masked self-attention sublayer. zf is the joint auxiliary representation computed by the
aggregation unit A as a weighted summation of all the F a vectors.

also from all the connected auxiliary decoders. Therefore, each lower layer is expected to
fully learn the necessary source semantic information required by the connected auxiliary
decoders as well as the Main-Decoder to successfully generate the target sequence. All
connected decoders are capable of generating the target translation based on the source
representation from the corresponding encoder layer. However, during inference, the target
for the given source sequence is generated from only the Main-Decoder. The auxiliary
decoders are only employed to further enhance the performance of the encoder subnetwork
and, as such, can be discarded after training.

Auxiliary Information Fusion (AIF)

In the basic Encoder-based MS approach presented above, only the lower layers of the
encoder subnetwork are shared by all connected decoders. During training and inference,
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there is no explicit information passing between the Main-Decoder and the connected aux-
iliaries. However, as shown by Ampomah et al. (2019a), information passing between the
auxiliaries and the Main-Decoder can further improve the performance of the model. This
allows gradient information from the Main-Decoder to flow through the encoder network
as well as the auxiliary decoders.

To this end, two modules (the Auxiliary Feature Collector and the Auxiliary Informa-

tion Fusion (AIF)) are employed to collect and process the target representations from the
connected auxiliary decoders. As illustrated in Figure 4.3, the Auxiliary Feature Collector

module generates the auxiliary feature list F a = [f 1, f 2, · · · , f i, · · · , fn−1, fn], where
f i ∈ RZ×dmodel is the hidden representation generated by the ith auxiliary decoder based on
the target sequence and the source representation from the associated lower-level encoder
layer. The F a is passed to each layer of the Main-Decoder which is processed by the AIF
module as displayed in Figure 4.4.

In each layer, the information fusion is performed immediately after the masked-self-
attention sublayer. The goal is to update the output of the Main-Decoder’s self-attention
output (ĥl) with the target information learned by auxiliary decoders. Within the AIF mod-
ule, a joint auxiliary representation zf is computed by the aggregation unit A as a weighted
summation of all the auxiliary features vectors F a:

zf =
n∑
i=1

W ai
l f

i (4.2)

where {W a1
l ,W

a2
l , · · · ,W an

l } are trainable weight parameters for AIF module of the lth

layer of the Main-Decoder subnetwork. Each W ai
l ∈ Rdmodel×dmodel controlling the contri-

bution of auxiliary feature f i in the computation of zf . Finally, the Main-Decoder’s internal
representation ĥl is updated via simple summation:

ĥl = ĥl + zf (4.3)

It should be noted that, when all the {W a1
l ,W

a2
l , · · · ,W an

l } weight vectors become zero
(i.e. when zf = 0), the Main-Decoder becomes similar to performing the multi-level super-
vision without the AIF module as shown in Equation (4.3). Unlike the basic Encoder-based
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MS, the auxiliary decoders are not discarded during inference, as they contribute to the gen-
eration of the target sequence via the AIF module.

4.3 Experimental Setup

4.3.1 Datasets

The proposed multi-level supervision approaches are evaluated on three IWSLT tasks (Spanish-
English (Es→En), German-English (De→En), English-Vietnamese (En→Vi)) and WMT’14
English-German (En→De) translation tasks.

The datasets for the Es→En, En→Vi and WMT’14 En→De translation tasks were in-
troduced in Section 3.3. As with the Es→En task, the dataset employed to train the models
on the De→En is from the IWSLT 2014 evaluation campaign (Cettolo et al., 2014). The
training dataset consists of about 160k sentence pairs. Following (He et al., 2018; Bahdanau
et al., 2017; Huang et al., 2018), the validation set is generated by a random selection of
7k sentences from the training data, and the models are trained on the remaining 153k.
The dev2010, tst2010, tst2011, and tst2012 are combined to create the test-set. However,
unlike the other translation tasks under consideration, all tokens in both the source and
target sentences are lower cased2 for this translation task. The sentences are encoded with
byte-pair-encoding (BPE)3 (Sennrich et al., 2016) based subword tokens with 32k merge
operations (resulting in a shared vocabulary of 31k subword tokens).

4.3.2 Model Configuration

The small configuration of the Transformer network is employed in all evaluations on the
IWSLT datasets (i.e. En→Vi, Es→En and De→En translation tasks). Specifically, the word
embedding dimension, hidden state size (dmodel), and the number of attention heads are set
as 256, 256, and 4, respectively. Furthermore, the position-wise FFN sublayer has a filter of
dimension dff = 1024. The number of layers employed by the encoder and decoder sub-
networks is 4. The 4-layers of the encoding subnetwork presents three possible locations to
connect an auxiliary decoder. Following (Dou et al., 2018, 2019), the network trained on

2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/lowercase.perl
3https://github.com/rsennrich/subword-nmt
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the WMT’14 En→De translation task is based on the base configuration of the Transformer
network. Unlike the small configuration, the hidden state size, filter size, and the number
of attention heads for the base configuration are 512, 2048, and 8, respectively. Both sub-
networks (the encoder and decoder) comprise 6 layers. For a 6-layer encoder subnetwork,
there are five possible locations to connect an auxiliary decoder.

For simplicity, the Encoder-based MS model with the auxiliary decoder connected to
the lower encoding layer l is denoted as MS-l. Furthermore, MS-l+AIF denotes the MS-

l model sharing information between the Main-Decoder and the auxiliary decoder via the
Auxiliary Feature Collector and the AIF module. The regularization dropout rate is 0.1.
A label smoothing (Vaswani et al., 2017; Pereyra et al., 2017) with 0.1 weight is applied
to obtain the uniform prior distribution over the target vocabulary to further improve the
translation quality of the connected decoders.

4.3.3 Model Training and Inference

For the IWSLT tasks, all models are trained with a batch-size of 2048 tokens for a total of
200k iterations. In contrast, for the WMT’14 En→De task, the MS-l and MS-l+AIF models
are trained for 160k iterations with a batch size of 4960 tokens. The models are trained
using the Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.98, ε = 109.
Following (So et al., 2019), a single-cosine-cycle with warm-up is employed as the learning
rate scheduling algorithm.

During inference, for all the IWSLT tasks, the target sentences are generated using
beam search with a beam size of 6 and length penalty α = 1.1. The beam search on the
WMT’14 En→De task is performed with a beam size and α set as 4 and 0.6, respect-
ively. The BLEU (Papineni et al., 2002) score metric is employed to measure the trans-
lation quality. Consistent with previous works, higher BLEU score implies better trans-
lation quality. Following common practice, the translation quality is evaluated using the
case-insensitive and case-sensitive BLEU metric with multi-bleu.pl for the De→En and
Es→En, respectively. For the En→Vi translation task, sacreBLEU is employed to compute
the case-sensitive BLEU scores. Finally, on the WMT’14 En→De, the evaluation metric is
case-sensitive detokenized BLEU computed with mteval-v13a.pl4.

4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl
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Model BLEU
Luong & Manning (Luong and Manning, 2015) 23.30
NPMT (Huang et al., 2018) 27.69
NPMT + LM (Huang et al., 2018) 28.07

Our NMT Systems
Transformer 30.58

With Joint Attention Strategies
Layer Aggregation (Iter-C-Agg) 31.13 (+0.55)
Multi-Layer Attention (M-01) 31.07 (+0.49)

Multi-Layer Supervision
MS-1 31.32 (+0.74)
+ AIF 31.29 (−0.03)
MS-2 31.13 (+0.55)
+ AIF 31.52 (+0.39)
MS-3 31.03 (+0.45)
+ AIF 31.64 (+0.61)

Table 4.1: Evaluation of translation performance on the IWSLT English-Vietnamese
(En→Vi) compared with Transformer baseline and other existing models. “MS-1”, “MS-2”
and “MS-3” detonates the multi-level supervision (MS) with the auxiliary decoder connec-
ted to encoding layer 1, 2, and 3, respectively. “+ AIF” detonates training the MS-l model
with (i.e. MS-l+AIF). The values in parentheses indicate the progressive gains between the
MS-l models and the corresponding MS-l+AIF models and the performance gains in the
case of the JASs models.

4.4 Results

This section evaluates the performance of the proposed MS approaches presented in this
chapter on the four translation tasks. The results reported here are based on the transla-
tion performance of the Main-Decoder5. For each language translation task, the translation
performance of MS models is compared to the previously proposed encoder-decoder frame-
works. Furthermore, for the En→Vi, Es→En, and WMT’14 En→De translation tasks, the
translation performance are also compared to the JASs explored in Chapter 3. Table 4.1

5The translation performance of the auxiliary decoders is presented in Section 4.5.3.
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Model BLEU
NPMT (Huang et al., 2018) 29.92
NPMT + LM (Huang et al., 2018) 30.08
Dual Transfer Learning (Wang et al., 2018b) 32.35
Reinforcement Learning (Edunov et al., 2018) 32.85
Variational Attention (Deng et al., 2018) 33.10
Model-level dual learning (Xia et al., 2018) 34.71
Tied Transformer (Xia et al., 2019) 35.10
Layer-wise Coordination (He et al., 2018) 35.07

Our NMT Systems
Transformer 34.53

Multi-Layer Supervision
MS-1 34.87 (+0.34)
+ AIF 35.12 (+0.25)
MS-2 34.96 (+0.43)
+ AIF 35.20 (+0.24)
MS-3 34.83 (+0.30)
+ AIF 35.14 (+0.31)

Table 4.2: Evaluation of translation performance on the IWSLT German-English (De→En)
compared with Transformer baseline and other existing models.

displays the results on the En→Vi translation task. The results for the De→En, Es→En,
and WMT’14 En→De translation tasks are summarized in Tables 4.2 to 4.4, respectively.
In each table, the progressive gains over the baseline model between the MS-l and the cor-
responding MS-l+AIF models are given in parentheses. For the JASs models, only the best
performing models for each language task are considered here. Across the different trans-
lation tasks, the Transformer baseline consistently and significantly outperformed strong
RNN baselines including (Huang et al., 2018; Deng et al., 2018; Cettolo et al., 2014),
demonstrating its superiority. A further performance gain is achieved on the Es→En and
De→En tasks via the parameter sharing approaches proposed by (He et al., 2018; Xia et al.,
2019, 2018). The results achieved by these models show the importance of parameter shar-
ing between the encoder and decoding subnetworks.
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Model BLEU
UEDIN (Cettolo et al., 2014) 37.29
Tied Transformer (Xia et al., 2019) 40.51
Layer-wise Coordination (He et al., 2018) 40.50

Our NMT Systems
Transformer 39.80

With Joint Attention Strategies
Layer Aggregation (Iter-C-Agg) 40.31 (+0.51)
Multi-Layer Attention (M-00) 40.99 (+1.19)

Multi-Layer Supervision
MS-1 40.60 (+0.8)
+ AIF 40.92 (+0.32)
MS-2 40.71 (+0.91)
+ AIF 40.83 (+0.12)
MS-3 40.65 (+0.85)
+ AIF 41.22 (+0.57)

Table 4.3: Evaluation of translation performance on the IWSLT Spanish-English (Es→En)

On the En→Vi tasks, the MS approaches consistently outperforms the standard Trans-
former across all possible configurations. Furthermore, each of the MS configurations out-
performs all previously existing models (Luong and Manning, 2015; Huang et al., 2018).
Among the MS models without the AIF module, the MS-1 achieved the best perform-
ance with a 31.32 BLEU score. Specifically, the MS-1 model achieves about +0.74 BLEU
improvement over the standard Transformer. There is no significant change in translation
quality for the MS-1 with the AIF module between the decoders (i.e. MS-1+AIF). In con-
trast, adding the AIF module further improves the performance of both MS-2 and MS-3
models. For example, the translation performance of MS-3 increases from 31.03 to 31.64,
representing a further gain of +0.61 BLEU while the MS-2 with AIF gives a further +0.39

BLEU. The MS-1 and MS-1+AIF models consistently outperform the JASs models. On the
other hand, training the MS-3 model without the AIF module produced lower performance
than that achieved by the JASs model, M-01 and Iter-C-Agg. Similarly, the MS-2 achieve
translation quality gain identical to that achieved by the best Layer Aggregation model.



CHAPTER 4. MULTI-LEVEL SUPERVISION STRATEGIES 90

Model BLEU
8-Layer RNN (Wu et al., 2016) 26.30
ConvSeq2Seq (Gehring et al., 2017) 26.36
Transformer-Base (Vaswani et al., 2017) 27.31
Transformer+EM Routing (Dou et al., 2019) 28.81
Transformer+Layer Aggreagation (Dou et al., 2018) 28.78

Our NMT Systems
Transformer 28.37

With Joint Attention Strategies (JASs)
Layer Aggregation (Iter-C-Agg) 28.81 (+0.44)
Multi-Layer Attention (M-10) 29.08 (+0.71)

Multi-Layer Supervision
MS-1 29.07 (+0.70)
+ AIF 29.32 (+0.25)
MS-2 29.02 (+0.65)
+ AIF 28.88 (−0.14)
MS-3 28.90 (+0.53)
+ AIF 28.97 (+0.07)
MS-4 29.16 (+0.79)
+ AIF 29.11 (−0.05)
MS-5 28.74 (+0.37)
+ AIF 29.14 (+0.40)

Table 4.4: Evaluation of translation performance on the WMT14 English-German
(En→De).

However, with the AIF module, these models (i.e. MS-2+AIF and MS-3+AIF) outperform
the JASs models producing much higher performance gains of +0.94 BLEU and +1.06

BLEU, respectively, over the Transformer baseline.
For the IWSLT’14 De→En and Es→En tasks, every MS configuration outperforms the

Transformer baseline. Without the AIF module, MS-2 obtained the best performance on
both De→En and Es→En tasks. Specifically, it achieves a gain of +0.43 BLEU and +0.91

BLEU on the De→En and Es→En tasks, respectively. Unlike the En→Vi task, all the
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MS configurations achieved an improvement in performance with the addition of the AIF
module. On the Es→En task, the MS-3+AIF achieved the overall best performance with
the BLEU score of 41.22, about +1.42 improvement over the baseline model. In contrast,
on the De→En task, there is not much difference in the BLEU score between the MS-

l+AIF models with the MS-2+AIF model achieving the best performance. Compared to
the JASs based models, the MS-l and MS-l+AIF models consistently outperform the Layer

Aggregation and Multi-Layer Attention based models.
Table 4.4 summarizes the results on the En→De translation task. Similar to the obser-

vations on the IWSLT datasets, connecting an auxiliary decoder to a lower-level encoding
layer produces a notable performance gain of up to +0.79. A further performance gain
is achieved (in most cases) with the AIF module (i.e. MS-l+AIF models). For example,
the MS-1 yields a +0.70 boost in the BLEU score and achieves a further improvement of
+0.25 BLEU with the AIF module between the decoders. Compared to the performance
of the +0.77 BLEU produced by the M-10, the MS-l and MS-l+AIF achieved performance
gains up to +0.95 BLEU over the Transformer baseline.

In summary, as shown in Tables 4.1 to 4.4, multi-level supervision can further improve
the generalization performance of the sequence generation model. Furthermore, consistent
across all the translation tasks dataset, the performance gain of both the MS-l and MS-

l+AIF models is dependent on the choice of lower-level encoding layers connected to the
auxiliary decoders. This is further explored in Sections 4.5.2 and 4.5.3.

4.5 Analysis

Table 4.5 shows sample translations from Main-Decoder and Aux-Decoder l subnetworks
for MS-l and MS-l+AIF models on the IWSLT translation tasks under consideration. Ideally
at each decoding step t, we expect ymt = yalt = Yt. However, as shown in Table 4.5, in most
cases the the Main-Decoder and Aux-Decoder l generate different target sequences. The
difference in target translation is attributed to each decoding subnetwork generating the
target sentence based on source representations from different encoding layer. For example,
the yal of the MS-1 model is generated based output of the first encoder layer whilst the ym

is from the final encoding layer.
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Source The passion that the person has for her own growth is the most important thing .
Target Cái khát vọng của người phụ nữ có cho sự phát triển của bản thân là thứ quan trọng nhất .
Baseline Sự đam mê mà con người có cho sự tăng trưởng của cô là điều quan trọng nhất .

Multi-Layer Supervision

MS-1
ym Sự đam mê mà con người có cho sự phát triển của mình là điều quan trọng nhất .
yal niềm đam mê mà con người có cho sự phát triển của chính mình là điều quan trọng nhất .

MS-1 + AIF
ym Niềm đam mê mà con người có cho sự phát triển của chính mình là điều quan trọng nhất .
yal niềm đam mê mà người dân có cho sự phát triển của chính mình là điều quan trọng nhất .

MS-2
ym đam mê rằng người đó có sự phát triển của riêng mình là điều quan trọng nhất .
yal Niềm đam mê rằng người đó có cho sự phát triển của chính mình là điều quan trọng nhất .

MS-2 + AIF
ym Sự đam mê mà con người có cho sự phát triển của riêng nó là điều quan trọng nhất .
yal Sự đam mê mà người đó có cho sự phát triển của mình là điều quan trọng nhất .

MS-3
ym Niềm đam mê mà người đó có cho sự phát triển của riêng mình là điều quan trọng nhất .
yal Sự đam mê mà người đó có cho sự phát triển của riêng mình là điều quan trọng nhất .

MS-3 + AIF
ym Niềm đam mê mà con người có cho sự phát triển của chính nó là điều quan trọng nhất .
yal niềm đam mê mà người đó có cho sự phát triển của chính mình là điều quan trọng nhất .

(a)
Source Este es un sol colocado con el origen , porque Japón está al este de China .
Target This is a sun placed with the origin , because Japan lies to the east of China .
Baseline This is a sun sitting with the origin , because Japan is in Eastern China .

Multi-Layer Supervision

MS-1
ym This is a sun placed with the origin , because Japan is in the east of China .
yal This is a sun put in the origin , because Japan is east of China .

MS-1 + AIF
ym This is a sun that was put in the origin , because Japan is east of China .
yal This is a sun put in the origin , because Japan is at the east of China .

MS-2
ym This is a sun sitting with the origin , because Japan is east of China .
yal This is a sun placed with the origin , because Japan is east of China .

MS-2 + AIF
ym This is a sun placed with the origin , because Japan is east of China .
yal This is a sun that was placed with the origin , because Japan is to East China .

MS-3
ym This is a sun sitting with the origin , because Japan is in east China .
yal This is a sun sitting with the origin , because Japan is east of China .

MS-3 + AIF
ym This is a sun placed with the origin , because Japan is east of China .
yal This is a sun put with the origin , because Japan is in the east of China .

(b)
Source wenn jemand sie bitten würde , ihre markenidentität zu beschreiben , ihre markenpersönlichkeit , wie wäre sie ?
Target if somebody asked you to describe your brand identity , your brand personality , what would you be ?
Baseline if someone asked them to describe their brand identity , their brand character , how would it be ?

Multi-Layer Supervision

MS-1
ym if someone asked you to describe your branded identity , your brand personality , how about you ?
yal if someone asked you to describe your brand identity , your brand personality , what would it be like ?

MS-1 + AIF
ym if somebody asked you to describe your branded identity , your brand personality , what would it be like ?
yal if someone asked them to describe their brand identity , their brand personality , what would it be like ?

MS-2
ym if someone asked you to describe your brand identity , your brand personality , what would it be like ?
yal if someone would ask you to describe your brand identity , your brand personality , how would it be ?

MS-2 + AIF
ym if someone asked you to describe your brand identity , your brand personality , what would it be ?
yal if somebody asked you to describe your brand identity , your brand personality , what would it be ?

MS-3
ym if somebody asked you to describe your brand identity , your brand personality , how would it be ?
yal if somebody asked you to describe your brand identity , your brand personality , how would it be ?

MS-3 + AIF
ym if someone asked you to describe your brand identity , your brand personality , what would it be like ?
yal if someone asked them to describe their brand identity , their brand personality , what would it be like ?

(c)

Table 4.5: Sample translations from the baseline, MS-l and MS-l+AIF models on the (a)
En→Vi task,(b) Es→En task and (c) De→En task. ym and yal denote the output translations
from the Main-Decoder and Aux-Decoder l subnetworks, respectively.
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Figure 4.5: Distribution of the number of sentences from the En→Vi test set across the
different sentence length groups.

This section presents analyses performed to better understand the impact of the pro-
posed Encoder-based MS approaches. First, the impact of the source sequence length on
the translation quality is analysed. The subsequent subsections are dedicated to analyses,
including investigating the impact of encoder layer choice for the auxiliary decoder and the
impact of the AIF module between the main and the auxiliary decoders. These analyses are
performed based on the En→Vi translation task.

4.5.1 Length of Source Sentence

Following (Luong et al., 2015b; Zhang et al., 2018), sentences of similar length are grouped,
and the BLEU score of the outputs from the MS model for each group is calculated. The
choice of range for the grouping when evaluating the impact of sentence length is usually
based on the distribution of the sentence lengths (the number of tokens in each source sen-
tence) across the test set. On the En→Vi task, the minimum and maximum sentence lengths
are two tokens and 102 tokens, respectively. However, about 60% of the sentences in the
test set have sequence lengths between 2 and 20 tokens. Besides, the mean sentence length
is 21.08 tokens. Therefore the comparison presented here is based on five-sentence length
groups: 1-10, 11-20, 21-30, 31-40, and greater than 40 (>40). Figure 4.5 shows the distri-
bution of the number of sentences across the different sentence length groups. Each plot in
Figure 4.6 shows the variation in the performance per group for the Transformer baseline,
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Figure 4.6: BLEU scores on the En→Vi task for the Transformer baseline model, the MS-
l models and the MS-l+AIF models with respect to varying source sentence length. Left:
Transformer baseline vs MS-1 vs MS-1+AIF . Middle: Transformer baseline vs MS-2 vs
MS-2+AIF. Right: Transformer baseline vs MS-3 vs MS-3+AIF.

the MS-l and the MS-l+AIF models. As noted by Dou et al. (2018), to achieve higher trans-
lation performance on long sentences, the model should be able to capture effectively the
contextual information and long-distance dependencies between the tokens.

As displayed in Figure 4.6, the multi-level supervision models consistently outperform
the baseline model for longer sentences. There is also a considerable difference in trans-
lation performance among our models across the sentence groups. Unfortunately, similar
to the baseline, the translation quality decreases significantly for sentences with length
greater than 20 for most of the models, with the exception of the MS-2, MS-3+AIF, and
MS-3 models, which have the least difference in BLEU scores for most sentences (of length
>20). Overall, the higher performance of our models can be attributed to the enhancement
the multi-level supervision introduces into the encoder subnetwork. The lower layers are
able to capture both the local and global source contextual information to support the gen-
eration of the target sequence from all the connected decoders. Furthermore, the AIF mod-
ule allows the decoders to share information on the output sequence based on the source
contextual information processed by each subnetwork during the target generation. This
explains the higher performance of MS-l+AIF’s Main-Decoder compared to that of the
MS-l on longer sentences. This is true especially in the case of the MS-2 vs MS-2+AIF and
MS-3 vs MS-3+AIF as shown in Figure 4.6.
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#Aux-Decs Model #Params (M) Train Decode
0 Baseline 12.8 8.58 298.96

1
MS-i 17.0 5.50 310.46
+AIF 17.3 5.42 184.67

2
MS-ij 21.2 3.90 310.46
+AIF 21.7 3.77 141.10

3
MS-ijk 25.4 3.08 310.46
+AIF 26.2 3.04 106.0

(a)

#Aux-Decs Model BLEU
0 Baseline 30.58

1

MS-1 31.32
+AIF 31.29
MS-2 31.13
+AIF 31.52
MS-3 31.03
+AIF 31.64

2

MS-12 31.49
+ AIF 31.47
MS-13 31.30
+ AIF 31.63
MS-23 31.32
+ AIF 31.28

3
MS-123 31.47
+ AIF 31.70

(b)

Table 4.6: Encoder-based MS models with multiple auxiliary decoders on the IWSLT’15
En→Vi translation task. “#Aux-Decs” indicates the number of auxiliary decoders em-
ployed. (a) Complexities of the MS models: “#Params” denotes the number of trainable
model parameters. “Train” and “Decode” respectively denote the training speed (steps per
second) and decoding speed (tokens per second) on GTX Geforce GPU. (b) Impact on
translation quality based on the choice of encoding layers.

4.5.2 Impact of choice of encoding layer and multiple auxiliary de-
coders

Learning a better structural representation of the source sentence can improve translation
quality. As mentioned earlier, the lower encoding layers capture more word-level features
of the source sentence, while top-level layers encode more semantic information needed
by the Main-Decoder to successfully perform the target generation task. As shown in
Tables 4.1 to 4.4, performing multi-level supervision with the auxiliary decoder connected
to any of the lower or intermediate encoding layers can significantly improve the general-
ization performance of the Main-Decoder connected to the last encoder layer. Surprisingly,
the performance gain of both the MS-l and MS-l+AIF models is dependent on the choice
of encoding layer for the auxiliary decoder. In most cases, MS-l performing the auxiliary



CHAPTER 4. MULTI-LEVEL SUPERVISION STRATEGIES 96

decoding based on the source representation from the first few layers provides a better per-
formance enhancement compared to connecting the auxiliary to the upper encoder layers.

MS models with multiple auxiliary decoders were trained on the En→Vi translation
task to test the validity of these observations. The encoder employed is a 4-layer network,
and all possible combinations of encoding layers were explored to train the MS-l and MS-

l+AIF models. The results are summarised in Table 4.6b. The MS model with a single
auxiliary decoder connected encoding layer i is denoted as MS-i. MS-ij is the MS model
with the Aux-Decoder i and Aux-Decoder j connected to encoder layers i and j, respectively.
Similarly MS-ijk, denotes the MS model with the Aux-Decoder i, Aux-Decoder j and Aux-

Decoder k connected to encoder layers i, j and k, respectively.

Model Complexity

The performance gain achieved by the MS models comes at a higher computational com-
plexity. This is mainly due to the new trainable parameters introduced by the auxiliary
decoding subnetworks. Table 4.6a summarizes the training and decoding complexities of
the MS on the En→Vi translation task. As noted by Popel and Bojar (2018), the computa-
tional complexity of any given neural model is affected by quantities such as the number of
model parameters, the optimizer, and other explicit computations that directly modify the
formulations of the network structure. For both MS-l and MS-l+AIF models, training with
multiple decoding subnetworks significantly reduces the training speed as more effort is
required to optimise the parameters of the overall translation network effectively. As men-
tioned in Section 4.2, the target sentence is generated from only the Main-Decoder for the
MS-l models. Accordingly, the decoding speed of these models is identical to the Trans-
former baseline. However, the MS-l+AIF models have lower decoding speeds compared to
their corresponding MS-l models. This can be attributed to the Main-Decoder leveraging
the target representations from the auxiliary decoders. For example, there is about a 65%
decrease in the decoding speed of the MS-ijk model when the AIF module is employed.

Translation Quality

As shown in Table 4.6b, connecting additional decoders (auxiliary decoders) is shown to
further improve the translation performance of the Main-Decoder. For example, MS-12
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achieved a higher BLEU score than the MS-2 and MS-1 models. Similarly, the MS-23 per-
forms better than the MS-2 and MS-3 models. Among the MS models with two or more
auxiliary decoders, both the MS-12 and the MS-123 achieved similar performance (BLEU
score) higher than the MS-13 and MS-23 models. When the AIF module is employed, the
MS-3, MS-13, and MS-123 models achieved the highest performance. The performance
obtained on all the translation tasks motivates the hypothesis that decoding from the lower
or intermediate layers forces these lower-level layers to capture not only the word-level
representations but also to encode the source semantic information needed by the corres-
ponding auxiliary decoder. This is attributed to the inductive bias effect on the encoder sub-
network, which further improves the learning of the deep linguistic information required
by the Main-Decoder to generate the target sentence.

Overall, it is evident from Table 4.6 that it is not necessary to connect auxiliary decoders
to all encoding layers to achieve higher performance. As shown in Table 4.6b, in most
cases there is no significant difference in the translation performance between the MS-i,
MS-ij and MS-ijk models with or without the AIF module. For example, the MS-12 model
with fewer trainable parameters achieved identically similar performance as the MS-123
model. Similarly, there is a marginal difference between the BLEU scores achieved by
the MS-123+AIF, the MS-3+AIF, and the MS-13+AIF models. Despite the increase in
the computational complexity, the AIF module is shown to further improve the translation
performance of the Main-Decoder. Base on the above observations, this chapter suggests
using a single auxiliary decoder. When training without the AIF module, we recommend
limiting the application of the auxiliary decoder to any of the first few lower-level layers.
Generally, with AIF, the best performance gain is achieved when the auxiliary decoder is
connected to one of the top-level encoding layers.

4.5.3 Impact of the performance of the Aux-Decoder l

For both MS-l and MS-l+AIF models, the Aux-Decoder l connected to top-level layers
produced higher translation performance than those decoding from the lower-level layers as
summarized in Table 4.7. For example, on the Es→En and De→En tasks, the performance
of the Aux-Decoder l employed in the MS-3 setting is greater than the auxiliary decoder of
the MS-1 and MS-2 models. Similarly, the Aux-Decoder l of MS-3 +AIF usually produced
higher translation quality than the Aux-Decoder l of MS-1+AIF model. The difference in
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Model

BLEU

En→Vi De→En Es→En

MD AD MD AD MD AD

MS-1 31.32 30.63 34.87 34.05 40.60 39.71

+ AIF 31.29 30.60 35.12 33.93 40.92 39.61

MS-2 31.13 30.91 34.96 34.38 40.71 40.10

+ AIF 31.52 30.89 35.20 34.33 40.83 40.08

MS-3 31.08 30.88 34.83 34.77 40.65 40.26

+ AIF 31.64 31.24 35.14 34.62 41.22 39.73

Table 4.7: Comparison of the performance of the Main-Decoder (denoted as MD) and Aux-
Decoder l (denoted by AD) subnetworks on the En→Vi, De→En, and Es→En translation
tasks.

translation quality of the auxiliary decoders is attributed to the fact that the performance
of any given decoding subnetwork is dependant on the quality of source representation
passed to it from the encoder subnetwork. Each encoding layer extracts different levels of
abstraction of the source sentence. As mentioned in Section 4.1, the top-level layers encode
more refined semantic information, while the lower-level layer generally emphasises on
learning the lexical and morphological source information.

As shown in Section 4.4, Tables 4.6 and 4.7, the performance of the Main-Decoder is
affected by the choice of encoding layer connected to the Aux-Decoder l subnetwork. A
natural question here is: “Is there any relationship between the performance of the Main-

Decoder and Aux-Decoder l subnetworks?”. Under the MS-l models, the performance of
the Main-Decoder is shown to be independent of the translation quality of the Aux-Decoder

l subnetwork. For example, the auxiliary decoder of the MS-3 model performed better than
that of the MS-1 model across the languages under consideration. However, the Main-

Decoder of the MS-1 outperforms that of the MS-3. For the MS-l models, the performance
is affected by the quality of source representation employed by the Main-Decoder to gener-
ate the target translations. As demonstrated in Table 4.8, the encoder subnetworks of MS-1
and MS-2 models produced source representation of higher quality than that of the MS-3
model. Unlike the MS-l model, the Main-Decoder of the MS-l+AIF model leverages the
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target representations from the auxiliary decoders via the AIF module. Accordingly, for
these models, the translation quality of the Main-Decoder subnetwork is affected by the
target generation ability of the Aux-Decoder l subnetworks, as demonstrated in Table 4.7.

4.5.4 Linguistic Probing

The translation performance of the MS-based models is attributed to the enhancement of the
source representation ability of the encoder subnetwork. However, little is known about the
linguistic perspectives or properties enhanced by the Encoder-based MS strategy. Follow-
ing (Conneau et al., 2018; Li et al., 2019), ten classification tasks are conducted to study the
linguistic properties improved by the MS training strategy. These linguistic probing tasks
are divided into three categories:

Surface (Surf): focuses on the surface-level features captured by the sentence rep-
resentation or embedding. This category consists of the Sentence Length (SentLen)
and Word Content (WC) classification tasks. Under the SentLen task, the aim is to
predict the length of the input sentence based on the number of the constituent tokens.
The WC task tests the possibility of recovering information about the original word
in a sentence given its embedding.

Syntactic (Sync): evaluate the ability of the encoder subnetwork on learning or cap-
turing the syntactic information. Three syntactic tasks are under consideration: Tree

Depth (TDep), Bigram Shift (BShift) and Top Constituent (ToCo). The TDep task
tests the capability of the encoder at inferring the hierarchical structure of the input
sentence. For BShift, the sensitivity of the encoder to the legal word order is evalu-
ated. Specifically, the goal is to predict if two consecutive tokens within the sentence
have been inverted or not. Finally, under the ToCo task, the sentence is classified in
terms of the sequence of top constituents immediately below the sentence node.

Semantic (Sem): evaluate the capabilities of the encoder on understanding the de-
notation of a given sentence. The sentence embedding should encapsulate the syn-
tactic structure to achieve higher performance on this task (Conneau et al., 2018).
Here, there are five sub-tasks under consideration. The first semantic probing task
is the Tense classification task, which evaluates the tense of the main clause verb
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Tasks

Models
Transformer MS-1 MS-2 MS-3

Surface
SentLen 87.63 88.65 88.35 87.88

WC 61.7 61.17 60.38 62.50

#AVG 74.67 74.91 74.37 75.19

Syntactic

TDep 34.63 35.67 34.78 34.65

BShift 54.53 56.58 56.20 55.60

ToCo 63.25 65.45 65.44 63.12

#AVG 50.80 52.57 52.14 51.12

Semantic

Tense 78.88 79.22 78.52 78.48

SubjN 74.86 75.03 74.98 74.21

ObjN 75.80 74.79 76.20 75.19

SoMo 51.67 51.47 51.38 51.4

CoIn 58.07 58.31 58.14 57.34

#AVG 67.86 67.77 67.84 67.32

Table 4.8: Performance on the 10 probing tasks to evaluating the linguistic information
(“Surface”, “Syntactic” and “Semantic”) learned by the encoding subnetwork of the Trans-
former baseline and our MS-l models. #AVG denotes the mean across each category

(whether it is in the past or present tense). The next is the Subject Number (SubjN),
which focuses on predicting the number of the subject in the main clause. In contrast,
the Object Number (ObjN) predicts the number of direct object of the main clause.
Under the Coordination Inversion (CoIn), the sentences are divided into two coordin-
ate clauses. In half of the sentences, the order of the clauses is inverted and the task
here is to check if a sentence is modified or intact. Finally is the Semantic odd man

out (SoMo) task, where the sentences are modified by randomly replacing a noun or
verb with another noun or verb. Here, the task is to predict whether a sentence has
been modified or not.
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Experimental Settings: These analyses are performed based on the source representa-
tion from only the encoder subnetworks of the pre-trained NMT models presented in this
chapter. Each probing task is performed using a two-layer MLP classifier on top of the pre-
trained encoder subnetwork. L2 regularisation of λ = 1e−4 is applied across the hidden
layer of classifiers. For each probing task, the input representation to the classifier is the
mean of the sentence representation from the final encoder layer. The resulting classifica-
tion models are evaluated on the dataset6 presented by Conneau et al. (2018). The training,
validation, and test sets for each probing task comprises 100k sentences, 10k sentences,
and 10k sentences, respectively. The probing models are trained for 100 epochs using RM-
SProp optimizer with the learning rate of 1e−3 and min-batch size of 512. The training
early-stops based on the accuracy on the validation set. During training, the parameters
of the pre-trained encoder subnetwork are fixed to quantify the linguistic properties and
information captured by the pre-trained encoder subnetworks of the Transformer baseline
and our Encoder-based MS models. Therefore, only the parameters of the classifier are up-
dated. To better quantify the performance impact on the encoder subnetwork, the analyses
presented are limited to only the MS-l models.

Results: Table 4.8 summarizes the performance of the Transformer baseline and the MS-

l models on the test sets of linguistic probing tasks. As shown, training the NMT model with
an auxiliary decoder connected to any of the lower-level layers affects the source represent-
ation ability of the encoder subnetwork. The MS-1 model achieved the best performance
over the baseline model across 7 out of the 10 probing tasks. On average, there is a mar-
ginal difference between the performance of the MS-l models (MS-1 and MS-2) and the
baseline on semantic tasks. However, the most notable difference between the performance
of MS-l models and the baseline is across the Surface and Syntactic tasks. We argue that
multi-level supervision strategy allows the encoder subnetwork to effectively learn deeper
linguistic information (Semantic and Syntactic) as well as the superficial information to
further improve the translation performance. Among the MS-l models, the source repres-
entations from the MS-1 and MS-2 models showed the overall best performance over the
baseline model across all the linguistic probing tasks. This observation supports our recom-
mendation of limiting the auxiliary decoder connections to only the first few lower-level

6https://github.com/facebookresearch/SentEval/tree/master/data/probing



CHAPTER 4. MULTI-LEVEL SUPERVISION STRATEGIES 102

encoding layers.

4.5.5 Impact of the AIF: Auxiliary Context Dependency

For the MS-l+AIF models, the Main-Decoder leverages representations learned by the con-
nected auxiliary decoders during both the training and inference phases via the AIF module.
This approach as shown in most cases further enhances the translation quality of the Main-

Decoder. We hypothesise that, if the Main-Decoder properly utilises representations from
the auxiliary decoders, then there should be a significant difference between its output dis-
tributions with and without the auxiliary information processed by the AIF module. To this
end, we propose to measure the auxiliary information dependency of the Main-Decoder via
a distribution based distance metric. This will help quantify the impact of information shar-
ing between the decoders. After the model training, an “auxiliary” independent decoder
called ind-decoder is created, based on the network structure of the Main-Decoder. The
ind-decoder shares the same parameters with the Main-Decoder, except that the weights
{W a1

l ,W
a2
l , · · · ,W an

l } within the AIF module in each decoding layer are set to zero. As
shown in Equations (4.2) and (4.3), zeroing out the weights within the AIF module implies
the input to the AIF module is the same as its output. For every inference step, we set the
ind-decoder’s previously generated target word embedding to that of the Main-Decoder. At
decoding step t, two target distributions for generating output token yt, Pm(yt) and Pind(yt)

are produced by the Main-Decoder and ind-decoder, respectively. Based on these two dis-
tributions, the auxiliary information dependency (Dyt) with respect to the target token yt is
measure via KL-divergence, as shown below:

Dyt = DKL(Pm(yt) || Pind(yt)) (4.4)

where Pm(yt) = P(ymt |ym<t, x; θm) denotes the distribution from the Main-Decoder with
the auxiliary information and Pind(yt) = P(yindt |ym<t, x; θind) denotes the distribution from
the ind-decoder (i.e the Main-Decoder without the auxiliary information from the auxiliary
decoder). ym<t denotes the previously generated target token from the Main-Decoder. The



CHAPTER 4. MULTI-LEVEL SUPERVISION STRATEGIES 103

MS-1 + AIF MS-2 + AIF MS-3 + AIF
MS-i + AIF models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
M

ea
n 

Au
xi

lia
ry

 In
fo

rm
at

io
n 

D
ep

en
de

nc
y

(a)

1 2 3 4
Decoder Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
 A

ux
ili

ar
y 

 In
fo

rm
at

io
n 

 D
ep

en
de

nc
y

MS-1 + AIF MS-2 + AIF MS-3 + AIF

(b)

Figure 4.7: Means of AIF Dependency across the layers within the MS-l+AIF models and
with respect to each model’s output generation. (a) Mean Auxiliary Information Depend-
ency per model based on the output distributions. (b) Mean Auxiliary Information De-
pendency per decoding layer for the MS-l+AIF models based on the multi-head attention
distributions.

auxiliary information dependency across the entire output sequence is defined as:

DY =
1

|Y |

|Y |∑
t=1

Dyt (4.5)

As shown in Figure 4.4, the auxiliary features are combined with the Main-Decoder’s
internal representation by the AIF module before the multi-head attention computation on
the output of the encoder subnetwork is performed. Therefore, we can also measure the
auxiliary dependency for each attention head with respect to each layer to further examine
the impact of the information passed from the connected auxiliary decoder. This is done by
computing the divergence between the attention head weight distributions generated by the
Main-Decoder and the ind-decoder for each layer. For the attention head h in the decoding
layer l, the dependency is defined as:

Dl
h = DKL(Amh || Aindh ) (4.6)
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Figure 4.8: Auxiliary Information dependency of the MS-1+AIF (a), MS-2+AIF (b) and
MS-3+AIF (c) models for the En→Vi translation of the English sentence “So I broke the
silence.”. “<EOS >_” is the end token symbol that signals the end of the output generation.

where Amh ∈ RZ×J and Aindh ∈ RZ×J are the weight distributions for the attention head
h generated by the Main-Decoder and the ind-decoder, respectively. Z and J denote the
length of the target and source sentences, respectively. Dl

h is the KL-divergence between



CHAPTER 4. MULTI-LEVEL SUPERVISION STRATEGIES 105

Amh and Aindh . The overall auxiliary dependency Dl for the decoding layer l is:

Dl =
1

Nh

Nh∑
h=1

Dl
h (4.7)

whereNh is the number of attention heads employed by the multi-head attention sublayer to
extract the source-target contextual information in each layer. For simplicity, these analyses
are performed using the greedy search algorithm to generate the target distributions.

The analysis of the impact of the AIF module is performed using 1k sentence pairs
randomly selected from the En→Vi test-set split. The average input sequence length after
the subword tokenization is 26.3. Figure 4.7a shows the mean auxiliary information de-
pendency per the models based on the output distributions. As displayed, there is a fairly
high dependency on the auxiliary information. The MS-1+AIF model has one of the lowest
dependency on the feature information produced by the auxiliary decoder (connected to
the encoding layer 1) meaning that on average, the performance of the Main-Decoder is
not that significantly affected by the auxiliary information. This might explain the close-
ness of the translation quality obtained by the MS-1 and MS-1+AIF models as shown in
Table 4.1. On the other hand, for the MS-2+AIF and MS-3+AIF models, there is a signific-
ant difference in their output distributions with and without the extra information generated
by the auxiliary decoder. Among all the MS-l+AIF models, the MS-3+AIF showed the
highest auxiliary information dependency. This implies that at each decoding step t, the
Main-Decoder highly considers the supplied auxiliary information in the generation of the
output tokens. Figure 4.8 shows an example of auxiliary information dependency measure-
ment for the translation of the English sentence “So I broke the silence.” to Vietnamese for
each MS-l+AIF model. As shown, each model successfully generates the correct transla-
tion of the source sentence. While each model produces a different translation for the input
token “So” (for example, MS-3+AIF generates the sub-string “Thế là” , and MS-1+AIF
generates “Vậy nên” ), they all produce the same translation for remaining source sub-
string. But under each model, the tokens corresponding to the translation of “I broke the
silence.” have different dependency scores. During the generation of each token in the tar-
get sub-string “tôi đã phá vỡ sự im lặng” , the MS-3+AIF has relatively higher dependency
scores compared to the MS-1+AIF and MS-2+AIF models.

On average, there is also a significant difference in multi-head attention weights across
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the layers within the Main-Decoder for each MS-l+AIF model, as shown in Figure 4.7b.
For each model, the dependency on the auxiliary information is very high in the upper
decoding layers. Consistent with Figure 4.7a, the MS-3+AIF model showed the highest
mean auxiliary information dependency across its layers, with the final layer reporting the
significant difference in the attention distribution for each attention head with and without
the auxiliary information.

4.6 Summary

In this chapter, we improved the performance of the encoder subnetwork by attaching de-
coders to top-level layers as well as some of the lower-level encoding layers. Specifically,
the encoding subnetwork is trained to learn the necessary source semantic to improve the
performance of Main-Decoder connected to the final layer and the auxiliary decoders con-
nected to the lower-level layers. This presents a form of inductive bias to further enhance
the source representation ability of the encoder. Evaluations on the state-of-the-art Trans-
former architecture shows that the Encoder-based MS achieves competitive performance
on four language translation tasks. The performance gain is attributed to the impact of
the Encoder-based MS on the source representation ability of the encoder subnetwork.
This conclusion is supported by the linguistic probing analysis performed, which showed
that training the NMT model via the MS encourages the encoder subnetwork to learn the
surface-level and the deeper linguistic features required for the translation task. The im-
provement in the translation quality, via MS, is dependent on the choice of a lower-level
encoding layer providing source representation to the auxiliary decoder. Besides, our eval-
uations on the MS-l models with AIF (i.e. MS-l+AIF) also show that sharing information
between the decoders via the AIF module (in most cases) significantly improves the per-
formance of the Main-Decoder.

The following chapter presents the Dual Contextual module, an extension to the self-
attention unit, to leverage both the global and local contextual representation to further
improve the sentence representational ability of the encoding and decoding subnetworks.
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Chapter 5

Dual Contextual Modelling for Neural
Machine Translation

To effectively learn the semantic representations of the input sentence pairs, encoder-decoder
frameworks such as the Transformer network (Vaswani et al., 2017) employs the self-
attention unit. Recent research (Yang et al., 2018; Xu et al., 2019; Sperber et al., 2018)
suggest the conventional self-attention unit tends to focus more on learning the global con-
textual representations with less emphasis on the local contextual information. However, to
achieve higher performance on the translation task, the decoding subnetwork requires rich
sentence representations encapsulating both the global and local contextual information.
Therefore to further enhance the translation quality, this chapter presents our approach to
extending the self-attention unit to leverage both the local and global contextual informa-
tion.

5.1 Introduction

Leveraging the contextual information has been shown to significantly enhance the transla-
tion performance of both statistical-based and neural-based MT models (Marton and Res-
nik, 2008; He et al., 2008; Gimpel and Smith, 2008; Marvin and Koehn, 2018). Neural
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models exploit token contexts usually via the attention mechanism. Self-Attention Net-
works (SAN) (Lin et al., 2017; Parikh et al., 2016) have been shown to significantly en-
hance the performance of neural models for natural language processing (NLP) tasks in-
cluding document summarization (Al-Sabahi et al., 2018; Wang and Ren, 2018), acoustic
modelling (Sperber et al., 2018), Neural Machine Translation (NMT) (Gehring et al., 2017;
Vaswani et al., 2017; Dou et al., 2019), and reading comprehension (Yu et al., 2018a). The
state-of-the-art NMT model, the Transformer network (Vaswani et al., 2017), is one of the
prominent non-RNN models based entirely on self-attention. One of the salient strengths of
the SAN is the ability to capture the long-range dependencies (global information) between
the tokens within a given sentence by attending to all tokens present irrespective of their
distance (Yang et al., 2019a; Sperber et al., 2018). That is, to generate the contextual repres-
entation for a token, self-attention tends to consider all tokens in the sentence. The implic-
ation of this approach is that there is a higher probability that the self-attention mechanism
may overlook the relations between the neighbouring tokens (Yang et al., 2019a; Sperber
et al., 2018). In summary, SAN tends to concentrate on modelling the global contextual
information with less emphasis on capturing important short-range dependencies between
the tokens.

Recently, there has been a growing number of research works dedicated to improving
the performance of SAN at capturing both the short and long-range dependencies. For ex-
ample, (Sperber et al., 2018) applied a locality restriction approach to limit the attention
scope or span of the attention mechanism to the neighbouring elements to further enhance
performance on the task of acoustic modelling. Similarly, (Yang et al., 2018) employed
a learnable Gaussian bias to model localness by revising the attention weight distribution
to focus more on a dynamically varying window of tokens. In a different direction, other
works (Yang et al., 2019b; Wu et al., 2018) explored convolutional concepts to restricting
the attention span to a fixed size window. Even though these approaches enhance the sen-
tence representation ability of the SAN, Xu et al. (2019) argues that restricting the attention
scope to some extent limits the ability of the self-attention mechanism to learn the global
contextual information effectively.

An interesting question here is how to exploit the local contextual information together

with the global contextual information effectively, without restricting the attention scope of

the self-attention mechanism. To this end, this chapter presents the Dual Contextual (DC)
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Figure 5.1: The proposed DC module employed to leverage the local and global inform-
ation. zf is the context rich representation generated based on the input sentence repres-
entation r. lc is the contextual representation generated by the Local Contextual Unit and
AGG denotes the aggregation unit employed to combine the hidden representations hl and
hg generated by Feature Interaction (FI) units.

module, an extension to the SAN to leveraging both the local and global contextual in-
formation to further enhance the translation quality. The DC module shown in Figure 5.1
comprises two sub-modules, namely Local Contextual Unit and Context Interaction Unit.
The Local Contextual Unit is a CNN-based network employed to capture the local con-
textual information respective to a neighbourhood window determined by the convolution
filter size. The generated sentence representation from the Local Contextual Unit is passed
to the Context Interaction Unit which employs two multi-head attention based units and an
aggregation unit to model the interaction between the global and local contextual inform-
ation. The proposed approach imposes no restrictions on the attention scope, allowing the
self-attention to fully capture the long-range dependencies. The learning of the short-range
dependency information is assigned to the Local Contextual Unit. One of the multi-head
attention units in the Context Interaction Unit is employed to perform the self-attention
computation across the input representation. The DC module is integrated into the Trans-
former network. Evaluations and analysis on nine language translation directions show that
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the proposed DC module can significantly enhance the overall translation quality of the
NMT model. Furthermore, analysis based on ten linguistic probing tasks (Conneau et al.,
2018) performed demonstrates that leveraging both global and local contextual informa-
tion further enhances the model’s ability to effectively capture the surface, syntactic and
semantic features required for the source translation task. The contributions of this chapter
are:

• Proposing the Dual Contextual module to leverage both the local and global contex-
tual information to further improve the translation performance.

• Demonstrating consistent improvement over the strong Transformer baseline across
nine language translation tasks.

• Providing analysis on the performance impact of limiting the application of the DC

module to the layers of either the encoder subnetwork or the decoding subnetwork.

• Providing an ablation study and analysis on the impact of limiting the contextual
modelling via the DC module to only some combinations of encoding layers.

The remainder of the chapter is organised as follows: Section 5.2 briefly introduces
the self-attention mechanism. The proposed Dual Contextual module is presented in Sec-
tion 5.3. Following that, the experiments performed are presented in Section 5.4, and the
results are compared and discussed in Section 5.5. Section 5.6 presents a detailed invest-
igation into the impact of DC module on the translation performance of the Transformer
network. Finally, the conclusion is presented in Section 5.7.
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5.2 Background

Self-Attention Mechanism

An attention mechanism aims at modelling the direct relations between tokens of a given
pair of sequence representations. Formally, the attention mechanism generates the token-
to-token contextual representation c:

c = ATT (Q,K, V )

ATT (Q,K, V ) = α·V
α = softmax (score(Q,K))

(5.1)

where Q ∈ RZ×dmodel , K ∈ RJ×dmodel , and V ∈ RJ×dmodel are the query, key and value
vectors respectively. α is the attention weight distribution computed across the tokens rep-
resented by K. Z and J are the number of tokens in the given sequence representations Q
andK respectively. dmodel denotes dimension of the hidden representation. Finally, score(·)
is a scaled dot product function defined as:

score(Q,K) =
Q×Kᵀ

√
dk

where
√
dk is a scaling factor employed to stabilise the attention computation.

Self-attention, a variant of the attention mechanism, performs the attention computa-
tion across a single sentence representation. Specifically, self-attention models the long-
range dependencies between the tokens within the input sequence. Recent works includ-
ing (Vaswani et al., 2017; Gehring et al., 2017; Shaw et al., 2018; Yu et al., 2018a) have
shown the potential performance gain of self-attention mechanism over RNN at capturing
the long-range contextual information and dependencies between the pairs of tokens within
the given sequence.

For the layer1 l, the self-attention unit computes the sentence representation hl by at-
tending to the hidden representation H l−1 from the preceding layer2 (l− 1). The first stage
of the self-attention unit is the computation of the query (Q), value (V ) and key (K) based

1A layer of either the encoder or decoding subnetwork.
2For l = 0, H l−1 is the output of the embedding layer.
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(a) (b)

Figure 5.2: Illustration of the application of the proposed DC module to (a) the encoder
layer and (b) the decoder layer. H l−1

d and H l
d denote the output representations from the

decoding layers l − 1 and l respectively. Similarly, H l−1
e and H l

e are the input and output
representations of the encoder layer l. HL

e is the output of the final encoding layer passed
to the encoder-decoder MHA sublayer of the decoding layer.

on three separate projections of the H l−1:

Q = H l−1WQ ∈ RJ×dmodel

V = H l−1W V ∈ RJ×dmodel

K = H l−1WK ∈ RJ×dmodel

(5.2)

where {W V ,WQ,WK} ∈ Rdmodel×dmodel are the projection weights employed to gen-
erate the value, query and key vectors respectively. The self-attention unit employed by
the Transformer model is based on the multi-head attention (MHA) mechanism. Specific-
ally, the MHA defines Nh attention heads where each headi generates a separate attention
weight distribution αi. The attention head headi attends to tokens at different positions
based on the αi when generating the contextual representation ci ∈ RJ× dmodel

Nh . The MHA
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is formulated as follow:

hl = MHA (Q,K, V )

MHA (Q,K, V ) = OcWo

Oc = Concat(c1, c2, · · · , cNh)

ci = ATT(Qi, Ki, V i)

(5.3)

where Wo ∈ Rdmodel×dmodel is a trainable weight parameter employed to generate the output
representation hl ∈ RJ×dmodel based on concatenation of the contextual representations
from all the attention heads Oc. {Qi, Ki, V i} ∈ RJ× dmodel

Nh are the query, key and value
vectors with respect to the ith attention head respectively.

5.3 Dual Contextual (DC) Module

Our approach seeks to further improve the translation performance by leveraging both the
local and the global contextual information to enhance the sentence representation ability
of the encoding and decoding subnetworks. To this end, for a given layer (of either encoder
or decoder subnetwork), the self-attention unit is replaced with a DC module as illustrated
in Figure 5.2. As shown in Figure 5.1, the DC module consists of two sub-modules, namely
the Local Contextual Unit and the Context Interaction Unit. Layer normalization and re-
sidual connections are applied across the output of each sub-module to further enhance the
flow of gradient information. For the encoder layer l, the input sentence representation to
the DC module (r) denotes the output of the (l − 1)th encoder layer H l−1

e . Similarly, for the
decoding layer l, r is the output of the preceding layer l − 1 (i.e. H l−1

d ).

Local Context Unit

To capture the local contextual information, this unit employs a single layer one-dimensional
(1-D) convolution network with Gated Linear Unit (GLU) activation (Dauphin et al., 2017).
The 1-D convolution can learn the local dependencies between the source tokens within a
neighbourhood of width determined by the kernel size of the filter (Yu et al., 2018a; Song
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et al., 2018). The local contextual representation lc is generated as:

lc = LayerNorm(r̂ + r)

r̂ = Concat(r̂1, r̂2, · · · , r̂J)

r̂t = g
(
[rt−f/2, · · · , rt+f/2]W r + br

) (5.4)

where W r ∈ Rf ·dmodel×2·dmodel and f are the convolution filter and kernel size respectively.
br is the bias and g(·) is the GLU activation. r̂t is the local contextual representation of
the tth token in the sequence. As shown in the above equation r̂ is generated from the
concatenation of the local contextual representations with respect to all input tokens.

Context Interaction Unit

This is the core of the DC module computing the context rich representation zf based
on the lc from the Local Contextual Unit and r. Given lc and r, the Context Interaction
Unit generates the hidden representations hl and hg via two Feature Interaction (FI) units
as shown in Figure 5.1. Each FI employs multi-head attention mechanism to model the
interactions between the unit’s inputs:

hl = FI(r, lc)

hg = FI(r, r)

FI(A,B) = Concat(M1,M2, · · · ,MNh
)

Mi = ATT(AW q
i , BW

k
i , BW

v
i )

(5.5)

where AW q
i , BW

k
i , BW

v
i ∈ RJ× dmodel

Nh are the projections of the query, key and value vec-
tors with respect to the attention head headi sub-space respectively. As shown in Figure 5.1,
hg is the global contextual representation obtained from a self-attention operation across the
r. The hl is sentence representation generated from the attention operation between r and
the lc (from the Local Contextual Unit). A feature aggregation unit, AGG, is employed to
generate the hidden representation ẑ from the combination of the outputs of the FI units:

ẑ = [hl;hg]Wz + bz (5.6)
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where Wz ∈ R2·dmodel×dmodel and bz ∈ Rdmodel are trainable model parameters. [·; ·] denotes
the concatenation operation. Formally, the Context Interaction Unit computes the zf as:

zf = LayerNorm (ẑ + r) (5.7)

As illustrated in Figure 5.2, the generated zf is passed to the subsequent sublayers for
further processing. In case of the encoder subnetwork, it fed into the position-wise feed-
forward network. For the decoder subnetwork, it is one of the inputs to the encoder-decoder
MHA unit.

5.4 Experimental Setup

5.4.1 Datasets

The effectiveness of the proposed approach is evaluated on WMT’14 English-German
(En→De) and eight IWSLT tasks: Spanish-English (Es↔En), English-Vietnamese (En↔Vi),
English-French (En↔Fr) and Romanian-English (Ro↔En) translation tasks. The datasets
for the Es↔En, En↔Vi and En→De translation tasks were introduced in Section 3.3.

Similar to the Es↔En tasks, the dataset for the Ro↔En tasks is from the Romanian-
English translation track of the IWSLT 2014 evaluation campaign3 (Cettolo et al., 2014).
The training sets for these tasks consist of 182k sentence pairs, the test set is the tst2014
split, and the validation set is created by concatenating the tst2010, tst2011, tst2012 and
dev2010. For the En↔Fr task, the dataset consisting of 207k training sentence pairs is
from the IWSLT 2015 campaign. The test set is from the concatenation of the tst2014 and
tst2015 splits. For each translation task, subword -based shared vocabulary is employed to
encode the sentence pairs (source and target sentences)4. The vocabularies for the En→De,
Es↔En, En↔Vi, Ro↔En and En↔Fr translation tasks consist of 32k, 34k, 21k, 32k and
31k subword tokens respectively.

3https://wit3.fbk.eu/mt.php?release=2014-01
4The original casing for the tokens in each sentence is preserved.
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Task L Nh dmodel dff Pdrop

En→De 6 8 512 2048 0.1

{Vi, Es, Fr, Ro}↔ En 4 4 256 512 0.1

Table 5.1: Model hyperparameters: L, Nh, dmodel, dff and Pdrop respectively denote the
number of layers, number of attention heads, the hidden size, filter of dimension of the
FFN sublayer and the dropout rate.

5.4.2 Model Settings, Training and Inference

The proposed DC module is integrated into Transformer network (Vaswani et al., 2017).
The parameter settings such as the number of encoder and decoder layers (L), number
of attention heads (Nh), FFN filter size (dff ) and hidden size (dmodel) employed for each
translation task are chosen based on the number of sentence-pairs within the training set.
These hyperparameters are summarised in Table 5.1. For the IWSLT translation tasks, the
models are trained with a batch size of 2048 tokens and the number of training iterations
is 200k. The batch size and the number of iterations employed to train the model on the
En→De are 4960 tokens, 160k iterations respectively. Adam (Kingma and Ba, 2014) (with
β1 = 0.9, β2 = 0.98, ε = 109) is used as the optimizer to train the models. Following the
works presented in Chapters 3 and 4, the learning rate scheduling algorithm employed in
this chapter is the single-cosine-cycle with warm-up (So et al., 2019).

During inference, the target translations are generated using the beam search algorithm.
For the En→De task, a beam-size of 4 and a length penalty of 0.6 is employed. Finally,
for the IWSLT tasks, the beam size and length penalty are 6 and 1.1, respectively. The
proposed DC module can be applied to both subnetworks of the Transformer model. Fur-
thermore, it can also be limited to either encoder or decoder subnetwork. For simplicity,
the Transformer model trained with the DC module applied to only the encoder is denoted
as Enc-DC. Dec-DC is the model trained with the DC module employed within only the
decoder subnetwork. Finally, the model trained with the DC module applied to both the
encoder and decoder subnetworks is denoted as Full-DC.

The BLEU (Papineni et al., 2002) metric is employed to evaluate the translation qual-
ity. Specifically, the 4-gram case-sensitive BLEU metric computed with mteval-v13a.pl5

5https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl
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Model #Params (M) Train BLEU

Transformer 61.2 3.65 28.37

With Joint Attention Strategies

Layer Aggregation (Iter-C-Agg) 77.0 3.11 28.81 (+0.44)†
Multi-Layer Attention (M-10) 92.7 2.59 29.08 (+0.71)‡

With Multi-Layer Supervision

MS-l (MS-4) 86.5 2.20 29.16 (+0.79)‡
MS-l+AIF (MS-1+AIF) 88.0 2.14 29.32 (+0.95)‡

With Dual Contextual

Enc-DC 73.9 3.01 29.26 (+0.89)‡
Dec-DC 73.9 3.08 28.86 (+0.49)†
Full-DC 86.5 2.53 29.11 (+0.74)‡

Existing NMT Systems

8-Layer RNN (Wu et al., 2016) - - 26.30

ConvSeq2Seq (Gehring et al., 2017) - - 26.36

Transformer-Base (Vaswani et al., 2017) - - 27.31

Transformer+EM Routing (Dou et al., 2019) - - 28.81

Transformer+Layer Aggregation (Dou et al., 2018) - - 28.78

Transformer+2D-CSANs (Yang et al., 2019b) - - 28.18

Table 5.2: Evaluation of translation performance on the WMT’14 English-German
(En→De). The progressive gain between our implementation of the Transformer baseline
and our approach is shown in parenthesis. #Params denotes the number of trainable para-
meters per model. Train indicates the training speed (steps/second). “†” and “‡” indicate
statistically significant difference with ρ < 0.05 and ρ < 0.01, respectively.

is employed as the evaluation metric for the En→De task. The translation quality for the
En↔Vi is reported based on the case-sensitive BLEU score computed with sacreBLEU6.
Finally, for the other IWSLT translation tasks, case-sensitive BLEU metric evaluated with

6https://github.com/mjpost/sacrebleu
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multi-bleu.pl7 is employed. The statistical significance of the BLEU scores between the
baseline and our DC based models is evaluated with paired bootstrap resampling (Koehn,
2004) using the compare-mt8 (Neubig et al., 2019) library with 1000 resamples.

5.5 Results

This section presents the evaluation performance of the proposed Dual Contextual based
model on the nine translation tasks under consideration. Tables 5.2 and 5.3 show the trans-
lation performance on the WMT’14 En→De9 dataset and the eight IWSLT tasks respect-
ively. Table 5.4 summarises the performance of existing models on the IWSLT En→Vi and
Es→En translation tasks. In addition to comparison to existing NMT systems, the perform-
ance of the DC based models are also compared with the JASs and the Encoder-based MS
models introduced in Chapters 3 and 4 respectively.

On the En→De translation task, the DC unit significantly improves the performance
of the Transformer model by +0.89 BLEU in the case of the Enc-DC model and +0.49

BLEU with respect to the Dec-DC model. The performance of the Dec-DC model is im-
proved by +0.25 BLEU when the DC module is applied to both subnetworks. However,
the performance achieved by the Full-DC model is lower than that achieved by the Enc-
DC model. While the primary goal of the JASs is to enhance the performance of the decoder
subnetwork, the Enc-DC and the MS-l models employ strategies with the specific aim to
improve the sentence representation ability of the encoder subnetwork. As shown, the MS
and Enc-DC models generally achieve higher translation quality than the JASs models.
This highlights the potential performance gain from further improving the effectiveness of
encoding subnetworks. There is no significant performance difference between the Enc-
DC and the MS-l+AIF (MS-1+AIF) models. However, the performance gain achieved by
the former comes at minimal impact on the training complexity. Specifically as shown in
Table 5.2 (column “Train”), there is only about 17.81% decrease in the training speed
when the DC module is applied to the encoder subnetwork of Transformer baseline com-
pared to the 41.37% decrease with respect to the MS-l+AIF (MS-1+AIF) model. A similar
conclusion can be made between the Full-DC and MS-l (MS-4) models. As mentioned in

7https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
8https://github.com/neulab/compare-mt
9The value in parenthesis denotes the progressive gain over the Transformer baseline.
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Task
Models

Transformer Enc-DC Dec-DC Full-DC

Vi→En 29.03 29.42 29.20 29.70

En→Vi 30.58 31.28 31.24 31.10

Es→En 39.80 40.18 39.96 40.15

En→Es 37.90 38.59 38.28 38.10

Fr→En 32.85 33.35 33.15 33.42

En→Fr 33.15 33.94 33.43 33.60

Ro→En 26.66 27.15 26.81 27.14

En→Ro 20.91 21.20 21.22 21.27

Table 5.3: Evaluation of translation performance on the IWSLT tasks ({Vi, Es, Fr, Ro
}↔En)

Section 4.5.2, generally, more effort is required to optimise the MS models effectively. Be-
sides, the translation performance gain obtained via the DC module is higher than all the
existing models, further demonstrating the superiority of the proposed approach.

The languages under consideration for the IWSLT tasks belong to different language
families. The translation quality achieved further demonstrates the effectiveness of our pro-
posed DC module based models at translating between languages of different families, as
shown in Table 5.3. On average, the Enc-DC model consistently achieves higher perform-
ance gain over the Transformer baseline across all the IWSLT translation tasks. Compared
to existing works, the baseline Transformer model consistently outperforms the models
(Luong and Manning, 2015; Huang et al., 2018) with performance improvement of about
+2.51 BLEU score on the En→Vi translation task as summarised in Tables 5.3 and 5.4. The
proposed Enc-DC and Dec-DC models respectively achieved a BLEU score of 31.28 and
31.24. This represents a further performance gain of up to +0.7. On the other hand, a lower
gain in the translation quality of +0.52 BLEU is achieved when the DC module is applied
to both subnetworks (i.e. Full-DC). However, these DC based models have lower gains
in the translation quality compared to the MS models. On the Es→En task, all our mod-
els outperform the Transformer baseline. A marginal performance gain of +0.16 BLEU is
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Model BLEU

Luong & Manning (Luong and Manning, 2015) 23.30

NPMT (Huang et al., 2018) 27.69

NPMT + LM (Huang et al., 2018) 28.07

Joint Attention Strategies

Layer Aggregation (Iter-C-Agg) 31.13 (+0.55)

Multi-Layer Attention (M-01) 31.07 (+0.49)

Multi-Layer Supervision

MS-l (MS-1) 31.32 (+0.74)

MS-l+AIF (MS-3+AIF) 31.64 (+1.06)

(a)

Model BLEU

UEDIN (Cettolo et al., 2014) 37.29

Tied Transformer (Xia et al., 2019) 40.51

Layer-wise Coordination (He et al., 2018) 40.50

Joint Attention Strategies

Layer Aggregation (Iter-C-Agg) 40.31 (+0.51)

Multi-Layer Attention (M-00) 40.99 (+1.19)

Multi-Layer Supervision

MS-l (MS-2) 40.71 (+0.91)

MS-l+AIF (MS-3+AIF) 41.22 (+1.42)

(b)

Table 5.4: Existing Results on the IWSLT (a) En→Vi and (b) Es→En translation tasks.

achieved when the DC module is applied to only the decoder subnetwork (i.e. Dec-DC).
On this dataset, the best performance is achieved by the Enc-DC and Full-DC models en-
hancing the translation quality by +0.38 BLEU and +0.35 BLEU, respectively. However,
the translation performance of the Enc-DC, Dec-DC and Full-DC models is lower than that
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achieved by Xia et al. (2019), He et al. (2018) and the JASs (Iter-C-Agg and M-ij models)
and the MS (MS-l and MS-l+AIF models), outperforming only the (Cettolo et al., 2014).

Overall, the performance achieved across all the translation tasks indicate the benefits of
leveraging both the local and global contextual information. Across the different datasets,
the Enc-DC model consistently outperforms the Dec-DC. This can be attributed to the
attention bias or mask employed by self-attention units within the decoding layers. During
the decoding step t, the attention bias limits the decoder’s self-attention to only consider
the target sub-sequence (i.e. y<t) generated so far. This implies the decoder layer is able to
exploit the local information within the neighbourhood of target tokens [y1, y2, · · · , yt−1].
Therefore unlike the encoder subnetwork, the CNN unit generating lc has a limited impact
on the performance of the decoding layers and the decoder subnetwork. This is consistent
with the observations made by Zhang et al. (2018). Furthermore, applying the DC module
to both subnetworks (Full-DC) in most cases only improves the performance from the
Dec-DC model’s perspective. Besides, the Full-DC achieved higher performance gain over
the Enc-DC model only on the Vi→En. However, there is no significant difference in the
performance of the Full-DC and Enc-DC models on translation tasks including Es→En,
Fr→En, and Ro→En.

As displayed in Table 5.2, the DC module introduces new parameters mainly due to the
additional attention computation and the Local Contextual Unit across the different layers.
The Full-DC leveraging the DC module across the encoder and decoder subnetworks results
in about 25M new parameters compared to the 12.7M by the Dec-DC and Enc-DC models.
As mentioned in Section 3.5.2, properties such as the optimizer employed, the number of
trainable network parameters and other computations that directly alter the formulation of
the network affects the overall computational speed of any given neural network model.
Accordingly, the Full-DC, Dec-DC, and Enc-DC models have lower training speeds com-
pared to the baseline model. Compared to Full-DC, the Dec-DC and Enc-DC models are
shown to have the least decrease in the training speed. Based on the translation perform-
ance across the different language pairs and the overall impact on the computation speed,
this work recommends limiting the explicit modelling of the local contextual information
to only the encoding subnetwork.
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5.6 Analysis

This section presents analyses performed to understand the performance improvement in-
troduced by the DC module. These analyses are performed on the WMT’14 En→De data-
set. As shown in Section 5.5, the best performance is obtained when the DC module is ap-
plied across the encoder subnetwork hence the analyses presented in Sections 5.6.1 to 5.6.3
are performed only on the Enc-DC model.

5.6.1 Linguistic Evaluations

As shown in Tables 5.2 and 5.3, the Enc-DC model significantly improves the performance
of the Transformer baseline model across the different translation tasks under consider-
ation. Aside from model properties, including model size, the optimizer employed, the
translation performance of an NMT model is also affected by the linguistic and syntactic
properties or structures of the language pairs under consideration. Therefore investigat-
ing the linguistic perspectives or properties improved by the proposed module will help
quantify the performance gain via the DC module. Following (Conneau et al., 2018; Li
et al., 2019), ten probing analyses are conducted to study the linguistic properties improved
by the DC module presented in this chapter. The ten classification tasks are divided into
three categories: Surface (Surf), Syntactic (Sync) and Semantic (Sem). For the Surf tasks,
the emphasis is on evaluating the surface-level information captured by the sentence rep-
resentation. On the other hand, the Sync tasks investigate the syntactic properties captured
by the sentence representation. Finally, the ability of the encoder subnetwork to understand
the denotation of a given sentence is evaluated under the Sem tasks. Details about these
probing tasks are presented in Section 4.5.4.

The above tasks are performed based on the source representation generated by the en-
coding subnetwork. Specifically, the decoding subnetwork of the pre-trained NMT model
is replaced with a two-layer MLP classifier. For each classification task, the input repres-
entation to the classifier is the mean of the output representation from the final encoding
layer. L2 regularisation of λ = 1e−4 is applied to the hidden layer of the classifier. The res-
ulting models are trained and evaluated on the dataset10 presented by Conneau et al. (2018).
The training corpus for each task comprises 100k sentences, 10k sentences for validation

10https://github.com/facebookresearch/SentEval/tree/master/data/probing
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Models

Tasks Transformer Enc-DC

Surface SentLen 93.38 93.45
WC 71.50 75.95

#Avg 82.44 84.70

Syntactic
TDep 43.93 44.29
BShift 69.49 74.11
ToCo 74.56 75.44
#Avg 62.66 64.61

Semantic

Tense 88.40 88.65
SubjN 85.01 85.33
ObjN 85.9 85.13
SoMo 52.67 52.49
CoIn 62.30 62.56
#Avg 74.86 74.83

Table 5.5: Classification performance on the 10 probing tasks to evaluating the linguistic
information (“Surface”, “Syntactic” and “Semantic”) learned by the encoding subnetwork
of the Transformer baseline and our proposed model. “#Avg” indicates the average score
across the sub-tasks under each category.

and 10k sentences for testing. The classifiers are trained for 100 epochs with RMProp
optimizer using the learning rate of 2.5e−4 and mini-batch size of 64. Early stopping cri-
terion is applied during training based on the accuracy score on the validation set. During
training, only the parameters of the classifier are updated. The parameters of the encoding
subnetwork are fixed to quantify the linguistic properties and information captured by the
pre-trained encoder subnetwork of the Transformer baseline and our Enc-DC model.

Results The results of the probing tasks are summarised in Table 5.5. Despite the DC

based encoding subnetwork of the Enc-DC model achieving the best performance on three
of the five Semantic tasks, on average, it achieved almost identical performance as the
baseline. The actual performance gain introduced by the DC module can be seen across the
Surface and Syntactic tasks. Across these tasks, the Enc-DC model significantly outper-
formed the Transformer baseline. The tasks such as WC and CoIn require global contextual
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Figure 5.3: Impact of f (the convolution filter size employed by the Local Contextual
Unit unit) on the performance of the Enc-DC model.

information while local contextual information is generally required to achieve higher per-
formance on tasks, including ToCo, BShift, and SentLen. Overall, the performance on the
Syntactic, Surface, and Semantic probing tasks demonstrates the effectiveness of the DC

module on learning both the global and local contextual information required to enhance
the translation performance. The DC module allows the encoder subnetwork to learn the
surface and syntactic information of the source sentence with minimal impact on its ability
to encode the deeper semantic properties.

5.6.2 Effect of CNN Kernel size

To analyse the impact of the CNN kernel size (employed by the Local Contextual Unit)
on the translation quality, different Enc-DC models are trained with the kernel size f ∈
[2, 3, 4, 5, 6, 7, 8]. Figure 5.3 summarises the translation performance of each Enc-DC model.
As shown, the Enc-DC models achieved almost identical BLEU score when trained with the
filter size 5 ≤ f ≤ 7. This is also true for the values of f ∈ [3, 4]. The worse performance
is obtained with f = 8, producing a marginal performance gain of about +0.10 BLEU over
the Transformer baseline. However, the best performance is achieved with f ∈ [2, 3, 4].
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Overall, the performance of the Enc-DC model generally decreases as the filter size in-
creases. One possible reason is that for larger filter sizes, there is a higher possibility of
information overlap between lc and hg. As a result, the FI unit generating the hl (based on
lc and H l−1

e ) has limited impact on the overall performance of the DC module at learning
the contextual sentence representation. This is because the generation of the hg and hl will
be more useful and meaningful if each FI unit captures diverse information.

The above hypothesis is investigated by analysing the relationship between the atten-
tion weight distributions αg and αl associated with the generation of the hidden contextual
representations hg and hl respectively. As mentioned in Section 5.3, each FI unit is a multi-
head attention unit employing Nh attention heads. For simplicity, the attention weights for
each encoding layer is represented by the attention head with the maximum weight distri-
bution among all the Nh heads employed by the FI units:

αg = max
(
[α1
g, α

2
g, · · · , αNh

g ]
)

αl = max
(

[α1
l , α

2
l , · · · , αNh

l ]
)

where αig and αil respectively are the weight distribution employed by the ith attention head.
To this end, Jensen-Shannon divergence JS(P || Q), is employed as a distance metric
to measure how far the αg and αl are from each other. The distance is measured using
JS(P || Q) because it is symmetric and bounded. Given the multi-dimensional attention
weight distributions αl and αg, the divergence with respect to the encoding layer l, dvl is
computed as:

dvl = JS(αg || αl)

JS(αg || αl) =
1

2
×DKL(αg || m) +

1

2
×DKL(αl || m)

m =
1

2
× (αg + αl)

where DKL(P || Q) is the Kullback-Leibler divergence formulated as:

DKL(P || Q) =
∑
x

P (x) logP (x)−
∑
x

P (x) logQ(x)

The overall divergence (Ed) for the encoding subnetwork is computed as the average of the
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Figure 5.4: Variation of the divergence between attention weights αg and αl for the differ-
ence filter size f ∈ [2, 3, 4, 5, 6, 7, 8]. (a) Divergence across each encoding layer. (b) Mean
divergence (Ed) across all the layers within the encoding subnetwork with respect to the
difference filter sizes.

divergence dvl computed for each encoding layer:

Ed =
1

L

L∑
l=1

dvl

Larger values of Ed indicate that on average across the multiple encoding layers, the two
FI units (of the DC module) capture more diverse information using the attention weights
αl and αg.

Figure 5.4 illustrates the divergence between αl and αg for the different filter kernel
sizes. As displayed in Figure 5.4a, variation in the divergence across the encoding layers
is dependent on the value of f employed to train the Enc-DC model. In all cases, the
divergence is larger across the top-4 encoding layers. Interestingly, the dvl is zero or closer
to zero for values of f ≥ 5 across the second encoding layer compared to that of the
models trained with f ∈ [2, 3, 4]. This implies that for these models with f ≥ 5, the two
FI units capture almost identical contextual information. Overall, the models trained with
f ∈ [2, 3, 4] have the lowest divergence across the top three layers among all the values
of f under consideration. In contrast, the models with f ≥ 5 have the lowest divergence
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# Layers BLEU ∆

1 [1-6] 29.26 -

2 [1-1] 29.04 −0.22

3 [1-2] 28.98 −0.28

4 [1-3] 28.93 −0.33

5 [1-4] 29.04 −0.22

6 [1-5] 28.94 −0.32

7 [5-6] 28.47 −0.79

8 [4-6] 28.57 −0.69

9 [3-6] 28.78 −0.48

Table 5.6: Translation performance of different combination of encoder layers of the Enc-
DC model. [i-j] denotes limiting the application of the DC module to the encoding subnet-
work from layer i to layer j. ∆ indicates the difference in performance between the [1-6]
and the [i-j] encoder layer combinations.

between the FI units across the first three layers. Figure 5.4b demonstrates that, on average,
the divergence across the entire encoding subnetwork is higher for smaller values of f .
Specifically, the Ed for the models trained with f ∈ [2, 3, 4] is greater than that of f ≥ 5.
This implies that each FI unit within the encoding layers for the models with f ∈ [2, 3, 4]

can capture more diverse contextual information when generating hg and hl. However, there
is less diversity with f ≥ 5. Overall, the variation of the divergence as shown in Figure 5.4
and the corresponding translation quality displayed in Figure 5.3 confirm our hypothesis
that smaller values of f allow the DC module to effectively capture more diverse contextual
information to further improve the performance of the translation model.

5.6.3 Layers to consider

Recent works (Peters et al., 2018; Raganato et al., 2018; Belinkov et al., 2017) have re-
vealed that each encoder layer captures different levels of abstraction of the source se-
quence. Therefore, these layers tend to have different requirements for the local contextual
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and short-range dependency information. Based on these findings, Yang et al. (2018), Xu
et al. (2019) and Shen et al. (2018) argue limiting the localness modelling to the first few
encoding layers to allow the top-level layers to focus more on capturing the global con-
textual information. In contrast, this work argues that higher performance can be achieved
when the local and global information modelling is applied across all encoder layers. To in-
vestigate this, an ablation study is performed whereby the DC module is applied to different
combinations of the encoding layers.

Table 5.6 summarises the translation quality for the different layers combinations. As
shown, all combination of the encoder layers consistently outperforms the Transformer
baseline model further confirming the requirement of learning both the local and global
contextual source information. For example, training the model with DC module across
only the first two encoder layers (Row 3) produced a performance gain of about +0.61

BLEU over the baseline model. Among the different combinations of layers, limiting the
DC module to only lower-level layers (Rows 2-6) achieved higher translation quality com-
pared to when employed across only the top-level layers (Rows 7, 8 and 9). The worst
performance (28.47 BLEU) is obtained when the DC module is incorporated into only the
top-level encoding layers [5-6] (Row 7). Besides, the different combinations across the
lower-level layers (Rows 2-6) produced fairly identical results with [1-1] (Row 2) and [1-
4] (Row 5) achieving the best performance. This is consistent with the observations made
by Yang et al. (2018), Shen et al. (2018) and Xu et al. (2019). However, our NMT model
achieved the best translation performance when the DC module is applied to all the encod-
ing layers.

5.6.4 Sentence Length

As mentioned in Sections 3.5.1 and 4.5.1, the performance of an NMT model is affected
by the number of tokens within the source sentence. The encoder-decoder model should
be able to effectively capture both the long-distance and short-range dependencies between
the tokens to achieve higher performance on source sentences of any arbitrary length (Dou
et al., 2018). Following (Luong et al., 2015b), sentences of similar length are grouped, and
the translation quality of the outputs from the models for each group is calculated. The
comparison presented here is based on the following sentence length groups: <10, 10-20,
20-30, 30-40, 40-50, and >50. For each length group, the translation quality is evaluated
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Figure 5.5: BLEU scores on the En→De task for the Transformer baseline, the DC module
based models with respect to varying source sentence length.

for outputs from the models under consideration.
Figure 5.5 summarises the impact of the length of the source sentence. As shown,

both the Transformer baseline and our DC based models (Enc-DC, Dec-DC and Full-DC)
display identical variation in the translation quality across the different source sentence
lengths. This is true especially for sentences with length greater than or equal to 20 sub-
word tokens. However, our DC based models consistently outperform the baseline model
across the different sentence groups with greater than 10 subword tokens. The performance
gain achieved by our models is attributed to the addition of the DC module which allows
both the encoder (in the case of Enc-DC), the decoder (in the case of Dec-DC) or both (in
the case of Full-DC) to effectively exploit both the local and global contextual informa-
tion required to improve the generation of the target translation. For shorter sentences with
fewer than ten subword tokens, the global contextual model of the self-attention module
is shown to be effective enough for the target generation. In contrast, for longer source
sentences, further improvement in the translation quality is achieved when both the global
and local contextual modelling are employed as shown across the sentence groups 10-20,
20-30, 30-40, 40-50 and >50. Overall, the best performance across the sentence groups
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(greater than 10 tokens) is achieved when the DC module is applied to only the encoding
subnetwork (i.e. Enc-DC). This supports our recommendation to limit the global and local
modelling to only the encoder subnetwork.

5.7 Summary

This chapter proposed the Dual Contextual (DC) module to leverage the local and global
contextual information to improve the translation performance of the Transformer model.
Three possible applications of the DC module, namely, Enc-DC, Dec-DC and Full-DC were
presented. The analyses performed indicate that:

• exploiting both the global and local contextual information is beneficial to the overall
performance of the translation model.

• the best performance is achieved when the DC module is applied to only the encoding
layers (i.e. Enc-DC). The decoding subnetwork employing the DC module (in the
case of Dec-DC and Full-DC) produces lower performance gain over the baseline
model.

• in contrast to the findings of recent works (Yang et al., 2018; Xu et al., 2019; Shen
et al., 2018), applying the local and global contextual modelling across all the encod-
ing layers significantly improves the translation performance compared to limiting
its application to only the first few lower-level encoding layers (e.g. from layer 1 to
3).
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Chapter 6

Conclusion and Future Work

This chapter summarizes the experimental results, analyses and the contributions of the
thesis. Finally, the potential avenues for future work are presented.

6.1 Conclusion

This thesis has aimed to study and design deep neural architectures for performing se-
quence to sequence learning more effectively. Specifically, three approaches to improving
the translation performance of deep NMT models were presented. The higher performance
of our proposed models is attributed to the enhancement of sentence representation and
generation ability of the encoder-decoder framework for the NMT task. The contributions
of the thesis are in two main folds: (1) To ensure minimal loss of source information during
the target translation, two main joint attention strategies are presented in Chapter 3 to allow
the decoder access to source information captured by different encoding layers. (2) Enhan-
cing the sentence representational ability of the encoder and decoder subnetworks using
strategies including (a) exploiting the strengths of multitask learning and auxiliary training
approaches to design an encoder-based multi-level supervision framework in Chapter 4;
(b) improving the performance of the self-attention mechanism at learning the local con-
textual information without limiting it’s ability to model the global contextual information
and dependencies in Chapter 5.

Among the three different approaches presented, this work recommends employing
the Dual Contextual (DC) module for the language translation. This recommendation is
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based on the overall impact on the computation speed and the translation performance
achieved across the different language pairs under consideration. For example, as shown in
Section 5.5, there is no significant difference in translation performance between the Enc-
DC and MS-l on the WMT’14 English-German (En→De) task. However, the performance
gain of the later comes at higher training computational cost compared to the former.

Joint Attention Strategies (JASs)

Chapter 3 presents our answer to the research question related to ensuring minimal loss of
source information when mapping from the source sequence to the target sequence. Spe-
cifically, the chapter presents two main joint attention computation approaches to exploiting
source representations from multiple encoding layers. These strategies are the Layer Ag-

gregation and Multi-Layer Attention approaches. The Layer Aggregation strategies com-
pute a joint source representation as a combination of sentence representations from mul-
tiple encoding layers. The resulting source representation is passed to the decoder subnet-
work during the target generation. Each of the four Layer Aggregation strategies presented
provides the decoder subnetwork indirect access to source information from different lay-
ers within the encoding subnetwork. Under the Multi-Layer Attention, the decoder performs
attention computations directly across the outputs from multiple encoding layers. Unlike
the Layer Aggregation strategies, this approach provides the decoder with direct access
to the representations generated by multiple encoder layers. A salient goal of these JASs
is to enhance the flow of gradient information between the encoder-decoder subnetworks.
Consequently, this significantly alters how the long and short-range contextual informa-
tion is learned by the self-attention unit employed within each encoding layer, as shown in
Section 3.5.3. Overall, the experimental results on three translation tasks demonstrate the
improvement over models exploiting only the source representation from the final encoder
layer. However, the translation performance of the models is shown to be dependent on the
strategy employed and the number of encoder layers exposed to the decoder subnetwork.

Multi-level Supervision Strategies

The target generation ability of the decoder subnetwork is dependent on the performance of
the encoder at learning the source semantic representation required for the translation task.
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Our attempt to answer the question “To improve the source sentence representation ability
of the encoder subnetwork, what motivation or inspiration can be drawn from multi-task
learning (MTL) approaches to neural machine translation and sequence labelling tasks such
as Named Entity Recognition?” is presented in Chapter 4. Multiple decoders are connec-
ted to different layers of the encoder subnetwork. Unlike conventional MTL approaches to
NMT (Niehues and Cho, 2017; Baniata et al., 2018; Luong et al., 2015a; Malaviya et al.,
2017), all decoders are trained end-to-end on the same target generation task. This learn-
ing strategy is referred to as Encoder-based Multi-level Supervision. The translation results
demonstrate that training the network with decoders connected to the lower-level layers
can improve the translation performance of the Main-Decoder connected to the final en-
coder layer. Similar to the JASs models, Encoder-based Multi-level Supervision models
(MS-l and MS-l+AIF) also leverage source representations from multiple encoder layers.
However, the MS-l and MS-l+AIF models consistently outperform the Layer Aggregation

and Multi-Layer Attention approaches on all the translation tasks under consideration. The
higher performance improvement of the MS-l and MS-l+AIF models is attributed to the
Encoder-based Multi-level Supervision benefiting from the strength of MTL. The lower-
level layers are shared across multiple decoders connected to the top-level encoder layers.
Therefore via inductive bias, these lower-level encoder layers are encouraged to capture
the necessary source information required by all connected decoders. Further performance
improvement is achieved from the direct information passing between the decoders via the
Auxiliary Information Fusion (AIF) in the case of the MS-l+AIF models. In-depth analyses
performed showed that the translation performance gain of the MS-l and MS-l+AIF mod-
els is dependent on the choice of lower-level encoder layers connected auxiliary decoders.
Besides, it is evident from Table 4.6 that it is not necessary to connect auxiliary decoders
to all encoding layers to achieve higher performance. A single auxiliary decoder is recom-
mended. In the case of the MS-l model, limiting the application of the auxiliary decoder
to any of the first few lower-level layers produced a better performance than when con-
nected to the top-level layers. In contrast, the MS-l+AIF model generally performs better
with the auxiliary decoder connected to the top-level encoding layers. Furthermore, unlike
the MS-l model, the Main-Decoder of the MS-l+AIF model leverages the target represent-
ations from the auxiliary decoders via the AIF unit. Consequently, for these models, the
translation quality of the Main-Decoder subnetwork of the MS-l+AIF model is affected by
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the target generation ability of the Aux-Decoder l subnetworks.

Dual Contextual Modelling

During the target generation, rich contextual information is required by the translation
model to effectively perform tasks such as the phrase and word sense disambiguation (Wu
et al., 2014; Marvin and Koehn, 2018). Chapter 5 presents our solution related to the re-
search question of leveraging both the global and local contextual information more ef-
fectively to enhance the quality translation outputs. Specifically, the chapter proposes the
Dual Contextual (DC) module, an extension to the self-attention unit to exploiting both the
local and global contextual information without restricting the attention scope. The chapter
explored three possible applications of the proposed DC module. These are Enc-DC model
(only the encoding subnetwork employs the DC module), Dec-DC model (the DC mod-
ule is employed within the layers of only the decoding subnetwork), and Full-DC model
(employs the DC module across the multiple layers within the encoding and decoding
subnetworks). The linguistic probing analysis presented in Section 5.6.1 suggests that the
DC module allows the encoder subnetwork to learn the surface and syntactic features of
the source sentence with minimal impact on its ability to effectively encode the deeper
semantic linguistic information. By leveraging both the local and global contextual inform-
ation, our DC based models consistently achieved significant gain in the translation quality
across nine translation tasks. Furthermore, the results across these translation tasks suggest
the explicit modelling of the local and global information via the DC module is beneficial
when applied to only the encoding subnetwork (i.e. Enc-DC model). Within the decoder
subnetwork, the performance of the Local Contextual Unit of the DC module is limited by
the attention bias mask employed.

6.2 Future Work

The works presented in this thesis all focus exclusively on improving the translation per-
formance of NMT systems. However, other NLP tasks, including sequence tagging, doc-
ument summarization, and paraphrase generation, could also benefit from the approaches
proposed in the previous chapters. The proposed models can be directly employed to learn
the document summarization and paraphrase generation tasks with little to no modification
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to the network architecture. The sequence tagging task such as Named Entity Recognition
(NER) will significantly benefit from the local and global contextual information learn-
ing ability of the DC module. However, unlike the document summarization task, the de-
coder subnetwork of the Enc-DC can be replaced with a softmax classifier or a Conditional
Random Fields (CRF) classifier (Lafferty et al., 2001) to effectively models the tagging
decisions.

Despite the high performance achieved by our proposed models, the main challenges
that remain and future work related to the overall aim of this thesis are:

• Model Compression: The main focus of this thesis has been building effective neural
models and improving performance in terms of translation quality. In most cases, the
proposed approach results in a significant increase in the number of model para-
meters, further increasing the computational complexity of the resulting model. For
example, the Multi-Layer Attention strategies as shown in Table 3.2 introduce up to
31M new parameters due to the additional attention computations. This is shown to
affect the training speed as more effort is required to efficiently optimise the extra
parameters. Similarly unlike the MS-l models, the MS-l+AIF uses all decoders dur-
ing both the training and testing phases resulting in a significant decrease in both
the decoding and training speeds. During deployment, the inference time is a crit-
ical component of any machine learning model to consider. The future direction re-
lated to the above problems could focus on reducing the model size and the overall
computational complexities by building light-weight models via model compression
(with minimal loss in terms of the overall translation performance). This will involve
compressing the network parameters to fit the computational resource constraints of
portable devices such as mobile phones and smartwatches using techniques includ-
ing network pruning (Han et al., 2016, 2015), knowledge distillation (Kim and Rush,
2016; Tan et al., 2018) and Low-rank factorization (Denil et al., 2013; Lu et al.,
2017). The JASs models presented are good candidates for network pruning. The
results in Section 3.5.4 demonstrates that for C-Agg, S-Agg, Iter-S-Agg, M-00, M-
01, and M-11 models, the outputs from some of the encoder layers are shown to be
redundant during inference and thus can be removed from the joint attention com-
putations without significantly reducing the translation quality. For example, in the
case of the C-Agg and S-Agg models, only the first and final layers of the encoder
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subnetwork contribute significantly to the overall translation performance compared
to the intermediate layers.

• Leveraging Linguistic Information: As mentioned in Section 3.4, the linguistic
properties and structures of the language pairs under consideration have a signific-
ant impact on the overall translation performance of the neural models. An effective
model should be able to implicitly learn the necessary linguistic patterns of syntax,
morphology, and semantics. However, NMT systems are generally limited by their
capacity to fully capture more complicated patterns and structures of the source and
target languages resulting in lower performance compared to human translators. An
interesting thread of future work could investigate strategies to leverage or inject ad-
ditional linguistic information to further improve the translation performance of the
proposed models especially, on morphologically complex languages such as Czech
and Arabic. The linguistic information can be directly passed as additional input fea-
tures to the NMT model. Alternatively, the learning task can be formulated as an
MTL problem where the goal is to learn the machine translation task and linguistic
features (such as POS tags, named entity tags and dependency labels) simultaneously.
For example, it is possible to convert any of the models proposed in Chapters 3 and 5
to an MTL network by connecting to the encoder subnetwork, an additional subnet-
work dedicated to learning source linguistic information. Besides, the Gated Task

Interaction (GTI) framework proposed by Ampomah et al. (2019a) can be employed
to capture the mutual dependencies between learning tasks to improve the perform-
ance of the resulting MTL model. In the case of the MS-l and MS-l+AIF models, one
of the auxiliary decoders can be re-purposed to learn the linguistic information of the
source sequence.
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