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1   |   INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death 
in industrialized nations, costing ~ $863 billion in medical 

care (Fox et al., 2016; Lovren et al., 2015). Upregulation of 
endothelin-1 (ET-1) is the hallmark of various pathologies 
including CVD. ET-1 is a potent vasoconstricting peptide 
that is released by the endothelium and plays a critical role 
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Abstract
Upregulation of endothelin-1 (ET-1) is the hallmark of various cardiovascular 
diseases (CVD). The purpose of the present study was to assess the ET-1 re-
sponse to an acute bout of whole-body vibration (WBV) in humans and to de-
termine the role of adiposity. Twenty-two participants volunteered for the study; 
they were grouped into overweight/obese [(OW/OB): n = 11, Age: 33 ± 4 years, 
Body mass index (BMI): 35 ± 10 kg/m2] or normal weight [(NW): n = 11, Age: 
28 ± 7 years, BMI: 21 ± 2 kg/m2]. Participants engaged in 10 cycles of WBV exer-
cise (1 cycle = 1 min WBV followed by 30 s of rest). Blood samples were analyzed 
for ET-1 pre-WBV (PRE), immediately post (POST), 1 h (1H), 3 h (3H), and 24 h 
(24H) post-WBV. There was a significant time main effect of WBV on circulating 
ET-1 (F = 12.5, p < 0.001); however, the ET-1 response was similar (F = 0.180, 
p = 0.677) between groups. Specifically, compared to PRE, a significant increase 
in ET-1 was observed at 1H (p = 0.017) and 3H (p = 0.025). In addition, concen-
trations of ET-1 were significantly lower at 24H compared to PRE (p = 0.019), 1H 
(p < 0.001), and 3H (p < 0.001). Maximal oxygen uptake during WBV was similar 
between the two groups. Acute WBV resulted in an initial rise in ET-1, followed 
by a significantly lower ET-1 at 24H in both groups. Findings support the utility of 
routine WBV exercise to elicit a decrease in ET-1 and improve CVD risk, similar 
to what has been reported with traditional modes of exercise.
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in the regulation of vascular tone. In addition, increased 
concentrations of ET-1 contributes to endothelial dysfunc-
tion, hypertension, (Cardillo et al., 2000; Weil et al., 2011; 
Williams et al., 2002), a decline in cardiopulmonary func-
tion, and an overall increased risk of CVD; particularly in 
obese individuals (Serés et al., 2003). In fact, ET-1 concen-
trations are elevated in individuals with greater adiposity 
(Ferri et al., 1995). Accordingly, strategies that improve 
CVD risk through targeting a reduction in circulating con-
centrations of ET-1 are certainly warranted.

One of the most effective methods of reducing concen-
trations of ET-1 and improving overall CVD risk is regular 
exercise (Agarwal, 2012). Exercise facilitates an increase 
in ET-1 into circulation (Maeda et al., 2002). Subsequently, 
ET-1 binds to its receptors on the vascular smooth muscle, 
(Yanagisawa et al., 1988) which contributes to a redistri-
bution of blood flow during exercise (Maeda et al., 2002). 
A single bout of exercise can cause a transient increase 
in ET-1 (Dow et al., 2017); however, chronic exercise has 
been used to reduce ET-1-mediated vasoconstrictor tone 
in sedentary overweight/obese adults (Maeda et al., 2003), 
independent of weight loss (Dow et al., 2017).

Despite the evidence supporting the use of regular ex-
ercise to reduce ET-1, many individuals do not adhere to 
current exercise recommendations, thus further increas-
ing the risk of CVD (Pietilainen et al., 2008). Several bar-
riers have been reported that are preventing traditional 
exercise initiation and maintenance, particularly in 
people with increased adiposity (Okifuji & Hare, 2015). 
Whole-body vibration (WBV) has emerged as a more tol-
erable, low-impact exercise mimetic (Zago et al., 2018) 
and may represent an alternative to traditional forms 
of exercise. In fact, among others, beneficial responses 
to WBV such as improved strength and reduced vascu-
lar stiffness have been reported in sedentary healthy 
adults (Dolny & Reyes, 2008), older adults (Merriman & 
Jackson, 2009), and even people with multiple sclerosis 
(Jackson et al., 2008).

Although the effects of WBV on CVD risk has yet to 
be elucidated, recent findings from our lab demonstrate 
that WBV elicits a differential immune, metabolic, and 
myokine response in obese and normal weight individu-
als (Blanks et al., 2020). The ET-1 response to WBV ex-
ercise in humans is unknown. Accordingly, the purpose 
of this study was to assess the ET-1 response to an acute 
bout of WBV in humans and determine if the response 
is different between normal weight and overweight/obese 
individuals. We hypothesized that (1) acute WBV would 
cause a transient increase in ET-1 that was followed by a 
reduction in circulating ET-1, and (2) the response would 
be more beneficial in overweight/obese individuals; find-
ings that are similar to what has been previously reported 
with traditional modes of exercise.

2   |   METHODS

2.1  |  Participants

Twenty-two apparently healthy women and men ages 	
18–45  years volunteered to take part in this study. 
Participants were excluded if they were active smokers 
or had recently quit within the previous 6 months, had a 
clinical diagnosis of cardiovascular disease, hypertension, 
metabolic disease, or were taking any vasoactive medica-
tions (i.e., nitrates, beta-blockers, ACE inhibitors, etc.). To 
examine the effects of adiposity, body mass index (BMI) 
was used to group participants into either overweight/
obese (OW/OB: n  =  11, BMI  ≥ 25  kg/m2) or normal 
weight groups (NW: n = 11, BMI < 25 kg/m2). The study 
conforms with the recent declaration of Helsinki and all 
study protocols were approved by the Institutional Review 
Board at Augusta University (IRB# 611204).

2.2  |  Experimental design

All participants reported to the Laboratory of Integrative 
Vascular and Exercise Physiology (LIVEP) at the Georgia 
Prevention Institute of Augusta University for a preliminary 
visit that consisted of the informed consent process, anthro-
pometric measures, and body composition assessment. For 
the experimental visit, participants reported to the LIVEP in 
the morning following an overnight fast and having abstained 
from moderate-to-vigorous physical activity for 24 h before 
investigation. Blood samples were collected before (PRE), 
immediately post (POST), 1-h post (1H), 3-h post (3H), and 
24-h post (24H) WBV. Cardiopulmonary and hemodynamic 
measures were collected throughout the WBV exercise.

2.3  |  Participant characteristics and 
clinical laboratory values

Height and weight were determined using a stadiometer 
and standard platform scale (CN20, DETECTO©) and 
used for calculations of body mass index (BMI). Total 
body fat, fat mass, and fat-free mass were determined 
using dual-energy X-ray absorptiometry (QDR-4500  W; 
Hologic), and resting systolic and diastolic pressures were 
evaluated using established protocols (Kapuku et al., 
1999). Resting oxygen saturation was obtained using an 
Onyx II fingertip sensor (Nonin Medical). An intrave-
nous catheter was inserted into an antecubital vein and 
a 10 mL blood sample was obtained. Fasting concentra-
tions of total cholesterol (TC), high-density lipoproteins 
(HDL), low-density lipoproteins (LDL), triglycerides (TG), 
and glucose were obtained using a Cholestech LDX point 
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of care analyzer (Alere Inc.). Hemoglobin and hematocrit 
were determined using a HemoPoint H2 analyzer (Stanbio 
Laboratories).

2.4  |  Whole-body vibration

An oscillating side alternating whole-body vibration 
platform was used for the study (RS3000, Rock Solid 
Wholesale). Participants were instructed to remove any 
footwear and stand mid-center on the platform with a loose 
grip on the front rails. Vibration frequency was set to 14 Hz 
as this frequency has been demonstrated to elicit muscle 
activation but is well below the frequency in which poten-
tial harmful side effects may occur (Cardinale & Wakeling, 
2005). The vibration amplitude was set to 2.5 mm. These 
settings yielded a peak acceleration of 20.19 m/s (≈2.1 g). 
The protocol consisted of 10 cycles of 1 min of vibration 
exercise followed by 30 s of standing rest. During the vibra-
tion portion of the protocol, participants were instructed to 
stand in a static squat position, consisting of knee flexion 
(~60°) with a stable non-flexed trunk.

2.5  |  Cardiopulmonary and 
hemodynamic assessments

Measures of cardiopulmonary variables were taken 
to assess cardiorespiratory load during WBV. Expired 
gases were collected breath by breath using a TruOne 
2400  metabolic cart (Parvo Medics), and the average 
of the final 30 s of each WBV cycle was used to obtain 
oxygen consumption (VO2) and ventilatory efficiency 
(VE/VCO2 slope). Relative oxygen consumption is pre-
sented when normalized to either body mass or fat-free 
mass (FFM) in kilograms (kg). Indices of cardiovascular 
hemodynamics (heart rate [HR], stroke volume [SV], 
cardiac output [CO], contractility index [CTI], end-
diastolic volume [EDV], and estimated ejection fraction 
[%EF]) were collected throughout the WBV protocol 
using a transthoracic impedance cardiography tech-
nique (Physioflow®; Manatec Biomedical). Physioflow® 
is both a valid and reproducible assessment of cardio-
vascular hemodynamic measures in comparison to the 
invasive thermodilution Swan-Ganz catheter technique 
(Charloux et al., 2000).

2.6  |  Circulating concentrations of 
endothelin-1

Blood samples were collected at the aforementioned 
time points and separated via centrifugation. Plasma 

was isolated and aliquoted, flash-frozen in liquid nitro-
gen, and stored at −80  °C until analysis. Plasma con-
centrations of endothelin-1 (ET-1), within the detection 
range of 0.250–1000 pg/mL, were determined in dupli-
cate using Simple Plex cartridges run on the Ella plat-
form (ProteinSimple) according to the manufacturer's 
instructions. Any coefficients of variation greater than 
20% were repeated.

2.7  |  Statistical analyses

All analyses were performed using SPSS version 25 (IBM 
Corporation). Repeated-measures ANOVA was used to 
test for ET-1 response to WBV over time. After signifi-
cance was determined by ANOVA, simple contrasts of 
within-subjects were performed to assess the difference 
between each time point and the PRE value.

Independent samples t-tests were performed to identify 
differences in demographics, clinical laboratory markers, 
cardiopulmonary measures, and hemodynamic measures 
between the two groups. Independent samples t-tests were 
performed to identify group differences in cardiopulmo-
nary measures following WBV. Values are presented as 
mean ± standard deviation (SD) unless otherwise stated. 
An alpha <0.05 was considered statistically significant for 
all analyses.

3   |   RESULTS

3.1  |  Participant demographic 
characteristics and clinical laboratory 
values

Twenty-two participants completed the study. Participant 
demographics and clinical laboratory values are presented 
in Table 1. Significant differences in BMI, body fat per-
centage, weight, blood lipids, and glucose were observed 
between groups (all values p < 0.05). No significant dif-
ferences in the remaining characteristics and lab values 
between groups were observed.

3.2  |  Endothelin-1 (ET-1) response 
to WBV

Figure 1 illustrates the ET-1 response in the OB/OW and 
NW groups as well as in both groups combined. The ET-1 
response to WBV was similar (F = 0.180, p = 0.677) be-
tween groups. However, collapsing across group, a sig-
nificant main effect of time (F  =  12.5, p  <  0.001) was 
identified. Posthoc analysis for both groups combined 
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identified a significant increase in ET-1 at 1H (p = 0.017) 
and 3H (p = 0.025) compared to PRE. In addition, there 
was a significant overall decrease in concentrations of 
ET-1 at 24H compared to PRE (p = 0.019), 1H (p < 0.001) 
and 3H (p < 0.001).

3.3  |  Baseline measures of 
cardiopulmonary and hemodynamic values

Measures of cardiopulmonary gas exchange and hemody-
namic values at baseline are presented in Table 2. Relative 
to body mass, oxygen consumption at baseline was not 
significantly different between both groups (p  =  0.637). 
In addition, when normalized to fat-free mass, average 
oxygen consumption remained similar between groups 
(p > 0.05). CTI was greater (p = 0.001) in the NW com-
pared to the OW/OB group and EF was higher (p = 0.001) 
in the NW compared to the OW/OB. In addition, EDV was 
higher (p = 0.004) in the OW/OB group compared to NW 
and there were no significant differences in HR, SV, CO, 
and VE/VCO2 between the two groups.

3.4  |  Cardiopulmonary and 
hemodynamic response to WBV

The average cardiopulmonary gas exchange and hemo-
dynamic responses during WBV are presented in Table 
3. In response to WBV, CTI was greater (p  =  0.004) in 
the NW compared to the OW/OB group. EF during WBV 
was higher (p = 0.001) in the NW compared to the OW/
OB; however, EDV was higher (p = 0.003) in the OW/OB 
group compared to NW. The average relative VO2 to WBV 

T A B L E  1   Participant characteristics and laboratory values.

Variables Overall
Normal weight (NW)
n = 11

Overweight/Obese (OW/OB)
n = 11 p-value

Sex (M/W) 12/10 6/5 6/5

Age (years) 30 ± 6 28 ± 7 33 ± 4 0.040*

Weight (kg) 83 ± 26 62 ± 9 104 ± 20 < 0.001*

Height (cm) 172 ± 9 171 ± 9 173 ± 9 0.587

BMI (kg/m2) 28 ± 10 21.3 ± 1.8 35.3 ± 9.5 < 0.001*

Body Fat (%) 33 ± 10 26.2 ± 7.0 39.0 ± 8.2 0.001*

SBP (mmHg) 123 ± 11 115 ± 8 129 ± 8 0.001*

DBP (mmHg) 72 ± 7 68 ± 6 76 ± 7 0.015*

Total cholesterol (mg/
dL)

163 ± 26 149 ± 18 177 ± 25 0.007*

LDL (mg/dL) 92 ± 27 76 ± 21 107 ± 23 0.003*

HDL (mg/dL) 52 ± 15 53± 16 50 ± 14 0.644

Triglycerides (mg/dL) 83 ± 59 70 ± 27 96 ± 78 0.301

Glucose (mg/dL) 90 ± 13 83 ± 6 97 ± 14 0.005*

HbA1c (%) 5.4 ± 0.4 5.3 ± 0.3 5.7 ± 0.4 0.030*

Hemoglobin (g/dL) 13.8 ± 1.8 13.7 ± 1.8 14.0 ± 1.8 0.639

Hematocrit (%) 41.0 ± 5.0 40.2 ± 5.3 41.9 ± 4.7 0.453

Note: Values are mean ± SD.
Abbreviations: BMI, body mass index, SBP, systolic blood pressure, DBP, diastolic blood pressure, LDL, low density lipoprotein, HDL, high density lipoprotein.
*p < 0.05.

F I G U R E  1   Endothelin-1 response to whole-body vibration 
(WBV) exercise in each group as well as combined. Repeated measures 
ANOVA. Data presented as mean ± standard deviation (SD). 
*Significant main effect of time (p < 0.05) compared to PRE and POST 
in the groups combined. †Significant main effect of time (p < 0.05) 
compared to PRE, POST, 1H, and 3H in the groups combined.
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when normalized to body mass tended to be higher in NW 
compared to OW/OB (p = 0.091); however, VO2 normal-
ized to fat-free mass was similar between groups. There 
were no significant differences in HR, SV, CO, and VE/
VCO2 during WBV between the two groups.

4   |   DISCUSSION

Traditional aerobic exercises (i.e., cycling, walking, run-
ning) performed regularly reduces the concentration of 
endothelin-1 (ET-1) thereby, reducing the risk of devel-
oping cardiovascular diseases (Dow et al., 2017). Whether 
or not whole-body vibration (WBV) produces a similar 
physiological response had yet to be investigated, until 
now. Accordingly, the purpose of this study was to in-
vestigate the effect of acute WBV on circulating ET-1 
over time and determine if adiposity plays a role in the 
response. Findings of the present study demonstrate that 
there is an acute increase in circulating ET-1 at 1H and 3H 
after acute WBV exercise. In contrast, and perhaps most 

relevant, there was a decline in plasma ET-1 24H follow-
ing WBV. The ET-1 response to WBV was similar between 
normal-weight and overweight/obese participants, and 
this response was similar to those reported in previous 
studies following traditional modes of moderate-intensity 
exercises.

Elevated basal concentrations of ET-1 are associated 
with hypertension and an increased risk of CVD. Perhaps 
unsurprisingly, traditional modes of exercise training can 
reduce circulating concentrations of ET-1 (Dow et al., 
2017; Maeda et al., 2001; Maeda et al., 2009), a reduction 
that can even persist after 4  weeks of exercise cessation 
(Maeda et al., 2003). The present investigation is the first; 
however, to examine the acute time course of the ET-1 re-
sponse following WBV in normal weight and overweight/
obese participants. In the present investigation, there was 
not only an acute increase in circulating ET-1 at 1H and 
3H after WBV, circulating concentrations of ET-1 were sig-
nificantly reduced 24H following WBV. The findings of the 
current investigation are in agreement with a previous in-
vestigation which demonstrated an acute increase in ET-1 

Variable Overall
Normal weight
(NW)

Overweight/Obese
(OW/OB) p-value

Heart rate (bpm) 80 ± 16 82 ± 21 79 ± 11 0.693

Stroke volume (mL) 86 ± 20 81 ± 19 90 ± 20 0.296

Cardiac output (L/min) 6.7 ± 1.5 6.4 ± 1.4 7.0 ± 1.7 0.347

Ejection fraction (%) 61 ± 12 69.1 ± 9.5 53.0 ± 8.2 0.001*

End-diastolic volume (mL) 146 ± 47 117.9 ± 30.0 173.8 ± 44.9 0.004*

Contractility Index 234 ± 102 302 ± 96 166 ± 50 0.001*

VO2 (mL/kg/min) 3.3 ± 1.1 3.4 ± 1.3 3.1 ± 0.8 0.637

VO2 (mL/kgFFM/min) 5.3 ± 1.8 5.0 ± 2.3 5.6 ± 1.2 0.481

Note: Mean ± SD.
Abbreviations: VO2, Oxygen consumption.
*p < 0.05; Independent samples t-test.

T A B L E  2   Baseline cardiopulmonary 
measures.

Variable Overall
Normal 
Weight (NW)

Overweight/
Obese (OW/OB) p-value

Heart rate (bpm) 101 ± 21 101 ± 26 101 ± 15 0.996

Stroke volume (mL) 105 ± 21 101 ± 20 110 ±22 0.410

Cardiac output (L/min) 10.4 ± 2.1 9.9 ± 1.8 10.9 ± 2.4 0.296

Ejection fraction (%) 61.9 ± 13.1 70.5 ± 11.2 53.3 ± 8.5 0.001*

End-diastolic volume (mL) 181 ± 64 151 ± 51 211 ± 63 0.030*

Contractility Index 267 ± 126 345 ± 125 193 ± 71 0.004*

VO2 (mL/kg/min) 6.8 ± 1.7 7.4 ± 1.6 6.1 ± 1.5 0.091

VO2 (mL/kgFFM/min) 11.1 ± 3.1 11.1 ± 3.2 11.2 ± 3.0 0.995

VE/VCO2 slope 29.1 ± 3.4 29.1 ± 3.2 29.2 ± 3.8 0.982

Note: Mean ± SD.
Abbreviations: VO2, oxygen consumption.
*p < 0.05; Independent samples t-test.

T A B L E  3   Average cardiopulmonary 
response to WBV
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following treadmill running at 55% VO2max (McClean 
et al., 2015). Acute exercise elicits an increase in reactive 
oxygen species (ROS) and accumulation of free radical 
species which can disrupt the bioavailability of NO and 
contribute to an increase in ET-1 (McClean et al., 2015). 
In contrast, the reduction in ET-1 following 24H of WBV 
could also indicate an improvement in functional ETB re-
ceptors, as they are the endothelin receptor primarily re-
sponsible for the clearance of ET-1 (Derella et al., 2022; 
Fukuroda et al., 1994). In addition, reduction of ET-1 acti-
vation by ETA receptor blockade contributes to an increase 
in vasodilation in overweight/obese compared to normal 
weight individuals (Weil et al., 2011). Taken together, 
these findings highlight the negative role that ET-1 plays 
on the impairment of endothelial function in overweight/
obese individuals. Nonetheless, findings of the present in-
vestigation provide the foundation to support the use of 
WBV as a novel modality of exercise to reduce circulating 
concentrations of ET-1 and reduce CVD risk.

Although the ET-1 response to exercise is thought to 
mediate changes in muscle/organ blood flow, peak con-
centrations of ET-1 in the present study did not occur 
until 1 and 3  h post-WBV. This observation, however, is 
not completely surprising as studies have shown that al-
though ET-1 is produced by the vascular endothelial cell, 
the release of ET-1 is delayed for ≥30 min after the exercise 
stimulus (Masaki et al., 1991) (Maeda et al., 1997). The 3H 
peak in circulating ET-1 also follows the same pattern that 
has previously been observed in interleukin-6 and neutro-
phils following WBV in humans (Blanks et al., 2020). Most 
importantly, the increase in ET-1 in the present study was 
acute and was followed by a significant reduction 24H fol-
lowing WBV. In contrast to our original hypothesis, this 
response was similar in both the NW and OW/OB groups, 
suggesting that routine, chronic adherence to WBV may 
result in a decrease in circulating ET-1, independent of ad-
iposity. Future studies are certainly warranted to establish 
the long-term effects of WBV on circulating concentra-
tions of ET-1 and the subsequent reduction in CVD risk.

An increase in cardiopulmonary parameters such as 
oxygen consumption and cardiac output is key to achiev-
ing the cardioprotective benefits of exercise training 
(Agarwal, 2012). At baseline, the volume of oxygen con-
sumed (VO2) was similar between groups. However, in 
response to WBV, the oxygen consumption tended to be 
greater in the NW when compared to the OW/OB group, 
albeit a greater cardiac output and stroke volume in the 
OW/OB group. In addition, data support that increased 
adiposity can slow the dynamic response of VO2 during an 
acute cycling exercise (Green et al., 2018). However, the 
VO2 response during WBV observed in the present study 
is similar to that reported during traditional incremental 
treadmill exercise (Bk et al., 2019). Although the current 

investigation examined an acute response to WBV, investi-
gations into how repeated, chronic bouts of WBV exercise 
affect oxygen consumption are certainly warranted.

In conclusion, despite differences in the cardiopulmo-
nary response between overweight/obese and normal-
weight individuals, the ET-1 response to WBV was similar 
between groups. Nonetheless, this is the first investigation 
in humans to demonstrate that a single bout of WBV exer-
cise elicits a decrease in circulating concentrations of ET-1 
24H later. The post-acute reduction in ET-1 24H following 
WBV suggests that chronic WBV may represent an alterna-
tive mode of exercise that can potentially reduce CVD risk 
in both normal weight and overweight/obese individuals. 
Future studies are needed to explore the longitudinal effects 
of WBV on circulating concentrations of ET-1. In addition, 
investigations that ascertain the chronic effects of WBV on 
circulating concentrations of ET-1 and complementary bio-
markers, like nitric oxide, are certainly warranted.
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