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Abstract: Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-
based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency
(EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019
(COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an
adverse effect occurring at a low frequency in some individuals after vaccination. The causes
of such events may be related to SARS-CoV-2 spike protein interactions with different C-type
lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different
soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor
or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after
vaccine administration. In addition, immunological mechanisms elicited by viral vectors related
to cellular delivery could play a relevant role in individuals with certain genetic backgrounds.
Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia
(VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers,
and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation
of existing vaccines.

Keywords: COVID-19; vaccines; SARS-CoV-2; thrombosis; chronic smokers

1. Introduction

The unprecedented development of several vaccines against coronavirus disease-2019
(COVID-19) promised that after 18 months of illnesses, deaths, confinements, and lock-
downs, there was finally light at the end of the tunnel. Currently, four vaccines have been
approved by the European Medicines Agency (EMA) that demonstrate protection against
severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) variants, albeit with vari-
able efficacy [1–4]. Notably, the lipid nanoparticle (LNP)-formulated mRNA COVID-19
vaccines BNT162b2 (Pfizer/BioNTech) [1] and mRNA-1273 (Moderna) [2] as well as the ade-
novirus (Ad)-based vaccines ChAdOx1 nCoV-19 (University of Oxford/AstraZeneca) [3]
and Ad26.COV2.S (Johnson & Johnson/Janssen) [4]. Then, potentially more transmissible,
and pathogenic variants, such as the B.1.1.7 UK variant [5] and the South African B.1.351
variant [6], were detected and shown to spread rapidly in different parts of the world.
Preliminary data indicated that the B.1.1.7 variant provided an increased infection but not
viral burden [7]. However, a recent study showed that individuals who tested positive for
the B.1.1.7 variant had a 10-fold higher viral load than non-B.1.1.7 subjects [8]. A significant
immediate concern was also whether current vaccines could provide protection against
these new variants and other variants expected to emerge in the future. In the context
of the BNT162b2 vaccine, the B.1.1.7 and B.1.351 variants showed antibody resistance [9].
Moreover, the ChAdOx1 nCoV-19 vaccine failed to provide protection against the B.1.351
variant in a clinical trial in South Africa [10]. These findings fostered the need for develop-
ing second-generation vaccines, capable of adjustment to the viral evolutionary variability
and showing efficacy against newly emerged SARS-CoV-2 variants. As if that had not
been bad enough, rare cases of thrombotic thrombocytopenia were then reported after
vaccinations with the simian adenovirus AdChOx1 nCoV-19 vaccine [11,12]. In one study,
11 patients developed one or several thrombotic events 5–16 days after vaccination [12].
Nine patients had cerebral venous thrombosis, three had splanchnic-vein thrombosis, three
had pulmonary embolism and four had other types of thromboses. Six patients died and
five had disseminated intravascular coagulation. Cases of thrombosis associated with
severe thrombocytopenia have also been reported after vaccinations with the Ad26.COV2.S
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vaccine [13]. Very recently, three cases of VITT were detected in females aged 44, 47 and
50 years at 7–12 days after the first vaccination with ChAdOx1 nCoV-19 and Ad26.COV2.S
vaccines [14]. Additionally, thrombocytopenia has been reported in 20 individuals receiv-
ing RNA-based COVID-19 vaccines, 9 vaccinated with BNT162b2 (Pfizer/BioNTech) and
11 with mRNA-1273 (Moderna) [15].

2. Features of COVID-19 Vaccines and Thrombocytopenia

All four COVID-19 vaccines mentioned earlier express the full-length SARS-CoV-2
S protein. It is expected that, being translated within the host cells, the S protein will
be introduced to the immune system of the vaccinated patients as an antigen, which
will elicit humoral and cellular immune responses providing protection for immunized
individuals against SARS-CoV-2 infection [1–4]. Due to the recent discovery of rare cases of
vaccine-induced thrombotic thrombocytopenia (VITT) it is important to analyze all vaccine
components which might be associated with these events.

2.1. Tissue Plasminogen Activator (tPA) Leader Sequence and Thrombocytopenia Risk

The ChAdOx1 nCoV-19 vaccine is composed of the replication-deficient simian Ad
vector ChAdOx1, expressing the full-length SARS-CoV-2 structural surface spike (S) gly-
coprotein gene downstream of the tissue plasminogen activator (tPA) leader or signal
sequence [9]. The other Ad vector-based vaccine, Ad26.CoV2.S, also contains a tPA leader
sequence, but additionally a stabilized SARS-CoV-2 S protein with a mutated furin site,
and two consecutive prolines (PP) in the hinge region of S2 [16]. The tPA leader sequence
is neither present in the BNT162b2 vaccine [1] nor in the mRNA-1273 vaccine [2].

Cases of thrombocytopenia have previously been reported in ischemic stroke and
acute myocardial infarction patients after treatment with recombinant tPA [17–20], with
3.7% thrombocytopenia cases in 101,527 acute stroke patients treated with intravenous
rtPA [20]. Therefore, the question has been raised whether the tPA leader sequence in
the SARS-CoV-2 S protein expressed from the ChAdOx1 and Ad26 vectors, will have a
similar effect in vaccinated individuals (Figure 1). However, the vaccination of 5 million
individuals with the ChAdOx1 nCoV-19 vaccine in the European Economic area showed
30 rare cases of thromboembolic events, which was no higher than the number seen in the
general population [21]. For this reason, the incidence of thrombotic thrombocytopenia
related to the ChAdOx1 nCoV-19 and Ad26.COV2.S vaccine-derived rtPA is unlikely, as
only the rtPA leader sequence is present in the vaccine vector.

2.2. Adenovirus-Induced Thrombocytopenia

Adenoviruses (Ads) can naturally induce thrombocytopenia at a low frequency [22].
For instance, a 3-day old patient neonatally infected with Ad 40/41 developed thrombocy-
topenia [22]. Moreover, administration of an Ad5 vector in a mouse model was associated
with the induction of thrombocytopenia 5–24 h after vector delivery [23]. The Ad vec-
tor transfer was associated with increased platelet and leukocyte-derived microparticles
and multimers of the von Willebrand factor. Moreover, the fiber protein in Ad has been
associated with thrombocytopenia, and the fiber protein of Ad5 in particular can trig-
ger cytokine activation leading to Ad-induced thrombocytopenia [24]. Ad vectors have
also caused dose-dependent thrombocytopenia in rhesus macaques by increasing in vivo
platelet clearance [25].

In the case of Ad-based vaccine applications, two phase II clinical trials have been
conducted for Ebola virus vaccines [26,27]. The simian ChAdOx1 vector expressing the
Ebola virus glycoprotein (ChAd3-EBO-Z) was administered to 1509 adults, and although
injection site pain and serious non-vaccine related events were recorded, no clinically
meaningful thrombocytopenia was registered [26]. In the other phase II trial, the ChAd3-
EBO-Z vaccine was administered to 300 healthy children, six years old or younger [27].
Common injection site pain and fever were observed and two serious adverse events
unrelated to the vaccine were registered. The combined number of patients vaccinated
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with the ChAd3-EBO-Z in the phase I and II trials did not exceed 2000, which makes is
unlikely that rare cases of thrombocytopenia could be discovered.

Although the majority of the vaccine-associated thrombosis and thrombocytope-
nia cases have been described for the ChAdOx1 nCoV-19 vaccine [11], cases have also
been reported from vaccinations with the Ad26.COV2.S vaccine [13]. A case of exten-
sive thrombosis associated with severe thrombocytopenia, which resembled autoimmune
heparin-induced thrombocytopenia [28], was described for a patient vaccinated with the
Ad26.COV2.S vaccine [13]. It is important to point out that the human Ad26 and the
simian ChAdOx1 vectors use different entry receptors [29]; Ad26 interacts with the cellular
receptor CD46, and ChAdOx1 mainly binds to the Coxsackie and adenovirus receptor
(CAR) [29]. The binding of the Ad26 vector to the CD46 receptor could trigger upregulation
of the complement pathways leading to thrombosis events [30]. The ChAdOx1 vector can
potentially interact with human platelets, as CARs have been detected on these cells [31].
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Figure 1. Schematic illustration of ChAdOx1 nCoV-19 and Ad26.COV2.S constructs and the potential association of tPA
and thrombocytopenia. Both ChAdOx nCoV-19 and Ad26.COV2.S contain the tPA leader sequence and the full-length
SARS-CoV-2 protein. Ad26.COV2.S additionally has a mutated furin site. The translation of only the tPA leader sequence is
unlikely to cause thrombocytopenia as previously reported in ischemic stroke and acute myocardial infarction patients
treated with recombinant tPA. Figure was created with Biorender.

3. Structural and Biological Features of the Spike Protein and Thrombosis Risk

Although the ACE2 receptor is the primary entry receptor, multiple host cell compo-
nents interact with the SARS-CoV-2 S protein, which facilitate viral entry and can contribute
to the spread of the pandemic [32]. Heparan sulfate proteoglycans (HSPGs), C-type lectin
receptors (CLRs), and extracellular matrix metalloproteinase (CD147) on the host cell
surface are potential targets for the S protein [32,33]. In the case of both the current Ad-
and mRNA-based COVID-19 vaccines, the SARS-CoV-2 S protein could potentially induce
thrombotic thrombocytopenia. In this context, a case of thrombosis-related fatality was
recently detected in a person receiving the BNT162b2 mRNA vaccine [34]. Additionally,
thrombocytopenia has been reported in 20 individuals receiving RNA-based COVID-19
vaccines, 9 vaccinated with BNT162b2 (Pfizer/BioNTech) and 11 with mRNA-1273 (Mod-
erna) [15].

There are several potential mechanisms related to the upregulation of complement
pathways by the SARS-CoV-2 S protein that could lead to thrombosis (Figure 2). For
instance, an interaction of the S protein with the HSPGs on the cell membrane can interfere
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with the negative regulator of the complement alternative pathway, factor H protein, which
leads to an inflammatory response through the downstream C3c convertase protein [35].
The flat sialic acid-binding domain of the SARS-CoV-2 S protein is likely to accelerate the
movement of virions and increase the rate of detection by the mannose-binding lectin
(MBL) of the complement lectin pathway, which has been associated with the fatality
of COVID-19 patients [36]. Furthermore, the sialic acid-binding immunoglobulin-type
lectins (SIGLECs), mainly SIGLEC7 and others, such as SIGLEC5, SIGLEC9, and SIGLEC11,
have been associated with severe cases of COVID-19, suggesting the importance of these
receptors that could be regulated by the enhanced sialic acid affinity of the S protein [32,37].
Therefore, the vaccines containing the full-length SARS-CoV-2 S protein could potentially
trigger the complement pathway leading to thrombosis events. However, complement
activation has only been seen in severe cases of COVID-19 so far [38].
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An interesting hypothesis was recently described based on findings that the transcrip-
tion of wildtype and codon-optimized SARS-CoV-2 S proteins enabled alternative splicing,
which generated C-terminally truncated soluble S protein variants [39]. These variants
might bind to ACE2 receptors on endothelial cells in blood vessels, triggering severe side
effects similar to the thromboembolic events described by the SARS-CoV-2 encoded S pro-
tein. The underlying disease mechanism was termed Vaccine-Induced COVID-19 Mimicry
(VIC19M) syndrome [39].
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3.1. Heparin-Induced Thrombocytopenia and the Possible Role of Vaccines Containing the
SARS-CoV-2 Spike Protein

It was recently demonstrated that in several cases of individuals with thrombotic
events and thrombocytopenia after ChAdOx1 nCoV-91 vaccination, who elicited antibody
responses against platelet factor 4 (PF4)-heparin, also generated antibodies against PF4
independent of heparin (Figure 3) [11]. However, the enhanced reactivity of patient
sera with platelets could be an in vitro artifact due to the addition of the vaccine vector,
as adenovirus has been demonstrated to bind to platelets causing their activation [40].
Additionally, the quantity of adenovirus in the 0.5 mL vaccine dose is unlikely to contribute
to the platelet activation detected in these thrombocytopenia patients [11].
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However, DNA released from the vaccine could potentially trigger PF4-reactive an-
tibodies, as it has been previously shown that DNA and RNA can form multimolecular
complexes with PF4 and lead to antibody binding in patients with heparin-induced throm-
bocytopenia and the induction of antibodies against PF4-heparin in a mouse model [41].
In another publication, venous thrombosis and thrombocytopenia were described in five
healthcare workers 7–10 days after the first dose of ChAdOx1 nCoV-19 [12]. High lev-
els of PF4-polyanion complexes were detected in all individuals, although they had not
previously been exposed to heparin. It was suggested that these cases represent a rare
vaccine-related variant of spontaneous heparin-induced thrombocytopenia [12]. In the
context of the single-dose Ad26.COV2.S vaccine, there is a case report of a 48-year old
white woman with an unremarkable medical history who developed extensive thrombosis
which was associated with severe thrombocytopenia [13]. Furthermore, strong antibody
responses against PF4-polyanion were demonstrated and the intravascular coagulation
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resembled autoimmune heparin-induced thrombocytopenia. Due to additional cases of
rare and severe thrombocytopenia in individuals receiving the Ad26.COV2.S vaccine, the
US Centers for Disease Control and Prevention (CDC) and the Food and Drug Adminis-
tration (FDA) recommended pausing vaccinations until the cases had been reviewed [42].
In another report, after ChAdOx1 nCoV-19 vaccinations, 22 patients with acute thrombo-
cytopenia and primarily cerebral venous sinus thrombosis (CVST) and one patient with
isolated thrombocytopenia and a hemorrhagic phenotype were observed [43]. A similar
blood clot type has been identified in a relatively small number of patients vaccinated
with the ChAdOx1 nCoV-19 vaccine [11,12,43]. In the classic model of heparin-induced
thrombocytopenia, the PF4 interaction with endothelial cell HSPGs leads to the removal of
antithrombin that is connected to the HSPGs [44]. Additionally, antibodies to PF4/heparin
bind and activate cellular FcγRIIA on platelets and monocytes, which lead to hypercoagula-
tion and potentially life-threatening thrombosis [44]. As aforementioned, the S protein has
a proposed capacity to interact with epithelial HSPGs, which could trigger the translocation
of antithrombin, and heparin could activate the anti-PF4 antibodies resulting in heparin-
induced thrombocytopenia. As negative PF4 cases of VITT are possible, it is essential
to establish functional antibody testing to confirm VITT. However, many tests such as
chemiluminescence immunoassay analyzer (CLIA) are useless when applied alone, but
the combination of the sensitive ELISA-based PF4/heparin immunoassay together with
a negative CLIA will allow identification of VITT antibodies [45]. In the context of the
diagnostics of heparin-induced thrombocytopenia, the PF4-heparin ELISA lacks specificity,
and the gold standard carbon 14-labeled serotonin release assay (SRA) has its limitations,
so the PF4-dependent P-selectin expression assay (PEA) may be the solution for rapid and
conclusive testing [46].

3.2. Potential Role of the CLR DC-SIGN in the Development of Thrombosis

Both SARS-CoV-2 and SARS-CoV target the CLR DC-SIGN (dendritic cell-specific
ICAM-3 grabbing non-integrin 2) and CD209 antigen for host cell entry [32]. There is
growing evidence suggesting the role of the CLRs CD209L and CD209 as entry receptors
for SARS-CoV-2, especially in tissues with low ACE2 receptor presence or even with no
ACE2 expression [47]. Importantly, it has previously been demonstrated that DC-SIGN
and C-type lectin-like receptor 2 (CLEC2) can mediate human immunodeficiency virus
type 1 (HIV-1) capture by platelets, contributing to thrombocytopenia [48]. Therefore,
vaccine-mediated expression of the SARS-CoV-2 S protein might contribute to platelet-
induced thrombocytopenia. However, the VITT relies on circulating S protein and not
anti-S immune responses, which raises the question whether sufficient levels of secreted S
protein will be available.

3.3. Potential Role of the CD147 Receptor in the Development of Thrombosis

CD147 (also known as Basigin (BSG) or EMMPRIN) has also been suggested as another
receptor for SARS-CoV-2 [33]. Previously, both SARS-CoV and HIV-1 have been reported to
utilize CD147 as a ligand [33], but no direct role for CD147 in host cell entry of SARS-CoV-2
has been identified so far. Especially in older COVID-19 patients, who possess lower ACE2
but higher CD147 expression levels, CD147 has been associated with thrombosis [33] and
could have a role in COVID-19 VITT.

4. Potential Risk Groups for Thrombosis

The number of cases of VITT after the administration of both Ad- and mRNA-based
COVID-19 vaccines is very low and there is broad consensus among experts that the
benefits of vaccination are superior to the potential risks of severe vaccine effects such as
VITT [49]. A meta-analysis of 27 studies in 3342 COVID-19 patients showed an incidence
rate of 16.5% of pulmonary embolism (PE) and 14.8% of deep vein thrombosis (DVT) [50].
In contrast, 11 excess venous thromboembolic events per 100,000 vaccinations with the
ChAdOx1 nCoV-19 vaccine were detected in Denmark and Norway [51]. However, no
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increase in the rate of overall arterial events were observed, but a slightly elevated rate of
thrombocytopenia disorders and bleeding were recorded.

Moreover, the VITT risk post-vaccination is much lower compared to, for instance,
smoking and oral contraceptives. In comparison to never smokers, the venous throm-
boembolism (VTE) overall combined relative risk (RRs) for ever smokers was 1.17 (95% CI
1.09–1.25), for current smokers 1.23 (95% CI 1.14–1.33) and for former smokers 1.10 (95% CI
1.03–1.17) indicating a slightly increased risk of VTE in smokers [52]. As the average risk
of VTE, DVT and PE in women of childbearing age has been estimated to 2–10 cases per
10,000 individuals per year, with the average odds of roughly 1:1700 [53], the use of contra-
ceptives can increase the risk 3 to 6-fold [54,55]. Based on the estimated 3-fold increase the
odds of developing VTE are 1:550, which is much higher than for the development of VTE
in general (1:170,000) or VITT after COVD-19 vaccination (1:100,000) [18]. Interestingly, age
seems to play a role in VTE/VITT cases, as a higher incidence rate of 18.0 per million doses
has been reported in younger adults (18–49 years) compared to 12.0 per million doses in
older individuals (>50 years) after the first dose of the ChAdOx1 nCoV-19 vaccine [56]. On
the other hand, the overall VITT incidence after the second dose was 1.3 per million doses.
So far, no cases have been detected in the 18–49 years group despite 2.7 million individuals
having received both doses. Moreover, VITT cases were mainly reported in females.

5. Conclusions

This study provides a perspective on the potential mechanisms of VITT. As described,
both Ad- and mRNA-based vaccines have been associated with induced thrombocytope-
nia, although at a very low frequency taking into account the extent of COVID-19 mass
vaccinations. Different theories have been presented for thrombocytopenia development.
Although ischemic stroke and acute myocardial infarction have been detected in patients
treated with tPA, the presence of only the tPA leader sequence in the ChAdOx1 vector is
highly unlikely to induce thrombocytopenia. A possibility comprises Ad itself inducing
thrombocytopenia as has previously been described [19]. It relates to an Ad-induced
increase in platelets, but also the cytokine activation triggered by the Ad fiber protein.
However, thrombocytopenia has also been detected after vaccinations with mRNA-based
COVID-19 vaccines. As both Ad- and mRNA-based vaccines use the full-length SARS-
CoV-2 S protein as an antigen, its interaction with multiple membrane components might
induce thrombocytopenia. Alternatively, heparin might activate anti-PF4 antibodies after
ChAdOx1 nCoV-19 vaccination, resulting in heparin-induced thrombocytopenia. Other
factors affecting thrombocytopenia consist of the C-type lectin receptor DC-SIGN and the
CD147 receptor.

Based on the above discussed pathogenic mechanisms, the issue of the management of
acute and subacute/chronic forms of CSVT with VITT has been addressed [57]. It should,
as for treatment of heparin-induced thrombocytopenia with thrombosis, basically include
alternative anticoagulants to heparin or a direct oral anticoagulant (DOAC).

Regardless of which vaccine is used, it is obvious that the risk of developing post-
vaccination thrombocytopenia is much lower than the risk of death and morbidity from
SARS-CoV-2 infections. Vaccines are vital and invaluable to control the COVID-19 pan-
demic and to build up herd immunity against SARS-CoV-2. For this reason, it is important
to thoroughly investigate the reasons behind VITT and take the appropriate actions related
to individuals with a pre-existing susceptibility to thrombocytopenia and if necessary,
re-engineer both vaccine vectors and formulations to ensure that we have only encountered
a roadblock and not reached a dead-end street.
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