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Summary

Exploring the human activity zones (HAZs) gives significant insights into understanding
the complex urban environment and reinforcing urban management and planning. Though
previous studies have reported the significant human activity shifting at the city-level in global
metropolises due to COVID-19 containment policies, the dynamic of human activity across
urban areas at space and time during such an ever-changing socioeconomic period has not been
examined and discussed hitherto. In this study, we proposed an analysis framework to explore the
human activities zones using geo-tagged big data in London, UK. We first utilised the activity-
detection method to extract visits/stops at space and time as the human activity metric from
the mobile phone GPS trajectory data. Then, we characterised HAZs based on the homogeneity
of hourly human activity footfalls on the middle layer super output areas (MSOAs). The results
show the HAZs not only exhibit declines in human activity but are strongly associated with
urban land-use and population variables during the COVID-19 pandemic.
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1 Introduction

As COVID-19 continues to spread around the global cities, urban citizen lives have been changed
significantly due to the pandemic containment policy, such as the national lockdown order. Recent
studies have addressed human mobility/activity pattern shifting through the analysis of city or
regional-level migration data sets (Chinazzi et al., 2020; Kraemer et al., 2020; Sirkeci and Yucesahin,
2020; Tacus et al., 2020; Hadjidemetriou et al., 2020). However, previous studies that exploring and
interpreting human mobility pattern change concerning large geospatial district cannot disentangle
the complex dynamics of urban areas in the context of social-economic environment change. As
the massive amounts of geo-tagged big data (e.g., mobile phone GPS data, WiFi data and social
media data) can be collected efficiently with the rapid development of ubiquitous location awareness
technologies, large volumes of human activity data regarding the spatio-temporal footprints tied
with places, neighbourhoods and urban areas can provide the data-driven perspective to reveal
the urban complex dynamics (Hasan et al., 2013; Ahas et al., 2015; Liu et al., 2015). Here, our
intention is to explore the human activity zones characterised by temporal human activity patterns
at different urban geospatial areas during the COVID-19 pandemic. In this study, we utilised raw
mobile phone GPS data to extract human activity metric and aggregate the hourly human activity
pattern at MSOASs, then portray the human activity zones (HAZs) based on the similarity of human
activity pattern in London metropolis, UK.

2 Methodology

2.1 Human activity detection from mobile phone GPS data

As human activities exhibit regularity of patterns at space and time, it is the acknowledgement
that footfall as a metric of human activities can be extracted from mobile phone GPS trajectory
data (Sevtsuk and Ratti, 2010; Tu et al., 2018). Then, potential human activity can be described
as a single user spending some time in one place, i.e., the consecutive records of user are at the
same location during a time period (Zheng, 2015; Tu et al., 2017). Here, we use the stay detection
algorithm proposed by Hariharan and Toyama (2004) and Pappalardo et al. (2019), which needs
two preset parameters for trajectory data, i.e., Ad (the maximum distance that records of a user
move around from a point location to count as a stay/stop) and At (the minimum duration time
period that the records stay within time distance to qualify as a stay/stop at the location). After
the implementation of stay detection for every GPS trajectory in the data sets, we aggregate the
counts of stay as the proxy of human activity metric to defined geospatial units (e.g., census block,
community) and temporal units (e.g., hourly, daily), respectively.

2.2 Function zoning based on dynamic human activity

In parallel to the urban functional zone that urban space with specific functions for human activities
(Tu et al., 2018), human activities zone (HAZ) refers to a set of geospatial unit clusters exhibiting
a certain similarity characterized by the human activities. In this study, our functional zoning is to
extract N HAZs based on the human activity temporal pattern data from the M geospatial units
(N < M). We employ the clustering strategy to achieve the functional zoning of HAZs: (1) using



silhouette coefficient (the best value is 1 and the worst value is -1) as a clustering evaluation metric
for chosen linkage criterion (Ward’s criterion) to determine the numbers of clusters (numbers of
types of HAZs); (2) utilising agglomerative clustering algorithm ! to generating the N HAZs based
on the human activity temporal pattern from M geospatial units.

3 Case study

3.1 Data and study area

With COVID-19 spreading in global cities, London metropolis continues to undergo the diffusion
of the viruses as the city of the highest numbers of confirmed cases in the UK. As an emergency
response to pandemic, the first national lockdown announced by the government started Mar. 24,
2020 following a series of restricted measures in the city. In this study, we focus on the urban area
of London comprising 983 MSOAs where the hourly human activity patterns generate. In addition,
the human activity metric in terms of the footfalls (stays/stops) are calculated based on the millions
of anonymous raw mobile phone GPS data provided by Location Sciences. In this study, stay/stop
in the stay is defined as a user spend at least 5 mins within a distance of 50m spatial radius from
a given GPS trajectory points. Then, the detected footfalls numbers are aggregated to the hourly
temporal unit and MSOA spatial unit, respectively. Here, our interest observation time period is
four weeks around the first national lockdown (Mar. 24, 2020) in London, i.e., from Mar. 9, 2020
to Apr. 6, 2020. So, the generation of HAZs is employed on the 696 hourly human footfall records
on every MSOA in London (696%983 in total).

3.2 Human activity zones in London during pandemic

Figure 1 denotes the decline trends of daily human activities (detected footfall numbers) after the
first national lockdown (Mar. 23, 2020) in London. It is obvious that the effect of stay-at-home
order has enforced a significant effect on the human routine activities in the metropolis.

For ready the clustering step, we use silhouette coefficients as the optimization of cluster numbers
from the hourly footfall number records (the numbers of footfalls are standardised), Figure 2 denotes
7 groups of clusters (i.e., 7 types of HAZs) is the optimal for the dataset based on the highest index
values.

Then, according to the results generated by agglomerative clustering algorithm, the clustered hourly
temporal footfall patterns as 7 different groups are illustrated in Figure 3. It is interesting to find
that the significant differences of footfalls tend to decline (i.e., tend to be a similar pattern )across
seven groups from before-lockdown to after-lockdown period. One alternative explanation is that
the stay-at-home order has normally shaped the regularity of human activity in most urban areas
after lockdown which exhibits various human routines before lockdown due to distinctive urban
function.

Figure 4 denotes the spatial distribution of HAZs in urban areas of London. The HAZs are visualised
as their urban functional types according to their temporal human activity patterns. Specifically,

https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
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Figure 1: Daily human activities (footfalls) in London from Mar. 9, 2020 to Apr. 6, 2020.
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Figure 3: Hourly human activity patterns in seven types of HAZs in London.

the HAZs 5 (red areas) consists of 89 MSOAs mainly concentrated on the urban central areas
exhibiting amounts of human footfalls, such as City of London. On the contrary, the HAZs 1
comprising 211 MSOAs (green areas) are distributed on the external areas of London, such as
Richmond Park.

4 Discussion and conclusions

Concerning the population density as an explanation of the HAZs distribution in our study area,
we employ the census data from London Datastore ? at MSOA-level to examine such demographic
variable’s correlation with our generated HAZs. Figure 5 reveals that the distribution of population
density in different types of HAZs. Generally, the box-plot shows the population densities of HAZs
1, HAZs 3 and HAZs 6 are less than HAZs 0, HAZs 2, HAZs 4 and HAZs 5. Statistically, population
density has significant differences in the seven groups of HAZs based on a non-parametric test called
Kruskal-Wallis test (p < 0.0001).

Following our proposed analysis framework, human footfalls representing human activity metric
aggregated from stays/stops from raw mobile GPS data using stop detection algorithm, and HAZs
can be efficiently generated based upon the MSOA using an agglomerative clustering algorithm.
The results facilitate our understanding of how human activity patterns could be impacted by
containment policies, and thus human routine patterns are associated with demographic variables
differently across the urban areas in London. As the complexity of the urban system, our further
work will focus on using multi-variables to interpret the spatial heterogeneity of human activity
dynamics during the COVID-19 pandemic.

’https://data.london.gov.uk/dataset/super-output-area-population-lsoa-msoa-london
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Figure 4: The spatial distribution of HAZs in London.

BN HAZs O

HAZs 1
T HAZs 2
B HAZs 3
BN HAZs 4
0 HAZs 5

HAZs 6



Population density (N/km?)

25000

20000

15000

10000

5000

HAZs 0
HAZs 1
HAZs 2
HAZs 3
HAZs 4
HAZs 5
¢ HAZs 6

) statistic=37.86, p < 0.0001 -

Lo‘ com
r

| L]

HAZs

Figure 5: The population density in different types of HAZs in London.
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