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Comparative effectiveness research using network meta-analysis can present a hierarchy of competing
treatments, from the most to the least preferable option. However, in published reviews, the research question
associated with the hierarchy of multiple interventions is typically not clearly defined. Here we introduce the novel
notion of a treatment hierarchy question that describes the criterion for choosing a specific treatment over one
or more competing alternatives. For example, stakeholders might ask which treatment is most likely to improve
mean survival by at least 2 years, or which treatment is associated with the longest mean survival. We discuss
the most commonly used ranking metrics (quantities that compare the estimated treatment-specific effects), how
the ranking metrics produce a treatment hierarchy, and the type of treatment hierarchy question that each ranking
metric can answer. We show that the ranking metrics encompass the uncertainty in the estimation of the treatment
effects in different ways, which results in different treatment hierarchies. When using network meta-analyses that
aim to rank treatments, investigators should state the treatment hierarchy question they aim to address and employ
the appropriate ranking metric to answer it. Following this new proposal will avoid some controversies that have
arisen in comparative effectiveness research.

multiple treatments; network meta-analysis; probability; ranking; surface under the cumulative ranking curve;
treatment hierarchy

Abbreviations: BV, best value; NMA, network meta-analysis; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation;

SUCRA, surface under the cumulative ranking curve.

In comparative effectiveness research, the ranking of
multiple competing treatments is a potentially important ad-
vantage of network meta-analysis (NMA) over pairwise meta-
analysis (1-3). Different methods have been proposed in the
literature, including estimation of the probability of each
treatment assuming each rank, the median and mean rank of
each treatment, and the surface under the cumulative rank-
ing curve (SUCRA) for each treatment. The SUCRA is a
(Bayesian) summary of the rank distribution which can be
interpreted as the estimated proportion of treatments worse
than the treatment of interest. It can be approximated by a
frequentist analog, the P-score (2, 4).

Several tutorials correctly point out that while ranking
metrics may be useful, the relative treatment effects and
their uncertainty are the most clinically relevant output from
NMA (5-7). Criticism of the use of ranking metrics is abun-
dant in the literature. For example, Kibret et al. performed

a simulation study and concluded that “decisions should
not be made based on rank probabilities[,] especially when
treatments are not directly compared . .. as they may be ill-
informed” (8, p. 459). Mills et al. concluded that “inter-
pretability [of treatment ranks] is limited by the fact that they
are driven predominantly by the estimated effect sizes, and
that standard errors play an unduly small role in determining
their position” (9, p. 3). Veroniki et al. (10, p. 127) and
Trinquart et al. (11, p. 671) examined several published
networks and concluded that the ranking statistic values
“may be unstable.” Wang and Carter stated that “SUCRA
findings can be misleading and should be interpreted with
caution” (12, p. 843).

These concerns have raised awareness of what ranking
can and cannot do and have drawn attention to the dan-
gers of oversimplification and reliance on treatment hierar-
chy alone. However, some of the criticisms inappropriately
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attribute the problem to the ranking metrics per se. In this
article, we argue that ranking metrics are not misleading.
Rather, the confusion in the literature is due to the fact that
different ranking metrics aim to answer different questions
about treatment hierarchy and that researchers do not clearly
define what they mean by “the best treatment” in a given
setting. In a collection of 232 NMAs, we did not find
any review that reported the definition of the preferable
treatment or anything that could be interpreted as what we
define below as a “treatment hierarchy question™ (13). We
show that this confusion is specific to networks and does
not arise in comparisons of 2 treatments. We also suggest
that any comparison of the treatment hierarchies obtained
by different ranking metrics should acknowledge that they
provide answers to different treatment hierarchy questions.

We first introduce the notion of the treatment hierarchy
question and argue that the question addressed by an NMA
should determine the quantities used to answer this ques-
tion (i.e., the ranking metrics used to obtain the treatment
hierarchy). We then present the properties of the commonly
used ranking metrics and discuss the questions they address.
We use theoretical examples to show that each ranking
metric encompasses the uncertainty in the estimation of the
relative treatment effects in a different way, and this can
lead to different treatment hierarchies. We conclude with
recommendations and a discussion about possible future
extensions of the existing ranking metrics, which can answer
more complex treatment hierarchy questions.

All results, figures, and tables presented in this article
were produced using R software and are reproducible with
the scripts shown in our GitHub repository (14).

WHAT ARE TREATMENT HIERARCHY QUESTIONS AND
RANKING METRICS?

Defining a treatment hierarchy question

A treatment hierarchy question is a question that deter-
mines when a treatment is preferred over another or several
competing treatments. It involves considerations about the
chosen health-related endpoint (e.g., low-density lipoprotein
cholesterol (LDL-C) concentration), the summary of the
endpoint within each treatment arm (e.g., the mean LDL-C
concentration), the effect measure between treatment arms
(e.g., mean difference), and the criterion according to which
a treatment will be preferred over another. Preference for
a treatment in the treatment hierarchy question is phrased
according to the maximization of a statistic; the latter we
term the ranking metric and discuss it in more detail in the
next section.

Careful and clear framing of the research question before
starting any systematic review is good practice, to which
most published NMAs adhere. In a recent bibliographical
study, investigators in all published NMAs clearly stated
the efficacy and safety outcomes and the effect measure(s)
used to compare each pair of competing interventions (15).
The focus of evidence synthesis in comparative effectiveness
research is the relative treatment effect—for example, the
difference in the mean value of a quantitative outcome
between treatments. The clinical trials literature now calls
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this quantity the estimand: the quantity that is to be estimated
(16). In this paper, we consider absolute estimands, such as
the treatment-specific mean, as well as relative estimands,
which are comparisons of absolute estimands. In the case
where 2 treatments are compared, if we knew the true value
of the relative treatment effect, this would automatically
define which treatment is preferable; in practice, the relative
treatment effect is estimated with error, but its value still
shows which treatment appears preferable.

Similar attention to a clear definition of the research ques-
tion has not been paid when several treatments are compared.
Authors typically do not report a clear definition of what they
mean by the “best” or “preferable” treatment. In NMA, we
have several relative treatment effects. If they were known
without error, then the treatment hierarchy would be clear.
When the relative treatment effects are estimated with error,
however, they cannot easily be translated into a treatment
hierarchy. As we discuss below, the crucial difficulty arises
when we have to deal with uncertainty around multiple
relative treatment effects.

The treatment hierarchy question must be answerable
from the available data and must relate to the selected
estimand. We take the example of treatments for lowering
LDL-C. “Which is the best treatment?” is not an appropriate
treatment hierarchy question, because it cannot be answered
from data. Instead, we can answer the question, “Which
treatment is most likely to be the best treatment?”” by using
data to make probability statements about the treatment
effects. Next, the term “best” needs to be defined by linking
it to an estimand. Such refinement of the question might,
for example, lead to the clear question, “Which treatment
is most likely to produce a mean LDL-C level of <2.5
mmol/L?”. In this case, we will need to use our data to
calculate the probability of the mean LDL-C level’s not
exceeding 2.5 mmol/L for each treatment and then order the
treatments according to those probabilities.

Defining a ranking metric

A treatment hierarchy question defines, among others,
the criterion used to identify the best treatment. This is
the maximization of a summary statistic of the (beneficial)
impact of the treatment on one or more health outcomes.
Ranking metrics are such treatment-specific statistics and
are used to answer treatment hierarchy questions. More
formally, we define a ranking metric as a treatment-specific
summary of the joint distribution of the absolute estimands
or the relative treatment effects.

In the question above, the relevant ranking metric is the
probability that the mean LDL-C concentration is less than
2.5 mmol/L. Then the answer to the treatment hierarchy
question is given by maximizing this probability across all
treatment options; we call this the preferable treatment.
Further examples of commonly used ranking metrics are
discussed below.

Setting and notation

Consider several medications denoted by i (i = 1,...,7T)
and a single harmful outcome of interest, where the estimands
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Table 1. Notation Used for the Observed and Unobserved Quantities in a Network Meta-Analysis Comparing T

Competing Treatments

Term Estimated)

Unobserved Quantity (to Be

Observed Quantity (Estimate)

Mean Parameters ;, 3;;

Treatment comparison
ja 8I] < 0

Treatment ranking Treatment / is the best,

8j < Oforallj
Ranking metric

Treatment i beats treatment

Summaries M, Dj;

Probability that treatment / beats treatment j,
P@j < 0)

Probability that treatment i is the best,
P < 0 for all j)

Any summary of the estimates above or
probabilities

are the (absolute) true means of the outcome ; or their
relative treatment effects 3;; = p; — ;. For ease of interpre-
tation, we take a Bayesian approach to the estimation, where
treatment effects are estimated with uncertainty conveyed by
their joint posterior distribution; we will subsequently refer
to this as “the distribution.” Consequently, any subsequent
reference to the estimation of w; or §; will involve a whole
distribution of possible values, and ranking metrics will
describe features of these joint distributions (one for each 7).
A popular way to communicate the uncertainty is to present a
range of plausible values for each estimand separately, such
as a 95% credible interval. At the center of the distribution
that estimates p; is the point estimate M; (the posterior
mean), our “most likely”” estimate of the true mean outcome
with treatment i. M; is a single known value (unlike the
unknown |;), and it is one of the many possible ranking
metrics discussed below. Similarly, the point estimate of the
relative treatment effect 3;; is D;; = M; — M;. We consider
that a treatment i “beats” treatment j when ; < |, but we
do not know from data whether this is true; however, we can
use the data distribution that estimates p; and p; to estimate
the probability that treatment i beats treatment j. A summary
of the notation is presented in Table 1.

Example: formulating treatment hierarchy questions for
interventions to reduce LDL-C levels

Consider the fictional example of 3 treatments (A, B, and
C) aiming to lower LDL-C levels in patients at high risk
of cardiovascular disease, plus a placebo (P). Suppose for
a moment that only LDL-C levels determine the preferable
treatment, though in reality we should also consider high-
density lipoprotein cholesterol levels, cardiovascular events,
and mortality, as well as cost and convenience. After synthe-
sis of randomized trials that compare pairs of cholesterol-
lowering treatments in participants with baseline LDL-C
levels between 2.60 mmol/L and 5.10 mmol/L, suppose that
our knowledge about the true population mean posttreatment
levels @4, B, ¢ is shown in the distributions of Figure 1.
These distributions are characterized by the 3 centers (or
point estimates) M4, Mp, Mc and uncertainty that depends
on the amount of information available for each treatment,
with treatment C having the most information and treatment
B the least.

There are several treatment hierarchy questions one can
ask, and the order of the treatments depends on that question.
One possible question is, “Which treatment has the smallest
estimated mean posttreatment LDL-C level?” (treatment
hierarchy question 1). This orders the treatments according
to M; and indicates B as the preferable treatment.

Alternatively, we can heuristically interpret the European
guidelines, which recommend that treatment should halve
LDL-C levels, to obtain another treatment hierarchy ques-
tion (17). In a population with an average LDL-C level
of 5 mmol/L, we can set the goal to have a posttreatment
mean value ; below 2.5 mmol/L; a possible question is
then, “Which treatment maximizes the probability P(i; <
2.5 mmol/L)?” (treatment hierarchy question 2). This orders
the treatments according to their areas below 2.5 mmol/L in
Figure 1 and indicates C as the preferable treatment.

Distribution of the
4 Population Mean
— y~N(2.1,0.2%)
- - ug~N(1.7,0.59)
- pe~N(2.1,0.1?)
3,
2
7
C
8 21
14
04 --" -

T T T
0.5 1.0 1.5 2.0 25 3.0
LDL-C Level, mmol/L

Figure 1. Hypothetical example of 3 interventions (A, B, and C) aim-
ing to reduce low-density lipoprotein cholesterol (LDL-C) levels. The
distributions refer to the true population mean ; for posttreatment
LDL-C levels and is the result of the synthesis of randomized trials
that compare pairs of treatments.
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Table 2. Ranking Metrics Used to Obtain a Treatment Hierarchy in Network Meta-Analysis, Their Formulas, and the Treatment Hierarchy

Questions They Can Answer

Ranking Metric

Method of Calculation

Treatment Hierarchy Question(s)

Point estimate of the mean absolute
estimand or relative treatment effect
(M;, Dy)

Probability of a treatment’s having the
best mean outcome value (p; pv)

T-1sr o
SUCRA for treatment i (SUCRA;) Zeot Zi=Piia

-
> Piyxre

r=1

Mean rank (Mean R;)

The center of the distribution of the absolute
estimand or relative treatment effect

P(u; < ; for all treatments j # /)

Which treatment has the smallest estimated
mean value on the studied outcome?
Which treatment has the largest estimated
mean advantage compared with all other
competitors?

Which treatment is most likely to have the
best (most desirable) mean value on the
studied outcome?

Which treatment has the largest fraction of
competitors that it beats?”

In the distribution of treatment effect ranks,
which treatment has the largest mean

rank?
Median rank (Median R;) The value satisfying Z?"jdia" A Pir < % In the distribution of treatment effect ranks,
T 1 i i
and 3 wegian A1 Pir = % which treatment has the largest median

rank?

Abbreviations: BV, best value; SUCRA, surface under the cumulative ranking curve.

a Trepresents the number of competing treatments.

b Assuming a harmful outcome, we consider that a treatment i “beats” treatment j when the true mean values of the outcome fulfill w; < ;.
¢ pj represents the probability that treatment / will produce the rth most favorable value (or will “beat” exactly r treatments).

Note that treatment hierarchy questions can be expressed
using absolute estimands or relative treatment effects. In
Web Appendix 1 (available at https://doi.org/10.1093/aje/
kwab278), we explain why this choice is important when
more than 2 treatments are to be compared.

RANKING METRICS AND THEIR PROPERTIES

All ranking metrics summarize the distribution of p; or 3;;
estimated in NMA and transform them into a set of numbers,
one number (metric) for each treatment. Ranking metrics
mostly differ in the way they combine the mean and uncer-
tainty in the estimated w; or 3;;. The most commonly used
ranking metrics are discussed below and are summarized in
Table 2.

The role of precision in the estimation of w; or 8;; when
calculating ranking metrics is responsible for the disagree-
ment in the resulting hierarchies. In Web Appendix 2, we
outline the factors that control the precision in the estimation
of w; or d;;. To explore these further, we compare the hierar-
chy of treatments whose effects are estimated with different
levels of precision in the following hypothetical example.

Hypothetical example

In Figure 2, we present 2 possible scenarios for the esti-
mates of the absolute estimands ;, where we have 4 treat-
ments named P (placebo), A, B, and C. Clearly, the active
treatments (A, B, and C) are better than P, and we now want
to create a hierarchy between the active treatments.

Am J Epidemiol. 2022;191(5):930-938

Hierarchy based on the point estimates

In many applications, it is implicit that the treatment
hierarchy question relates to the center of the distribution
M; (or Djj). Ranking treatments according to M; answers the
question, “Which treatment is associated with the smallest
estimated mean value on the studied outcome?”. Similarly,
ranking according to D;; answers the equivalent question,
“Which treatment is associated with the largest estimated
mean advantage compared with all other competitors?”.

This approach considers only the point estimate M; in each
distribution and incorporates uncertainty in the estimation
only to the degree that this contributes to the calculation
of M;. This can be justified from decision theory (18). In
scenario 1 in Figure 2, the treatment hierarchy is A, B,
and then C, while in scenario 2 all 3 active treatments are
equivalent.

Hierarchy based on the probability of a treatment’s
producing the best mean outcome value

The probability p; gy that treatment i has the best value
(BV) for a mean outcome at the population level (the small-
est value for a harmful outcome or the largest value for
a beneficial outcome) is misinterpreted in many reports of
NMA:s, as the probability of a treatment’s being overall the
best option (and often denoted as “P(best)”’). Note again the
distinction between a treatment’s having the best mean out-
come at the population level (which is not directly observed)
and a treatment’s being the best treatment option (which is
a clinical decision based on observed data). In the context
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Figure 2. Distributions of the absolute estimands (i;) of 3 active treatments (A, B, and C) and a placebo (P) with means M; and standard

deviations SD; in a hypothetical example. A) Scenario 1; B) scenario 2.

of our example of Figure 2, ps v is the probability that the
mean outcome |4 with treatment A is more favorable than
the mean outcome with either treatment B, treatment C, or
placebo. The probability p; gy is defined as the probability
that i “beats” all other competing treatments and can be
directly estimated in a Bayesian setting or in a frequentist
setting using resampling.

Ranking based on p;pyv answers the question, “Which
treatment is most likely to have the best (most desirable)
mean value on the studied outcome?”. Then the hierarchy
will be obtained using p; gv, with larger values correspond-
ing to more preferable treatments. However, a high ps v
value does not suggest that treatment A is preferable under
any treatment hierarchy question. In particular, there might
be a large probability that A also produces the worst mean
outcome among all competitors.

In scenario 1 in Figure 2, the hierarchy using p; gy agrees
with that obtained from ranking ;. In scenario 2, p; gy gives
the hierarchy C, B, and A: This differs from the hierarchy
when ranking M; because it reflects differences in the preci-
sion with which w4, wp, and ¢ are estimated. However, it
cannot be described as a “wrong” or “misleading” treatment
hierarchy.

Rankograms and cumulative ranking plots

An extension to p; gy considers both tails of the distribu-
tions of p;, by calculating the probability that a treatment
is the best, the worst, and all positions in between. The
probability p; , is the probability that treatment i will “beat”

exactly T —r treatments; p; 1 is the same as p; gy. The cumu-
lative probability cp;, = > ;_; pik is the probability that
treatment i “beats” at least 7 — r treatments or, equivalently,
the probability that i is one of the top r treatments. The plots
of p;, and cp;, (presented in Table 3 for the scenarios in
Figure 2) are termed rankograms and cumulative ranking
plots.

A rankogram is a distribution of the treatment ranks,
and it is not to be confused with the notion of a ranking
metric. In contrast to the ranking metrics, rankograms do not
necessarily imply a treatment hierarchy or answer a specific
treatment hierarchy question. A summary measure of a
rankogram is, however, a ranking metric; several possible
options are presented below.

Hierarchy based on the SUCRA

A numerical summary of the rankograms is provided by
the SUCRA (2). The SUCRA is calculated as the sum of
all cumulative rank probabilities up to 7 — 1 divided by
T — 1 (Table 1). For a treatment i, SUCRA; measures the
extent of certainty that a treatment beats all other competing
treatments. It can therefore answer the question, “Which
treatment has the largest estimated fraction of competitors
that it beats?”.

The SUCRA synthesizes all ranking probabilities in a
single number and reflects the overlap between the treatment
effect distributions; the larger the overlap, the more similar
are the SUCRA; values. If all treatments have the same
M; but various degrees of uncertainty, then they all have

Am J Epidemiol. 2022;191(5):930-938
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Table 3. Ranking Metrics for the Hypothetical Scenarios Presented in Figure 22

Ranking Metric

Scenario and

Treatment MP  pigv,%°  cpi2 %  cpis,%® cpis, %’ SUCRA,% P-Score ';':f": M::r':("
Scenario 1

P 10 0.2 14 8.0 100 3.2 3.2 3.9 4

A 48.0 79.2 98.8 100 75.2 75.2 1.8 2

B 2 317 67.7 975 100 65.6 65.6 2.0 2

Cc 3 20.1 517 95.7 100 56.0 56.0 2.3 2
Scenario 2

P 10 0.1 0.6 74 100 2.6 2.6 3.9 4

A 1 26.1 73.9 99.9 100 66.6 66.6 2.0 2

B 1 33.1 66.6 98.6 100 66.1 66.1 2.0 2

C 1 40.7 58.9 941 100 64.7 64.7 21 2

Abbreviations: BV, best value; SUCRA, surface under the cumulative ranking curve.

a All probabilities are converted to percentages in the table.
b M is the mean of the distribution of the absolute estimand i.

¢ The probability p;j; is the probability that treatment i has the rth-best mean value, r = 1,2,3, 4 (e.g., the best value, the second-best value,

etc.) on the studied outcome.
d cp;, are the cumulative ranking probabilities.

SUCRA; = 50%. Riicker and Schwarzer (4) suggested a
transformation of the 1-sided P values that test the differ-
ences between the means of the distributions as another way
to calculate the SUCRA, termed the P-score.

Table 3 shows SUCRA values for the 2 scenarios in
Figure 2. The hierarchy obtained by the SUCRA in scenario
1 is in agreement with the hierarchy obtained with p; gy. In
scenario 2, SUCRA values are very close together for the 3
active interventions.

Hierarchy based on mean or median rank

To rank treatments, the mean or median rank for treatment
i (Mean R; and Median R;) can also be used. Mean ranks are
transformations of SUCRAs Mean R; = T — (T — 1) x
SUCRA,) and can be estimated via P-scores. Consequently,
Mean R; answers the same question as the SUCRA. How-
ever, mean and median ranks are more intuitively associated
with the question, “In the distribution of treatment effect
ranks, which treatment has the largest mean (or median)
rank?”. Because of their mathematical relationship, mean
ranks always result in the same treatment hierarchy as the
SUCRA. Median ranks might be easier to gauge, as they are
integers, but the presence of many ties might conceal small
differences between treatments.

IMPACT OF IMPRECISELY ESTIMATED TREATMENT
EFFECTS ON THE TREATMENT HIERARCHY

As discussed above, the various ranking metrics differ in
the way they incorporate uncertainty in the estimation of ;.

Am J Epidemiol. 2022;191(5):930-938

Below we explore further the level of agreement between the
ranking metrics M;, p; pv, and SUCRA. We assume that the
distributions of p; are normal.

Impact of uncertainty on hierarchies obtained by
estimated mean M; and SUCRA

When the differences in precision across estimates of ;
are extreme, the hierarchy obtained with the SUCRA can
differ from that obtained with M;. Consider the example
in Figure 2, scenario 1. According to M;, the hierarchy is
treatment A, then B, and finally C. We gradually increase
the uncertainty around the estimation of p4 as shown in the
first column of Table 4. In the extreme scenario where the
variance of g is 20, the hierarchy obtained with SUCRAs
isB,C, A.

Increased uncertainty in the estimation of 4 results in
wider overlap with its competitors. When these competitors
have point estimates worse than A (as is the case here), then
lower precision in g4 leads to lower ranks for A. If the
competitors P, B, and C had point estimates superior to A,
then lower precision in pyg would lead to higher ranks for
A. In general, when the competitors of a random treatment
X have M; worse than My, then larger imprecision in py
leads to lower ranks for X. The opposite occurs when the
competitors of X have more favorable point estimates than
My, as will be shown in the next section and Figure 3.

As we explained above, this disagreement occurs because
SUCRAs (and other probabilistic metrics) incorporate the
uncertainty in the estimates, while the point estimates of the
mean effects M; do not.
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Table 4. Example Showing the Impact of Increased Imprecision Associated With the Estimation of the Mean Outcome

With Intervention A

SUCRA, %

Absolute Treatment Effect 4

Placebo Treatment A Treatment B Treatment C
wa ~ N(1,3) 3.2 75.3 65.6 55.9
wa ~ N(1,10) 9.1 63.9 67.5 59.5
wa ~ N(1,15) 11.9 59.9 67.9 60.3
wa ~ N(1,20) 13.6 577 68.1 60.6

Abbreviation: SUCRA, surface under the cumulative ranking curve.
@ The first column shows the outcome distribution of wa as a normal (N) distribution with mean 1 and a standard
deviation that ranges from 3 to 20. The distributions for the other interventions are ug ~ N(2, 3), pc ~ N(3), and

wp ~ N(3, 10), as shown in Figure 2, scenario 1.

Impact of uncertainty on the hierarchies obtained by
Pi,BvV and SUCRA

To study further the impact of uncertainty on the dif-
ferences in hierarchy between p; py and SUCRA, we now
assume placebo to have the lowest mean value Mp = —2
and the other treatments A, B, and C to have the values
M; =1, 1.5, and 2, respectively. We start with all standard
deviations (SDs) of the estimated distributions set equal to
1; then we gradually increase the SD of C, SD¢, up to 10.
Increased uncertainty in C produces more overlap between
the distributions of i and | p; because placebo is the most
preferable treatment, C “moves up” in the hierarchy. With

Z

1.0 4

SDc = 2, pipv suggests that treatment C is higher in the
hierarchy than treatment A, while it needs an SD¢ as large
as 7.5 for the SUCRA to indicate that C is higher in the
hierarchy than A (Figure 3).

DISCUSSION

In this article, we introduced the idea of a treatment hier-
archy question, and we suggested that the clinical decision-
making problem should be clearly defined at the beginning
of every comparative effectiveness review. We discussed
the most commonly used ranking metrics, which are either

0.8
0.6

SUCRA

e e e e e
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0.0

04 ~TTTmmmm---- o

SD in Treatment C
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w
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Figure 3. Differences in treatment hierarchy obtained from the surface under the cumulative ranking curve (SUCRA) (panel A) and from the
probability of a treatment’s having the best mean outcome value pgy (panel B) when the standard deviation (SD) for the absolute estimand of
treatment C, SDc, increases from 1 to 10. The other effects are Mg =2, My =1, SDa =1, Mg = 1.5, SDg =1, Mp = —2, and SDp = 1. BV, best

value.
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the mean of each treatment-specific distribution or a more
general summary of the joint distribution (such as SUCRA
and p; pyv). We showed that each ranking metric could, in
principle, answer a specific treatment hierarchy question,
and when used in this context, every ranking metric provides
a valid treatment hierarchy for the corresponding question.

Several authors have criticized the use of ranking metrics
in published NMAs. Their criticism is misplaced, because
there is no universally accepted “gold standard” treatment
hierarchy against which the hierarchy obtained by the var-
ious ranking metrics is to be evaluated. All apparent limi-
tations of the ranking metrics result from the fact that they
transform a complex set of information (e.g., distributions
for the mean treatment effect with location and dispersion)
into a set of (univariate) numbers. Our theoretical examples
suggested that, when the treatment-specific outcome distri-
butions are estimated with different degrees of precision, the
hierarchy based on the mean estimate may disagree with that
obtained by more general summaries of the distribution. We
also observed that:

1. SUCRA values depend on the precision of estimation
of treatment effects, but they do not consistently under-
or overestimate the rank of the treatments whose effects
are imprecise; instead, changes in hierarchy very much
depend on the rankings of the other treatments.

2. pipv is more sensitive to differences in precision across
treatment effect estimates than the SUCRA. Among
treatments with the same point estimate, p; py ranks first
the treatment with the most imprecise effect, because it
ignores the equally high probability of the treatment’s
being worst.

Setting up the treatment hierarchy question is not trivial,
and further research is needed to define the spectrum of
questions that an NMA can answer. Part of the difficulty in
specifying a treatment hierarchy question is in clear use of
language. In this article, we offer some ideas about what the
question could be, but some stakeholders may be interested
in questions that cannot be answered by any of the described
approaches. Decision-making is a complex process that con-
siders several efficacy and safety or tolerability outcomes,
clinically important differences in the relative treatment
effects, the utilities associated with each outcome value,
and predictions in real-world conditions. These consider-
ations motivate extensions of the existing ranking metrics
or formal decision analysis (19-21). Additionally, in the
current work, we discuss the ranking metrics as summary
statistics. Many ranking metrics are also interpretable as
parameter estimates, however, and for these it is reasonable
to report a measure of uncertainty provided that the change
of perspective is made clear. For example, the 95% cred-
ible interval for the mean rank describes our uncertainty
about the true rank of that treatment compared with its
comparators.

Without loss of generality, we assumed that the outcome
of interest is continuous. It is possible to have dichotomous
or dichotomized continuous outcomes, depending on the re-
search question of interest. For example, the outcome might
be whether each individual within a trial has an LDL-C
level less than 2.5 mmol/L or not. In this case, the estimand
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i; would be a probability and, as with a continuous out-
come, the ranking metrics would summarize the treatment-
specific joint distribution of |;’s. Finally, we assumed that
the distributions of the estimands p; are normal. Although
nonnormal distributions can occur, extreme skewness that
affects the agreement between ranking metrics was empiri-
cally assessed to occur infrequently (13).

Treatment rankings have also been criticized for not
including assessments of the quality of evidence (22);
this applies equally to relative treatment effects. In a pair-
wise meta-analysis, interventions with large and precise
effects are not necessarily preferable if the evidence is
of low quality. Similarly, the treatments at the top of the
hierarchy should not be blindly recommended without
first scrutinizing the confidence in the results. The risk of
bias in the included studies, the amount of heterogeneity,
the plausibility of the consistency assumption, and the
threat of publication bias could all limit the credibility of
a treatment hierarchy, just as for effect sizes in pairwise
meta-analysis. An attempt to produce statements about the
credibility of ranking can be found in Salanti et al. (23) and
is subject to ongoing research extending the Confidence in
Network Meta-Analysis (CINeMA) framework (24). Sys-
tematic reviewers should consider the quality of the evidence
when translating numerical results (effect sizes or rankings)
into recommendations, and failure to do so should not be
perceived as a shortcoming of the ranking metrics employed.

The main challenge that analysts face is to be aware of the
advantages and disadvantages of rankings and to be transpar-
ent about the methods used. Even when a treatment hierar-
chy question is clearly defined and the appropriate ranking
metric is used, the importance of ranking interventions is not
to provide a “cookbook” for health-care decision-making.
Interpretation of a treatment hierarchy must ideally extend
beyond inspection of the values from ranking measures and
draw on the totality of the evidence synthesis results. In this
spirit, we recommend that every systematic review explicitly
define in its protocol the treatment hierarchy question it
aims to answer, choose an appropriate ranking metric for
that question, and interpret the obtained hierarchy after
considering the uncertainty in the treatment effects and the
quality of the evidence.
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