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Abstract 

Climate change is one of the biggest challenges facing 

humankind in the 21st century. In the building sector, a 

warming climate will significantly alter building occupant 

health, comfort and wellbeing. School buildings in the 

UK, in particular, might face additional challenges, such 

as indoor overheating risks due to high internal gains in 

classrooms, and their current reliance on natural 

ventilation, which might offer limited cooling capacity in 

the future, while simulation and assessment of students’ 

exposure to built environment is limited.  

This paper presents a methodological framework for 

modelling cognitive performance of students at 

population level and applies the framework in the case of 

London secondary schools to calculate and evaluate 

students’ cognitive performance level under different 

climate scenarios.  The aim of the present study is to 

explore the applicability of this framework on 

investigating the impacts of ongoing and future climate 

change on schoolchildren’s cognitive performance levels. 

Using the PDSP (Property Data Survey Programme) 

dataset and a basic set of school building archetypes for 

London, a set of archetype models was developed. 

Weather files based on existing Test Reference Years 

(TRY) incorporating the UK Climate Projections 2009 

scenarios were used for EnergyPlus dynamic simulation. 

It was found that outdoor temperature, building geometry 

and ventilation rates can function as reliable predictors of 

students’ cognitive performance. Future work will include 

a sensitivity analysis aiming to identify the relative 

importance of these factors as part of ongoing research.  

Introduction 

Climate change is a major challenge facing humankind in 

the 21st century, and it might have adverse impacts on 

buildings and occupants in the built environment sector. 

People spend almost 90% of their time indoors 

(Vardoulakis et al., 2015), and their health and 

performance inside buildings are significantly affected by 

indoor environmental conditions (Wargocki & Wyon, 

2017), which are driven by outdoor climatic conditions 

(Fisk, 2015). Thus, it is crucial to promote human health, 

comfort and performance in the built environment in the 

context of climate change (de Wilde & Coley, 2012). In 

particular, attention should be paid to primary and 

secondary schools due to the additional challenges facing 

school environments: Children’s bodies are still 

immature, and they are more vulnerable to a range of 

indoor environmental exposures compared to adults 

(Chatzidiakou, Mumovic, & Summerfield, 2012). 

Classrooms typically have high occupancy density, which 

could results in high internal heat gains, high carbon 

dioxide (CO2) levels, emissions of body odours and a 

wide range of indoor air pollutants. These may have 

negative consequences on children’s health and learning 

performance. Furthermore, maintaining adequate thermal 

comfort in UK schools could become increasingly 

challenging in the future warming climate, as they 

traditionally rely on natural ventilation rather than active 

cooling systems (Jenkins, Peacock, & Banfill, 2009). The 

needs to optimise classroom indoor environments have 

been highlighted in several studies (Chatzidiakou et al., 

2012; Jenkins et al., 2009; Montazami, Gaterell, & Nicol, 

2015). 

This study will focus on cognitive performance of 

students’ in schools because school is the main place 

where student gain knowledge and develop skills. 

Cognitive performance reflects the ability of an individual 

to undertake different mental tasks; there is evidence that 

indoor thermal conditions affect cognitive performance in 

schools (Mumovic, Chatzidiakou, & Ahmed, 2018). To 

avoid cognitive performance to be impaired, careful 

consideration of current and future school building 

performance is essential (Montazami et al., 2015). 

Existing studies have suggested cognitive performance is 

strongly related to indoor temperature (Haverinen-

Shaughnessy & Shaughnessy, 2015; Wargocki, Porras-

Salazar, & Contreras-Espinoza, 2019; Wargocki & Wyon, 

2007) or ventilation rate (Haverinen-Shaughnessy & 

Shaughnessy, 2015; Wargocki, Porras-Salazar, 

Contreras-Espinoza, & Bahnfleth, 2020) by experimental 

or field studies. However, in assisting educators and 

policymakers to develop evidence-based policy and best 

practice guidance for the improvement of classroom 

environments, modelling cognitive performance under a 

wide range of weather and operation scenarios is 

necessary, especially in the context of ongoing and future 

climate change.  

When informing policymakers in the built environment, 

decisions should consider the total number of buildings in 

a region or country. This study is, therefore, aimed at the 

population level, and the effects of classroom thermal 

conditions on cognitive performance is analysed at the 

building stock level. Previous building stock modelling 

studies have mainly focused on energy consumption and 



associated CO2 emissions , while building stock models 

with a focus on indoor environment and occupants’ 

comfort and performance are still limited. To the 

knowledge of the authors, no building stock modelling 

studies currently exist that predict the impacts of climate 

change on students’ cognitive performance in classrooms. 

A school building stock indoor environment modelling 

framework for London is presented in this paper in order 

to quantify the effects of ongoing and future climate 

change on schoolchildren’s cognitive performance levels.   

Methodology 

Currently, three main building stock energy modelling 

approaches exist: top-down, bottom-up and hybrid 

(Kavgic et al., 2010; Swan & Ugursal, 2009). This study 

has adopted a bottom-up engineering approach, which 

uses building property data and thermodynamic principles 

to calculate indoor air temperature. A set of school 

building archetypes were developed and defined as 

representative buildings of the whole London stock. 

These archetypes were subsequently modelled using 

EnergyPlus - a dynamic thermal simulation tool, and the 

simulation results were used to calculate students’ 

cognitive performance, as described in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The workflow of schoolchidren’s cognitive 

performance modelling 

 

School Building Archetype Development 

The archetypes in this study were derived through a 

statistical analysis of the Property Data Survey Program 

(PDSP) database, commissioned by the Department for 

Education (DfE). PDSP’s original aim is to collect up-to-

date information on the physical conditions of education 

estates across the UK for maintenance and upkeeping 

purposes. The PDSP database includes information for 

more than 18,000 establishments across the country, 

including primary schools and secondary schools, but 

also nurseries and special institutions. The database holds 

purely descriptive data and generic information on the 

physical properties of each school in the UK. These, 

however, include some parameters that could be useful for 

modelling and simulation purposes, e.g.:  the number of 

buildings in each school’s premises, the assumed 

construction age of each school building, the buildings’ 

footprint area, the number of stories, Window-to-Wall 

Ratio (WWR) etc. The database lacks, however, detailed 

geometrical descriptions for each building in the stock. 

The PDSP database was firstly studied and analysed 

carefully, to identify shared schools’ properties that 

would enable the generation of ‘Archetype’ models. 

Following data processing from the PDSP database, 

schools were divided into groups based on their built era, 

namely: pre-1919, inter-war, 1945-1966, 1967-1976, 

post-1976 (Table 1). Mechanically ventilated schools 

were excluded from this study, as the aim here was 

examining the performance under the naturally-

ventilation scenarios. Next, a statistical analysis was 

carried out to find the average building properties of 

schools at each built era (i.e., their average footprint, floor 

area, WWR, number of floors etc.) (Table 2) . These data 

points were later used to generate the schools’ archetype 

models. 

 

Table 1 Number of schools represented by each archetype 

Pre-1919 Inter-

War 

From 

1945-

1966 

From 

1967-

1976 

Post 

1976 

140 118 350 158 69 

 

Table 2 Geometric properties of schools at each built era 

Arche

types 

Average 

Floor Area 

（m2） 

Average 

Number of 

Floors 

Average 

Percentage of 

Windows and 

Door (%) 

Pre-

1919 

2548 2 25 

Inter-

War 

3760 2 28 

From 

1945-

1966 

5646 2 33 

From 

1967-

1976 

8537 2 30 

Post 

1976 

17061 2 55 

 

To generate the archetype’s thermal model (EnergyPlus), 

a series of ‘seed’ models were defined. These were .idf 

files that only held basic geometrical building 

Define school buildings ‘seed’ models 

Conduct post-processing analysis 

Perform dynamic simulation in EnergyPlus 

Derive school archetypes data from PDSP 

Input CIBSE weather files 

Generate thermal models for archetype 

models 

 

Estimate cognitive performance for each 

school archetype 

 



characteristics (as shown in Table 3) and their associated 

build-ups. The aim of the ‘seed’ models is to represent the 

form (shape) of the schools of the different built eras. 

These were based on (Steadman, 2014)and visual 

inspection of schools across London. Once the ‘seed’ 

models had been established, a computer program was 

developed to automatically modify their relevant 

parameters, based on the relevant data that had been 

extracted from PDSP, e.g., overall floor area, number of 

floors, WWR etc. (as shown in Table 1). 

Each seed model consists of an ‘original’ building, which 

is assumed to be the largest building in a school, and an 

additional building that is an aggregation of the rest of the 

buildings in the school (in case there are any extensions). 

Parameters in the seed models are then automatically 

modified, based on relevant data from PDSP, and 8 

archetype models are than generated. The footprint area 

and WWR of each archetype model are set for the average 

of the variants it represents. 

 

Table 3 Examples of 'Seed' models and automatically-

generated archetype models 

 ‘seed’ 

model 

Automatically -generated 

archetype models 

From 

1967-

1976 
   

Post 

1976 
 

 

 

Pre191

9  
  

 

Thermal Models 

The thermal models were created in EnergyPlus and 

converted into Input Data Files (IDF). Each floor in the 

original and additional building was defined as a thermal 

zone. Construction, material characteristics and internal 

gains from lighting, equipment and people’s activities 

were determined according the recommended values 

prescribed in Building Bulletin 101 (BB101, Guideline on 

ventilation, thermal comfort and indoor air quality in 

schools) (DfE, 2018) and the National Calculation 

Methodology (NCM) (BRE, 2017). A heating set-point 

temperature of 20℃ was set, and it was assumed that no 

active cooling system was installed in any of the modelled 

buildings. Occupancy schedules were assumed to be 9:00-

16:00 every school day which is also suggested in BB101.  

Weather Files 

TRY weather files are used to represent the external 

weather conditions for a whole year (CIBSE, 2016). As 

there are many uncertainties due to climate change, a 

novel probabilistic approach that can quantify these 

uncertainties was developed by the UK Climate Impacts 

Programme (UKCIP) (UKCIP). As the latest projections 

-  Climate Projections 2018 (UKCP18) have not yet been 

converted into weather files for building simulation, those 

in UKCP09 were used in this study. UKCP09 provides 

probability projections for future climates, which can be 

seen as the relative degree to which each possible climate 

outcomes are supported by the evidence available, based 

on our current understanding of climate science and 

observations, as generated by the UKCP09 method 

(Murphy et al., 2009). The UKCP09 Weather Generator 

produces hourly or daily projections in a number of 

climate variables for seven future overlapping 30-year 

time periods (from 2020s to 2080s) and under three 

different carbon emission scenarios (low, middle and 

high) (Jones, Harpham, Kilsby, Glenis, & Burton, 2010). 

In addition, the Weather Generator can produce 100 

TRYs and rank them according to average monthly 

temperature from lower to higher, and then the required 

percentiles (10th, 50th, 90th, etc.) can be selected. 90th 

percentile weather files, for example,  mean there is 90% 

probability that the external temperatures will be lower 

than those in the weather files, so 90th percentile 

represents worst-case scenarios, while 50th represents 

median-case scenarios and 10th represents best-case 

scenarios. Considering these three scenarios will allow 

policy makers to better manage uncertainties and inform 

risk-based decision-making. The following climate 

change scenarios were explored in this study for different 

purposes: a) 2050s medium emissions TRY (10th, 50th, 

90th percentile) b) 2080s low, medium and high emissions 

TRY (10th, 50th, 90th percentile).  

Dynamic Simulation 

School archetype models were subsequently run in the 

dynamic simulation engine - EnergyPlus version 8.9 (US 

DoE, 2018). The whole simulation process was managed 

by scripts written in Python, which allows for batch mode 

runs, thus facilitating a large number of simulations in a 

time effective manner. All simulations were run for the 

time when the classrooms are occupied throughout a year, 

and the only output needed for post-processing analysis 

were indoor temperature.  

Post-Processing Analysis 

For the purposes of cognitive performance modelling, 

calculations were performed at an hourly basis. 

Quantitative relationships were established to link outputs 

of hourly mean temperature generated by EnergyPlus 

simulation to cognitive performance. A model 

quantifying cognitive performance as a function of indoor 

temperature from a recently published paper was used for 

this analysis (Wargocki et al., 2019).  

Wargocki et al. (2019) summarised the existing literature 

on the effects of classroom temperature on the 

performance of schoolwork or of learning outcomes in 

primary, middle and secondary schools, and then 

developed a model describing these relationships (Figure 

2). Students’ performance at 20 ℃ is used as a reference 

and assumed to be 1, and relative performance at a certain 



temperature is the measurement of cognitive performance 

in relation to the performance at the temperature of 20℃. 

 
Figure 2 Relationships between indoor temperature and 

performance. The functions describing relationship 

between relative performance and temperature is as 

follows: y = 0.2269·t2 − 13.441·t + 277.84, where t is the 

air temperature.  

Considering that indoor temperature in schools could be 

below 20℃ or above 28℃ in the simulations, the 

Wargocki et al. model was extrapolated below 20℃ and 

above 28℃. It is worth noting, however, that additional 

field data are required in order to confirm the validity of 

the model outside the range of 20℃ to 28℃ . 

Another paper (Wargocki et al., 2020) provides a 

prediction of the influences of classroom air quality on the 

performance of students by summarizing the existing data 

(Figure 3). As ventilation rate is usually used as a proxy 

for indoor air quality, a model was developed in the paper 

showing cognitive performance as a function of 

ventilation rate. The assumptions made in this study could 

lead to ventilation rate below 2 l/s/person or above 7 

l/s/person. Similar to the way that we deal with the 

relationship out of its valid range in the paper of Wargocki 

et al. (2019), the function was assumed to be applicable 

out of the range between 2 l/s/person and 7 l/s/person, so 

the solid line will be extended from the end at 2 l/s/person 

and at 7 l/s/person in this study.  

 

 
Figure 3 Relationships between ventilation rates and 

cognitive performance. The functions describing 

relationship between relative performance and ventilation 

rate is as follows: 0.0086·(VR) +0.9368, where VR is 

ventilation rate. 

 

Table 1 Analysis framework of cognitive performance 

modelling 

 

Analysis Methodology 

Impacts of climates the post-1976 archetype 

model was chosen to be 

simulated under different 

weather files 

Impacts of building 

characteristics 

five school archetype 

models were simulated in 

2050s climate scenarios 

with different ventilation 

rates imposed 

Impacts of building 

operation (ventilation 

rates) 

An school archetype run at 

different ventilation rates 

will be estimated and 

compared 

 

The assessment framework proposed in this study 

includes three stages of analysis (Table 3):   

1. Investigation of the climate change impacts in 

different periods and under different carbon 

emission scenarios on cognitive performance for 

a specific school archetype. In this case, the post-

1976 archetype model was chosen to exemplify 

the impacts of climate change on London 

schools. in order to examine the differences in 

performance driven by various climate scenarios 

for a certain school. 

2. Comparison of the differences in cognitive 

performance across five school archetype 

models under a range of weather scenarios. For 

each archetype, the model with original and 

additional buildings was simulated.  

3. Examination of the impacts on cognitive 

performance of different ventilation rates for a 

specific archetype. The post-1976 model was 

simulated again and the simulations were first 

run at the ventilation rate of 5 l/s/person as the 

baseline, and then at 8 l/s/person and 15 

l/s/person. The analysis needs to assume the 

building has constant ventilation regardless of 

natural ventilation or mechanical ventilation 

mode, when students are in classrooms. The 

cognitive performance was calculated by 

combining the results from Figure 2 and Figure 

3. The cognitive performance levels were 

calculated by using the temperature-

performance function from simulated indoor 

temperature, and then by multiplying the relative 

performance levels at each ventilation rate found 

in Figure 3.  

Results and Discussion  

For simplicity, only the outputs from the largest building 

of each school (the ‘original’ building)  are evaluated and 

compared in this section (the ‘additional’ buildings have 

been omitted). The results were plotted as cumulative 

curves illustrating the distribution of percentage of 

occupied hours during a year across all different cognitive 



performance levels. In all graphs presented below, for a 

certain level of cognitive performance (x value), its y 

value means the percentage of hours when the cognitive 

performance is below it, so the higher curve suggests that 

the percentage of hours accumulates more across lower 

levels of performance and less across the higher levels of 

performance compared to the lower curve, which suggests 

student’s performance in that school or scenario is not as 

good as others. 

 

 

Figure 4 Cumulative distribution of relative performance 

(2050s and 2080s TRY,10th,50th,90th percentile) 

 

Figure 4 illustrates how cognitive performance is affected 

in post-1976 schools under medium carbon emissions 

scenario for different TRY time slices (2050s and 2080s) 

with different percentiles. For the same time slices (e.g. 

2050s), performance levels at 90th percentile have almost  

6% more of hours distributed below 95% than 50th 

percentile and about 12% more than 10th percentile. This 

can be explained that the average temperature of weather 

files at 90th percentile (worst-case scenarios) are always 

higher than those at 50th percentile (median-case 

scenarios) and 10th percentile (best-case scenarios), so the 

cognitive performance levels at 90th percentile are 

correspondingly lower than the other two scenarios. 

Additionally, the figure shows that for 2080s TRYs, they 

generally accumulate more hours below the cognitive 

performance level of 95% compared to 2050 TRYs. This 

means that under 2080s weather scenarios, students will 

have more time performing at the relatively low levels 

than 2050s weather scenarios. The fact that the average 

outdoor temperature of the 2080s weather files is 

predicted to be warmer than 2050s is the reason that 

cognitive performance levels of the former are generally 

lower than the latter. From the paper of Wargocki et al. 

(2019), it is known that students tend to perform worse 

when temperature gets higher, while these two analyses 

quantify the extent to which the decrease in future 

cognitive performance level is due to an increase in 

outdoor air temperatures.  

Figure 5 shows the variations in students’ cognitive 

performance in the post-1976 archetype under 2050 TRYs 

projected under low, medium, high carbon emission 

scenarios, while it does not show apparent impacts on 

students’ performance.  

 

 

 
Figure 5 Cumulative distribution of performance (Labels: 

2050s_High: TRY weather files with high carbon 

emission in 2050s ; 2050_Medium: TRY weather files 

with medium carbon emission in 2050s; 2050_Low: TRY 

weather files with low carbon emission in 2050s  ) 

 

 
Figure 6 Cumulative distribution of performance across 

all five archetypes (2050s TRY, medium, 50th percentile) 

 
Figure 7 Cumulative distribution of performance across 

all five archetypes (2050s, medium, 10th percentile) 

Only the performance in the original building of each 

archetype model was investigated when comparing how 

students’ cognitive performance will be affected across all 

five archetypes for a specific weather scenario (2050s, 

medium, 50th percentile) (Figure 6). A similar distribution 

of hours across all archetypes is observed. Cognitive 

performance levels below 95% accounts for 

approximately 65% of the occupied hours during a year. 

Additionally, there are no major differences between 

performance in different percentiles (Figures 7, 8). 

However, it is noted that in all given weather scenarios 

more recent-built buildings have more time when the 

cognitive performance levels below 95% than older 

buildings. This can be explained by the fact that the 

geometric properties of models of Inter-war has the 

largest surface area-to-volume ratio (it is very compact),  

, so a lot of surface through which heat escapes in 



summertime, which maintains the indoor temperature 

within the ranges for good cognitive performance, while 

the post-1976 model has the lowest one it has less surface 

through which heat escapes, and the higher temperature 

will impair students’ performance. 

 

 
Figure 8 Cumulative distribution of performance across 

all five archetypes (2050s, medium, 90th percentile) 

The analysis above are based on simulation run at baseline 

ventilation rate (5 l/s/person). Figures 9 and 10 illustrate 

the impact of ventilation rates of 8l/s/person and 15 

l/s/person on cognitive performance across all archetypes. 

Inter-war schools are the best performing with the shortest 

time with cognitive performance levels below 95%, 

showing similar results among all three ventilation rates.   

 

 
Figure 9 Cumulative distribution of performance across 

all five archetypes (8 l/s/person) 

 

Figure 10 Cumulative distribution of performance across 

all five archetypes (15 l/s/person) 

The impacts of different ventilation rates on cognitive 

performance in a certain archetype (post-1976 schools)  is 

shown in Figure 11. The model assigned to 8 l/s/person 

has less time accumulated below the cognitive 

performance levels of 95% than the one with 5l/s/person. 

Furthermore,  the one with 15 l/s/person has much less 

hours (about 10% less than the one with 8 l/s/person and 

18% less than 15 l/s/person) distributed below the 

cognitive performance level of 95% compared to the other 

two. This could probably be attributed to the fact that 

higher ventilation rates can remove more heat from 

indoors in the summer, thus students perform better when 

the indoor temperature gets lower. However, higher 

ventilation do not always contribute to higher cognitive 

performance level. The change of ventilation rate of 

higher than 15 l/s/person is reported to have minimal 

influences on the increase in performance because the 

impacts of ventilation rate on cognitive performance are 

diminished (Seppänen and Fisk, 2006), so the model was 

not run with ventilation rates higher than 15 l/s/person in 

this study. 

 

 
Figure 11 Cumulative distribution of performance at 

different ventilation rate 

 

There is a number of limitations in the present study:  

1) This study assumes the operative temperature to be the 

same as air temperature as they are found to be very 

approximate. Although the temperature variable in 

Wargocki’s model (Wargocki et al., 2019) is air 

temperature, zone operative temperature was linked to 

cognitive performance using the temperature-cognitive 

model in order to investigate the impacts of outdoor 

climates and characteristics of building envelope on 

cognitive performance.  

2) This study tested different ventilation rates but did not 

distinguish between natural and mechanical ventilation 

mode. The impact of different ventilation strategies on 

cognitive performance was beyond the scope of this 

study. 

3) The occupancy assumptions and associated internal 

gain values used for simulation were based on the 

recommended values in guidelines rather than real 

occupancy schedules and data.  

4) The way in which cognitive performance may be 

affected by indoor temperature and ventilation rates 

outside of the range of existing curves needs to be 

validated by empirical data. 

5) The archetypes which represent a set of building 

cohorts may overlook the differences within the building 

cohorts, so if the results of the archetypes can be 

extrapolated needs to be validated as well.  



Conclusion 

The impacts of climate change on cognitive performance 

in London secondary schools were investigated in this 

paper. The assessment framework comprising of three 

analysis stages in this study is the first step towards the 

development of an integrated tool to inform policymakers 

and stakeholders (head teachers, facility managers) in the 

sustainable school building design and management field. 

Outdoor temperature is a key determinant factor for 

students’ cognitive performance. Future warmer climates 

could decrease learning performance in schools, so 

further measures need to be taken to the classrooms in the 

future. In addition, Thermal properties and ventilation rate 

provided to the classrooms also contribute to students’ 

cognitive performance, so appropriate ventilation/cooling 

strategies are needed to avoid high indoor temperature in 

classrooms. Holistic design thinking should be applied to 

future building retrofit.    

As part of ongoing work, the school building stock model 

presented in this paper will be extended to include all the 

school buildings in England and Wales to quantify the 

influences of school locations on cognitive performance. 

Moreover, we will further investigate which extent 

specific building physics parameters contribute to 

cognitive performance when additional input data from 

empirical studies are available. A sensitivity analysis 

aiming to identify the relative importance of all relevant 

factors on cognitive performance in schools will also be 

conducted in the future work. 
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