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Logics are often characterized by proof systems that are composed of rules. These rules
give meaning to the logic — see, for example, proof-theoretic semantics [7]. We [4] propose a
framework called generalizing rules via algebraic constraints (GRvAC), within which a rule may
be decomposed into another rule together with some constraints over an algebra. The effect on
the logic as a whole is more easily understood in the other direction: one enriches a logic L with
an algebra A to form a presentation of another logic L′. In short, we make precise the meaning
of equations of the following form:

Proof in L′ = Proof in L + Algebra of Constraints A
By doing reasoning in L enriched by A, one recovers reasoning in L′ through a transformation
that is parametrized by solutions to the algebraic constraints. Consequently, L is thought of as
more general than L′. More precisely, one begins by labling the syntax of L by (a syntax for)
A. Assignments I of the variables of A then determine valuations νI mapping the syntax of L
enriched by A to the syntax of L′. A rule of L′. is generalized when a rule of L (taken over the
enriched language together) with constraints (i.e., equations) over A is used to expresses it.

The GRvAC phenomenon is essentially a generalization of the resource-distribution via
boolean constraints (RDvBC) mechanism introduced by Harland and Pym [5] for the study
of proof-search in the presence of multiplicative (or intensional) connectives. Indeed, RDvBC is
an important example of GRvAC. We may use it in the case of linear logic (LL) to illustrate the
ideas given abstractly so far: one labels the formulas of LL with a syntax for boolean algebra B
(e.g., one has formulas such as ϕ ·x⊗ψ · x̄) such that assignments I determine valuations νI that
keep formulas labelled by variables that I map to 1 and delete formulas labelled by variables
that I map to 0 (e.g., if I(x) = 0, then νI(ϕ · x ⊗ ψ · x̄) = ϕ). This setup allows multiplicative
conjunction rules to be generalized to additive conjunction rules; for example,

Γ ⊢ ϕ ∆ ⊢ ψ

Γ,∆ ⊢ ϕ⊗ ψ
generalizes to Γ · x,∆ · x̄ ⊢ ϕ Γ · x,∆ · x̄ ⊢ ψ

Γ,∆ ⊢ ϕ⊗ ψ

In this way, RDvBV allows one to witness the following equation in which LL is a proof system
for LL and LK is a proof system for classical logic: LL = LK + B

Other examples of GRvAC are present in the literature too. For example, the authors [3]
have studied the application of algebraic constraints to unification during logic programming,
which can be regarded as witnessing that propositional logic is more general than predicate logic.
Moreover, though generalization allows one to relate two logics, the idea of algebraic constraints
is useful in itself and present elsewhere in the literature — see, for example, work by Negri [6] on
relational calculi. Indeed, the concept of enrichment here is strongly related to the framework
of Labelled Deductive Systems introduced by Gabbay [2].



The GRvAC phenomenon is useful for the theory of logic. It is a technology that allows
one to express formally relationships between logics; for example, it supports the folkore that
classical logic (CL) is a combinatorial core of logics (i.e., that CL generalizes most logics). It also
allows one to study the metatheory of particular logics. Moreover, by understand how a logic
arises from CL by means of an algebra, GRvAC allows one to derive model-theoretic semantics
for the logic. Inversely, it allows one to generate sound and complete proof systems for a logic
from its model theory. These semantics uses of GRvAC are prefigured by Docherty [1].

An example of the effectiveness of the GRvAC principle for metatheory is captured by a case
study on intuitionistic logic (IL). Here, GRvAC allow one to construct from a single-conclusioned
calculus a multiple-conclusioned sequent calculus, which witnesses that CL is the combinatorial
core of IL. By studying the new calculus’ relationship to CL using GRvAC, one can derive a
model-theoretic semantics of IL. The derivations provides a new technique for proving soundness
and completeness that proceeds by showing the equivalence of proof-search of the two logics
relative to the constraints captured by the algebra.

There are also practical uses for GRvAC, particularly for proof-search. For example, RD-
vBC was introduced as a solution to the context-management problem during proof-search in
substructural logics. In general, GRvAC allows one to separate the combinatorial aspects of a
logic from the internal choices made during search (e.g., the use of a quantifier rule vs the choice
of a substitution); that is, the combinatorial aspects of proof-search in L′ can be understood by
proof-search in L with the specifics of original the logic recovered by constraints over A. Among
other things, this allows one to capture certain amount of global reasoning for proof-search,
which can be interpreted as capturing a certain amount of backtracking within a proof system.

The GRvAC framework allows one to express complex rules as simple rules together with
algebraic constraints that recover the former from the latter by means of transformations para-
materized by solutions to equations over the algebra. It is useful for both intra-logic metatheory
(i.e., proof theory and semantics), inter-logic metatheory (i.e., connexions between logics) and in
applied logic tasks involving proof-search. Though we have outlined it conceptionally, substan-
tial work remains in developing the space of examples and using it to develop uniform approaches
to metatheory. Moreover, on the question of proof-search, GRvAC may be used to give a general
mathematical theory of control, which is currently lacking, and relate the control problems of
proof-search to other aspects of the logic (e.g., the clauses of its semantics).
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