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A B S T R A C T 

We present full-sky maps of the Integrated Sachs–Wolfe effect (ISW) for the MICE Grand Challenge lightcone simulation up 

to redshift 1.4. The maps are constructed in the linear regime using spherical Bessel transforms. We compare and contrast this 
procedure against analytical approximations found in the literature. By computing the ISW in the linear regime, we remove 
the substantial computing and storage resources required to calculate the non-linear Rees–Sciama effect. Since the linear ISW 

at low redshift z � 1, at large angular scales, and after matter domination is ∼10 

2 times larger in � T / T , this has a negligible 
impact on the maps produced and only becomes rele v ant on scales which are dominated by cosmic microwave background 

(CMB) anisotropies. The MICE simulation products have been e xtensiv ely used for studies involving current and future galaxy 

surv e ys. The availability of these maps will allow MICE to be used for future galaxy and CMB cross-correlation studies, ISW 

reconstruction studies, and ISW void-stacking studies probed by galaxy surv e ys such as Dark Energy Surv e y, Dark Energy 

Spectroscopic Instrument, Euclid , and Rubin Le gac y Surv e y of Space and Time. The pipeline developed in this study is provided 

as a public PYTHON package PYGENISW . This could be used in the future studies for constructing the ISW from existing and 

future simulation suites probing vast sets of cosmological parameters and models. 

Key words: methods: numerical – cosmic background radiation – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he Integrated Sachs–Wolfe effect (ISW; Sachs & Wolfe 1967 ),
aused by the evolution of gravitational potentials in large-scale
tructure (LSS), imprints features on to the cosmic microwave
ackground (CMB). The strength of these features is sensitive to
he underlying cosmological model, in particular the quantity and
ature of dark energy (Crittenden & Turok 1996 ). Ho we ver, the
MB is dominated by primordial anisotropies meaning the ISW is
nly detectable by cross-correlating the CMB with tracers of LSS.
his has been performed on several galaxy surveys to constrain the
tandard cosmological model � cold dark matter ( � CDM) and to
est expanded or alternative models (Peiris & Spergel 2000 ; Boughn
 Crittenden 2002 ; Fosalba, Gazta ̃ naga & Castander 2003 ; Scranton

t al. 2003 ; Afshordi, Loh & Strauss 2004 ; Nolta et al. 2004 ;
orasaniti, Giannantonio & Melchiorri 2005 ; Padmanabhan et al.
005 ; Giannantonio et al. 2006 ; Vielva, Mart ́ınez-Gonz ́alez & Tucci
006 ; McEwen et al. 2007 ; Giannantonio et al. 2008 ; Ho et al. 2008 ;
ia et al. 2009 ; Dup ́e et al. 2011 ; Giannantonio et al. 2012 ; Goto,
zapudi & Granett 2012 ; Barreiro et al. 2013 ; Giannantonio et al.
014 ; Planck Collaboration XIX 2014 ; Cabass et al. 2015 ; Ferraro,
herwin & Spergel 2015 ; Nicola, Refregier & Amara 2016 ; Planck
ollaboration XXI 2016 ; St ̈olzner et al. 2018 ; Hang et al. 2021 ). 
 E-mail: krishna.naidoo.11@ucl.ac.uk 
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Future galaxy redshift surv e ys will generate enormous cata-
ogues of the position and redshift of galaxies providing a large-
bservational data set with which we may conduct cross-correlation
tudies of LSS with the CMB. In order to understand the obser-
 ational sensiti vities and systematics of the ISW to cosmological
arameters, we need to be able to construct ISW maps and corre-
ponding galaxy mocks for a wide range of cosmological parameters
nd models. At present, this is computationally e xpensiv e as accurate
SW maps require regular snapshots of the gravitational potential.
his calculation therefore requires some foresight and cannot be
one ad hoc after the simulations have been run. For this reason only
 handful of such simulations exist (see Cai et al. 2010 ; Watson et al.
014 ; Carbone, Petkova & Dolag 2016 ; Adamek et al. 2020 ) using
ither the best-fitting Planck cosmology or exploring a limited set of
osmological parameters or models. 

This limitation is most striking for ISW void-stacking studies
Granett, Neyrinck & Szapudi 2008 ; P ́apai, Szapudi & Granett
011 ; Nadathur, Hotchkiss & Sarkar 2012 ; Flender, Hotchkiss &
adathur 2013 ; Hern ́andez-Monteagudo & Smith 2013 ; Ili ́c, Langer
 Douspis 2013 ; Granett, Kov ́acs & Hawken 2015 ; Kov ́acs &
arc ́ıa-Bellido 2016 ; Nadathur & Crittenden 2016 ; Cai et al. 2017 ;
 ov ́acs 2018 ; K ov ́acs et al. 2019 ) which, to compare to theoretical
redictions, require the simulation of realistic galaxy catalogues with
orresponding ISW maps. Some of these studies have measured
 � 2 σ excess in the ISW from large voids, the source of which
emains unclear, but due to the computational cost of running ISW
© 2021 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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imulations have been limited to comparisons to the fiducial � CDM
odel (frequently comparing to the Jubilee ISW maps; Watson et al. 

014 ). 
The disco v ery of a void along the line-of-sight (LOS) of the CMB

old spot (CS) anomaly (Szapudi et al. 2015 ) led Kov ́acs & Garc ́ıa-
ellido ( 2016 ) to speculate whether the anomaly was actually caused
y the same anomalous excess found for the ISW of other large voids.
aidoo, Benoit-L ́evy & Lahav ( 2016 ) considered a � CDM solution

o the CS anomaly – multiple voids along the LOS (later disco v ered
y Mackenzie et al. 2017 ). Ho we ver, e ven in the most extreme of
cenarios multiple voids were unable to explain the full CS profile. 
adathur et al. ( 2014 ) showed that the significance of the CS is low

 ∼2 σ ) and could be explained as a tail-end Gaussian fluctuation.
he significance of the CS was placed into further question when 

he effect of masking was considered and found to enhance the 
S significance. By removing this effect the CS was found to be

ignificant at only ∼1.9 σ (Naidoo, Benoit-L ́evy & Lahav 2017 ). If
he CS is evidence of the same anomalous excess in the void ISW
ignal, it will be difficult to establish from measurements of the CS
lone. Instead, studies will need to further explore the signals from
oids in data, using new and larger data sets, and by comparing to
SW simulations. 

To explore the ISW for a larger set of cosmological parameters 
nd models, simulated ISW maps need to be easier to produce (so
hat these maps can be produced ad hoc for a large set of existing
nd future N -body simulations, without pre-planning). To do this 
e construct the ISW in the linear re gime, remo ving the costly

equirement for regular snapshots of the gravitational potential across 
osmic time. This comes at a small cost: we lose the non-linear ISW
known as the Rees–Sciama effect; Rees & Sciama 1968 ), but since
he ISW is ∼10 2 times larger in temperature (Nadathur et al. 2014 )
his effect is negligible for the scales of interest in observational 
osmology (which, due to the low SNR of the measurement, are 
enerally limited to spherical harmonic modes of � < 100; Hang 
t al. 2021 ). For � � 500 the Rees–Sciama effect starts to dominate
Cai et al. 2009 ) and for � � 5000 it is the dominant source of CMB
nisotropies (Seljak 1996 ). 

The ISW is constructed for the MICE Grand Challenge lightcone 
imulation (Fosalba et al. 2015b ) using a spherical Bessel transform
SBT) method (Shapiro, Crittenden & Perci v al 2012 ) conducted 
n spherical polar coordinates – a natural coordinate system for 
ightcone simulations provided in spherical shells (Fosalba et al. 
008 ). 
The paper is organized as follows: in Section 2 we describe 

he MICE simulation data used and the ISW construction methods 
mplemented in this study; in Section 3 we compare the ISW maps
nd their statistics to each other, and theoretical expectations; lastly, 
n Section 4 we discuss the results and the rele v ance of the data and
ipeline produced in this study for future work. 

 M E T H O D  

.1 Data: the MICE density field 

he MICE Grand Challenge lightcone simulation (Carretero et al. 
015 ; Crocce et al. 2015 ; Fosalba et al. 2015a ,b ; Hoffmann et al.
015 ) is a large N -body simulation constructed with GADGET-2 
Springel 2005 ). The simulation was run with a comoving box of
ength 3072 h −1 Mpc, 4096 3 dark matter particles, with a particle- 

esh grid of 4096 used to calculate large-scale forces computed 
ith fast fourier transforms. The simulation used a flat � CDM

osmological model consistent with the best-fitting WMAP 5-yr data 
Dunkley et al. 2009 ) – i.e. �m,0 = 0.25, �� ,0 = 0.75, �b,0 = 0.044,
 s = 0.95, σ 8 = 0.8, and h = 0.7. 
The simulation’s density contrast field is provided in an ‘onion’ 

onfiguration (Fosalba et al. 2008 ), where particles from the MICE
ightcone have been binned on to 400 HEALPIX maps (G ́orski
t al. 2005 ). The redshift slices are thinnest at low redshift and the
hicknesses of the slices are well below the smallest scales of interest
 k max = 0 . 1 h Mpc −1 ). The simulation is large enough that no box
epetitions are required along the LOS up to redshift z = 1.4. For this
eason the analysis in this paper is limited to z ≤ 1.4. Corresponding
alaxy mock catalogues can be obtained from the online data base
OSMOHUB 

1 (Carretero et al. 2017 ; Tallada et al. 2020 ). 

.2 Theory: the Integrated Sachs–Wolfe effect 

e work in the Newtonian gauge with no anisotropic stress, so that
etric perturbations can be parametrized by a single perturbation 

ariable � , the gravitational potential. The ISW is the imprint on
he CMB of the evolution of � in LSS. The effect alters the CMB
emperature T in the LOS direction ˆ n by 

�T ISW ( ̂ n ) 

T 
= 

2 

c 2 

∫ η0 

ηLS 

� 

′ ( r ̂  n , η) d η, (1) 

here the integral is o v er a photon path from LS (last scattering
ime) to 0 (the observer’s time), r = c ( η0 − η) is the comoving
istance on this path corresponding to conformal time η, c is the
peed of light, and � 

′ 
is the partial deri v ati ve of � with respect to η

holding comoving position fixed). Changing the integration variable 
o comoving distance r yields 

�T ISW ( ̂ n ) 

T 
= 

2 

c 3 

∫ r LS 

0 
�̇ ( r ̂  n , η( r )) a( r ) d r . (2) 

ere η( r ) = η0 − r / c and we have additionally changed the integrand
o be the partial deri v ati ve �̇ of � with respect to time (holding
omoving position fixed); this introduces the scale factor a = 1/(1 +
 ), where z = z ( r ) is the redshift. The relationship between redshift
nd comoving distance can be approximated (during and after matter 
omination in � CDM) by 

( z) � 3000 h 

−1 Mpc 
∫ z 

0 

1 

�m , 0 (1 + z ′ ) 3 + ��, 0 
d z ′ , (3) 

here �m,0 is the current matter density and �� ,0 the current dark 
nergy density (relative to the critical density). 

The non-linear contributions to the ISW (the Rees–Sciama effect) 
ave been shown to be subdominant ( ∼10 −2 times the linear ISW in
emperature) in � CDM (Seljak 1996 ; Cai et al. 2010 ; Nadathur et al.
014 ). Therefore, the ISW can be approximated to within ∼1 per cent
sing linear perturbation theory, which we discuss below. 

.2.1 Linear theory approximation 

e seek to calculate equation (2) in the linear regime. We start with
he Poisson equation: 

 

2 � ( x x x , t) = 

3 

2 
H 

2 
0 �m , 0 

δ( x x x , t) 

a 
. (4) 

n what follows we work in the linear regime. Here, density
erturbations can be separated: 

( x x x , t) = D( t) δ( x x x ) , (5) 
MNRAS 506, 4344–4353 (2021) 
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here the linear growth factor D ( z) is defined to be 

( z) ∝ H ( z) 
∫ a 

0 

1 

( a ′ H ( a ′ )) 3 
d a ′ (6) 

ith D (0) = 1 and H ( z) the Hubble expansion rate at redshift z. The
atter may be approximated during and after matter domination as 

 ( z) � H 0 ( �m , 0 (1 + z) 3 + ��, 0 ) 
1 / 2 , (7) 

here H 0 , the Hubble constant, is the present expansion rate. Since
e assume flat curvature, the energy density for dark energy is given
y �� 

= 1 − �m 

at any epoch. 
Let ∇ 

−2 denote the formal inverse of the Laplace operator.
ombining equations (4) and (5) yields: 

 ( x x x , t ) = 

3 

2 
H 

2 
0 �m , 0 

D( t ) 

a 
∇ 

−2 δ( x x x ) , (8) 

hence 

˙
 ( x x x , t ) = 

3 

2 
H 

2 
0 �m , 0 

∂ 

∂t 

(
D( t ) 

a 

)
∇ 

−2 δ( x x x ) . (9) 

ut 

∂ 

∂t 

(
D( t) 

a 

)
= 

D( t) 

a 
H ( t ) [ f ( t ) − 1 ] ; (10) 

ere 

 ≡ d ln D/ d ln a 

≈ �m 

( z) 0 . 55 (11) 

Peebles 1980 ; Lahav et al. 1991 ), and 

m 

( z) = 

�m , 0 (1 + z) 3 

�m , 0 (1 + z) 3 + ��, 0 
. (12) 

Combining equations (8), (9), and (10) yields 

˙
 ( x x x , t) = H ( t) [ f ( t) − 1 ] � ( x x x , t) , (13) 

hich coupled with equation (2) gives the linear theory approxima-
ion for the ISW: 

�T ISW 

( ̂ n ˆ n ˆ n ) 

T 
= 

2 

c 3 

∫ r LS 

0 
H ( t ) [ f ( t ) − 1] � ( r ̂  n ˆ n ˆ n , η( r )) a( r ) d r . (14) 

ote when f � 1, a condition which is true in an Einstein-de Sitter
niverse (where �m 

= 1 and �� 

= 0) and during matter domination
n � CDM, � T ISW 

� 0. In this scenario the ISW is dominated by the
on-linear Rees–Sciama effect. For this reason the most significant
ontributions to the ISW are at low redshift during � domination. 

.2.2 Theoretical angular power spectra 

he angular power spectra C 

XY 
� for sources X and Y is 

 

XY 
� = 

2 

π

∫ 
k 2 P ( k ) I X � ( k ) I 

Y 
� ( k ) d k , (15) 

here 

 

X 
� ( k) = 

∫ ∞ 

0 
D( z) W 

X ( r, k) j � ( kr) d r, (16) 

 � is the spherical Bessel function and W 

X ( r , k ) is a source-specific
indow function. For the ISW the window function is given by 

 

I ( r, k ) = 

3 �m, 0 H 

2 
0 

c 3 k 2 
H ( z) [ 1 − f ( z) ] Rect ( r; r min , r max ) , (17) 

here ‘ I ’ is used as a shorthand for ISW and Rect is the rectangular
tep function defined as 

ect ( r; r min , r max ) = H step ( r − r min ) − H step ( r − r max ) , (18) 
NRAS 506, 4344–4353 (2021) 
 step is the heavyside step function, r min = r ( z min ) and r max = r ( z max ).
his is used to specify the redshift interval z min ≤ z ≤ z max for the
ontribution to the ISW. The galaxy window function is given by 

 

G ( r) = b( r) � ( r) , (19) 

here b ( r ) is a function describing the galaxy bias, 

 ( r ) = 

r 2 n ( r ) ∫ 
x 2 n ( x) d x 

, (20) 

nd n ( r ) is the galaxy redshift distribution. Ho we ver, in this study
e have direct access to the true underlying density contrast field
eaning (unlike data from a galaxy surv e y) the redshift distribution

nd bias modelling can be simply set to n ( r ) = 1 and b ( r ) = 1 in
he interval z min ≤ z ≤ z max and 0 otherwise. The window function
educes to 

 

δ( r) = 

{ 

3 r 2 

r 3 max −r 3 min 
, for z min ≤ z ≤ z max , 

0 , otherwise, 
(21) 

here ‘ δ’ is used as a shorthand for the density contrast field in
he interval z min ≤ z ≤ z max . It is common to calculate this using the
imber approximation (Limber 1954 ; Afshordi et al. 2004 ), replacing

he spherical Bessel function with a Dirac delta function δD of the
orm 

 � ( x) � 

√ 

π

2 � + 1 
δD 

(
� + 

1 

2 
− x 

)
, (22) 

iving the following approximation for the angular power spectra, 

 

XY 
� � 

∫ 
D 

2 ( z) 

r 2 

[
P ( k) W 

X ( r, k) W 

Y ( r, k) 
]
k= k � 

d r, (23) 

here k � = ( � + 1/2)/ r . 

.3 Techniques for constructing Integrated Sachs–Wolfe maps 

n this section we describe the numerical techniques used to construct
SW maps. The focus of this study is the SBT technique (Shapiro
t al. 2012 ), described in Section 2.3.1. We also compare this to a
pherical Harmonic scaling (which we call SHS) relation, described

n Section 2.3.2, and the Francis & Peacock ( 2010 ) technique,
escribed in Section 2.3.3. 

.3.1 Spherical Bessel transform method 

 three dimensional field ζ described in spherical polar coordinates
 (radial axis), θ and φ (latitude and longitude, respectively) can be
epresented by its SBT coefficients ζ � mn as 

( r, θ, φ) = 

∞ ∑ 

� = 0 

� ∑ 

m =−� 

∞ ∑ 

n = 1 

ζ�mn R �n ( r) Y �m 

( θ, φ) , (24) 

here 

 �n ( r) = 

1 √ 

N �n 

j � ( k �n r) , (25) 

 � m 

are spherical harmonics, k � n = q � n / r max and q � n is the locations of
he n th zero of j � ( x ) for normal boundary conditions (i.e. j � ( k � n r max )
 0), or ∂ x j � ( x ) for deri v ati ve boundary conditions (i.e. ∂ x j � ( k � n r max )
 0). Lastly, N � n is a normalization constant defined as 

 �n = 

⎧ ⎨ 

⎩ 

r 3 max 
2 j 2 � + 1 ( k �n r max ) , normal boundary, 

r 3 max 
2 

(
1 − � ( � + 1) 

k 2 
�n 

r 2 max 

)
j 2 � ( k �n r max ) , deri v ati ve boundary . 

(26) 
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7 https://www .scipy .org/

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/3/4344/6318866 by U
C

L, London user on 26 M
ay 2022
ee Wang, Ronneberger & Burkhardt ( 2009 ) for an o v erview of SBT
nd related transforms. The SBT basis functions are eigenfunctions 
f the Laplace operator on a ball-shaped domain. This will be crucial,
s it is the Laplace operator in the Poisson equation that links the
ravitational potential (which drives the ISW) to the o v erdensities 
which are the observable quantities within the simulation). 

The SBT coefficients are calculated from 

�mn = 

∫ r max 

0 

∫ π
0 

∫ 2 π

0 
ζ ( r, θ, φ) R �n ( r) Y 

∗
�m 

( θ, φ) r 2 

× sin ( θ ) d φ d θ d r, (27) 

here we assume the field is defined up to a maximum radius r max .
e will be concerned with δ� mn , the SBT coefficients of the density

ontrast field δ = δ( x x x ) defined on three-dimensional space at z =
, and with � � mn , the SBT coefficients of the gravitational potential
efined on the observer’s lightcone. 
Following Leistedt et al. ( 2012 ) we calculate δ� mn in two stages.

he first step derives the spherical harmonics of each slice δi : 

i 
�m 

= 

∫ π
0 

∫ 2 π

0 

δi ( θ, φ) 

D( z eff ) 
Y 

∗
�m 

( θ, φ) sin ( θ ) d φ d θ. (28) 

ere, we have corrected for the linear evolution of δ by dividing by
he linear growth function at z eff (the effective redshift of the slice).
his ensures that the SBT coefficients of δ are taken at z = 0. The
econd step calculates the SBT coefficients from 

�mn = 

∑ 

i 

δi 
�m 

∫ r i max 

r i min 

R �n ( r ) r 
2 d r , (29) 

here r i min and r i max are the minimum and maximum radius for the
 

th slice. 
Let a I �m 

be the spherical harmonic coefficients for the ISW: 

�T ISW 

T 
= 

∞ ∑ 

� = 0 

� ∑ 

m =−� 

a I �m 

Y �m 

( θ, φ) . (30) 

quating spherical harmonic coefficients in equations (14) and (30) 
ives 

 

I 
�m 

= 

2 

c 3 

∫ r LS 

0 
H ( r )[ f ( r ) − 1] 

∞ ∑ 

n = 1 

� �mn R �n ( r ) a( r )d r . (31) 

he SBT basis function R � n Y � m is an eigenfunction of the Laplace
perator with eigenvalue −k � n 2 . Combining this with an SBT 

epresentation of the Poisson equation (4) and applying equation (5) 
ields 

 �mn = −3 

2 
H 

2 
0 �m, 0 

D( t) 

a 

1 

k �n 
2 δ�mn ; (32) 

ombining the last two results gives our target expression for the 
SW (due to Shapiro et al. 2012 ): 

 

I 
�m 

= 

3 H 

2 
0 �m, 0 

c 3 

n max ∑ 

n = 1 

δ�mn 

k �n 
2 

∫ r max 

0 
D( r ) H ( r ) [ 1 − f ( r) ] R �n ( r )d r . 

(33) 

n this study we compute only the SBT coefficients that correspond to
ourier modes in the range k F ≤ k ≤ k max , where k max = 0 . 1 h Mpc −1 

nd k F is the fundamental frequency of the simulation ( k F = 2 π / L box ,
here L box is the length of the simulation box). This means in our

nalysis the SBT coefficients are computed for � = 2 to � max (ignoring
he monopole and dipole components) and n = 1 to n max , where � max 

 
 r max k max � and n max = 
 � max / π� (the floor function Floor( x ) = 
 x �
nsures l max and n max are integers). 
.3.2 Spherical Harmonic scaling 

 common alternative approach to constructing ISW maps from the 
ensity field is to use the SHS relation (Manzotti & Dodelson 2014 ;
uir & Huterer 2016 ), 

 

I 
�m 

= 

C 

Iδ
� 

C 

δδ
� 

a δ�m 

, (34) 

here C 

δδ
� is the auto-angular power spectrum for the density 

ontrast, C 

Iδ
� the cross-angular power spectrum for the ISW-density 

ontrast, and a δ�m 

the spherical harmonic coefficients for the density 
eld integrated over the redshift region of interest. 

.3.3 Francis & Peacock approximation 

rancis & Peacock ( 2010 ) derive an approximation for the ISW (now
eferred to as the FP approximation), 

 

I 
�m 

� 

3 �m , 0 H 

2 
0 

� ( � + 1) c 3 
H ( z eff ) [ 1 − f ( z eff ) ] �r r 2 eff a 

δ
�m 

, (35) 

here r eff is the ef fecti v e como ving radius of the density contrast
eld, 

 eff = 

3 

4 

(
r 4 max − r 4 min 

r 3 max − r 3 min 

)
, (36) 

 eff is the redshift corresponding to r eff , � r = r max − r min , r min is
he minimum comoving radius, and r max is the maximum comoving 
adius. This approximation is best suited for cases where � r is thin;
or this reason with this approximation, we use thin slices and then
ombine the maps. 

.3.4 Software pipeline 

he PYTHON (Van Rossum & Drake 2009 ) package PYGENISW 

s made publicly available 2 and can be used to construct ISW
aps from data provided in spherical shells (given in HEALPIX 

ormat) using the SBT method (which is the focus of this
aper) as well as the alternative SHS approach and the FP 

pproximation. 
The package depends on THEORYCL 

3 which computes the linear 
rowth functions and angular power spectra for the ISW and density
ontrast sources; CAMB 

4 (Lewis, Challinor & Lasenby 2000 ) to 
ompute the linear power spectrum, HEALPY 

5 (G ́orski et al. 2005 ;
onca et al. 2019 ) for computing and manipulating maps and
arrying out spherical harmonic operations; SCIPY used for spherical 
essel related functions, integration functions, and interpolation 

unctions, and NUMPY 

6 (Harris et al. 2020 ). Note, PYGENISW uses
 mixture of SCIPY 

7 (Virtanen et al. 2020 ) and its own iterative
pherical Bessel root finding function to determine q � n ; this is
ecause the current implementation in SCIPY is unstable for large 
 and n . 
MNRAS 506, 4344–4353 (2021) 
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Figure 1. The ISW effect for the MICE simulation constructed for contributions in the range 0 ≤ z ≤ 1.4 using an SBT with normal boundary conditions. The 
map is shown with a blue-to-red diverging colour map indicating cold and hot features given in units μK. The features of the map are quite broad in comparison 
to CMB maps (which typically have features on the scale of ∼1 deg ) and are smaller in amplitude typically of the order of ∼10 μK in the ISW compared to 
∼100 μK for the CMB. 
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 RESULTS:  M I C E  INTEGRATED  

ACHS–WO LFE  MAPS  

.1 Using spherical Bessel transforms 

he ISW maps for MICE are constructed using the SBT with both
ormal and deri v ati ve boundary conditions. We compute the SBT
oefficients up to an r max that corresponds to z = 2, exceeding the
aximum redshift of z = 1.4 for which the ISW is computed. This

s to ensure that no artefacts are measured near the boundary. The
hoice of r max = r ( z = 2) and k max = 0 . 1 h Mpc −1 means we only
eed to compute the SBT up to � max = 380 and n max = 121. The
ull-sky MICE ISW map for contributions in the range 0 ≤ z ≤ 1.4
s shown in Fig. 1 using the SBT with normal boundary conditions.
he ISW map constructed using the SBT with deri v ati ve boundary
onditions is not highlighted here, as the map is almost identical to
he one shown in Fig. 1 ; it will be discussed in Section 3.2. 

To highlight the scales of the features that contribute at different
edshifts, we plot in Fig. 2 the ISW constructed using the SBT with
ormal boundary conditions for redshift slices of �z = 0.2 between
 = 0 and z = 1.2. Features in the map at low redshift are large in
ngular scale and become smaller at higher redshift. 

.2 Comparison to SHS and Francis & Peacock approximation 

he ISW maps for MICE have been constructed using four methods:
he first two use the SBT with normal and deri v ati ve boundary con-
itions, while the latter two use the SHS and the FP approximation.
he latter two assume no cuts in the Fourier modes used, while for

he SBT the modes have been explicitly limited to k F ≤ k ≤ k max . To
nsure the SHS and the FP approximations are comparable to those
NRAS 506, 4344–4353 (2021) 
f the SBT, and do not amplify spurious Fourier modes, we multiply
he spherical harmonic coefficients by C 

II 
� ( k F ≤ k ≤ k max ) /C 

II 
� .

urthermore in the case of the FP approximation, since this method
orks best for thin shells we compute the ISW contributions in slices
f �z = 0.2, which are then combined for contributions in the range
 ≤ z ≤ 1.4. 
In Fig. 3 the ISW maps for the four methods are shown for

ontributions in the range 0 ≤ z ≤ 1.4. In Fig. 4 the difference
ith respect to the SBT with normal boundary conditions is shown.
hese figures show strong agreement between SBT with normal and
eri v ati ve boundary conditions, but find the difference between the
HS approximation and the FP approximation to be fairly significant
deviations of the order of ∼2 σ ) driven by an absence of LOS density
nformation for the latter two methods. 

.3 Angular power spectra: comparisons to theory 

ll the methods in this study express the ISW in terms of its spherical
armonics. For this reason the auto- and cross-angular power spectra
f the ISW and density field maps are calculated using HEALPY ’s
lm2cl function. In Fig. 5 we plot the auto- and cross-angular
ower spectra for the four ISW maps and for the density field. This
s compared to theoretical angular power spectra with and without
uts in the Fourier modes considered. For the full C � the integration
n k space is carried out for a k -range of 10 −4 ≤ k ≤ 1 h Mpc −1 ,
hile the cut- C � uses a k -range of k F ≤ k ≤ 0 . 1 h Mpc −1 . The cut-
 � are used to determine the ranges in � for which the maps are
alid. Furthermore, they indicate on which � -ranges the non-linear
cales become rele v ant (where ‘non-linear’ refers to small scales with
 > 0 . 1 h Mpc −1 ). For the theoretical C � we calculate it fully without
sing the Limber approximation. This is because comparisons of the

art/stab1962_f1.eps
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Figure 2. The ISW constructed using the SBT with normal boundary conditions shown for contributions in redshift slices of �z = 0.2 in the range 0 ≤ z ≤
1.2. The maps are divided by their standard deviation to highlight the scale of the features in these different redshift slices. This change of resolution originates 
from the size of structures and the scale of homogeneity: at closer redshift the features are broad due to the size of nearby cosmic structures, but at high redshift 
features are smaller as these cosmic structures are further away. 
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SW for thin shells with �z = 0.2 showed an offset in the amplitude
t all � when compared to the measured C � . The C � are binned into
� = 5 and are shown in Fig. 5 to agree very well (for all methods) to

he theory. The C � also reveal that the SBT ISW maps are in closest
greement to theoretical expectations, the SHS map appears to be 
ow in power, while FP appears to be slightly higher in power than
ould be expected (ho we ver, these de viations are consistent with

osmic variance �C � = 

√ 

2 C 

2 
� / (2 � + 1) ). 

.4 Dependence on redshift and comparison to Gaussian 

ealizations 

n this section we measure the standard deviation of the ISW maps
or contributions in the range 0 ≤ z ≤ 1.4 with �z = 0.2. These
re compared to Gaussian realizations computed using HEALPY ’s 
ynalm function from the theoretical C � ( k F ≤ k ≤ k max ). The results
re shown in Fig. 6 where in the top panel we consider the standard
eviation of the ISW maps with no alteration and in the bottom
anel we limit to only spherical harmonic coefficients � > 10. The
heoretical standard deviations (shown with dotted grey lines) are 
alculated from 

= 

( ∑ 

� 

2 � + 1 

4 π
C � 

) 1 / 2 

, (37) 

Tegmark 1997 ). The comparisons show that the standard deviation 
n the ISW for the FP approximation is consistently too high and for
he SHS is slightly low with respect to Gaussian realizations. In com-
arison, the SBT methods are consistent with Gaussian realizations 
or � > 10, but are low for certain redshifts when considering the full
ap with no alterations. The plot also indicates where the biggest 

ontributions to the ISW occur, peaking around z � 0.3 for all scales
nd at z � 0.5 for features with � > 10. This demonstrates the benefit
f using the SBT methods o v er the SHS or FP approximation as
hey are better able to reproduce the theoretically expected standard 
eviation for the ISW temperature maps. 

.5 Maps and ancillary data 

he ISW maps constructed in this study are public. 8 They are
onstructed for the full redshift range 0 ≤ z ≤ 1.4 and for spherical
hells with redshift width �z = 0.2. The maps themselves are
rovided in fits format as HEALPIX maps with nside = 256 .
he spherical harmonics are also provided so that the maps can be
enerated to the desired nside . Theoretical auto- and cross-angular 
ower spectra are provided for the ISW and density field with and
ithout using the Limber approximation. 

 DI SCUSSI ON  

n this paper, we construct the ISW map for the MICE lightcone
imulation and develop a pipeline for quickly constructing the 
SW for future simulations; the SBT transform (the bottleneck of 
his computation) was calculated in ∼10 min on a single core on
ommercially available hardware for � max = 380 and n max = 121. A
ignificant computational limitation of constructing simulated ISW 

aps is the calculation of the time deri v ati ve of the gravitational
otential �̇ . Such a calculation requires the regular output of 
napshots, which is memory intensive, and cannot be performed ad 
oc. To remo v e this obstacle we calculate the ISW maps fully in the
MNRAS 506, 4344–4353 (2021) 
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Figure 3. The ISW maps are shown for four methods for contributions from the redshift range 0 ≤ z ≤ 1.4. In the top left panel is the SBT (normal) map, in 
the top right panel is the SBT (deri v ati ve) map, in the bottom left panel is the SHS map, and in the bottom right panel is the FP map. The maps are in fairly good 
agreement but the approximations on the bottom panels show variations in the amplitude of certain features, while the SBT methods are almost identical. 

Figure 4. Differences between the SBT (normal) map and maps generated by the three other methods (normalized by the standard deviation of the SBT normal 
map) measured in the redshift range 0 ≤ z ≤ 1.4. From left to right are the differences for the SBT (derivative) map, for the SHS map, and for the FP map (all 
with respect to the SBT normal map). This shows only a small difference between the SBT methods (which differ only in their boundary condition) and shows 
a significant difference between the SHS and FP maps (which unlike the SBT methods are computed without any LOS information). 
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inear regime (meaning the Poisson equation only needs to be solved
nce), sacrificing the construction of the non-linear ISW or Rees–
ciama effect. Since the Rees–Sciama effect at low redshift z � 1,
t large angular scales, and after matter domination is comparatively
NRAS 506, 4344–4353 (2021) 
ery small ( ∼1 per cent of the ISW; Seljak 1996 ; Nadathur et al.
014 ), this sacrifice has a negligible impact on the maps created.
his approximation enables the ISW to be computed from the density
eld at z = 0, where we insert the time evolution of the gravitational
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Figure 5. The auto- and cross-angular power spectra for the ISW and density field for contributions in the redshift range 0 ≤ z ≤ 1.4. In the top two panels 
we show the ISW angular power spectra C 

II 
� for the SBT methods (left) and the SHS and FP approximations (middle). In the bottom panels we show the 

cross-angular power spectra for the ISW and density field for the SBT method (left), the SHS and FP approximations (middle), and show the auto-angular power 
spectra for the MICE density field (right). In the subplots we show the significance of deviations from the full theoretical C � (i.e. with no cuts in k -range shown 
with full black lines), where σ ( C � ) = ( C 

Measured 
� − C 

Theory 
� ) /�C � . The grey bands indicate 1 σ confidence regions. We see that C 

II 
� and C 

Iδ
� follow the trend of 

C � ( k F ≤ k ≤ k max ; shown with a dashed black line), i.e. beginning to fall in amplitude at high- � with respect to the full C � mainly due to non-linear contributions 
at low redshift and drop at low- � due to the lack of modes larger than the simulation box. The SHS approximation is calculated using the very C � that we 
compare to, so this comparison is rather redundant as we expect a reasonably good fit by construction. Ho we ver, in the case of the SBT and FP approximation 
no C � are given and this comparison represents a true test of the accuracy of these methods. The SBT ISW maps show the closest match to the theoretical C � , 
while the approximations appear to be slightly too high in amplitude for the FP approximation and too low for the SHS approximation. Furthermore, we see the 
SBT methods deviate only at very low � . 
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otential analytically using linear growth functions. For lightcone 
imulations such as MICE, we divide the density field at redshift z 
y the linear growth D ( z) to approximate the density field at z = 0. 
The PYTHON module developed in this study, PYGENISW , is 

ublicly available 9 and can be used to construct the ISW using the
BT method (the focus of this paper), as well as using the SHS and

he FP approximation. The ISW maps and ancillary data (spherical 
armonic coefficients and theoretical angular power spectra) are 
ade public 10 to facilitate future LSS–CMB cross-correlation studies 

sing MICE. 
In Fig. 1 we highlight one of the main data products of this study –

he ISW map for contributions in the redshift range 0 ≤ z ≤ 1.4 for the
 https://github.com/knaidoo29/pyGenISW 

0 https:// doi.org/ 10.5281/ zenodo.4088697 

m
S  

a  
BT method with normal boundary conditions. In Fig. 2 the maps
re constructed for redshift intervals with �z = 0.2. These maps
how the redshift evolution of the scales of features and will enable
solated studies of the ISW at different redshift. We compare the SBT

ethods, the SHS and the FP approximation in Fig. 3 and subtract the
BT (normal) map from the other three in Fig. 4 demonstrating that

he two SBT methods are virtually identical (since they differ only in
heir boundary conditions) and that there are significant large angular 
cale differences between the SBT methods and the SHS and FP
pproximation (driven by the absence of LOS density information). 
n Fig. 5 the auto- and cross-angular power spectra for the ISW
nd density field are shown. In these plots we see that the SBT
ethod is in greater agreement with theoretical expectations, while 
HS appears to be slightly too low and the FP slightly too large
t all scales, demonstrating the benefit of using the SBT methods
MNRAS 506, 4344–4353 (2021) 
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Figure 6. The standard deviation of the ISW maps for contributions in the 
range 0 ≤ z ≤ 1.4 with �z = 0.2. The four methods are compared to Gaussian 
realizations, where the 1 σ confidence region is shown in grey. The theoretical 
standard deviation calculated from equation (37) is shown with grey dotted 
lines. In the top panel we consider the full ISW maps with no alterations 
and in the bottom panel we limit the maps to spherical harmonic coefficients 
with � > 10. The figure shows that the FP approximation is consistently too 
large and the SHS slightly too low when compared to Gaussian realizations. 
The SBT methods are the most consistent with Gaussian realization with the 
exception of some ranges in z where they appear slightly lower for the full 
ISW map. 
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 v er the SHS or FP approximation. This effect is illustrated again in
ig. 6 where we compare the standard deviation of the ISW maps to

hose from Gaussian realizations. Once again the SBT methods are
n greater agreement with theoretical expectations showing that these
articular maps are the best maps to use for future MICE LSS–CMB
ross-correlation studies. 

These maps will be of particular rele v ance to large-area galaxy
urv e ys, such as Dark Energy Surv e y, 11 Dark Energy Spectroscopic
nstrument, 12 Euclid , 13 and the Rubin Le gac y Surv e y of Space and
ime. 14 Cross-correlation studies have been performed on several
alaxy surv e ys to constrain the standard cosmological model � CDM
nd to test extensions or alternative models (see e.g. Hang et al.
1 http://www.darkenergysurvey.org 
2 http:// desi.lbl.gov/ 
3 http:// www.euclid-ec.org/ 
4 ht tps://www.lsst .org/
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021 ). The availability of the MICE ISW maps will enable future
tudies to test their cross-correlation pipelines and to test the results
gainst the predictions of the fiducial � CDM model. Furthermore,
SW reconstruction methods (Barreiro et al. 2008 ; Granett, Neyrinck
 Szapudi 2009 ; Manzotti & Dodelson 2014 ; Muir & Huterer 2016 )
ill be able to use these maps as a ground truth. 
The parameters used by MICE are set according to the best-fitting
MAP results and are different to the best-fitting Planck results,

otably in terms of �m 

, which is measured by Planck to be ∼0.31.
his means the MICE ISW maps produced in this study have slightly

arger ISW signals than would be expected from the best-fitting
lanck cosmology. Ho we ver, the ISW is measured currently at lo w
NR meaning these differences will be ne gligible. An y future tests
f � CDM from these ISW maps will need to be aware of these
istinctions. 
ISW void-stacking measurements are in slight tension with pre-

ictions from � CDM (a tension of � 2 σ Granett et al. 2008 ; P ́apai
t al. 2011 ; Nadathur et al. 2012 ; Flender et al. 2013 ; Hern ́andez-
onteagudo & Smith 2013 ; Ili ́c et al. 2013 ; Granett et al. 2015 ;
ov ́acs & Garc ́ıa-Bellido 2016 ; Nadathur & Crittenden 2016 ; Cai
t al. 2017 ; K ov ́acs 2018 ; K ov ́acs et al. 2019 ). An explanation for the
ource of this tension remains unclear. Recently, Kov ́acs et al. ( 2020 )
howed that the signal could be explained if modifications to the
rowth history were applied but Hang et al. ( 2021 ) show this solution
s incompatible with cross-correlation studies. To determine whether
ariations in the value of cosmological parameters or models could
xplain this excess signal we will need to construct the ISW map
or a large range of simulations with realistic galaxy catalogues to
onstruct observable-like void catalogues. The pipeline developed in
his study enables future work to construct the ISW from existing and
uture simulation suites, allowing us to understand the parameter and
odel dependence of the ISW void-stacking measurement. Accurate

SW maps from simulations such as MICE will enable cosmologists
o fully exploit future galaxy surv e ys by combining probes from
he early Universe in the form of the CMB and the late Universe
n the form of LSS. This will provide further tests of the standard
osmological model � CDM and may be crucial in establishing the
alidity of extended and alternative models. In future work we plan to
rovide MICE ISW maps for contributions at higher redshift and to
igher � max (essentially pushing our scale limits from the linear to the
uasi-linear regime) by exploring extensions to the pipeline discussed
n this paper as well as generating ISW maps for existing simulation
uites probing different cosmological models and parameters. 
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ATA  AVA ILA BILITY  

he MICE density field maps used in this study can be provided upon
easonable request to the main author. The ISW maps and ancillary 
ata are public and can be obtained from https:// doi.org/ 10.5281/ ze
odo.4088697 . 
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