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Studying and mitigating the effects 
of data drifts on ML model 
performance at the example 
of chemical toxicity data
Andrea Morger1,8, Marina Garcia de Lomana2,3,8, Ulf Norinder4,5,6, Fredrik Svensson7, 
Johannes Kirchmair3, Miriam Mathea2* & Andrea Volkamer1*

Machine learning models are widely applied to predict molecular properties or the biological activity 
of small molecules on a specific protein. Models can be integrated in a conformal prediction (CP) 
framework which adds a calibration step to estimate the confidence of the predictions. CP models 
present the advantage of ensuring a predefined error rate under the assumption that test and 
calibration set are exchangeable. In cases where the test data have drifted away from the descriptor 
space of the training data, or where assay setups have changed, this assumption might not be fulfilled 
and the models are not guaranteed to be valid. In this study, the performance of internally valid CP 
models when applied to either newer time-split data or to external data was evaluated. In detail, 
temporal data drifts were analysed based on twelve datasets from the ChEMBL database. In addition, 
discrepancies between models trained on publicly-available data and applied to proprietary data 
for the liver toxicity and MNT in vivo endpoints were investigated. In most cases, a drastic decrease 
in the validity of the models was observed when applied to the time-split or external (holdout) test 
sets. To overcome the decrease in model validity, a strategy for updating the calibration set with data 
more similar to the holdout set was investigated. Updating the calibration set generally improved 
the validity, restoring it completely to its expected value in many cases. The restored validity is the 
first requisite for applying the CP models with confidence. However, the increased validity comes 
at the cost of a decrease in model efficiency, as more predictions are identified as inconclusive. This 
study presents a strategy to recalibrate CP models to mitigate the effects of data drifts. Updating the 
calibration sets without having to retrain the model has proven to be a useful approach to restore the 
validity of most models.

Machine learning (ML) models are usually trained—and evaluated—on available historical data, and then used 
to make predictions on prospective data. This strategy is often applied in the context of toxicological data to 
predict potential toxic effects of novel compounds1–6. Internal cross-validation (CV) is a common practice for 
assessing the performance of ML models. When applying the model to new data, it is advisable to observe the 
applicability domain (AD) of an ML model7,8. The AD determines the compound space and the response value 
(label) range in which the model makes reliable predictions9. Investigating classification models, Mathea et al.8 
distinguished AD methods that rely on novelty from those relying on confidence estimation. Novelty detection 
methods focus on the fit of the query samples to the given descriptor space. Confidence estimation methods 
determine the reliability of the predictions by taking into account that samples may be well-embedded in the 
descriptor space but be unusual in terms of their class membership.
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A popular method for confidence estimation is conformal prediction (CP)10,11. The framework of an inductive 
conformal predictor uses three types of datasets: proper training, calibration, and test set. The proper training 
set is used to train an underlying ML model. With this model, predictions are made for the calibration and test 
set. According to the rank that is obtained for the prediction outcome of the test compound as compared to the 
calibration set, so-called p-values are calculated to give an estimate of the likelihood of a compound to belong to 
a certain class. If a significance level, i.e. an expected error rate, is defined, the compounds are assigned labels for 
those classes where the p-value is larger than the significance level. For binary classification, the possible predic-
tion sets are ‘empty’ ({∅}), ‘single class’ ({0}, {1}), and ‘both’ ({0,1}). Single class predictions indicate a confident 
prediction for a certain class. Additionally, the CP framework recognises compounds for which it cannot make 
a reliable prediction ({∅ }) and compounds at the decision boundary, for which the predictions are reliable but 
indecisive ({0,1}). Provided that the calibration and test data are exchangeable, the framework of the conformal 
predictor is mathematically proven to yield valid predictions at a given significance level10,11.

The performance and AD of a model are determined by the quality and quantity of the data it has been 
trained on. One prerequisite for building good models is the availability of large, well-distributed and consist-
ent datasets. To assemble large datasets, modellers often need to collect data from different sources, e.g. data 
which were produced in different assays or laboratories or over longer periods of time12–14. However, data from 
different sources and data taken at different time points may have distinct property distributions, reflecting, 
for example, the evolution of research interests or changes in assay technologies and protocols15,16. Since the 
predictivity of ML models is constrained by their AD, data drifts pose a challenge to modelling tasks, including 
toxicity or bioactivity prediction.

When ML models are validated using CV, the data is usually randomly split into training and test data. The 
resulting sets intrinsically stem from the same distribution and, typically, high model performance on the test 
set is observed. Nevertheless, it has been shown that model performance can be substantially lower for datasets 
obtained by time split or datasets from other sources5,17–19. This may be an indicator that the distribution of the 
data has changed. Hence, it is essential to confirm that ML models can be applied to a specific dataset and to 
determine the confidence in the predictions.

The data drifts, which challenge the underlying ML models, do also affect conformal predictors when the 
trained and calibrated models are applied to a new dataset. In previous work17, a new strategy was introduced 
to mitigate the effects related to data drifts by exchanging the calibration set with data closer to the holdout 
set. The study built on the Tox21 data challenge2, which was invented to support and compare ML models for 
twelve toxicity endpoints and included three subsequently released datasets. We showed that internally valid CP 
models resulted in poor performance when predicting the holdout data. The observed effects were associated 
to data drifts between datasets and could be mitigated by exchanging the calibration set with the intermediate 
set—without the need to retrain the models.

Here, we aim to expand and challenge our previous analysis on the recalibration strategy by a wider variety 
of datasets, beyond Tox21. Furthermore, we utilise enhanced compound encodings which combine molecular 
fingerprints with predicted bioactivity descriptors, specifically designed for toxicity prediction12,20.

First, temporal data drifts are studied using twelve toxicity-related endpoint datasets extracted from the 
ChEMBL database21,22. The ChEMBL database is a manually-curated data collection containing quantitative and 
qualitative measurements for more than two million compounds tested in up to more than 1.3 million assays. 
The large size of the database makes it a primary data resource for ML, in particular in the context of activity 
prediction23–25 and target prediction26,27. Moreover, it is one of only a few publicly-available bioactivity databases 
that provides temporal information on bioactivity measurements in the form of the publication date.

In the second part of this study, the impact on model validity from using data with differences in assay set-
ups and source laboratories is investigated. Therefore, models were trained on public datasets for two in vivo 
endpoints, i.e., ‘liver toxicity’ and ‘in vivo micro nucleus test (MNT)’, and applied to predict proprietary data. 
Both, liver toxicity and MNT are in vivo endpoints with high relevance for the registration and authorisation of 
new chemical compounds28–30.

Data and methods
In this section, first, the used datasets are described, including chemical structure standardisation, data splitting 
and compound encoding. Second, the CP setup together with the individual modelling strategies is explained. 
Finally, further data analysis and visualisation methods are outlined.

Data assembly.  Dataset description, collection and filtration.  Large toxicity‑related ChEMBL data-
sets.  To investigate temporal data drifts, the ChEMBL database21,22 version 26 was queried following the pro-
tocol described by Škuta et  al.31. In short, the presented 29 target datasets each  containing more than 1000 
compounds were downloaded with measured pIC50 values and publication year. Next, the datasets were cleaned 
to handle molecules contained more than once in a target dataset, called duplicates (see Supplementary Material 
Section A1.1). Then, compounds were standardised (see Section “Data assembly”) and the datasets temporally 
split (see Section “Data assembly”). Activity was assigned based on the target family and following the activity 
cutoff suggestions by the Illuminating the Druggable Genome Consortium32. Only datasets with more than 50 
active and 50 inactive compounds in the holdout set were retained for the study. From the resulting 20 target 
datasets, only twelve targets that are linked to toxicity33,34 (see Supplementary Material Section A1.1 and Table 1) 
were selected for this study.

Public and inhouse datasets for liver toxicity and MNT.  To assess drifts between data originating from different 
sources, public and proprietary datasets for two in vivo endpoints (drug-induced liver injury (DILI) and MNT) 
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were collected. For CP model training, the same public datasets for DILI and MNT were used as compiled and 
described by Garcia de Lomana et al.12. After data pre-processing and deduplication the respective DILI dataset 
consists of 445 active and 247 inactive compounds; the MNT dataset of 316 active and 1475 inactive compounds 
(see Supplementary Material Section A1.2 for more details). Note that we will from here on refer to the DILI 
endpoint as ‘liver toxicity’.

Two proprietary BASF SE inhouse datasets for liver toxicity and MNT in vivo were used as independent 
test and update sets. In short, liver toxicity was measured in rats according to the OECD Guidelines 407, 408 
and 42235–37. MNT was determined in mice following the OECD Guideline 47429, or in (non-GLP) screening 
assays. The liver toxicity dataset contains 63 active and 77 inactive compounds and the MNT dataset contains 
194 active and 172 inactive compounds, after data pre-processing and deduplication (see Supplementary Mate-
rial Section A1.3).

Chemical structure standardisation.  Standardisation of chemical structures was conducted as described by 
Garcia de Lomana et al.12. Briefly, the SMILES of each of the compounds were standardised with the ChemAxon 
Standardizer38 node in KNIME39,40 to remove solvents and salts, annotate aromaticity, neutralise charges and 
mesomerise structures (i.e. taking the canonical resonant form of the molecules). Multi-component compounds 
as well as compounds containing any unwanted element were removed from the dataset. Canonical SMILES 
were derived for the standardised compounds and used for removing duplicates. In cases where duplicate 
SMILES had conflicting labels, the compounds were removed from the dataset.

Compound encoding.  To encode the molecules for training the CP models, the ‘CHEMBIO’ descriptors devel-
oped by Garcia de Lomana et al.12 were used. These descriptors combine chemical with predicted bioactivity 
descriptors to describe the compounds. The chemical descriptor comprises a 2048-byte Morgan count finger-
print (with a radius of 2 bonds)41 and a 119-byte physicochemical property descriptor from RDKit42 (calculated 
with KNIME39,40).

For deriving the bioactivity descriptors, Garcia de Lomana et al.12 first built binary classification CP models 
for 373 in vitro toxicological endpoints, such as cytotoxicity, genotoxicity and thyroid hormone homeostasis 
(including datasets from ToxCast33, eMolTox43 and literature). These models were used to calculate the p-values 
(see Section “Conformal prediction”) per target endpoint model and class, thus, resulting in a 746-byte predicted 
bioactivity fingerprint. For use in CP-based toxicity prediction model studies, the individual features were scaled 
prior to model training. The combination of chemical and bioactivity descriptors into the 2913-byte ‘CHEMBIO’ 
descriptor has shown superior performance in the CP study by Garcia de Lomana et al.12 and was therefore used 
in this study.

Data splitting.  After standardising the compounds (see Section “Data assembly”), the target datasets derived 
from the ChEMBL database were temporally split based on the publication year. This resulted in four subsets, 
i.e. train, update1, update2, and holdout set, see Table 2. Thus, compounds were ordered by publication year (old 
to new).

Aiming for the typically used ratio of 80% training (further divided in 70% proper training and 30% calibra-
tion set) and 20% test set5,6,44, year thresholds were set to assign at least 50% of the total compound number to 
the proper training set, and at least 12% to each calibration set. The remaining compounds were used as holdout 
data (see Supplementary Material Section A1.4 for more details).

For the computational experiments with the liver toxicity and MNT data, the standardised public datasets 
were used for training. The standardised proprietary data were time-split into update and holdout set based on 
the internal measurement date (see Supplementary Material Section A1.4 for details). Due to the small number 
of available inhouse compounds, only one update set was deducted, containing at least 50% of the total available 
inhouse dataset, see Table 2.

Table 1.   ChEMBL target datasets used to investigate data drifts including the target name and the number of 
active and inactive compounds.

ChEMBL ID Name Active compounds Inactive compounds

CHEMBL220 Acetylcholinesterase (human) 1334 1339

CHEMBL4078 Acetylcholinesterase (fish) 2056 1755

CHEMBL5763 Cholinesterase 1871 884

CHEMBL203 EGFR erbB1 2955 1104

CHEMBL206 Estrogen receptor alpha 826 590

CHEMBL279 VEGFR 2 3782 1392

CHEMBL230 Cyclooxygenase-2 1148 872

CHEMBL340 Cytochrome P450 3A4 2501 815

CHEMBL240 hERG 1601 3375

CHEMBL2039 Monoamine oxidase B 1413 1121

CHEMBL222 Norepinephrine transporter 406 1160

CHEMBL228 Serotonin transporter 449 1662
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Conformal prediction.  Inductive and aggregated conformal predictor.  The framework of an inductive 
conformal predictor (ICP) (see Fig.  1a) uses three types of datasets: proper training set, calibration set, and 
test set45. On the proper training set, an underlying ML model is fitted to make predictions for the calibration 
and test set instances. The outcomes, i.e. the probabilities for a compound to be assigned to class 0 or 1 in bi-
nary classification, are converted into so-called nonconformity (nc scores) by using a nonconformity function. 

Table 2.   Number of active and inactive compounds and year threshold used for the time split. ChEMBL data 
were temporally split into training, update1, update2 and holdout set based on the publication year. Models 
for the micro nucleus test and liver toxicity endpoint were trained on public data while the inhouse data were 
split into update and holdout set based on the internal measurement date. *Thresh: Data points published 
(ChEMBL) or measured (micro nucleus test, liver toxicity) until this year threshold are included in the 
corresponding subset.

Target (ID)

Training set Update1 set Update2 set Holdout set

Thresh* Inactive Active Thresh* Inactive Active Thresh* Inactive Active Thresh* Inactive Active

CHEMBL220 2014 802 840 2016 211 248 2017 217 138 2020 104 113

CHEMBL4078 2014 1031 1008 2015 259 275 2016 267 202 2020 499 270

CHEMBL5763 2015 1125 600 2016 302 75 2017 307 95 2020 137 114

CHEMBL203 2012 1660 433 2014 526 213 2016 428 291 2020 341 167

CHEMBL206 2006 437 325 2012 117 63 2016 114 97 2020 158 105

CHEMBL279 2010 1955 649 2013 523 307 2014 618 137 2020 686 299

CHEMBL230 2010 475 542 2013 218 78 2015 237 80 2020 218 172

CHEMBL340 2012 1272 496 2014 439 153 2015 341 59 2020 449 107

CHEMBL240 2012 797 1938 2014 301 413 2016 265 526 2020 238 498

CHEMBL2039 2014 710 645 2015 189 192 2017 380 212 2020 134 72

CHEMBL222 2009 231 673 2011 61 227 2015 40 206 2020 74 54

CHEMBL228 2009 242 858 2011 97 373 2014 31 235 2020 79 196

Micro nucleus test - 1475 316 2005 70 134 – – – 2020 98 50

Liver toxicity - 247 445 2011 42 48 – – – 2020 35 15

Figure 1.   (a) Framework of an inductive conformal predictor. An ML model is fitted on the compounds of 
the proper training set to make predictions for the calibration and test (holdout) set instances. The predictions 
are transformed into nonconformity scores. By comparing the outcome of the test compound to the outcomes 
of the calibration set, p-values are calculated, which give an estimate on the likelihood of the compound to 
belong to a certain class. If a significance level is selected, prediction sets are calculated. Blue-purple box In the 
‘update calibration set’ strategy, the calibration set is updated. Yellow box If multiple conformal predictors are 
aggregated, the part highlighted in the yellow box is repeated n times. (b) Overview of CP experiment setup: 
Experiments (i) CV, and prediction of holdout set using (ii) original calibration set, (iii) updated calibration sets 
to investigate temporal data drifts and drifts between data from different origin, i.e., ChEMBL and inhouse data.
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Here, the inverse probability error function, which is typically used together with random forest (RF) models, 
is applied20,46–48.

For each test data point, the calibrated model outputs two so-called p-values in the binary setup. Therefore, 
the nc scores of the calibration set are sorted into two lists, one per class. The ratio of nc scores of the calibra-
tion set, which are larger than the nc scores for a test sample, results in a p-value. If a significance level, i.e. an 
expected error rate, is selected, prediction sets can be derived. They contain the class labels for which the p-value 
is larger than the significance level. For binary classification, the possible prediction sets are { ∅ }, {0}, {1}, {0,1}. 
Given that calibration and test data are exchangeable, the CP framework ensures that the observed error rate 
does not exceed the significance level10,11.

In an ICP, only part of the information available in the training set is used for calibration as the other part 
is required to fit the underlying ML model. To improve the informational efficiency, multiple ICPs are typically 
aggregated in an aggregated conformal predictor (ACP)47, as in this study. Therefore, the training and prediction 
part (see yellow box in Fig. 1) is repeated n times (here n = 20 ). In fact, the training set was 20 times split into 
calibration and proper training set, 20 models were built on the proper training set and calibrated with the cor-
responding calibration set. Each compound was predicted 20 times and the calculated p-values were aggregated 
taking the median value49.

Evaluation of conformal predictors.  Conformal predictors are generally evaluated with respect to their validity, 
efficiency and accuracy of single class predictions. Validity is defined as the ratio of prediction sets containing the 
correct class label. As predictions are considered correct when they contain the correct label, ‘both’ predictions 
({0,1}) are always correct. Empty prediction sets ({∅ }) count as erroneous. Efficiency of the predictions can be 
assessed by the ratio of prediction sets containing a single class label, i.e. {0} and {1}. The ratio of these single class 
predictions containing the correct label is often calculated as the single class accuracy. In the case of unbalanced 
datasets, class-wise metrics, i.e. separate metrics for the compounds belonging to the active and inactive class, 
can also be calculated. Balanced metrics (e.g. balanced validity, balanced efficiency and balanced accuracy), are 
then calculated as the arithmetic mean of the class-wise metrics.

CP setup and experiments.  In this work, it was further explored how effects of data drifts can be mitigated by 
recalibrating a CP model. In the ‘update calibration set’ strategy, the original calibration set (Fig. 1a, blue-purple 
box) is exchanged with data assumed to be closer to the holdout set (Fig. 1b). Three main experiments were 
performed and compared. First, an internal fivefold CV experiment was performed (Fig. 1b.i). Hence, the train-
ing set was five times randomly stratified split into 80% training and 20% test set. Within each CV fold, an ACP 
consisting of 20 ICPs (inverse probability error function, Mondrian condition, nonconformist Python library, 
version 2.1.046) using an underlying RF classifier (500 estimators, else default parameters, scikit-learn Python 
library, version 0.22.250) was implemented. Each model was trained on 70% (proper training set) and calibrated 
on 30% (original calibration set) of the selected training data. The test sets from the CV-splits were predicted 
with the CV-models calibrated with the original training set. Second, the same calibrated CV-models were used 
to predict the holdout set, i.e. the ‘newest’ data from the ChEMBL datasets or the inhouse DILI and MNT test 
sets (Fig.  1b.ii). Third, the same models were recalibrated using the update sets, which were determined as 
described in Section “Data assembly”. For the experiments with the ChEMBL data, two update sets (update1 and 
update2) were used each, as well as a combination of update1+update2. For the inhouse data, only one update 
set was investigated. The recalibrated models were used to make predictions on the same holdout sets (Fig. 1b.iii) 
All models were evaluated at a significance level of 0.2, as it has been shown that this level offers a good trade-off 
between efficiency and validity51,52.

Visualisation and further data analysis.  Visualisation.  Data visualisations were created using mat-
plotlib version 3.2.153.

UMAP.  For descriptor space analysis, UMAPs were generated on the CHEMBIO fingerprints using the umap-
learn Python library, version 0.4.654. The parameters were set to n_neighbors = 100 , min_distances = 0.8 and 
distance_metric = “euclidean′′ , meaning that a range of 100 nearest neighbours was considered to learn the 
manifold data structure. The distance between two points plotted in the UMAP is at least 0.8 and the distance 
between two data points is calculated using the euclidean distance.

Compound clustering.  To analyse commonalities between compounds per set, compounds were clustered, 
using the “Hierarchical Clustering” node in KNIME. The clusters were annotated based on the Tanimoto coef-
ficients of Morgan fingerprints (1024 bits, radius 2) between all compound pairs. A distance threshold of 0.5 was 
chosen, i.e., clusters were split so that all compounds within a cluster have a smallest distance below the thresh-
old. Since the analysis focused on detecting clusters that spread over more than one set (training/test/update/
holdout), clusters with less than two compounds, i.e. singletons, were not considered. Clustering and fingerprint 
calculation was performed in KNIME.

Results and discussion
When using (ML) algorithms, it is assumed that the training data and test data are independent and identically 
distributed (I.I.D.). Similarly, CP models are designed to be valid if training and test data originate from the same 
distribution, i.e., are exchangeable10. This prerequisite, however, is not always fulfilled, especially when new com-
pound spaces or different assay sources are explored. Hence, given comprehensive training data and modelling 
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tasks, valid CP models can often be generated in a random-split k-fold CV setup. However, when predictions on 
external test data are performed, model performance has been shown to drop55. Here, we analysed the effects of 
data drifts on the validity of CP models. Thereby, we assessed the impact of recalibrating a CP model with updated 
data to restore the validity and positively affect performance. Note that this strategy has been introduced in the 
previous study, exemplified on the Tox21 challenge data17, and is further investigated here for different datasets, 
molecular encodings and study settings.

In the first part of this study, temporal data drifts were analysed on twelve toxicity-related datasets from the 
ChEMBL database. In the second part, the applicability of models trained on public data to proprietary toxicity 
datasets was investigated.

Time‑split experiments with twelve ChEMBL datasets.  To analyse the impact of temporal data drifts 
on CP model performance, ChEMBL datasets for twelve endpoints were prepared. The selected endpoints are 
toxicologically-relevant targets, known for off-target effects, drug-drug interactions or as ecotoxicological end-
points, which need to be considered during the development of new chemicals33,34 (see Supplementary Table S1). 
The collected datasets were temporally split into training, update1, update2 and holdout subsets based on their 
publication date (see Section “Data and methods” and Table 2).

Experiments i and ii: CV and predictions using original calibration set.  Fivefold CV on the training data pro-
duced valid (mean balanced validity: 0.81), efficient (mean balanced efficiency: 0.93), and accurate (mean bal-
anced accuracy: 0.87) models at significance level  of 0.2 (see experiment cv_original in Table  3 and Fig.  2). 
However, predictions with the same CV-models on the holdout data, i.e., newest data w.r.t. publication year, 

Figure 2.   Time split evaluation (balanced validity, balanced efficiency, balanced accuracy) of CV experiments 
and predictions for the holdout set using the original (cal_original), update1 (cal_update1), update2 (cal_
update2) and combined update1_and_2 (cal_update1_and_2) calibration sets for twelve ChEMBL datasets.

Table 3.   Overall, balanced and class-wise evaluation of time-split experiments with ChEMBL data.

CV

Predict holdout set

Cal_original Cal_update1 Cal_update2 Cal_update1_and_2

Validity 0.81 ± 0.01 0.57 ± 0.14 0.75 ± 0.07 0.77 ± 0.09 0.78 ± 0.07

Efficiency 0.93 ± 0.04 0.82 ± 0.14 0.78 ± 0.12 0.74 ± 0.13 0.73 ± 0.15

Accuracy 0.87 ± 0.04 0.68 ± 0.10 0.68 ± 0.08 0.70 ± 0.10 0.70 ± 0.09

Balanced validity 0.81 ± 0.01 0.56 ± 0.11 0.73 ± 0.09 0.76 ± 0.08 0.77 ± 0.08

Balanced efficiency 0.93 ± 0.04 0.83 ± 0.14 0.79 ± 0.12 0.74 ± 0.13 0.73 ± 0.15

Balanced accuracy 0.87 ± 0.04 0.65 ± 0.09 0.65 ± 0.09 0.66 ± 0.10 0.67 ± 0.09

Validity inactive class 0.81 ± 0.01 0.62 ± 0.26 0.76 ± 0.22 0.78 ± 0.22 0.78 ± 0.20

Efficiency inactive class 0.93 ± 0.04 0.84 ± 0.14 0.79 ± 0.14 0.72 ± 0.14 0.73 ± 0.16

Accuracy inactive class 0.87 ± 0.05 0.72 ± 0.26 0.69 ± 0.26 0.68 ± 0.29 0.70 ± 0.24

Validity active class 0.81 ± 0.01 0.50 ± 0.22 0.71 ± 0.19 0.74 ± 0.18 0.75 ± 0.14

Efficiency active class 0.93 ± 0.05 0.81 ± 0.14 0.78 ± 0.13 0.75 ± 0.10 0.73 ± 0.16

Accuracy active class 0.87 ± 0.04 0.59 ± 0.20 0.61 ± 0.26 0.64 ± 0.23 0.64 ± 0.20
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resulted in non-valid models with a higher-than-expected error rate (mean balanced validity of 0.56) as well as 
lower mean efficiency and accuracy (see experiment cal_original in Table 3 and Fig. 2). Class-wise evaluations 
for all experiments are provided in Supplementary Fig. S1.

The poor calibration of the model, i.e., a mean absolute loss in balanced validity of 0.25, for predictions on 
the holdout set may be an indicator for data drifts over time. Changes in the descriptor space or assay conditions 
(also due to diverse groups investigating the same target class) over the years may be responsible for such data 
drifts. Note that the data points in the holdout set were published at least five to ten years later than the training 
set instances (depending on the endpoint, see Table 2). Thus, it was investigated if the effects of these drifts can 
be mitigated by updating the calibration set with intermediately published data, i.e. update1 or update2 sets.

Experiment iii: update calibration set.  To investigate whether valid models can be obtained with a small 
amount of new data, the calibration set was updated with more recent data while the trained CV-models were 
left unchanged17. For the ChEMBL experiments, the new calibration sets consist of the update1, update2 set, or 
a combination of both update sets.

Measured over all twelve endpoints, updating the calibration set with update1 or update2 led to an improve-
ment of the mean balanced validity by up to 0.20 compared to the models with the original calibration set, reach-
ing values of 0.73 and 0.76 with update1 and update2, respectively (see experiments cal_update1 and cal_update2 
in Table 3 and Fig. 2). However, a slight decrease in the mean balanced efficiency by up to 0.09 was also observed 
(reaching values of 0.79 and 0.74 for update1 and update2, respectively).

It should be noted that restoring the validity is a prerequisite for applying CP models with confidence7,17. 
In the absence of validity, the confidence of the predictions is not guaranteed and the efficiency becomes an 
irrelevant metric (CP model would not offer any advantage and could be exchanged by the base model (e.g. ran-
dom forest) to obtain an efficiency of one). With validity being a prerequisite for the application of CP models, 
restoring it by recalibration is an improvement. The concurrent loss in efficiency is undesired but also expected, 
since many instances in the holdout set may fall outside the AD of the underlying model. Lower efficiency along 
with improved validity indicates that the model recognises more compounds, for which it does not have enough 
information to classify them into a single class. Hence they are predicted as ‘both’. To avoid the loss in efficiency, 
the underlying model could be retrained with more up-to-date data. For example, compound representatives 
classified as empty or both sets by the current model could be experimentally screened to include their outcomes 
in an updated training set, feeding the model the necessary information to increase its efficiency. However, to 
achieve an improvement in the efficiency by retraining, a high amount of new data is usually required. Other 
studies56–58 have explored the use of CP-based active learning approaches to select data points that provide the 
most information to the model if experimentally evaluated. By using these approaches, a small number of addi-
tional data points can greatly extend the AD of the model.

While no overall improvement—or impairment—was observed in terms of accuracy (see Table 3 and Fig. 2), 
restored validity allows predictions with an associated confidence.

To analyse the impact of the size of the calibration set on the model performance, the two update sets were 
combined and used as a new calibration set (update1 + 2). In summary, all evaluation values remained at a similar 
level as for the update1 and update2 experiments. Mean balanced validity of 0.77, mean balanced efficiency of 
0.73 and mean balanced accuracy of 0.67 were achieved (see experiment cal_update1_and_2) in Table 3 and 
Fig. 2). This indicates that the variation in size of the different calibration sets (from around 500 compounds 
in the original, update1, and update2 calibration sets to around 1000 compounds in the update1 + 2 set) in the 
‘update calibration set’ strategy does not have a major influence on model performance in this study. Previous 
studies have shown that the size of the calibration set, nevertheless, has an influence on the resolution of the 
p-values, i.e. if more data points are available for calibration, the calculation of the p-values becomes more 
precise/distinct6,17. For instance, a calibration set with only 4 active compounds can only produce five different 
p-values, while a larger calibration set will be more precise in the p-value assignment.

ChEMBL data composition analysis.  It is concluded that the validity of predictions for the holdout set can be 
restored when using more recent data to calibrate the CP models.

This could be attributed to the fact that the distribution of calibration and holdout sets are more similar 
compared to the training data. The efficiency of the models is slightly affected by this strategy, as the model still 
lacks information to make single class predictions. Nevertheless, the characteristics of the time-split within the 
ChEMBL data based on the publication year should be considered with care. In theory, a cluster CV (where by 
design compounds belonging to the same cluster are always in the same splits) should present a more challenging 
task than a temporal CV (where series of compounds could be further developed after the splitting date)26. How-
ever, this situation could be different for time splits on public domain data. Yang et al.19 showed on a benchmark 
study that time-split CV is a much harder task on public domain data (PDBbind59–61 in this case) than in industry 
setups. Using ChEMBL data, we observe that one publication may contain a whole chemical series, which was 
developed over a longer period of time, but is labelled in ChEMBL with the same publication date. Moreover, 
the fact that public data in ChEMBL arise from different sources reduces the chances that a compound series is 
further developed over time (and is therefore present in several splits). This might increase the chemical diver-
sity between time-splits within openly collected data compared to data from a single institution. Analysing the 
molecular clusters of the ChEMBL data used in this study and their distribution among time-splits, we observed 
that only few clusters are scattered over different splits. Only between 7% and 16% of the compounds in a single 
cluster (with distance threshold of 0.5 and only considering clusters with at least two compounds) were spread 
over more than one split (see Supplementary. Fig. S5). This result indicates that, in this case, the prediction of 
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the holdout set may be even more challenging than in an industrial (time-split) scenario, where early developed 
compounds of a compound series may be included in the consecutive training/update/holdout sets.

Individual endpoint performance analysis.  The above discussed performance values referred to average values 
over models built for twelve endpoints. This led to the conclusion that updating the calibration set on average 
improves the validity at the cost of a small loss in efficiency. Considering the endpoints individually, the influ-
ence of updating the calibration set on the performance of the models varied. On average there was no substan-
tial difference between updating the calibration set with update1 or update2 data. However, looking at individual 
models (Fig. 3a, Supplementary Fig. S4), e.g. endpoint ChEMBL228, the continuous calibration worked better in 
restoring the validity with update1 than update2 sets. In contrast, recalibrating with the update2 sets led to bet-
ter performance for endpoints ChEMBL206, ChEMBL222, and ChEMBL279 (see also Supplementary Figs. S2 
and S3).

The observations that the effects of recalibration for each endpoint are dependent on the update set might be 
explained by the descriptor space covered by the respective holdout, update and training sets. Our hypothesis is 
that updating the calibration set might be more beneficial if the update set compounds cover a descriptor space 
more similar to the holdout compounds than the original calibration set.

To investigate the influence of the descriptor space, the compounds’ ‘CHEMBIO’ descriptors of the training, 
update1, update2, and holdout set were transformed into a two-dimensional space using UMAP (Fig. 3b). For 
endpoint ChEMBL206, for which the update2 strategy worked clearly better, a large part of the update1 set over-
laps with the training set, indicating that less improvement can be expected when recalibrating with it. Contrary, 
there is more overlap between the holdout and update2 sets. This might explain the particularly positive effects 
of recalibrating with update2 on the validity and accuracy for predicting the ChEMBL206 holdout set.

To quantify these differences in a rational manner, the Tanimoto coefficient based on Morgan fingerprints 
of each holdout compound to its nearest neighbour in the training and update sets, respectively, was calcu-
lated. Exemplified for endpoint ChEMBL206, the median coefficient of the holdout compounds to their nearest 
neighbour in the respective sets confirmed that the the holdout set is on average more similar to the update2 set 
(median coefficient of 0.42) than to the update1 or training sets (median coefficients of 0.29 and 0.33, respectively; 
distribution of distances to nearest neighbours provided in Supplementary Fig. S6).

Update calibration strategy on inhouse datasets.  When insufficient internal data are available to 
build ML models (or, in general, to extent the descriptor space coverage of the models), public data can be used 
in industrial setups for model training. Exemplified by MNT in vivo and liver toxicity CP models, we explored 
whether the applicability and validity of predictions on internal data could be improved by recalibrating models 
trained on public data with part of the internal data.

CP models were fitted on publicly-available data for MNT in vivo and liver toxicity, previously collected and 
used for model building by Garcia de Lomana et al.12. Liver toxicity induced by chemicals is a growing cause 
of acute liver failure62. MNT in vivo is an assay to assess mutagenicity29. Both endpoints are highly relevant for 
registration and authorisation of new chemicals28–30. The internal data were temporally split into update (older 

(a) (b)

Figure 3.   Analysis of individual endpoints (a) Balanced evaluation of time-split experiments for four selected 
ChEMBL endpoints. Each plot represents CV results (cv) and predictions for the holdout set using the original 
(cal_original), update1 (cal_update1), update2 (cal_update2) and combined update1_and_2 (cal_update1_
and_2) calibration sets. The doted line at 0.8 denotes the expected validity for the chosen significance level 
of 0.2. (b) UMAP showing the descriptor space covered by the compounds in the different time-split sets for 
ChEMBL206 endpoint.
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data) and holdout (more recent data) sets. Note that due to the limited data size only one update set was created 
(see Table 2).

Experiments i and ii: CV and predictions using original calibration set.  The CP models were built on the pub-
licly-available training data and validated within a fivefold CV. The predictions for the liver toxicity and the MNT 
endpoints resulted in a balanced validity of 0.81 and 0.82, a balanced efficiency of 0.81 and 0.79 and a balanced 
accuracy of 0.77 and 0.77, respectively (see Table 4). Thus, valid models with high efficiency and accuracy were 
obtained when evaluated within CV experiments.

Applying these models to the holdout set containing internal data, the balanced validity dropped drastically 
by up to 0.34 points (liver toxicity: 0.47, MNT: 0.50). The balanced accuracy of the models also decreased strongly 
(liver toxicity: 0.43, MNT: 0.49), while the balanced efficiency increased (liver toxicity: 0.89, MNT: 0.94). The lat-
ter indicates that mostly single class predictions were made. The class-wise evaluation of the MNT model predic-
tions discloses that almost all internal compounds were predicted to be inactive (accuracy inactive compounds: 
0.99, accuracy active compounds: 0, see Table 4 and Supplementary Fig. S7). For the liver endpoint, a similar 
trend was observed (accuracy inactive compounds: 0.7, accuracy active compounds: 0.16). These observations 
indicate that the distributions of the holdout and calibration data, i.e. of internal and external data, are highly 
different. Summarising, applying the models trained on public data to the internal data resulted in non-valid 
models that mainly predict all internal compounds as inactive.

Experiment iii: update calibration sets.  For the liver toxicity endpoint, exchanging the calibration set with the 
earliest developed internal data (years 2005-2019, containing at least 50% of all internal data) could restore the 
validity for both compound classes (inactive: 0.84, active: 0.80). The balanced efficiency decreased largely from 
0.89 to 0.38 (inactive compounds: 0.45, active compounds: 0.31) as many single class predictions were now 
identified as inconclusive and shifted to the ’both’ class. The balanced accuracy increased only slightly from 0.43 
to 0.49. Nevertheless, the accuracy became more balanced (inactive: 0.63, active compounds: 0.35), as now more 
active compounds were correctly identified as such. The observations for the liver toxicity endpoint are similar 
to those for the ChEMBL endpoints. It is promising that the validity could be restored, although the balanced 
efficiency dropped. The improved balanced accuracy of 0.49 still leaves room for further improvements. To 
visualise the differences in the descriptor space covered by the public and internal data, UMAPs were derived 
(see Fig. 4a,b). Both datasets seem to cover a similar area of the descriptor space calculated with UMAP. The low 
accuracy obtained by applying the model on internal data could thus be better explained by the differences in the 
endpoint definition, as public and internal data were derived from different assays and species. These differences 
could lead to inconsistencies in the class labelling of a compound (i.e. one compound having different outcomes 
in each assay). Although the validity of the models could be restored by recalibration, these inconsistencies could 
be one explanation for the poor performance in terms of accuracy.

For MNT, updating the calibration set led to an improved balanced validity from 0.50 to 0.74 (inactive com-
pounds: 0.61, active compounds: 0.88) and a strongly reduced balanced efficiency from 0.94 to 0.40 (inactive 
compounds: 0.54, active compounds: 0.26). The fact that the validity for the active class is high while the efficiency 
of this class remains low, indicates a high number of both predictions for the active compounds. Thus, the model 
is lacking information about active compounds to make single class predictions. A reduction in the balanced 
accuracy to 0.39 was observed, while the values are again more balanced between classes (inactive compounds: 
0.29, active compounds: 0.50). Concluding, in the case of MNT, the balanced validity could be improved when 
recalibrating the models, but for the inactive compounds, it could not be restored to the expected level of 0.8. 
Analysing the descriptor space of the different datasets and their class labels (see UMAPs in Fig. 4c,d), it can be 
observed that almost all holdout compounds overlapping with the training set are inactive, while most of the 
holdout compounds overlapping with the update set are active. After updating the calibration set, the validity 

Table 4.   Evaluation of experiments to investigate drifts between internal and external data.

Liver toxicity Micro nucleus test

CV

Predict holdout set

CV

Predict holdout set

Cal_original Cal_update Cal_original Cal_update

Balanced validity 0.81 0.47 0.82 0.82 0.50 0.74

Balanced efficiency 0.81 0.89 0.38 0.79 0.94 0.40

Balanced accuracy 0.77 0.43 0.49 0.77 0.49 0.39

Validity inactive class 0.81 0.75 0.84 0.80 0.99 0.61

Efficiency inactive class 0.84 0.84 0.45 0.79 0.89 0.54

Accuracy inactive class 0.77 0.70 0.63 0.75 0.99 0.29

Validity active class 0.82 0.20 0.80 0.83 0.00 0.88

Efficiency active class 0.78 0.95 0.31 0.79 1.00 0.26

Accuracy active class 0.77 0.16 0.35 0.78 0.00 0.50

Validity 0.82 0.58 0.84 0.81 0.66 0.70

Efficiency 0.80 0.87 0.40 0.79 0.93 0.45

Accuracy 0.77 0.52 0.57 0.76 0.63 0.33
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of the active class increased and could be restored, as this class is now better represented in the calibration set. 
However, the contrary is observed for the inactive class. Moreover, the efficiency drops as the analysed com-
pounds are very different from the training set and the models are missing information about this area of the 
descriptor space to make single class predictions.

Although exchanging the calibration set with data from the same origin as the holdout set, i.e. with inhouse 
data, did help to increase the validity, these results show that the descriptor space of the holdout set still needs 
to be better represented by the training set to obtain efficient and accurate—and therefore useful—models.

Conclusion
CP models, or generally ML models, are widely used for molecular property predictions, including activity and 
toxicity5,6,63. Notably, the CP framework is based on the assumption that test and calibration data stem from the 
same distribution10,11. If this prerequisite is not given, the models are not guaranteed to be valid (i.e. return the 
expected error rate). The goal of this study was twofold. Firstly, the performance of internally valid CP models, 
when applied to either newer time-split or (true) external data, was assessed. Second, the impact of model updat-
ing strategies exchanging the CP calibration set with data closer to the prediction set was evalutated. Building 
on previous work performed on the Tox21 datasets17, we investigated here two scenarios with data subsets that 
may stem from different distributions. First, temporal data drifts were analysed at the example of twelve toxicity-
related datasets collected from the ChEMBL bioactivity database. Second, discrepancies between performance 
of models trained on publicly-available data vs. models recalibrated on inhouse data was evaluated on holdout 
inhouse data for the liver toxicity and MNT in vivo endpoints.

Due to changes in descriptor space and assays, over time or between laboratories, data drifts occur and were 
observed through the performed experiments (i and ii) on both the twelve ChEMBL as well as the liver toxicity 
and MNT datasets. Overall, valid CP models within CV were built for all endpoint datasets at a significance 
level of 0.2. In contrast, validity dropped below the expected error rate of 0.8, when applied to the holdout sets. 
Resulting mean balanced validities were 0.56 ± 0.11 over all twelve ChEMBL datasets, 0.47 for liver toxicity and 
0.50 for MNT.

Figure 4.   Descriptor space analysis of the liver toxicity (a, b) and MNT datasets (c, d) derived by UMAP. The 
descriptor space covered by the active and inactive compounds of the test sets is compared to the space covered 
by the training (a, c) and update sets (b, d), respectively.
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To address the poor validity on the holdout set, CP updating strategies were implemented (experiment iii), 
in which the calibration sets were exchanged by part of the newer or proprietary data, with the aim of restoring 
the validity. For most of the ChEMBL endpoints, the validity (at 0.2 significance level) could be mostly restored 
(mean balanced validity: 0.77 ± 0.08). The same holds for predictions on the proprietary liver toxicity endpoint 
data (balanced validity: 0.82). For the MNT data, the calibration was also improved, but to a lower extent 
(balanced validity: 0.74). Note that the improved validity comes at the cost of reduced efficiency for ten of the 
ChEMBL endpoints (average absolute loss between 0.04 and 0.10, depending on the update set used), which is 
more prominent for the liver toxicity and the MNT endpoints (absolute loss up to 0.55). A drop in efficiency is, 
however, more acceptable than non-valid models, which cannot be confidently applied. Too low efficiency may 
indicate that the model lacks information, e.g., chemical and biological descriptor space coverage, for classifying 
the new compounds.

With regard to the accuracy of the single class predictions, no change was observed on average for the 
ChEMBL endpoints when updating the calibration set. However, for the liver toxicity and MNT endpoints a more 
balanced accuracy between classes was observed after the update, as more compounds were identified as active.

In principle it is not possible to define an overall update/calibration criteria for all applications, but more 
research is needed to derive a generic approach on how to define it within the specific use-cases. In future studies 
it should be investigated how the degree of deviation of the calibration set from the training and holdout sets 
influences the models validity, efficiency and accuracy. This trade-off between the similarity of the calibration 
data to each set and the amount of available update data will probably determine in which scenarios the recali-
bration strategy is a good approach to overcome data drifts, and when a complete model retraining is necessary.

It is in the nature of the field of compound toxicity prediction or drug design that ML models are applied 
to completely new compounds that are potentially quite different from the training set. This work showed the 
necessity of considering data drifts when applying CP or ML models to new and external data and the need of 
developing strategies to mitigate the impact on the performance.

Data availability
The input data for the twelve ChEMBL endpoint models can be retrieved from https://​doi.​org/​10.​5281/​zenodo.​
51676​36. The public data for the liver toxicity and in vivo MNT endpoints are freely available as described in 
Garcia de Lomana et al.12. The in house data for liver toxicity and in vivo MNT are proprietary to BASF SE.

Code availability
Code is available on GitHub at https://​github.​com/​volka​merlab/​CPrec​alibr​ation_​manus​cript_​SI. The GitHub 
repository contains example notebooks on how to perform the recalibration experiments on a selected endpoint 
as well as on all twelve ChEMBL endpoints together. The code can be adapted and used for other datasets.
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