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Abstract: In this paper, we introduce an approach for future frames prediction based on a single
input image. Our method is able to generate an entire video sequence based on the information
contained in the input frame. We adopt an autoregressive approach in our generation process, i.e.,
the output from each time step is fed as the input to the next step. Unlike other video prediction
methods that use “one shot” generation, our method is able to preserve much more details from the
input image, while also capturing the critical pixel-level changes between the frames. We overcome
the problem of generation quality degradation by introducing a “complementary mask” module in
our architecture, and we show that this allows the model to only focus on the generation of the pixels
that need to be changed, and to reuse those that should remain static from its previous frame. We
empirically validate our methods against various video prediction models on the UT Dallas Dataset,
and show that our approach is able to generate high quality realistic video sequences from one static
input image. In addition, we also validate the robustness of our method by testing a pre-trained
model on the unseen ADFES facial expression dataset. We also provide qualitative results of our
model tested on a human action dataset: The Weizmann Action database.

Keywords: video prediction; autoregressive GANs; emotion generation

1. Introduction

Recent advancements in generative neural networks have greatly improved the quality
of image generation [1–4]. In the domain of video generation, however, the problem
becomes much more intricate because the temporal information is introduced as another
dimension. Most results produced by the existing methods are still not satisfactory to
human eyes [5–8]. Our proposed approach focuses on a specific task in the domain of video
generation: generating a sequence of frames based on the information provided by a single
still image. We name this task “Single image video prediction”.

Many of the existing methods for video prediction take multiple frames as the input
to their models, and then extrapolate the future frames by observing the trend of pixel
movements within those input frames [9,10]. We view single image video prediction as a
much harder task because no temporal information is provided by the input, and the model
has to take into account that movements of the pixels predicted in the future frames should
adhere to a timeline. We show that this ability to predict a “movement-based timeline” can
be learned by our model during the training phase under certain conditions when we detail
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our proposed model in Section 2.1. While single image video prediction is a significantly
harder task, we believe it has a wide range of applications. One example is turning static
images into vivid GIFs, or making clips of different facial expressions based on the same
input image. Moreover, the generated results could be used in perception studies to
examine whether the animated GIFs enhance emotion perception of otherwise static images
and, e.g., websites. Eventually such a tool might be used to better understand how humans
may engage in a similar process of extrapolating single images in interactions. For instance,
video sequences might be generated on the fly, and depending on user inputs, but in a more
experimentally controlled manner than through other means, such as pre-recorded videos.

In this paper, we introduce an autoregressive approach to the single image video
prediction problem. As illustrated in Figure 1, the model will constantly produce one
frame at a time based on the frame generated by the previous time step, and this process
is initiated and conditioned with the input image as the starter frame. This approach
has several advantages: Firstly, the information is passed smoothly between the frames.
Secondly, the model is able to generate videos with arbitrary lengths. Lastly, because the
generation process is sequential, the resulting videos show a smooth trajectory of changes
from frame to frame, thus following a continuous and consistent timeline.

Figure 1. Autoregressive generation. G denotes the generator network, and D denotes the discrimi-
nator network. The model generates one frame at a time, the input to the model is always the output
from the previous time step.

However, this generation process could have a significant drawback: cumulative
quality degradation. As the generation process goes on, noises and undesirable artifacts
accumulate, and as a result, the generation quality suffers incrementally over time. To
overcome this problem, we introduce a mechanism that we refer to as complementary
masking into our model. This mechanism learns to filter out the pixels that should remain
static in the generation process, and lets the model focus on the pixels that need to be
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changed. We show in Section 3.3 that our complementary masking mechanism is very
effective when dealing with cumulative quality degradation.

We conduct extensive experiments to validate our method against other competing
approaches, and show that our method is of superior quality. In addition, we demonstrate
the robustness of our model by testing a pre-trained model on an unseen facial expression
dataset. We also conduct experiments on an action dataset to show the generalization of
our model to another video domain.

2. Materials and Methods
2.1. Proposed Video Autoregressive GAN

Here, we introduce the notation that we use in the rest of the paper, as well as
the components of our proposed autoregressive generative network for single image
video prediction.

2.1.1. Autoregressive Generation

Our main goal is to generate a sequence of T video frames, denoted as V′ := { f ′t}T
t=1,

given an input image f0 ∈ RH×W×3 as its starter frame. The generation process is autore-
gressive, meaning for each time step, the input to the generator network is always the
output of the previous time step. The algorithm behaves slightly different in the training
and testing phases. During the training phase, the ground truth frame ft is taken from the
training video V := { ft}T

t=0 at time step t, the losses for both generator G and discriminator
D networks are calculated based on the true ft+1 and generated f ′t+1. During the testing
phase, the only input to the process is f0, and the rest of the frames { f ′t}T

t=1 are all generated
based on previous generations. To reduce the discrepancy between training and testing,
we propose to perform scheduled sampling (SS) [11] in the later epochs of the training
phase. After some number of initial guiding epochs Eg, the model randomly switches
its input between the ground truth current frame ft and the synthesised current frame f ′t
produced by the previous time step, with a sampling rate r. In this way, we can increase the
model’s exposure to its own generations, and bridge the behavioral gap between training
and testing phases. The process is summarized in the following algorithm.

2.1.2. The Generator Network

As discussed in the introduction, quality degradation poses a substantial problem in
a sequential autoregressive generation process, because noises and undesirable artifacts
will accumulate as the generation process goes on. Inspired by [5], we adopt a two-stream
architecture to form a complementary masking mechanism to avoid this problem. The
formulation of our output is as follows:

G( ft) = m( ft)� d( ft) + [1−m( ft)]� ft, (1)

where G represents the generator component of the GAN model, m(·) is a function that
outputs a soft mask with values between 0 and 1 (0 ≤ m( ft) ≤ 1), d(·) is a function whose
output can be viewed as a difference map between ft and ft+1, and � is element-wise
multiplication. The intuition behind Equation (1) is that when composing the next frame,
some pixels should remain static compared to the current frame, which we call static pixels;
while the rest of the pixels should be changed to follow the motion of the subject in the
video, which we call variable pixels. Our formulation enforces a complementary relation
such that the mask for static pixels and the mask for variable pixels sum up to 1. This
simulates the formation of a complete frame, by adding both static and variable pixels
together. We illustrate the autoregressive generation with the complementary mask in
Figure 2a,b, respectively. In our ablation studies, we show that the complementary mask
module helps the model to focus on the variable pixels, which in turn helps to reduce
quality degradation. In our setup, we use a ResNet [12] based architecture for m(·), and a
U-Net [13] based architecture for g(·).
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Figure 2. Architecture Overview. (a) is the generator, it takes a frame ft as input, and produces a
difference map Dt and a mask Mt. (b) is the complementary masking module that uses the mask Mt

to merge the input frame ft and the difference map Dt into the predicted next frame f ′t+1. (c) is the
discriminator network.

2.1.3. The Discriminator Network

We use two discriminators in our autoregressive GAN architecture, the global and
the local discriminator. The global discriminator Dg overviews the entire frame and distin-
guishes between the ground truth next frame and its counterpart’s generation.

Dg( ft, ft+1 ∨ f ′t+1) = real ∨ f ake. (2)

The local discriminator Dl puts more attention to the variable pixels. Here, we reuse
the mask generated in the generator to eliminate static pixels: by subtracting ft on both
sides of Equation (1), we get:

f ′var,t+1 = m( ft)� (d( ft)− ft). (3)

We also subtract ft from the real ft+1 to get the ground truth variable pixels:

fvar,t+1 = ft+1 − ft. (4)

Finally, our second discriminator D f can be formulated as:

Dl( ft, fvar,t+1 ∨ f ′var,t+1) = real ∨ f ake. (5)

We illustrate the discriminator network in Figure 2c. Unlike other methods [14,15] that
employ a predefined region (mouth region cropping, eye region cropping, etc.) for the local
discriminator, we can benefit from the mask learned by the generator and automatically
crop out the regions of interest. Thus, we argue that our design for the local discriminator
is more flexible and generalizable to different domains and datasets, as we show in the
experimental section. In our setup, we use Patch-GAN [2] for both our global and local
discriminators.

2.1.4. Joint Objective Function

We propose an objective function that consist of the sum of an adversarial objective
function, a reconstruction loss and the mask sparsity loss.

Since we have two discriminators in our GAN architecture, the adversarial objective
can be written as:



Sensors 2022, 22, 3533 5 of 14

LGAN(G,Dg,Dl) = E ft+1 [logDg( ft, ft+1)] +

E ft+1 [logDl( ft, ft+1)] +

E ft [log(1−Dg( ft,G( ft))] +

E ft [log(1−Dl( ft,G( ft))], (6)

where G tries to minimize this objective against its adversaries Dg and Dl that try to
maximize it:

G∗ = arg min
G

max
Dg ,Dl

LGAN(G,Dg,Dl). (7)

We also add a reconstruction loss because it is proven to be effective for improving the
quality of the generated samples with GANs. Here, we combine the traditional L1 distance
with our GAN objective. While the discriminators’ task remains unchanged, the generator
should produce outputs that are as close to the ground truth as possible in an L1 sense:

LL1(G) = E ft‖ ft+1 −G( ft)‖1. (8)

Following [5], we found that adding a sparsity prior on the mask can encourage
the generator to reuse as many pixels from its input as possible, thus reducing noise
accumulation during the generation process:

LMS(G) = λ‖m( ft)‖1, (9)

where λ here can be interpreted as the strength of this prior. A larger λ will encourage the
network to reuse more pixels from its input. We set λ = 0.2 in our experiments. Similar to
the reconstruction loss, the mask sparsity loss only affects the generator.

To sum up, our final objective to train the network can be written as:

G∗ = arg min
G

max
Dg ,Dl

[LGAN(G,Dg,Dl) + LL1(G) + LMS(G)]. (10)

2.2. Implementation

As discussed above, we have two streams in our generator G: a function m(·) that
outputs a mask, and a function d(·) that generates the difference map. For m(·), we use
a ResNet [12] based architecture with two downsampling/upsampling layers scattered
between 9 residual blocks, and we use the tanh function to rescale the output to [0, 1]. For
d(·), we employ an 8-layer U-Net [13] with skip connections to enable the flow of both
low-level and high-level features. We use the PatchGAN [2] discriminator with 70× 70
patch size for both the global and local discriminators. We set the video batch size to 1 and
sample 10 frames from each individual clip for training. We use the Adam [16] optimizer
and set the learning rate to 0.0002, the learning rate linearly decays to 0 starting from the
half of the total epochs. The scheduled sampling process starts at the half of the total epochs
in the training. We set our initial sampling rate to 0.1 and increase this by 0.1 for every
20 epochs. All input frames are resized to 256× 256 and the values normalized to [−1, 1].
We train separate models for each emotion, and we do not have classifiers for emotion
classification. The same approach is used for human actions, in which we have one model
per action. We will make the code publicly available upon acceptance of the paper.

2.3. Datasets
2.3.1. Facial Expression Generation

We require each training sample to contain a single facial expression that begins with
a neutral expression, and reaches a single apex of expression intensity. We use the UT
Dallas dataset [17] as our base dataset. Considering that this dataset holds a different
number of samples for different facial expressions, we selected 4 expression classes with
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the largest number of videos: Happiness (316 videos), Disgust (254 videos), Surprise
(192 videos), and Sadness (60 videos). We trim these videos into clips between 1–2 s to
remove any idling frames. Following this, we sample 10 frames for each clip and resize
them to 256× 256 pixels. For each emotion class, we take 20 different subjects for the testing
split, and the remainder for the training split.

2.3.2. Human Actions Generation

We use the Weizmann Action database [18], and selected 4 different actions (“one-hand
wave”, “two-hands wave”, “skip” and “jump”) to train and test our model. Each action
category contains 9 videos of different performers, we trim the videos to make sure there
is no repetitions. We randomly select 7 subjects for training and 2 subjects for testing. All
frames are resized to 64× 64 in size. Due to the small sample size, we did not conduct a
quantitative evaluation on this dataset. Instead, we provide visual results in Figure 3, to
showcase the generalizability of our method to different video domains.

"one hand wave" "two hands wave"

"skip" "jump"

input

input

input

input 𝑡 = 1 𝑡 = 3 𝑡 = 7

𝑡 = 1 𝑡 = 3 𝑡 = 7

𝑡 = 1 𝑡 = 3 𝑡 = 7

𝑡 = 1 𝑡 = 3 𝑡 = 7

Figure 3. Results on the Human Action dataset.

3. Results

In this section, we provide detailed analysis and results of our model on different
perspectives, including an ablation study on the effects of different components of our
model design, and comparison to other methods in the literature.

3.1. Quantitative Results

For quantitative comparisons, we use Frechet Inception Distance (FID, a lower value
indicates better quality) [19] and the Inception Score (IS, a higher value indicates better
quality) [20] to measure perceptual quality and diversity. On Table 1, we compare our
method against two other temporal-based video generation models: ConvLSTM [6] and the
flow-grounded spatial-temporal (FGST) method [7], with the ground truth frames results
(first row) as reference. We also report results generated by non-temporal-based method
AffineGAN [14] for comparison. All models are trained and tested on the “Happiness”
class in the UT Dallas dataset. We observe that our method is considerably better than
the other two temporal-based models on both evaluation metrics, and its performance is
comparable to that of the AffineGAN. Notice that the AffineGAN model is unaware of the
temporal information and requires additional guidance (the expression intensity score) in
the generation process. The model has to scatter the expression intensity along the timeline,
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and then generate each frame independently to produce the final clip, thus, it should be
categorized as an image-translation task, which is an easier task compared to ours.

Table 1. Quantitative comparison with ConvLSTM, FGST (temporal-based) and AffineGAN (non-
temporal based). We use Frechet Inception Distance (FID) and Inception Score (IS) as evaluation
metrics. We report the results on the test set of the “Happiness” class.

Model FID IS

Ground Truth 0 2.124
ConvLSTM 95.468 1.635

FGST 116.994 1.829
Ours 33.616 2.012

AffineGAN 15.869 2.111

3.2. Qualitative Results

Figure 4 shows the visual comparisons of our method and three other temporal-
based video generation models: ConvLSTM, FGST (temporal-based) and AffineGAN
(non-temporal-based), with the ground truth (GT) frames in the first row. All models are
trained on the “Happiness” class with the same number of epochs, and we show our results
on the test set. As shown in the figure, among the temporal-based methods, our model is
able to produce what appears to be the most realistic frames with consistent continuity. We
also compare our results with the non-temporal-based method AffineGAN in the last row.
As discussed above, the generation process in the AffineGAN setup should be considered
as an easier task compared to ours. Nevertheless, we can still observe that the results
generated by our model are comparable to the AffineGAN results in both realism and
continuity.

Figure 4. Qualitative comparison with different models for the “Happiness” class on the test set. The
first row are the ground truth frames, the following rows are frames generated using different models.
We also compare our results with the AffineGAN, which is not a temporal-based model. Our results
are clearly better than ConvLSTM and FGST, and are comparable to results produced by AffineGAN.

Figure 5 shows more results generated by our model trained on different emotions.
Our model is able to learn some generalised traits for different emotions, for example,
pouting and frowning in the “Disgust” category, lifting eyebrows in “Surprise”, and the
crying face in “Sadness”. As we did not introduce any prior to the model during the training
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phase, all of these traits were summarised and learnt by the model itself by observing the
training data.

Figure 5. Different Emotions. We train our model on four different emotions on the UT Dallas dataset:
Happiness, Disgust, Surprise and Sadness. Here, we show the results from the test set.

In Figure 6, we demonstrate the robustness of our model by testing it on an un-
seen dataset, the Amsterdam Dynamic Facial Expression Set (ADFES) [21]. The model
tested is trained on the “Happiness” class on the UT Dallas dataset. We observe that our
model is able to produce frames with consistent quality and smoothness, even though the
background, illumination and video setup is different from the training dataset (UT Dallas).

Figure 3 shows the results of our model trained and tested on the Weizmann Action
database. We show the results generated by our model on four different action classes: “one
hand wave”, “tow hands wave”, “skip” and “jump”. Our model is able to predict both
the limb and body movements for the performers on the test set. This demonstrates the
potential of our model for generating videos that are not limited to the facial expression
domain.

3.3. Ablation Studies
3.3.1. Complementary Mask

The complementary mask mechanism is the key component of our generator network,
since it separates the static pixels and variable pixels such that the model will learn to reuse
some of the pixels from the previous time step. In this way, the quality degradation problem
in the autoregressive generation process appears to be greatly suppressed. Figure 7a shows
the example results generated by our model with/without the complementary mask
mechanism, illustrating that without the mask, the model suffers from quality degradation
when generating later frames. On Table 2, numbers also suggest that implementing the
complementary mask mechanism improves the generation quality of our model.

3.3.2. Two Discriminators

In addition to the global discriminator in our framework, we employ another local
discriminator that puts more attention to the variable pixels filtered by the mask mechanism
in the generator network. It helps refine the details of the generated image, especially
for the regions that are activity involved in the expression. As illustrated in Figure 7b,
without any prior knowledge, the model learned to mask out the eye and mouth regions
on the subject’s face, and the local discriminator pressured the generator to refine. Unlike
previous methods [14,15], this entire process is fully automatic. Table 2 shows that having
two discriminators in our network improves both the FID and the Inception Score.
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Figure 6. Results on the unseen ADFES dataset.

Scheduled Sampling (SS)

The nature of autoregressive generation leads to discrepant behaviours during the
training and the testing phases. If we only use ground truth next-frames during the
training phase, the model will lack the ability to adjust itself to deal with generated
frames. Figure 7c shows the effectiveness of scheduled sampling (SS) during the training
process. We observe that applying SS during training results in an improvement of the
vividness of the generated sequence at test time(the expression generated is more intense).
Table 2 shows that performing SS slightly lowers the Inception Score, but it helps reduce
the FID score. This is reasonable because the Inception Score only takes measurements
on individual images, while FID measures the perceptual distance between the predicted
and the target image. The number suggests that performing SS helps the model generate
images that are closer to the ground truth.

Table 2. Quantitative results for the ablation studies. All the models are trained and tested on the UT
Dallas dataset, “Happiness” class.

Model FID IS

Ours w/o Mask 49.759 1.942
Ours w/o two discriminators 33.678 1.891

Ours w/o SS 33.821 2.024
Ours 33.616 2.012
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Figure 7. Ablation Studies. (a) Complementary Masking. (b) Two discriminators vs. one discrimina-
tor. (c) Scheduled Sampling (SS).

3.4. Mask Visualization

In Figure 8, we visualize the masks produced by the generator of our architecture.
Recall that the mask has 3 channels (RGB) within the range of [0, 1], each channel will be
multiplied with a foreground difference map, and its complement will be multiplied with
the previous frame. All three channels are stacked and rescaled to a range of [0, 255] for
visualization. As a result, higher values correspond to the foreground change (variable
pixels), and lower values correspond to the background (static pixels).

We take three different subjects in the “Happiness” category for illustration. The
masks shown in the figure are sampled from the first, fourth and seventh timestep in
the generation process. Interestingly, our model learnt to crop out facial regions that are
“important” in facial expressions generations, such as the mouth, eyes and cheeks. This
demonstrates the model’s ability to automatically detect regions of interest that may help
with the generation process.
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Figure 8. Mask Visualization. Without any manual annotation, our model learns to crop out some
facial landmarks that are important for expression generation.

4. Discussion

Here, we first include previous work, including methods in the literature that are re-
lated to our approach. These are methods that do image-to-image translation and temporal
based image prediction, both connected to video prediction from a single image. We have
also included methods that tackle the problem of semantic foreground and background
distinction, which are related to the usage of the mask in our system to avoid degradation
of the predicted face over time. Then, we discuss how our proposed method is framed in
relation to those methods from the literature, and our specific contributions with respect
to them.

4.1. Previous Work
4.1.1. Image-to-Image Translation

Image-to-image translation has been an active area of computer vision in recent years
[22,23]. It is the task of generating a new image from another input image. The mapping
between the input and output image from different domains is learned, and can then
be used for applications style transfer [3,4], photo enhancement [24,25] and future state
prediction [26]. Generative adversarial networks (GANs) [1] are the backbone of most
recent work in this area due to their powerful capability to generate sharp images. One
popular variant is the conditional GAN [27], where the model generates images with
characteristics from specific class labels, rather than generic samples from an unknown
noise distribution. Our proposed method follows a similar architecture as proposed in the
Pix2Pix model [2]. In [2], the conditional GAN has a generic loss function that allows it to
learn effective mappings between input and output images from diverse domains. Like
[2], our generator has a “U-Net” structure [13] with skip-connections [12], which helps
preserve low-level information that is shared between input and output images. Similarly
to [2], our discriminator judges whether each N × N patch in an image is more likely to
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be real or fake, and outputs the average probability. This helps to reduce parameters and
training time.

4.1.2. Semantic Foreground-Background Distinction

For better video generation, some methods have also distinguished the foreground
information from the background information. For instance, [5] explicitly models the
background and foreground as two different parts. This is motivated by the observation
that the background is relatively static in most videos, and helps the model to learn the
motion pattern of objects. This approach of semantic distinction is also useful for video
understanding applications, such as in [28], where salient movements are detected by
taking into account the temporal relationships between pixels of subsequent frames. In
another approach [29], they used the Mask R-CNN [30] instead of object proposals to model
scene transition by segmenting the region of interest from the background.

4.1.3. Temporal-based Video Prediction

Videos are composed of frames that are temporally related and that follow a sequential
order. Hence, most of the previous approaches for video prediction use recurrent neural
networks [8,9,31] or 3D convolutional neural networks [5,7,10] to capture the temporal
relationships between the frames. For example, in Villegas et al. [9], a convolutional LSTM
encoder-decoder architecture was used to predict the next frames conditioned on previous
frames up to a fixed number of time steps. In [10], the authors use a spatial-temporal
architecture with 3D convolution layers to capture an optical flow map which is used to
generate future frames from the first frame.

Amazing results have been achieved in the domain of facial expression generation. In
one such approach [14,15], an anchor image, as well as a facial expression intensity score
as guidance were used to generate corresponding frames for an expression. However,
this type of approach requires additional information such as facial landmark cropping
[14], or AU annotation [15]. Furthermore, note that these kinds of information are very
specific, and limited to the domain of facial images. In addition, these methods can only
generate videos with pre-defined lengths, depending on how much they want to scatter
their intensity score.

5. Advances of Our Approach in Relation to Previous Work

In contrast to the aforementioned previous works for generating a video sequence
based on a single input image, our model is able to generate frames of an arbitrary length,
which provides flexibility in generating the desired intensity of a given target expression,
possibly beyond the intensity of expressions exhibited in the training data. We tackle the
problem by proposing an autoregressive approach during the generation process, which
uses the output generated in one time step, as input to the next step to ensure smooth
trajectories of the generated video. To ensure that the quality of the generated frames
is not degraded along the generative process, we introduce a complementary mask to
avoid noise and artifacts accumulating over time. We reported the robustness of the model
by using images from an unseen facial expression dataset. Furthermore, given that our
model does not require any guidance in the generation process, this allows us to go beyond
the facial expression domain with respect to testing our method on other types of videos,
as demonstrated in the experiments on the Weizmann Action database, which show the
robustness of the proposed method.

While generating videos from single images is a very hard task and immediate use of
the method might not be possible depending on the quality needed for a given application,
such as high quality animation for any expression, we believe that our method poses an
advancement in the quality of the generated results with respect to previous work, and it
poses a new framework in which more improvements can be potentially incorporated.
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6. Conclusions

In this paper, we propose a solution to the single image animation problem based on
an autoregressive approach. By constantly re-feeding the output of the model to itself, the
model is able to generate videos with arbitrary lengths. The autoregressive approach has
two distinctive advantages: (1) It helps preserve the details and the context from the starter
frame. (2) It enforces the generation results to be sequential, thus following a continuous
timeline. We use the complementary mask mechanism to suppress the quality degradation
effect caused by the autoregressive process. We propose a two-discriminator setup that
reuses the mask produced in the generator to refine details in critical regions, since this
process is automatic, no extra information such as region of interest cropping is needed.
We conduct extensive experiments on a facial expression dataset, and demonstrate our
model is able to generate realistic and continuous facial expression videos with only one
starter image and no other extra information such as expression intensity guidance. We
also show the potential of our model for video generation in other domains by testing it on
a human action dataset. For future work, one could explore if expanding the input of the
generative model to capture all previously generated frames improves further the quality
of the results.
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