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EXPLICIT TIME STEPPING FOR THE WAVE EQUATION USING
CUTFEM WITH DISCRETE EXTENSION\ast 
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Abstract. In this paper we develop a fully explicit cut finite element method for the wave
equation. The method is based on using a standard leap frog scheme combined with an extension
operator that defines the nodal values outside of the domain in terms of the nodal values inside the
domain. We show that the mass matrix associated with the extended finite element space can be
lumped leading to a fully explicit scheme. We derive stability estimates for the method and provide
optimal order a priori error estimates. Finally, we present some illustrating numerical examples.
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1. Introduction.
New contributions. Let \Omega \subset \BbbR d, with d \geq 2, be an open connected domain with

smooth boundary \partial \Omega . We consider the wave equation: find u : [0, T ) \rightarrow H2(\Omega ) such
that

(1.1)
\partial 2u

\partial t2
 - \Delta u = f in (0, T )\times \Omega , u = 0 on (0, T )\times \partial \Omega 

with initial data u = u0 and \partial u/\partial t = u1 at t = 0, and right-hand side f : [0, T ) \rightarrow 
L2(\Omega ). The objective of the present note is to design an explicit cut finite element
method (CutFEM) for the approximation of solutions to (1.1). The method uses
a leapfrog scheme for the time discretization combined with an extension operator
which provides values in nodes outside of the domain in terms of the interior nodal
values. The extension is based on a composition of an extension operator from inte-
rior elements into the space of discontinuous piecewise polynomials and an average
operator that projects into the continuous finite element space. The framework is
quite general, allows for several natural implementations, is convenient for analysis,
and may be viewed as a generalization of previous constructions; see [1]. We prove
stability and interpolation results for the extended finite element space. To construct
a purely explicit scheme, we show that the mass matrix associated with the extended
finite element space can indeed be lumped while preserving optimal order for piece-
wise linear elements. Key to this result is that with a properly constructed extension

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section November
9, 2020; accepted for publication (in revised form) January 12, 2022; published electronically May
12, 2022.

https://doi.org/10.1137/20M137937X
Funding: The work of the first author was partially supported by the EPSRC grants

EP/P01576X/1 and EP/V050440/1. This work was partially supported by the Swedish Foundation
for Strategic Research grant AM13-0029, the Swedish Research Council grants 2013-4708, 2017-03911,
and the Swedish Research Programme Essence.

\dagger Department of Mathematics, University College London, London, WC1E 6BT, UK (e.burman@
ucl.ac.uk).

\ddagger Department of Mechanical Engineering, J\"onk\"oping University, SE-551 11, J\"onk\"oping, Sweden
(peter.hansbo@ju.se).

\S Department of Mathematics and Mathematical Statistics, Ume\r a University, SE-901 87, Ume\r a,
Sweden (mats.larson@math.umu.se).

A1254

D
ow

nl
oa

de
d 

05
/2

4/
22

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/20M137937X
mailto:e.burman@ucl.ac.uk
mailto:e.burman@ucl.ac.uk
mailto:peter.hansbo@ju.se
mailto:mats.larson@math.umu.se


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1255

operator we can show that the lumped mass matrix is positive definite. This is in
contrast to popular stabilization procedures of the mass matrix such as stabilization
of the jump in derivatives across faces where lumping is, in general, not possible.
Combining cut finite elements, the extension operator, and mass lumping we obtain
a very simple fast explicit method which can handle complex geometric situations
thanks to the flexibility provided by the CutFEM.

We note that the discrete extension operator provides an alternative to weak
stabilization of the cut elements through the bilinear form which controls jumps in
derivatives across faces. The extension operator is therefore of interest in its own right
and may find other applications, for instance, for the computation of physical fluxes
in the shifted boundary method. Furthermore, our construction and theory of the
extension operator may be extended to higher order nodal finite element spaces; see
[9] for a general framework. In this paper we restrict our attention to explicit lumped
methods based on piecewise linears for the wave equation.

Previous work. Cut finite elements allow the boundary of the domain to cut
through an underlying fixed mesh in an arbitrary manner. This procedure manufac-
tures so called cut elements in the vicinity of the boundary that may lead to stability
problems and bad conditioning of the resulting algebraic equations. The remedy is to
add some form of stabilization, for instance, a weak least squares control on the jump
in the normal gradient across element faces, so called ghost penalty; see [4, 8, 18, 23]
for various applications of this concept. Another approach to handle cut elements is
to eliminate them using agglomeration where small elements are connected to larger
elements in order to form an element with a sufficiently large intersection with the
domain; see [20, 7] for discontinuous Galerkin methods, and [1] for an extension op-
erator where degrees of freedom associated with external nodes are eliminated using
a local average of internal node values. For a general introduction to CutFEMs, we
refer to the overview article [5].

Error analysis of finite element methods for the wave equation was originally
developed in early papers including [13, 2, 3], space time methods were proposed and
analysed in [19, 21]. Recent works on wave equations focus on explicit schemes [11, 12]
and discontinuous Galerkin methods [16, 17]. CutFEMs for the wave equation were
developed in [27, 28], in particular the authors consider higher order elements with
face stabilization combined with an explicit Runge--Kutta time stepping scheme which
involves inversion of the mass matrix.

Outline. In section 2 we first introduce the discrete extension operator and de-
rive stability estimates and interpolation error bounds for the extended finite element
space. Then we formulate the finite element method. In section 3 we prove a sta-
bility estimate for the method and then prove optimal order a priori error estimates
taking also lumping of the mass matrix into account. Finally, in section 4 we present
illustrating numerical examples.

2. The finite element method.

2.1. Standard notation. We shall use the following standard notation: Hs(\omega )
denotes the Sobolov spaces of order s over the set \omega with norm \| \cdot \| Hs(\omega ). For s = 0
we write L2(\omega ) = H0(\omega ) and \| \cdot \| L2(\omega ) = \| \cdot \| \omega . In the case \omega = \Omega , we further simplify
and write \| \cdot \| L2(\Omega ) = \| \cdot \| . The L2(\omega ) inner product is denoted by (v, w)\omega =

\int 
\omega 
vw,

and for \omega = \Omega we write (v, w)\Omega = (v, w).

2.2. Mesh and finite element spaces. We introduce the following notation.
\bullet We let \Omega 0 be a polygonal domain with \Omega \subset \Omega 0 and assume that \scrT h,0 is a
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A1256 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

quasi-uniform triangulation of \Omega 0 with mesh parameter h \in (0, h0] for some
h0 > 0. We let \scrT h denote the active mesh \scrT h = \{ T \in \scrT h,0 : T \cap \Omega \not = \emptyset \} . We
let \scrF h denote the set of interior faces in \scrT h.

\bullet We let \scrX h be the set of vertices in \scrT h and denote its cardinality by Nh.
\bullet We define the space of piecewise linear discontinuous functions Wh on \scrT h and
the subspace of continuous piecewise linear functions Vh := Wh \cap C0(\Omega h),
where \Omega h = \cup T\in \scrT h

T .
\bullet We shall often use scalar products and norms defined on a set of mesh entities.
For instance, let \widetilde \scrT h \subset \scrT h be a subset of elements; then

(2.1) (v, w)\widetilde \scrT h
=
\sum 
T\in \widetilde \scrT h

(v, w)T , \| v\| 2\widetilde \scrT h
=
\sum 
T\in \widetilde \scrT h

\| v\| 2T .

2.3. Discrete extension. It is well known [26, Theorem 5, page 181] that for
domains with sufficiently smooth boundary, there exists a universal stable extension
operator E : Hs(\Omega ) \rightarrow Hs(\BbbR d), s \in \BbbN +,

(2.2) \| Eu\| Hs(\BbbR d) \lesssim \| u\| Hs(\Omega ),

Here and below x \lesssim y means x \leq Cy for some positive constant C. We will now
construct a stable discrete extension operator. The construction is based on polyno-
mial extension into the discontinuous finite element space Wh and then application of
an average operator to obtain a continuous piecewise linear function in Vh. We first
recall such an average operator Ah.

Average operator. Let the nodal averaging operator Ah :Wh \rightarrow Vh be defined by

(2.3) Ah :Wh \ni w \mapsto \rightarrow 
\sum 
x\in \scrX h

\langle w\rangle x\varphi x \in Vh,

where the average of the discontinuous function w \in Wh at a node x \in \scrX h is defined
by

(2.4) \langle w\rangle x =
\sum 

T\in \scrT h(x)

\kappa T,xw| T (x),

where the weights \kappa T,x satisfy

(2.5) \kappa T,x \geq 0,
\sum 

T\in \scrT h(x)

\kappa T,x = 1,

and \scrT h(x) = \{ T \in \scrT h : x \in T\} with cardinality | \scrT h(x)| . The operator Ah was
introduced in [24] and is often called the Oswald interpolation operator. We have the
following estimate (see, for instance, [6]):

(2.6) \| w  - Ahw\| \scrT h
\lesssim h1/2\| [w]\| \scrF h

,

where for x \in F , [w](x) = w+(x) - w - (x), with w\pm (x) = lim\epsilon \rightarrow 0+ w(x\pm \epsilon nF ) and nF
a fixed unit normal associated with the face F , denotes the jump in the discontinuous
function w across the face F . For completeness, we include a brief derivation.
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1257

Proof of (2.6). Letting wT = w| T and using an inverse estimate to pass from the
elements to the nodes, we obtain

\| w  - Ahw\| 2\scrT h
=
\sum 
T\in \scrT h

\| wT  - Ahw\| 2T \lesssim 
\sum 
T\in \scrT h

hd\| wT  - Ahw\| 2\scrX h(T )

(2.7)

\lesssim 
\sum 
T\in \scrT h

\sum 
x\in \scrX h(T )

hd| wT (x) - \langle w\rangle x| 2 \lesssim 
\sum 
T\in \scrT h

\sum 
x\in \scrX h(T )

\sum 
F\in \scrF h(x)

h\| [w]\| 2F \lesssim h\| [w]\| 2\scrF h
,

(2.8)

where \scrX h(T ) is the set of nodes associated with T , \| w\| 2\scrX h(T ) =
\sum 
x \in \scrX h(T )| w(x)| 2,

\scrF h(x) is the set of faces belonging to node x \in \scrX h, and we finally used the following
inverse estimate:

(2.9) | wT (x) - \langle w\rangle x| 2 =
\sum 

S\in \scrT h(x)

\kappa 2S,x| wT (x) - wS(x)| 2 \lesssim 
\sum 

F\in \scrF h(x)

h1 - d\| [w]\| 2F .

Here we used the fact that the weights in the average sum to one; then to estimate
| wT (x)  - wS(x)| 2 for two arbitrary elements S, T \in \scrT h(x) we note that there is a
sequence of face neighboring elements \{ Tj\} nj=1, with n uniformly bounded thanks to
quasi-uniformity, such that T1 = S and Tn = T and using the triangle inequality

hd| wT (x) - wS(x)| 2 = hd| wn(x) - w1(x)| 2 \leq hd
\biggl( n\sum 

j=2

| wj(x) - wj - 1(x)| 
\biggr) 2

(2.10)

\lesssim 
n\sum 

j=2

hd| wj(x) - wj - 1(x)| 2 \lesssim 
\sum 

F\in \scrF h(x)

hd| [w(x)]| 2 \lesssim 
\sum 

F\in \scrF h(x)

h\| [w]\| 2F ,(2.11)

where at last we us used the inverse estimate | v(x)| 2 \lesssim h1 - d\| v\| 2F with v = [w].

Extension operator. To define the extension operator, we split \scrT h as follows:

(2.12) \scrT h = \scrT h,B \cup \scrT h,I ,

where \scrT h,I is the set of elements in the interior of \Omega (or with sufficiently large intersec-
tion with \Omega ; see Remark 2.1) and \scrT h,B are the elements that intersect the boundary,

(2.13) \scrT h,I = \{ T \in \scrT h : T \subset \Omega \} , \scrT h,B = \scrT h \setminus \scrT h,I .

Let Wh,I = Wh| \scrT h,I
and Vh,I = Vh| \scrT h,I

. We construct an extension operator Fh :
Wh,I \rightarrow FhWh,I \subset Wh by using canonical polynomial extensions from a nearest
neighboring element T \in \scrT h,I . Restricting Fh to Vh,I and composing with the average
operator Ah, we obtain a discrete extension operator Eh : Vh,I \rightarrow EhVh,I \subset Vh. The
space EhVh,I will be our approximation space and we will use the notation

(2.14) V E
h = EhVh,I .

Observe that V E
h is a proper subspace of Vh; however as we shall see under mild

assumptions on the mesh geometry, it has similar approximation properties.
To make things precise, let Sh : \scrT h,B \rightarrow \scrT h,I be a mapping that associates an

element T \in \scrT h,I with each element T \in \scrT h,B and assume that there is a constant
such that for all h \in (0, h0] and T \in \scrT h,B ,

(2.15) diam(T \cup Sh(T )) \lesssim h.
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For h0 small enough there is such a mapping Sh; see Lemma 2.4 below. We extend
Sh from \scrT h,B to \scrT h by letting Sh(T ) = T for T \in \scrT h,I .

For v \in \BbbP 1(T ) we let ve \in \BbbP 1(\BbbR d) denote the canonical extension such that
ve| T = v. We can then define the discrete extension operator Fh : Wh,I \rightarrow Wh as
follows:

(Fhv)| T = (v| Sh(T ))
e| T(2.16)

and then define the discrete extension operator Eh : Vh,I \rightarrow Vh,

(2.17) Eh = Ah \circ Fh.

Remark 2.1. In practice, we can generalize the definition of the set of elements
that have a large intersection with the domain as follows:

(2.18) \scrT h,I,\tau = \{ T \in \scrT h : | T \cap \Omega | \geq \tau hd\} 

for some positive parameter \tau . Then for small enough \tau we have \scrT h,I \subset \scrT h,I,\tau and we
extend to the small elements \scrT h,B,\tau = \scrT h \setminus \scrT h,I,\tau . This approach has the advantage
that fewer elements are mapped resulting in a simpler map Fh. We will employ this
construction in section 3.3 to show that the lumped mass matrix is positive definite.

Remark 2.2. The construction of the extension operator and the forthcoming the-
ory may be extended to higher order polynomials and more generally to nodal finite
element spaces; see [9] for details.

We will now prove that the extension is stable and that the associated interpola-
tion operator has optimal approximation properties.

Lemma 2.3. Global piecewise linear polynomials, \BbbP 1(\BbbR d), are invariant under the
extension operator,

(2.19) Eh(v| \scrT h,I
) = v| \scrT h

, v \in \BbbP 1(\BbbR d).

Proof. Using (2.16) we note that for T \in \scrT h,B ,

(Fhv)| T = (v| Sh(T ))
e| T = vT(2.20)

since v \in \BbbP 1(\BbbR d). Therefore,

(2.21) Fhv| \scrT h,I
= v| \scrT h

, v \in \BbbP 1(\BbbR d).

Furthermore, for v \in Vh we have Ahv = v, since v is continuous, and therefore. in
particular. Ahv = v for v \in \BbbP 1(\BbbR d) \subset \BbbR d. Since Eh = Ah \circ Fh and both operators
preserve v \in \BbbP 1(\BbbR d). the proof is complete.

Lemma 2.4. For h0 small enough there is a mapping Sh : \scrT h \rightarrow \scrT h,I that satisfies
(2.15).

Proof. Let \rho \partial \Omega be the signed distance function associated with the boundary \partial \Omega ,
and let U\delta (\partial \Omega ) = \{ y \in \BbbR d : | \rho \partial \Omega (x)| < \delta \} be the tubular neighborhood of thickness
2\delta > 0 associated with \partial \Omega . Then there is \delta 0 > 0 such that the closest point mapping
p : U\delta (\partial \Omega ) \rightarrow \partial \Omega is well defined for \delta \in (0, \delta 0]. For T \in \scrT h,B take x \in T \cap \partial \Omega , and
let Tx(\partial \Omega ) be the tangent plane to \partial \Omega at x with exterior unit normal nx. Let \rho Tx(\partial \Omega )

be a signed distance function associated with Tx(\partial \Omega ) such that \nabla \rho Tx(\partial \Omega ) =  - nx. Let
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\delta \leq \delta 1

\delta 0 \underbrace{}  \underbrace{}  
Cyl\delta (x,nx)

\delta \underbrace{}  \underbrace{}  

Fig. 1. Illustration of the construction in the proof of Lemma 2.4.

U\delta (Tx(\partial \Omega )) = \{ y \in \BbbR d : | \rho Tx(\partial \Omega )| < \delta \} be the tubular neighborhood of Tx(\partial \Omega ), and

let U+
\delta (Tx(\partial \Omega )) = \{ y \in \BbbR d : 0 < \rho Tx(\partial \Omega ) < \delta \} be the one sided tubular neighborhood.

Define the cylinder Cyl\delta (x, nx) with radius \delta and center axis aligned with the normal
nx at x \in \partial \Omega . We then note that since \partial \Omega is smooth and Tx(\partial \Omega ) is a tangent plane
to \partial \Omega at x we may apply Taylor's formula to conclude that there are constants c1 > 0
and \delta 1 > 0, independent of x \in \partial \Omega , such that

(2.22) \partial \Omega \cap Cyl\delta (x, nx) \subset Uc1\delta 2(Tx(\partial \Omega )) \cap Cyl\delta (x, nx)

for all \delta \in (0, \delta 1]. Therefore, it follows that

(2.23) O\delta (x) = (U+
\delta (Tx(\partial \Omega )) \setminus U+

c1\delta 2
(Tx(\partial \Omega ))) \cap Cyl\delta (x, nx) \subset U\delta 0(\partial \Omega ) \cap \Omega 

for \delta \in (0, \delta 1]; see Figure 1. Then we may take \delta 2 \in (0, \delta 1] small enough to guarantee
that \delta  - c1\delta 

2 \geq \delta /2 for \delta \in (0, \delta 2]. Taking \delta = c2h for h \in (0, h0] with h0 = h0(c2)
small enough to guarantee that \delta \in (0, \delta 2], we note that O\delta (x) is a cylinder of radius
c2h and height c2h/2. Taking the constant c2 large enough, we conclude from quasi-
uniformity that there is an element T \in \scrT h,I such that T \subset O\delta (x) for h \in (0, h1].
Finally, we note that we can take a ball centered at x of radius proportional to h that
contains both T and O\delta (x) which completes the proof.

Lemma 2.5. There are constants such that for all v \in Vh,I ,

(2.24) \| Fhv\| \scrT h
\lesssim \| v\| \scrT h,I

,

\| \nabla Fhv\| \scrT h
+ h - 1/2\| [Fhv]\| \scrF h

\lesssim \| \nabla v\| \scrT h,I
(2.25)

Proof. To prove (2.24) we note that for each T \in \scrT h,B we have the inverse in-
equality

(2.26) \| ve\| T \leq \| ve\| B\delta 
\lesssim \| v\| Sh(T ),

where B\delta is a ball with diameter \delta \sim h such that T \cup Sh(T ) \subset B\delta . Summing over
T \in \scrT h,B and noting that thanks to (2.15) the number of elements in \scrT h,B that Sh
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maps to T is uniformly bounded over all T \in Im(Sh),

(2.27)
\sum 

T\in \scrT h,B

\| ve\| 2T \lesssim 
\sum 

T\in \scrT h,B

\| v\| 2Sh(T ) \lesssim 
\sum 

T\in Im(Sh)

\| v\| 2T \lesssim \| v\| 2\scrT h,I
,

where for the last inequality we used the inclusion Im(Sh) \subset \scrT h,I . For (2.25), we
obtain

(2.28) \| \nabla Fhv\| \scrT h
\lesssim \| \nabla v\| \scrT h,I

using the same argument. To estimate the remaining term

(2.29) h - 1\| [Fhv]\| 2\scrF h
=
\sum 

F\in \scrF h

h - 1\| [Fhv]\| 2F ,

we have for each F \in \scrF h, [v] = [v  - wF ] for an arbitrary constant wF . Using the
triangle inequality followed by an inverse inequality to pass from the face F to the
elements \scrT h(F ) sharing F ,

(2.30) h - 1\| [Fhv]\| 2F \lesssim h - 2\| Fhv  - wF \| 2\scrT h(F ) \lesssim h - 2\| v  - wF \| 2Sh(\scrT h(F )).

Next, there is an open ball B\delta with diameter \delta \sim h such that

Sh(\scrT h(F )) \subset B\delta ,(2.31)

and then we have

h - 2 inf
wF\in \BbbR 

\| v  - wF \| 2Sh(\scrT h(F ))(2.32)

\leq h - 2 inf
wF\in \BbbR 

\| v  - wF \| 2\scrT h,I(B\delta )
\lesssim \delta 2h - 2\| \nabla v\| 2\scrT h,I(B\delta )

\lesssim \| \nabla v\| 2\scrT h,I(B\delta )
,(2.33)

which concludes the proof.

A key property of CutFEM stabilized using ghost penalty is that the weakly
consistent penalty term allows for control of the finite element solution on the whole
mesh domain, by the combination of the stability from coercivity on the physical
domain and the penalty terms. We will now show that such a stability property holds
by construction for the extended space, thereby eliminating the need for additional
stabilization.

Lemma 2.6 (stability of the extension). There are constants such that for all
v \in Vh,I ,

(2.34) \| \nabla mEhvh\| \scrT h
\lesssim \| \nabla mvh\| \scrT h,I

, m = 0, 1.

Proof. For m = 0, we add and subtract Fhv and use (2.24) and (2.6) to conclude
that

\| Ehv\| \scrT h
= \| AhFhv\| \scrT h

(2.35)

\leq \| Fhv\| \scrT h
+ \| (I  - Ah)Fhv\| \scrT h

(2.36)

\lesssim \| Fhv\| \scrT h
+ h1/2\| [Fhv]\| \scrF h

(2.37)

\lesssim \| Fhv\| \scrT h
+ \| Fhv\| \scrT h

(2.38)

\lesssim \| v\| \scrT h,I
.(2.39)
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1261

For m = 1, we proceed in the same way but we instead employ the stronger stability
(2.25) of the operator Fh,

\| \nabla Ehv\| \scrT h
= \| \nabla AhFhv\| \scrT h

(2.40)

\leq \| \nabla Fhv\| \scrT h
+ \| \nabla (I  - Ah)Fhv)\| \scrT h

(2.41)

\leq \| \nabla Fhv\| \scrT h
+ h - 1\| (I  - Ah)Fhv\| \scrT h

(2.42)

\lesssim \| \nabla Fhv\| \scrT h
+ h - 1/2\| [Fhv]\| \scrF h

(2.43)

\lesssim \| \nabla v\| \scrT h,I
,(2.44)

and thus the proof is complete.

2.4. Interpolation. We begin by defining some interpolation operators that will
be needed in the analysis.

\bullet Let \pi h : H1(\Omega h) \rightarrow Vh be an interpolation operator of average type (see [10]
or [25]), which satisfies the standard elementwise estimate

(2.45) \| v  - \pi hv\| Hm(T ) \lesssim h2 - m\| v\| H2(\scrT h(T )), m = 0, 1,

with \scrT h(T ) \subset \scrT h the neighboring elements of T . Composing \pi h with the
continuous extension operator E we obtain an interpolation operator \pi h \circ 
E : H1(\Omega ) \rightarrow Vh, and using the stability (2.2) of the continuous extension
operator we have
(2.46)
\| Ev  - \pi hEv\| Hm(\scrT h) \lesssim h2 - m\| Ev\| H2(\Omega h) \lesssim h2 - m\| v\| H2(\Omega ), m = 0, 1.

For simplicity, we will use the notation Ev = v and \pi hv = \pi hEv when
appropriate.

\bullet We shall also need an interpolation operator Ph : L2(\Omega ) \rightarrow FhWh,I , which we
define by noting that the sets S - 1

h (T ) for T \in \scrT h,I provides a partition of \scrT h.
Then there is \delta \sim h and a ball B\delta ,T such that

(2.47) S - 1
h (T ) \subset B\delta ,T .

On each ball B\delta ,T there is Ph,T v \in \BbbP 1(B\delta ,T ) such that

(2.48) \| \nabla m(v  - Ph,T v)\| B\delta ,T
\lesssim h2 - m\| v\| H2(B\delta ,T ), m = 0, 1.

Defining Ph : L2(\scrT h) \rightarrow Wh by

(2.49) (Phv)| S - 1
h (T ) = (Ph,TEv)| S - 1

h (T ),

we obtain the global error estimate

(2.50) \| \nabla m(v  - Phv)\| \scrT h
\lesssim h2 - m\| v\| H2(\Omega ), m = 0, 1.

Observe also that Ph satisfies Phv = Fh(Phv)I , where we introduced the
shorthand notation (v)I := v| \scrT h,I

.
\bullet We define the interpolation operator Ih : H1(\Omega ) \rightarrow V E

h by Ihu := Eh(\pi hEu)I .

Lemma 2.7. There is a constant such that for all v \in H2(\Omega ),

(2.51) \| Ev  - Ihv\| \scrT h
+ h\| \nabla (Ev  - Ihv)\| \scrT h

\lesssim h2\| v\| H2(\Omega ).
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A1262 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

Proof. Adding and subtracting \pi hEv and Fh(\pi hEv)I and using the triangle in-
equality,

\| Ev  - Ihv\| Hm(\scrT h) = \| Ev  - Eh(\pi hEv)I\| Hm(\scrT h)(2.52)

\leq \| Ev  - \pi hEv\| Hm(\scrT h) + \| \pi hEv  - Eh(\pi hEv)I\| Hm(\scrT h)(2.53)

\leq \| (I  - \pi h)Ev\| Hm(\scrT h) + \| \pi hEv  - Fh(\pi hEv)I\| Hm(\scrT h)(2.54)

+ \| (I  - Ah)Fh(\pi hEv)I\| Hm(\scrT h)(2.55)

= I + II + III.(2.56)

Term I. Using (2.46), we directly have

(2.57) \| (I  - \pi h)Ev\| Hm(\scrT h) \lesssim h2 - m\| v\| H2(\Omega ).

Term II. Adding and subtracting Phv, recalling the identity Phv = Fh(Phv)I ,
and using the triangle inequality, we obtain

\| \pi hEv  - Fh(\pi hEv)I\| Hm(\scrT h)(2.58)

\leq \| \pi hEv  - Phv\| Hm(\scrT h) + \| Phv  - Fh(\pi hEv)I\| Hm(\scrT h)(2.59)

\leq \| \pi hEv  - Phv\| Hm(\scrT h) + \| Fh(Phv  - \pi hEv)I\| Hm(\scrT h)(2.60)

\lesssim \| \pi hEv  - Phv\| Hm(\scrT h)(2.61)

\lesssim \| \pi hEv  - v\| Hm(\scrT h) + \| v  - Phv\| Hm(\scrT h)(2.62)

\lesssim h2 - m\| v\| H2(\Omega ),(2.63)

where we used the stability estimates (2.24) for m = 0 and (2.25) for m = 1 for Fh,
added and subtracted v and used the triangle inequality, and used the interpolation
error estimates (2.46) and (2.50).

Term III. Using the approximation result (2.6) for the average operator Ah, in-
serting the continuous function \pi hEv into the jump, and using an inverse estimate to
pass from faces to elements, we obtain

\| (I  - Ah)Fh(\pi hEv)I\| Hm(\scrT h) \lesssim h - m\| (I  - Ah)Fh(\pi hEv)I\| \scrT h
(2.64)

\lesssim h1/2 - m\| [Fh(\pi hEv)I ]\| \scrF h
(2.65)

\lesssim h1/2 - m\| [Fh(\pi hEv)I  - \pi hEv]\| \scrF h
(2.66)

\lesssim h - m\| Fh(\pi hEv)I  - \pi hEv\| \scrT h
(2.67)

\lesssim h2 - m\| v\| H2(\Omega ),(2.68)

where we used the estimate for Term II with m = 0 in the last step.

2.5. Finite element method. In order to formulate the finite element method
we use the following notation.

\bullet Partition [0, T ] into N intervals of length k = T/N , and let tn = nk for
n = 0, 1, . . . , N . We let un = u(tn) and v

n : \Omega \rightarrow \BbbR denote a function at time
tn. Define the discrete first (forward) and second (central) time differences

(2.69) \partial tv
n =

vn+1  - vn

k
,

(2.70) \partial 2t v
n =

vn+1  - 2vn + vn - 1

k2
=

1

k
(\partial tv

n  - \partial tv
n - 1).
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1263

Note that \partial 2t should not be interpreted as \partial t \circ \partial t but as an operator defined
by (2.70).

\bullet Define the central difference

\delta tv
n =

1

2
(\partial tv

n + \partial tv
n - 1),(2.71)

and note for use below that we have the summation by parts formula

N - 1\sum 
n=1

2k(vn, \delta tw
n)(2.72)

= (vN - 1, wN ) + (vN - 1, wN - 1) - (v1, w1) - (v1, w0)(2.73)

 - 
N - 1\sum 
n=2

2k(\delta tv
n, wn).(2.74)

\bullet For the spatial discretization we employ Nitsche's method and define the
bilinear form

(2.75) ah(u, v) = (\nabla u,\nabla v) - (\nabla nu, v)\partial \Omega  - (u,\nabla nv)\partial \Omega + \gamma h - 1(u, v)\partial \Omega ,

where \nabla n = n \cdot \nabla with n the exterior unit normal and \gamma > 0 a parameter.
Method. The CutFEM takes the following form: for n = 1, . . . , N - 1, find un+1

h \in 
V E
h , such that

(2.76) (\partial 2t u
n
h, v) + ah(u

n
h, v) = (fn, v) \forall v \in V E

h

with initial data u0h, u
1
h \in Vh specified below. The resulting updating formula takes

the form

(2.77) (un+1
h , v) = (2unh, v) - (un - 1

h , v) + k2ah(u
n
h, v) + k2(fn, v).

2.6. Matrix formulation and mass lumping. We formulate the method on
matrix form and replace the mass matrix with a diagonal matrix obtained by lumping
the mass matrix in order to obtain an explicit method.

\bullet Let \{ \psi i\} i\in \scrI h
be the nodal basis in Vh enumerated by the index set \scrI h, let

\{ \varphi i\} i\in \scrI I,h
be the nodal basis in Vh,I enumerated by the index set \scrI h,I , and

let \{ \varphi E
i \} i\in \scrI h,I

, with \varphi E
i = Eh\varphi i, be the corresponding basis in V E

h . Denote
the dimension of Vh by Nh, and the common dimension of Vh,I and V E

h by
Nh,I .

\bullet To keep track of the different expansions, we employ the notation

Vh \ni v =
\sum 
i\in \scrI h

\widetilde vi\psi i, Vh,I \ni v =
\sum 

i\in \scrI h,I

\^vi\varphi i, V E
h \ni v =

\sum 
i\in \scrI h,I

\widehat vi\varphi E
i .(2.78)

\bullet Define the mass matrix, stiffness matrix, and load vector associated with the
full finite element space Vh by

(2.79) (\widetilde Mh\widetilde v, \widetilde w)\scrI h
= (v, w), ( \widetilde Ah\widetilde v, \widetilde w)\scrI h

= ah(v, w), (\widetilde bh, \widetilde w)\scrI h
= (f, w)

for all v, w \in Vh.
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A1264 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

\bullet Define the mass matrix, stiffness matrix, and load vector associated with the
extended finite element space by
(2.80)

(\widehat Mh,I\widehat v, \widehat w)\scrI h,I
= (v, w), ( \widehat Ah,I\widehat v, \widehat w)\scrI h,I

= ah(v, w), (\widehat bh,I , \widehat w)\scrI h,I
= (f, w)

for all v, w \in V E
h .

\bullet For implementation purposes it is convenient to work with the standard nodal
bases in Vh and Vh,I and to express the matrices associated with V E

h in terms
of the standard matrices associated with Vh using a matrix representation of
the extension operator. Recalling first that the extended basis is defined by

\varphi E
i = Eh\varphi i, i \in \scrI h,I , we have \widehat Ehv = \^v for all v \in Vh,I , and therefore the

matrix representation of Eh : Vh,I \rightarrow V E
h is the Nh,I \times Nh,I identity matrix

and Vh,I \sim = V E
h . Next, define the matrix representation of Eh : Vh,I \rightarrow Vh by

(
\widetilde \^Eh\^v, \widetilde w)\scrI h

= (\widetilde Ehv, \widetilde w)\scrI h
(2.81)

for all v \in Vh,I , w \in Vh. We note that
\widetilde \^Eh is an Nh \times Nh,I , matrix and that

it follows from (2.81) that
\widetilde \^Eh\^v = \widetilde Ehv. We then have for v, w \in Vh,I ,

(\^v,\widehat Mh,I \^w)\scrI h,I
= (\widehat Ehv,\widehat Mh,I

\widehat Ehw)\scrI h,I
= (Ehv,Ehw) = (\widetilde Ehv,\widetilde Mh

\widetilde Ehw)\scrI h

(2.82)

= (
\widetilde \^Eh\^v,\widetilde Mh(

\widetilde \^Eh \^w))\scrI h
= (\^v, (

\widetilde \^ET

h
\widetilde Mh
\widetilde \^Eh) \^w)\scrI h,I

.(2.83)

Therefore, the mass matrix on the extended finite element space can be ex-
pressed in terms of the mass matrix on the full finite element space as follows:

\widehat Mh,I =
\widetilde \^ET

h
\widetilde Mh
\widetilde \^Eh,(2.84)

and in the same way

\widehat Ah,I =
\widetilde \^ET

h
\widetilde Ah
\widetilde \^Eh, \widehat bh,I =

\widetilde \^ET

h
\^bh.(2.85)

\bullet Define the lumped mass matrix \widehat ML as the diagonal matrix with diagonal
elements equal to the row sums of the mass matrix \widehat Mh,I ,

(2.86) \widehat ML,ij =

\Biggl\{ 
0, i \not = j,\sum 

l\in \scrI h,I(i)
\widehat mil, i = j,

where for each i \in \scrI h,I ,

(2.87) \scrI h,I(i) = \{ j \in \scrI h,I : \widehat mij \not = 0\} 

is the set of indices for which there is a nonzero entry in the ith row (and

column due to symmetry) of \widehat Mh,I . We also define the induced lumped mass
inner product

(2.88) (v, w)L = (\widehat ML\widehat v, \widehat w)\scrI h,I
, v, w \in V E

h .
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1265

Explicit method. We define the lumped mass method: for n = 1, . . . , N  - 1, find
un+1 \in V E

h , such that

(2.89) (\partial 2t u
n
h, v)L + ah(u

n
h, v) = (fnh , v)L \forall v \in V E

h

with initial data u0h, u
1
h \in Vh and fnh \in V E

h a suitable approximation of f(tn).

Using the fact that \widehat ML is diagonal, we obtain the explicit updating formula for
n = 2, . . . , N  - 1,

(2.90) \widehat un+1
h = 2\widehat unh  - \widehat un - 1

h  - k2\widehat M - 1
L
\widehat Ah,I\widehat unh + k2\widehat bnL,

where \widehat bnL is the load vector associated with the lumped mass inner product

(\widehat bnL, \widehat v)\scrI h,I
= (fnh , v)L, v \in EhVh,I .(2.91)

It follows that \widehat bnL = \widehat ML
\widehat fnh , where \widehat fnh is the internal nodal values of fnh .

3. Analysis of the method. The forthcoming error analysis essentially relies
on discrete stability of the method and approximation properties of the extended
space. In particular, we employ the Ritz projection onto the extended finite element
space and derive the corresponding basic approximation results. Related error esti-
mates for standard finite element spaces have been derived in [2, 3, 13], and in the
context of elastodynamics in [31, 32]. We also prove an estimate for the lumping error
which demand a more complicated analysis compared with the standard estimates for
piecewise linear elements; see Chapter 15 in [29], for instance. Furthermore, we show
using some natural restrictions on the construction of the extension operator that the
lumped mass matrix is indeed positive definite.

3.1. Ritz projection. In this section we will discuss the Ritz projection on
the extended finite element space V E

h . This will provide us with an interpolant with
properties suitable for the error analysis of the wave equation. It also provides an
analysis of Poisson's equation discretized using the extended space V E

h in a CutFEM
framework.

Let

(3.1) | | | v| | | 2h = \| \nabla v\| 2 + h\| \nabla nv\| 2\partial \Omega + h - 1\| v\| 2\partial \Omega .

Lemma 3.1. The form ah defined in (2.75) is continuous,

(3.2) ah(v, w) \lesssim | | | v| | | h| | | w| | | h, v, w \in H3/2+\epsilon (\Omega ) + Vh,

and for \gamma large enough coercive,

(3.3) | | | v| | | 2h \lesssim ah(v, v), v \in V E
h .

Proof. The continuity follows directly from Cauchy--Schwarz, and to establish the
coercivity we start from

ah(v, v) = \| \nabla v\| 2  - 2(\nabla nv, v)\partial \Omega + \gamma h - 1\| v\| 2\partial \Omega .(3.4)
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We have the estimate

2(\nabla nv, v)\partial \Omega \leq 2\| \nabla nv\| \partial \Omega \| v\| \partial \Omega (3.5)

\leq C\| \nabla v\| \scrT h(\partial \Omega )h
 - 1/2\| v\| \partial \Omega (3.6)

\leq C2\delta \| \nabla v\| 2\scrT h(\partial \Omega ) + \delta  - 1h - 1\| v\| 2\partial \Omega (3.7)

\leq C2\delta \| \nabla v\| 2\scrT h,I
+ \delta  - 1h - 1\| v\| 2\partial \Omega (3.8)

\leq C2\delta \| \nabla v\| 2 + \delta  - 1h - 1\| v\| 2\partial \Omega ,(3.9)

where we used the inverse estimate h1/2\| \nabla v\| \partial \Omega \cap T \leq C\| \nabla v\| T , the stability (2.34) of
the discrete extension operator Eh, and finally the fact that \scrT h,I \subset \Omega . Combining the
estimates we find that

ah(v, v) \geq (1 - C2\delta )\| \nabla v\| 2 + (\gamma  - \delta  - 1)h - 1\| v\| 2\partial \Omega \gtrsim \| \nabla v\| 2 + h - 1\| v\| 2\partial \Omega ,(3.10)

where we chose \delta small enough and \gamma large enough. Finally, (3.5)--(3.9) give the
estimate h\| \nabla nv\| 2\partial \Omega \lesssim \| \nabla v\| 2 the coercivity (3.3) follows.

In view of Lemma 3.1, we note that we can define the norm

(3.11) \| v\| 2ah
= ah(v, v), v \in V E

h ,

directly associated with the Nitsche form, which is equivalent to | | | \cdot | | | h on V E
h ,

\| v\| ah
\sim | | | v| | | h, v \in V E

h ,(3.12)

It will later be convenient to work with \| \cdot \| ah
instead of | | | \cdot | | | h.

The Ritz projection Rh : Hs(\Omega ) \rightarrow Eh(Vh,I), for s > 3/2, is defined by

(3.13) ah(Rhv, w) = ah(v, w) \forall w \in V E
h ,

and we have the following error estimates.

Lemma 3.2. There are constants such that

(3.14) | | | v  - Rhv| | | h \lesssim h\| v\| H2(\Omega ), \| v  - Rhv\| \lesssim h2\| v\| H2(\Omega ).

Proof. Here we add and subtract an interpolant

| | | v  - Rhv| | | h \leq | | | v  - Ihv| | | h + | | | Ihv  - Rhv| | | h(3.15)

\lesssim h2 - m\| v\| H2(\Omega ) + | | | Ihv  - Rhv| | | h,(3.16)

where for the first term on the right-hand side we used the interpolation error estimate
(2.51) together with the cut trace inequality (see [30])

(3.17) \| w\| 2\partial \Omega \cap T \lesssim h - 1\| w\| 2T + h\| \nabla w\| 2T , w \in H1(T ),

to estimate the boundary contributions.
For the second term, coercivity (3.3), orthogonality (3.13), and continuity (3.2),

give

| | | Ihv  - Rhv| | | 2h \lesssim ah(Ihv  - Rhv, Ihv  - Rhv)(3.18)

= ah(Ihv  - v, Ihv  - Rhv)(3.19)

\lesssim | | | Ihv  - v| | | h| | | Ihv  - Rhv| | | h,(3.20)
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and therefore, using once more the interpolation estimate (2.51) for Ih,

| | | Ihv  - Rhv| | | h \lesssim | | | Ihv  - v| | | h \lesssim h\| v\| H2(\Omega ).(3.21)

The L2 estimate is established using duality in the usual way.

Remark 3.3. Note that uh = Rhu is the finite element solution to

 - \Delta u = f in \Omega , u = 0 on \partial \Omega (3.22)

and thus (3.14) provides error estimates for a CutFEM based on the extension operator
Eh for the Poisson equation.

3.2. Estimate of the lumping error. We begin by showing a stability estimate
for the lumped inner product; then we prove an estimate of the consistency error
resulting from lumping the mass matrix. Finally, we use the representation of the
lumping error to show that the lumped mass matrix is indeed positive definite.

Let \| v\| 2L = (v, v)L be the norm associated with the lumped scalar product. We
then have the stability

(3.23) \| v\| \scrT h
\lesssim \| v\| L, v \in V E

h .

This estimate follows from the L2 stability (2.34) of the extension operator followed
by equivalence of the lumped product and the full L2 product on the set of interior
triangles

\| Ehv\| \scrT h
\lesssim \| v\| \scrT h,I

\sim hd/2\| \widehat v\| \scrX h,I
\sim \| v\| L,(3.24)

where \scrX h,I denotes the set of nodes in \scrT h,I and for a discrete set \scrX the norm \| v\| 2\scrX =
\| v\| 2l2(\scrX ) =

\sum 
x\in \scrX v

2(x). Note that the last relation above holds since all elements of

ML must be O(hd), since only interior nodes are considered.

Lemma 3.4. There is a constant such that

(3.25) | (v, w) - (v, w)L| \lesssim h2\| \nabla v\| \Omega \| \nabla w\| \Omega , v, w \in V E
h .

Proof. Using the definitions (2.80) and (2.86) of the mass matrix \widehat Mh,I and the

lumped mass matrix \widehat ML we have

(v, w)L  - (v, w) = (\widehat v,\widehat ML \widehat w)\scrI h,I
 - (\widehat v,\widehat Mh,I \widehat w)\scrI h,I

(3.26)

= (\widehat v, (\widehat ML  - \widehat Mh,I) \widehat w)\scrI h,I
= (\widehat v, \widehat B \widehat w)\scrI h,I

(3.27)

with \widehat B = \widehat ML  - \widehat Mh,I . We note that the elements \widehat bij of \widehat B are

(3.28) \widehat bij = \Biggl\{ \sum l\in \scrI h,I(i)\setminus \{ i\} \widehat mil, i = j,

 - \widehat mij , i \not = j

with \widehat mij \geq 0. Since \widehat bii =  - 
\sum 

l\in \scrI h,I(i)\setminus \{ i\} 
\widehat bil it follows that \widehat B is a graph Laplacian

on the undirected weighted graph with vertices \scrX h,I , enumerated by \scrI h,I , and edges

(3.29) \scrE h,I = \{ (i, j) \in \scrI h,I \times \scrI h,I : \widehat mij \not = 0\} 
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A1268 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

with weights \widehat mij \geq 0. We can then write the form ( \widehat w, \widehat B \widehat w)\scrI h
as a sum of positive

semidefinite forms associated with the edges. To that end we associate with each
graph edge (i, j) \in \scrE h,I the positive semidefinite Nh,I \times Nh,I matrix

(3.30) \widehat B(i,j) = \widehat mij(ei \otimes ei  - ei \otimes ej  - ej \otimes ei + ej \otimes ej),

where \{ ei\} \scrI h,I
is the canonical basis in \BbbR Nh,I . Note that \widehat B(i,j) maps the two dimen-

sional space span\{ ei, ej\} into itself, and the corresponding matrix takes the form

(3.31) \widehat B(i,j)| span\{ ei,ej\} = \widehat mij

\biggl[ 
1  - 1
 - 1 1

\biggr] 
.

One can then verify that

(3.32) \widehat B =
\sum 

(i,j)\in \scrE h,I

\widehat B(i,j),

which gives the identity

(3.33) (\widehat v, \widehat B \widehat w)\scrI h,I
=

\sum 
(i,j)\in \scrE h,I

\widehat mij(\widehat vi  - \widehat vj)( \widehat wi  - \widehat wj);

see [15, Chapter 13]. Using the Cauchy--Schwarz inequality together with the fact
that \widehat mij \sim hd we obtain

(\widehat v, \widehat B \widehat w)\scrI h,I
\lesssim hd

\biggl( \sum 
(i,j)\in \scrE h,I

(vi  - vj)
2

\biggr) 1/2\biggl( \sum 
(i,j)\in \scrE h,I

(wi  - wj)
2

\biggr) 1/2

.(3.34)

We next note that \sum 
(i,j)\in \scrE h,I

(vi  - vj)
2 \leq 

\sum 
i\in \scrI h,I

\sum 
j\in \scrI h,I(i)

(vi  - vj)
2 = \bigstar ,(3.35)

where \scrI h,I(i) \subset \scrI h,I is the set of indices connected to the node i by an edge E \in \scrE h,I .
Next, let \scrT h(i) be the set of elements with at least one node in \scrI h,I(i) and note that
it follows from the construction of the extension operator and shape regularity that
there is a uniform bound, independent of h \in (0, h0] and i \in \scrI h,I , on the number of
elements in \scrT h(i) and that diam(\scrT h(i)) \lesssim h. We then have\sum 

j\in \scrI h,I(i)

hd (vi  - vj)
2 \lesssim \| vi  - v\| 2\scrT h(i)

\lesssim h2\| \nabla v\| 2\scrT h(i)
(3.36)

since v \in Vh. It follows that

\bigstar =
\sum 

i\in \scrI h,I

\sum 
j\in \scrI h,I(i)

(vi  - vj)
2 \lesssim 

\sum 
i\in \scrI h,I

h2\| \nabla v\| 2\scrT h(i)
\lesssim h2\| \nabla v\| 2\scrT h

.(3.37)

Combining (3.34) and (3.37) and applying Lemma 2.6 we arrive at the desired esti-
mate.
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1269

3.3. Positive definiteness of the lumped mass matrix. The mass matrix
associated with the extended basis \{ \varphi E

i \} i\in \scrI h,I
is obviously positive definite but the

extended basis functions may in fact be negative on elements at the boundary. To
guarantee that the lumped mass matrix is positive definite we will therefore restrict
the construction of the extension operator in the following ways:

\bullet Let \scrT h,I,\tau = \{ T \in \scrT h : | T \cap \Omega | \geq \tau | T | \} , with \tau \in (0, 1] a parameter, and let
\scrT h,B,\tau = \scrT h \setminus \scrT h,I,\tau . Then we have \scrT h,I \subseteq \scrT h,I,\tau and \scrT h,B,\tau \subseteq \scrT h,B , with
equality for \tau = 1. We extend the definition of Vh,I to Vh,I = Vh| \scrT h,I,\tau 

and
let

(3.38) Eh : Vh,I \rightarrow V E
h \subset Vh

be defined as in (2.16) and (2.17) with the mapping Sh : \scrT h,B,\tau \rightarrow \scrT h,I , which
means that we extend from elements T \in \scrT h,I in the interior of \Omega not from
elements T \in \scrT h,I,\tau \setminus \scrT h that intersect the boundary.

\bullet We will use an average operator Ah with unit weight on all elements T \in \scrT h,I,\tau 
which implies

(3.39) (vE)| \scrT h,I,\tau 
= v| \scrT h,I,\tau 

.

These assumptions enable us to confine potential negative values of the extended
basis functions to elements T \in \scrT h,B,\tau with a measure that can be bounded by
\tau hd. This restriction of the construction of the extension operator is, in particular,
important if the local mesh size varies, which may be the case even if we are using
quasi-uniform meshes. The parameter \tau will depend on the constants in the quasi-
uniformity assumptions, which we can see in the forthcoming proof of Lemma 3.5.
Note, however, that in CutFEM regular meshes are, in general, used and then the
quasi-uniformity constants are moderate.

Lemma 3.5. Assume that the extension operator satisfies the above restrictions;
then for \tau small enough the lumped mass matrix is positive definite.

Proof. First, we observe that the lumped mass elements takes the form

(3.40) \widehat mL,ii =
\sum 

l\in \scrI h,I

\widehat mil =
\sum 

l\in \scrI h,I

\int 
\Omega 

\varphi E
i \varphi 

E
l =

\int 
\Omega 

\varphi E
i

\biggl( \sum 
l\in \scrI h,I

\varphi E
l

\biggr) 
=

\int 
\Omega 

\varphi E
i .

Here we used the fact that
\sum 

l\in \scrI h,I
\varphi E
l = 1, which holds since the sum of all basis

functions associated with nodes belonging to elements in \scrT h,I,\tau is one on \scrT h,I,\tau and
the extension operator is linear so that

(3.41)
\sum 

i\in \scrI h,I ,\tau 

\varphi E
i =

\sum 
i\in \scrI h,I ,\tau 

Eh\varphi i = Eh

\biggl( \sum 
i\in \scrI h,I ,\tau 

\varphi i

\biggr) 
= Eh1 = 1,

where in the last step we used Lemma 2.3. To show that
\int 
\Omega 
\varphi E
i > 0 is positive we first

note that if supp(\varphi E
i ) \cap Sh(\scrT h,B,\tau ) = \emptyset , then \varphi E

i = \varphi i and | supp(\varphi i)| \geq \tau hd which
together with the fact that \varphi i is positive on its support guarantees that

\int 
\Omega 
\varphi i > 0.

Next, if there is T \in supp(\varphi E
i )\cap Sh(\scrT h,B,\tau ) we have T \in \scrT h,I since Sh maps into \scrT h,I .
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A1270 ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

We then have the estimates\int 
\Omega 

\varphi E
i =

\int 
\Omega \cap \scrT h,I,\tau 

\varphi E
i +

\int 
\Omega \cap \scrT h,B,\tau 

\varphi E
i(3.42)

\geq 
\int 
\Omega \cap \scrT h,I,\tau 

\varphi i  - | \Omega \cap \scrT h,B,\tau | \| \varphi E
i \| L\infty (\Omega \cap \scrT h,B,\tau )(3.43)

\geq C1h
d  - C2\tau h

d(3.44)

for \tau small enough. Here we used the fact that \varphi E
i = \varphi i on \scrT h,I,\tau , due to the property

(3.39) of the average operator, and the fact that there is an element T \in \scrT h,I such
that T \subset supp(\varphi E

i ) and therefore\int 
\Omega \cap \scrT h,I,\tau 

\varphi i \geq 
\int 
T

\varphi i \geq C1h
d,(3.45)

where in the last step we use nodal quadrature to compute the integral of the linear
function \varphi i| T which is equal to one in at least one node. Furthermore, we used the
bound \| \varphi E

i \| L\infty (\Omega \cap \scrT h,B,\tau ) \lesssim 1, which holds since

\| AhFh\varphi i\| L\infty (T ) \lesssim \| Fh\varphi i\| L\infty (\scrN (T )) \lesssim 1,(3.46)

where \scrN (T ) is the set of elements in \scrT h sharing a node with T and finally we used
the fact that Fh\varphi i| T = (\varphi i| Sh(T ))

e and the gradient of \varphi i is bounded by Ch - 1 and
according to Lemma 2.4 the distance between T and Sh(T ) is bounded by Ch.

3.4. Discrete stability. To prepare the terrain for the error analysis we will
prove stability for a slightly more general version of (2.89). Indeed, we introduce
a right-hand side that consists of two parts, expressed as functionals on Vh, r1 =
\{ rn1 \} Nn=1 and r2 = \{ rn2 \} Nn=1, r

n
i : Vh \mapsto \rightarrow \BbbR . They will later be identified with two

different sources of approximation error driving the perturbation equation. The reason
for this split is that optimal estimates require r1 and r2 to be continuous with respect
to different (discrete) topologies, r1 with respect to a discrete H1-norm, and r2 with
respect to a discrete L2-norm. This is a consequence of fact that the test function
in the derivation of the stability estimate is a discrete first order time derivative and
that the lumped mass approximation estimate (3.25) requires control of the gradient
of the test function. To avoid the appearance of mixed derivatives, which cannot
be controlled, we apply summation by parts in the r1 part and move the discrete
time derivative from the test function to the functional. To provide bounds in term
of these functionals, we recall the standard definition of norms for linear functionals
l : Vh \rightarrow \BbbR , using the appropriate norms,

(3.47) \| l\| ah,\bigstar = sup
v\in V E

h \setminus \{ 0\} 

| l(v)| 
\| v\| ah

, \| l\| L,\bigstar = sup
v\in V E

h \setminus \{ 0\} 

| l(v)| 
\| v\| L

.

The abstract scheme that we consider takes the following form: for n = 1, . . . , N - 
1, find vn+1 \in V E

h , such that

(3.48) (\partial 2t v
n, w)L + ah(v

n, w) = rn(w) \forall w \in V E
h

given v0, v1 \in Vh. Here rn : Vh \rightarrow \BbbR are the linear functionals of the form

(3.49) rn(v) = rn1 (v) + rn2 (v).
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1271

Let us first derive the bounds necessary for the two contributions r1 and r2, when
their argument is a central difference of the form k\delta tv

n. For r1(k\delta tv
n), we sum over

the contributions rn1 and apply the summation by parts formula (2.72) to move the
central difference from the test function of the form k\delta tv

n to the functional,\bigm| \bigm| \bigm| \bigm| \bigm| 
N - 1\sum 
n=1

2krn(\delta tv
n)

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
N - 1\sum 
n=1

2k(rn1 (\delta tv
n) + rn2 (\delta tv

n))

\bigm| \bigm| \bigm| \bigm| \bigm| (3.50)

\leq 
\bigm| \bigm| rN - 1

1 (vN ) + rN - 1
1 (vN - 1) - r11(v

1) - r11(v
0)
\bigm| \bigm| (3.51)

+

\bigm| \bigm| \bigm| \bigm| \bigm| 
N - 1\sum 
n=2

2k((\delta tr
n
1 )(v

n) +

N - 1\sum 
n=1

rn2 (\delta tv
n))

\bigm| \bigm| \bigm| \bigm| \bigm| .(3.52)

Next, turning our attention to r2, we have in view of (2.71),

(3.53) rn2 (\delta tv
n) =

1

2
rn2 (\partial tv

n + \partial tv
n - 1),

and therefore

(3.54)

N - 1\sum 
n=1

rn2 (\delta tv
n) = rN - 1

2 (\partial tv
N - 1) +

N - 1\sum 
n=2

1

2
(rn2 + rn - 1

2 )(\partial tv
n - 1) + r12(\partial tv

0).

Applying this in the right-hand side of (3.52), it follows that, using rn2 = 1
2 (r

n
2 +r

n - 1
2 ),\bigm| \bigm| \bigm| \bigm| \bigm| 

N - 1\sum 
n=1

2krn(\delta tv
n)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq | rN - 1
1 (vN )| + | rN1 (vN - 1)| + | r11(v0)| + | r01(v1)| (3.55)

+ | rN - 1
2 (\partial tv

N - 1)| + | r12(\partial tv0)| (3.56)

+

N - 1\sum 
n=2

2k| ((\delta trn1 )(vn) + (rn2 )(\partial tv
n - 1))| .(3.57)

For each term of the sum in the right-hand side we have,

(3.58) (\delta tr
n
1 )(v

n)+ (rn2 )(\partial tv
n - 1) \leq (\| \delta trn1 \| 2ah,\bigstar + \| rn2\| 2L,\bigstar )

1
2 (\| vn\| 2ah

+ \| \partial tvn - 1\| 2L)
1
2 .

Therefore,

N - 1\sum 
n=2

2k| ((\delta trn1 )(vn) + (rn2 )(\partial tv
n - 1))| \leq 

N - 1\sum 
n=2

4k (\| \partial trn1 \| ah,\bigstar + \| rn2\| L,\bigstar )(3.59)

\times max
2\leq n\leq N - 1

(\| vn\| 2ah
+ \| \partial tvn - 1\| 2L)

1
2 .(3.60)

Note that we used the identity (2.71) and a triangle inequality to pass from \delta t to \partial t,
and in a similar fashion we have passed from rn2 to rn2 . Now introducing the relevant
norms of the functionals \{ rn1 \} N - 1

n=1 and \{ rn2 \} N - 1
n=1 ,

| | | r1| | | ah,\bigstar = \| rN - 1
1 \| ah,\bigstar + \| r11\| ah,\bigstar +

N - 1\sum 
n=1

k\| \partial trn1 \| ah,\bigstar ,(3.61)

| | | r2| | | L,\bigstar = \| rN - 1
2 \| L,\bigstar + \| r12\| L,\bigstar +

N - 1\sum 
n=1

2k\| rn2 \| L,\bigstar .(3.62)
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Note that we used the identity (2.71) to pass from \delta t to \partial t. Combining (3.52) and
(3.60), we get for all \varepsilon > 0,\bigm| \bigm| \bigm| \bigm| \bigm| 

N - 1\sum 
n=1

4krn(\delta tv
n)

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim \varepsilon  - 1C(| | | r1| | | 2ah,\bigstar + | | | r2| | | 2L,\bigstar )(3.63)

+ \varepsilon 
\Bigl( 
\| \partial tvN - 1\| 2L + \| vN\| 2ah

+ \| vN - 1\| 2ah
+ \| \partial tv0\| 2L + \| v1\| 2ah

+ \| v0\| 2ah
(3.64)

+ max
2\leq n\leq N - 1

(\| vn\| 2ah
+ \| \partial tvn - 1\| 2L)

\Bigr) 
.(3.65)

Lemma 3.6. Let vn+1, n = 1, . . . , N  - 1, be defined by (3.48), and assume that
(3.63) is satisfied. If k/h \leq c with c sufficiently small, then the following stability
estimate holds:

max
2\leq n\leq N

\Bigl( 
\| \partial tvn - 1\| 2L + \| vn\| 2ah

+ \| vn - 1\| 2ah

\Bigr) 
(3.66)

\lesssim \| \partial tv0\| 2L + \| v1\| 2ah
+ \| v0\| 2ah

+ | | | r1| | | 2ah,\bigstar + | | | r2| | | 2L,\bigstar .(3.67)

Proof. To prove stability, we test (3.48) with w = 4k\delta tv
n = 2k(\partial tv

n + \partial tv
n - 1)

for n = 1, . . . , N  - 1, and sum over the time levels,

N - 1\sum 
n=1

2k(\partial 2t v
n, \partial tv

n + \partial tv
n - 1)L +

N - 1\sum 
n=1

2kah(v
n, \partial tv

n + \partial tv
n - 1)(3.68)

=

N - 1\sum 
n=1

2krn(\partial tv
n + \partial tv

n - 1).(3.69)

Here the first term on the left-hand side satisfies

N - 1\sum 
n=1

2k(\partial 2t v
n, \partial tv

n + \partial tv
n - 1)L = 2\| \partial tvN - 1\| 2L  - 2\| \partial tv0\| 2L(3.70)

since

k(\partial 2t v
n, \partial tv

n + \partial tv
n - 1)L = (\partial tv

n  - \partial tv
n - 1, \partial tv

n + \partial tv
n - 1)L(3.71)

= \| \partial tvn\| 2L  - \| \partial tvn - 1\| 2L.(3.72)

Next, for the second term we have

N - 1\sum 
n=1

2kah(v
n, \partial tv

n + \partial tv
n - 1) =

N - 1\sum 
n=1

2ah(v
n, vn+1  - vn - 1)(3.73)

= 2ah(v
N - 1, vN ) - 2ah(v

1, v0).(3.74)

Inserting (3.70) and (3.74) into (3.68), we obtain

2\| \partial tvN - 1\| 2L + 2ah(v
N - 1, vN ) = 2\| \partial tv0\| 2L + 2ah(v

0, v1)(3.75)

+

N - 1\sum 
n=1

rn(2k(\partial tv
n + \partial tv

n - 1)).(3.76)
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1273

Using the identities

k2\| \partial tvN - 1\| 2ah
+ 2ah(v

N - 1, vN ) = \| vN\| 2ah
+ \| vN - 1\| 2ah

,(3.77)

k2\| \partial tv0\| 2ah
+ 2ah(v

0, v1) = \| v1\| 2ah
+ \| v0\| 2ah

,(3.78)

we may write (3.75) in the form

2\| \partial tvN - 1\| 2L  - k2\| \partial tvN - 1\| 2ah
+ \| vN\| 2ah

+ \| vN - 1\| 2ah
(3.79)

= 2\| \partial tv0\| 2L  - k2\| \partial tv0\| 2ah
+ \| v1\| 2ah

+ \| v0\| 2ah
(3.80)

+

N - 1\sum 
n=1

2krn(\partial tv
n + \partial tv

n - 1).(3.81)

Using an inverse inequality followed by the stability (3.23), we get

\| w\| 2ah
\lesssim h - 2\| w\| 2\scrT h

\lesssim h - 2\| w\| 2L,(3.82)

which, with w = \partial tv
N - 1, gives

(3.83) k2\| \partial tvN - 1\| 2ah
\lesssim h - 2k2\| \partial tvN - 1\| 2\scrT h

\lesssim h - 2k2\| \partial tvN - 1\| L

Using the Courant--Friedrichs--Lewy (CFL) condition Ch - 2k2 \leq Cc2 \leq 1, where C is
the hidden constant in (3.83), and k/h \leq c with c small enough due to assumption in
the lemma, we arrive at

\| \partial tvN - 1\| 2L + \| vN\| 2ah
+ \| vN - 1\| 2ah

(3.84)

\leq 2\| \partial tv0\| 2L + \| v1\| 2ah
+ \| v0\| 2ah

+ 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
N - 1\sum 
n=1

2krn(\delta tv
n)

\bigm| \bigm| \bigm| \bigm| \bigm| .(3.85)

Applying now the bound (3.63) in the last term of the right-hand side of the last
expression we obtain, for all \varepsilon > 0,

(1 - \varepsilon )(\| \partial tvN - 1\| 2L + \| vN\| 2ah
+ \| vN - 1\| 2ah

)(3.86)

\leq 2(1 + \varepsilon )(\| \partial tv0\| 2L + \| v1\| 2ah
+ \| v0\| 2ah

)(3.87)

+ \varepsilon  - 1C(| | | r1| | | 2ah,\bigstar + | | | r2| | | 2L,\bigstar )(3.88)

+ \varepsilon 
\Bigl( 

max
2\leq n\leq N - 1

(\| vn\| 2ah
+ \| \partial tvn - 1\| 2L)

\Bigr) 
.(3.89)

Next, keeping N fixed on the right-hand side, we note that (3.86) holds if N in the
left-hand side is replaced by an arbitrary n = 2, . . . , N - 1. Taking the maximum over
n on the left-hand side we get

(1 - \varepsilon ) max
2\leq n\leq N - 1

(\| \partial tvn - 1\| 2L + \| vn\| 2ah
+ \| vn - 1\| 2ah

)(3.90)

\leq 2(1 + \varepsilon )(\| \partial tv0\| 2L + \| v1\| 2ah
+ \| v0\| 2ah

)(3.91)

+ \varepsilon  - 1C(| | | r1| | | 2ah,\bigstar + | | | r2| | | 2L,\bigstar )(3.92)

+ \varepsilon 
\Bigl( 

max
2\leq n\leq N - 1

(\| vn\| 2ah
+ \| \partial tvn - 1\| 2L)

\Bigr) 
.(3.93)
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Finally, using a kick back argument and taking \varepsilon small enough, we obtain

max
2\leq n\leq N - 1

\Bigl( 
\| \partial tvn - 1\| 2L + \| vn\| 2ah

+ \| vn - 1\| 2ah

\Bigr) 
(3.94)

\lesssim \| \partial tv0\| 2L + \| v1\| 2ah
+ \| v0\| 2ah

(3.95)

+ | | | r1| | | 2ah,\bigstar + | | | r2| | | 2L,\bigstar ,(3.96)

which completes the proof.

Remark 3.7. Clearly the bound also holds for \| vn\| 2ah
and \| \partial tvn - 1\| 2L separately.

For instance,

(3.97) max
2\leq n\leq N - 1

\| vn\| 2ah
\leq max

2\leq n\leq N - 1

\Bigl( 
\| \partial tvn - 1\| 2L + \| vn\| 2ah

+ \| vn - 1\| 2ah

\Bigr) 
,

If we assume that the max in the left-hand side is taken for n\ast , we immediately see
that

\| vn
\ast 
\| 2ah

\leq \| \partial tvn
\ast  - 1\| 2L + \| vn

\ast 
\| 2ah

+ \| vn
\ast  - 1\| 2ah

(3.98)

\leq max
2\leq n\leq N - 1

\Bigl( 
\| \partial tvn - 1\| 2L + \| vn\| 2ah

+ \| vn - 1\| 2ah

\Bigr) 
.(3.99)

3.5. Error estimates. We will now combine the approximation properties and
stability estimates proved in the previous section to derive error estimates for the
CutFEM approximation. To simplify the notation we denote a continuous function
at a certain time level tn, vn := v(tn) and its partial derivatives

(3.100) dmt v(t) :=
\partial mv

\partial tm
(t) and (dmt v)

n :=
\partial mv

\partial tm
(tn), m \in \BbbN +.

For m = 1 we will drop the superscript.
Before we derive the error estimates we recall the following elementary results for

the finite difference discretization in time.

Lemma 3.8. For functions v \in L\infty (0, T ;L2(\Omega )) there exists positive constants
such that

(3.101) \| \partial mt vn\| \lesssim \| dmt v\| L\infty (0,T ;L2(\Omega )), m \in \{ 1, 2\} , n \geq 0,

(3.102) \| \partial 2t vn  - \partial 2t v
n - 1\| \lesssim k\| d3t v\| L\infty (0,T ;L2(\Omega )), n \geq 2,

(3.103) \| \partial 2t vn  - d2t v
n\| \lesssim k2\| d4t v\| L\infty (0,T ;L2(\Omega )), n \geq 2,

Proof. We only prove the first inequality (3.101). For m = 2, the case m = 1 is
similar. Taking the L2-norm over \Omega and using partial integration in time and

\| \partial 2t vn\| =

\bigm\| \bigm\| \bigm\| \bigm\| 1

k2
(vn+1  - 2vn + vn - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
(3.104)

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

k2

\Biggl( \int tn - 1

tn
(tn - 1  - t)

\partial 2v

\partial t2
(t) dt+

\int tn+1

tn
(tn+1  - t)

\partial 2v

\partial t2
(t) dt

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| (3.105)

\lesssim 
1

k2

\int tn - 1

tn
(tn - 1  - t)

\bigm\| \bigm\| \bigm\| \bigm\| \partial 2v\partial t2 (t)
\bigm\| \bigm\| \bigm\| \bigm\| dt+

1

k2

\int tn+1

tn
(tn+1  - t)

\bigm\| \bigm\| \bigm\| \bigm\| \partial 2v\partial t2 (t)
\bigm\| \bigm\| \bigm\| \bigm\| dt(3.106)

\lesssim \| d2t v\| L\infty (tn - 1,tn+1;L2(\Omega ))(3.107)
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1275

and the proof of the first estimate (3.101) is complete. The second estimate (3.102)
follows using the same technique. Finally, for (3.103), once again using partial inte-
gration it follows that
(3.108)

\partial 2t v
n  - d2t v

n =
1

k2

\Biggl( \int tn - 1

tn

(tn - 1  - t)3

6

\partial 4v

\partial t4
(t) dt+

\int tn+1

tn

(tn+1  - t)3

6

\partial 4v

\partial t4
(t) dt

\Biggr) 
.

Taking the norm and supremum over d4tu in time in the right-hand side, we have

(3.109)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

k2

\int tn+1

tn

(tn+1  - t)3

6

\partial 4v

\partial t4
(t) dt

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \lesssim k2\| d4t v\| L\infty (tn - 1,tn+1;L2(\Omega )).

Theorem 3.9. Let un+1
h , for n = 1, . . . , N  - 1, be defined by (2.89) with initial

data u0h = Rhu
0 and u1h = Rhu

1. Then if u is a sufficiently smooth solution to (1.1),
the following error estimates hold:

\| (dtu)N - 1  - \partial t(u
N - 1
h )\| + \| uN  - uNh \| \lesssim h2 + k2,(3.110)

\| \nabla (uN  - uNh )\| \lesssim h+ k2.(3.111)

Proof. We first note that the exact solution satisfies

(3.112) ((d2tu)
n, v) + ah(u

n, v) = (fn, vn) \forall v \in Vh, t \in (0, T ).

and for n = 1, . . . , N  - 1, the numerical scheme satisfies

(3.113) (\partial 2t u
n
h, v)L + ah(u

n
h, v) = (fnh , v

n)L \forall v \in V E
h .

Subtracting the two equations we obtain the error equation

((d2tu)
n, v) - (\partial 2t u

n
h, v)L + ah(u

n  - unh, v) = (fn, v) - (fnh , v)L \forall v \in V E
h .(3.114)

In order to estimate the error, we split it into two contributions using the Ritz pro-
jection,

(3.115) un  - unh = un  - Rhu
n +Rhu

n  - unh = \rho n + \theta n.

In the standard manner, we then split the norms in the left-hand side of (3.110) and
(3.111) using the triangle inequality in the contributions from \rho n and \theta n, \| un - unh\| \leq 
\| \rho n\| + \| \theta n\| . In the following paragraphs we estimate the two contributions to the
error emanating from the interpolation error \rho and the discrete part of the error \theta .
The \rho contribution can be directly estimated using the error estimates (3.14) for the
Ritz projection. For the \theta contribution we derive an error equation with a right-hand
side that accounts for the lumping error and the error in the difference approximation
of the second order time derivative. The bound for \theta is then obtained by applying
the stability estimate (3.67) followed by a priori bounds for the right-hand side.

The \rho contribution. Applying the error estimate (3.14) for the Ritz projection we
have the estimates

\| \nabla m\rho n\| \lesssim h2 - m\| un\| H2(\Omega ), m = 0, 1,(3.116)

\| (dmt \rho )n\| \lesssim h2\| (dmt u)n\| H2(\Omega ), m = 1, 2, 3, 4,(3.117)

where we used the commutation (dtRhv)
n = Rh(dtv)

n.
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The \theta contribution. We note that we have the identity

((d2tu)
n, v) - (\partial 2t u

n
h, v)L(3.118)

= ((d2tu)
n, v) - (\partial 2t (Rhu

n), v)L + (\partial 2t (Rhu - uh)
n, v)L(3.119)

= ((d2tu)
n, v) - (\partial 2t (Rhu

n), v)L + (\partial 2t \theta 
n, v)L,(3.120)

and using the orthogonality of Rh,

ah(u
n  - unh, v) = anh(\rho 

n, v) + ah(\theta 
n, v) = ah(\theta 

n, v).(3.121)

Combining (3.114), (3.118), (3.120), and (3.121), we get the following error equation
for the discrete part \theta of the error:

(\partial 2t \theta 
n, v)L + ah(\theta 

n, v) = (fn, v) - (fnh , v)L + (\partial 2t (Rhu
n), v)L  - ((d2tu)

n, v)\underbrace{}  \underbrace{}  
rn(v)

,(3.122)

where we introduced the functional rn : Vh \rightarrow \BbbR . We now split rn, by adding and
subtracting suitable terms, in order to apply a stability bound of the form (3.63),

rn(v) = (fn, v) - (fnh , v)L + (\partial 2tRhu
n, v)L  - ((d2tu)

n, v)(3.123)

= (fn, v) - (fnh , v)L + (\partial 2tRhu
n, v)L  - (\partial 2tRhu

n, v)\underbrace{}  \underbrace{}  
rn1 (v)

(3.124)

+ (\partial 2tRhu
n, v) - ((d2tRhu)

n, v) + ((d2tRhu)
n, v) - ((d2tu)

n, v)\underbrace{}  \underbrace{}  
rn2 (v)

(3.125)

= rn1 (v) + rn2 (v),(3.126)

where we have collected the terms associated with the lumping error in r1 and the
remaining terms in r2. Below we will prove the following bounds on the residuals r1
and r2:

| | | r1| | | ah,\bigstar \lesssim h2(\| u\| W 3,\infty (0,T ;H1(\Omega )) + \| f\| W 1,\infty (0,T ;H2(\Omega ))),(3.127)

| | | r2| | | L,\bigstar \lesssim k2\| d4tu\| L\infty (0,T ;L2(\Omega )) + h2\| u\| W 2,\infty (0,T ;H2(\Omega )).(3.128)

Here we have omitted higher order terms. Anticipating the approximation error
estimates (3.127) and (3.128), we may use the stability estimate (3.67), where \theta 0 =
\theta 1 = 0 since u0h = Rhu

0 and u1h = Rhu
1, to obtain

max
2\leq n\leq N

\Bigl( 
\| \partial t\theta n - 1\| 2L + \| \theta n\| 2ah

+ \| \theta n - 1\| 2ah

\Bigr) 
\lesssim | | | r1| | | 2ah,\bigstar + | | | r2| | | 2L,\bigstar (3.129)

\lesssim h4
\bigl( 
\| u\| W 3,\infty (0,T ;H1(\Omega )) + \| f\| W 1,\infty (0,T ;H2(\Omega ))

\bigr) 2
(3.130)

+ (k2\| d4tu\| L2(0,T ;L2(\Omega )) + h2\| u\| W 2,\infty (0,T ;H2(\Omega )))
2(3.131)

\lesssim (h2 + k2)2.(3.132)

Verification of (3.127). Starting from the definition (3.61),

| | | r1| | | ah,\bigstar = \| rN - 1
1 \| ah,\bigstar + \| r11\| ah,\bigstar +

N - 1\sum 
n=1

k\| \partial trn1 \| ah,\bigstar (3.133)
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with

rn1 (v) = (fn, v) - (fnh , v)L\underbrace{}  \underbrace{}  
I

+(\partial 2tRhu
n, v)L  - (\partial 2tRhu

n, v)\underbrace{}  \underbrace{}  
II

.(3.134)

We start with estimates of the first four terms in the right-hand side of (3.61), by
considering an arbitrary n. By adding and subtracting (fnh , v) we have

(3.135) I = (fn, v) - (fnh , v)L \leq | (fn, v) - (fnh , v)| + | (fnh , v) - (fnh , v)L| .

Assuming that fnh has optimal approximation properties, we see that

(3.136) | (fn, v) - (fnh , v)| \lesssim h2\| fn\| H2(\Omega )\| v\| ah
,

where we used the Poincar\'e inequality \| v\| \lesssim \| v\| ah
. For the second term and term

II, we apply Lemma 3.4 to obtain

(3.137) | (fnh , v) - (fnh , v)L| \lesssim h2\| \nabla fnh \| \| v\| ah
\lesssim h2(\| \nabla fn\| + h\| fn\| H2(\Omega ))\| v\| ah

and

(3.138) (\partial 2tRhu
n, v) - (\partial 2tRhu

n, v)L \lesssim h2\| \nabla \partial 2tRhu
n\| \| v\| ah

.

Applying the first inequality of Lemma 3.8, adding and subtracting \nabla d2tun and ap-
plying approximation shows that

(3.139) \| \nabla \partial 2tRhu
n\| \leq \| \nabla d2t\rho n\| + \| \nabla d2tun\| \lesssim \| \nabla d2tun\| + h\| d2tun\| H2(\Omega ).

To sum up we have (neglecting higher order terms)

\| rN - 1
1 \| ah,\bigstar + \| r11\| ah,\bigstar \lesssim h2(\| u\| W 2,\infty (0,T ;H1(\Omega )) + \| f\| L\infty (0,T ;H2(\Omega ))).(3.140)

To control the last term in the right-hand side of (3.133), we simply apply the above
arguments to \partial tf

n, \partial tf
n
h , and \partial t(\partial 

2
tRhu

n). For the bound of \partial t(\partial 
2
tRhu

n) we use
(3.102). This results in similar bounds, but with an additional time derivative,

N - 1\sum 
n=1

k\| \partial trn1 \| ah,\bigstar (3.141)

\lesssim k

N - 1\sum 
n=0

h2(\| u\| W 3,\infty (tn,tn+1;H1(\Omega )) + \| f\| W 1,\infty (tn,tn+1;H2(\Omega )))(3.142)

\lesssim h2(\| u\| W 3,\infty (0,T ;H1(\Omega )) + \| f\| W 1,\infty (0,T ;H2(\Omega ))).(3.143)

Verification of (3.128). We recall the definition (3.62),

| | | r2| | | L,\bigstar = \| rN - 1
2 \| L,\bigstar + \| r12\| L,\bigstar +

N - 1\sum 
n=1

2k\| rn2 \| L,\bigstar .(3.144)

It follows that

(3.145) | | | r2| | | L,\bigstar \leq 4 max
1\leq n\leq N - 1

\| rn2 \| L,\bigstar .
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The \| rn2 \| L,\bigstar contribution in the right-hand side can be bounded as follows. Using
(3.23) we see that for all w \in L2(\Omega ),

(3.146) (w, vh) \leq \| w\| \| vh\| \lesssim \| w\| \| vh\| L.

In particular,

(\partial 2tRhu
n  - (d2tRhu)

n, v) + ((d2tRhu)
n  - (d2tu)

n, v)(3.147)

\lesssim (\| \partial 2tRhu
n  - (d2tRhu)

n\| + \| ((d2tRhu)
n  - (d2tu)

n\| )\| vh\| L.(3.148)

By the definition of rn2 we then have

(3.149) \| rn2 \| L,\bigstar = \| \partial 2tRhu
n  - (d2tRhu)

n\| \underbrace{}  \underbrace{}  
I

+ \| (d2t\rho )n\| \underbrace{}  \underbrace{}  
II

.

Term I is first bounded using inequality (3.103) in Lemma 3.8 and then, since we have
not proved L2-stability of Rh, we add and subtract d4tu, use the triangle inequality
and the inequality (3.117),

I \lesssim k2\| d4tRhu\| L\infty (0,T ;L2(\Omega ))(3.150)

\lesssim k2(\| d4tu\| L\infty (0,T ;L2(\Omega )) + \| d4t (u - Rhu)\| L\infty (0,T ;L2(\Omega )))(3.151)

\lesssim k2(\| d4tu\| L\infty (0,T ;L2(\Omega )) + h2\| d4tu\| L\infty (0,T ;H2(\Omega ))).(3.152)

For II we apply (3.117) to obtain

(3.153) \| (d2t\rho )n\| \lesssim h2\| u\| W 2,\infty (0,T ;H2(\Omega )).

We conclude that, omitting high order terms, we have as claimed,

(3.154) | | | r2| | | L,\bigstar \lesssim k2\| d4tu\| L\infty (0,T ;L2(\Omega )) + h2\| u\| W 2,\infty (0,T ;H2(\Omega )),

which completes the proof.

4. Numerical examples. In the numerical examples below we use the follow-
ing implementation of the extension operator. The mapping Sh is constructed by
associating with each element T \in \scrT h \setminus \scrT h,I the element S in \scrT h,I which minimizes
the distance between the element centroids. For each x \in \scrX h \setminus \scrX h,I the weights in the
nodal average \langle \cdot \rangle x (see (2.4)) is taken to be 1 on precisely one element Tx \in \scrT h(x) and
zero on all elements in \scrT h(x) \setminus Tx, where we recall that \scrT h(x) is the set of elements
which has x as a vertex. Note that this choice of weights corresponds to simply defin-
ing the nodal value in x \in \scrX h \setminus \scrX h,I by ((Fhv)| Tx

)| x, where Fh is defined in (2.16).
The Nitsche parameter was set to \gamma = 10 in all computations and the initial data
is the extension of nodal interpolant in interior nodes. For definiteness, we define
h :=

\sqrt{} 
2| T | , where | T | is the area of the element (or extended element).

4.1. Space-time convergence.

4.1.1. A Dirichlet problem. On the disc \Omega = \{ (x, y) \in \BbbR 2 : r < 0.5\} , with
r =

\sqrt{} 
x2 + y2, we consider a problem with manufactured solution

(4.1) u = (1 - 4r2) cos (\omega t)

corresponding to the right-hand side

(4.2) f = (4\omega 2r2  - \omega 2 + 16) cos (\omega t)
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Fig. 2. Elevation of the computed solution on a particular mesh.
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Fig. 3. Convergence at time T = 1, Dirichlet case. Dashed line has inclination 1:1, dotted line
has inclination 2:1.

with \omega = 2\pi . We solve this problem over one period, i.e., with T = 1. The timestep k
is coupled to the meshsize h by k = Ch with C fixed. On our initial mesh, h = 0.025
and k = 1/500.

In Figure 2 we show the solution (on the third mesh in a sequence of halving the
meshsize) after one period, and in Figure 3 we show the convergence at time T in
L2(\Omega ) and in H1(\Omega ). The expected convergence of O(h2) is attained in L2 and O(h)
in H1.

4.1.2. A Neumann problem. In this example we use the same domain and the
same meshes, timesteps, and final time T as in section 4.1.1. We use the fabricated
solution

(4.3) u = 8(r2/2 - r4) cos(\omega t)
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corresponding to the right-hand side

(4.4) f = 4(\omega 2(2x4 + 2y4 + 4x2y2  - x2  - y2) + 32x2 + 32y2  - 4) cos (\omega t)

with \omega = 2\pi .
In Figure 4 we show the convergence at time T in L2(\Omega ) and in H1(\Omega ). Again,

the expected convergence of O(h2) is attained in L2 and O(h) in H1.
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Fig. 4. Convergence at time T = 1, Neumann case. Dashed line has inclination 1:1, dotted
line has inclination 2:1.
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Fig. 5. Small mesh used for computation of the CFL condition. Cut moves across the last row
of elements.

4.2. CFL condition. As is well known, e.g., [22, 14], the leapfrog scheme has
a CFL condition on the timestep that can be written

(4.5) k \leq \alpha h, where \alpha :=
2

h

\sqrt{} 
\lambda max

\Bigl( \widehat M - 1
L
\widehat Ah,I

\Bigr) D
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Fig. 6. CFL condition depending on placement of cut.

with \lambda max(S) the maximum eigenvalue of the matrix S. To investigate how the
cut elements affect the CFL condition, we consider a small problem with Neumann
boundary conditions on all uncut boundaries, and a Dirichlet condition on the cut
boundary. The mesh with cut elements indicated is shown in Figure 5. We move
the cutting line from close to the uncut element to far from the uncut element, as
indicated in Figure 5. We denote by d the distance from the uncut cell divided by
h, 0 < d < 1. The corresponding \alpha is given in Figure 6 for two choices of \gamma . The
choice of the Nitsche parameter \gamma affects the conditioning of \widehat Ah,I , so in Figures 8 and

9 we show graphs of \lambda min( \widehat Ah,I) and \lambda max( \widehat Ah,I), respectively. We note that \gamma = 1 is
too small to give a coercive problem when d is small, but that \lambda min is not affected
by increasing \gamma beyond the point where \widehat Ah,I is positive definite. It is the maximum
eigenvalue that is adversely affected by \gamma , and we conclude that for large distances
from the uncut mesh it would be beneficial for the CFL condition to either lower \gamma ,
change the definition of h in the Nitsche term, or modify the method according to
Remark 2.1. This question is left for future work.

4.3. Increasing frequency. Here we show the effect of a pulse with decreasing
support approaching the boundary. Our domain is ( - 0.81, 0.79) \times ( - 0.8, 0.8) and
has Neumann boundary conditions on the uncut boundaries y = \pm 0.8. On the uncut
boundary x =  - 0.81 we impose Dirichlet conditions strongly, and on the cut boundary
at x = 0.79 we impose zero Dirichlet boundary conditions weakly. In Figure 7 we
show how the mesh is cut in a closeup. We set h = 8.9\times 10 - 3 and k = 3.93\times 10 - 4.
The initial solution is given by

(4.6) u(x, y) = (1 + cos(\pi | x+ 0.01| /d0) if | x+ 0.01| < d0, u(x, y) = 0 elsewhere

and \partial tu = 0, with different d0. This pulse splits into two, one going left and hitting
the uncut boundary and one going right and hitting the cut boundary. We show
snapshots of the solutions different times and for different d0 in Figures 10--18. Note
the dispersion error becomes more pronounced as d0 decreases. The difference in
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quality of the solution at the uncut and cut boundaries boundary is small and does
not become more pronounced as the support of the pulse decreases. We note that
as the frequency increases and the meshsize must (eventually) be decreased to avoid
dispersion errors, which means the weak Dirichlet data will also be better resolved.

Fig. 7. Closeup of the mesh at the lower right corner.
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Fig. 8. Minimum eigenvalue of \widehat Ah,I depending on placement of cut.
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Fig. 9. Maximum eigenvalue of \widehat Ah,I depending on placement of cut.

Fig. 10. Pulse at t = 0 for d0 = 0.2.
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Fig. 11. Pulse at t = 0.65 (left) and t = 0.9 (right) for d0 = 0.2.

Fig. 12. Pulse at t = 1.2 for d0 = 0.2.
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1285

Fig. 13. Pulse at t = 0 for d0 = 0.1.

Fig. 14. Pulse at t = 0.7 (left) and t = 0.85 (right) for d0 = 0.1.
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Fig. 15. Pulse at t = 1.2 for d0 = 0.1.

Fig. 16. Pulse at t = 0 for d0 = 0.05.
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EXPLICIT TIME STEPPING IN CUTFEM WITH EXTENSION A1287

Fig. 17. Pulse at t = 0.74 (left) and t = 0.84 (right) for d0 = 0.05.

Fig. 18. Pulse at t = 1.2 for d0 = 0.05.
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