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Abstract: Objective: We have recently identified using multilayer perceptron analysis (artificial
intelligence) a set of 25 genes with prognostic relevance in diffuse large B-cell lymphoma (DLBCL),
but the importance of this set in other hematological neoplasia remains unknown. Methods and
Results: We tested this set of genes (i.e., ALDOB, ARHGAP19, ARMH3, ATF6B, CACNA1B, DIP2A,
EMC9, ENO3, GGA3, KIF23, LPXN, MESD, METTL21A, POLR3H, RAB7A, RPS23, SERPINB8, SFTPC,
SNN, SPACA9, SWSAP1, SZRD1, TNFAIP8, WDCP and ZSCAN12) in a large series of gene expression
comprised of 2029 cases, selected from available databases, that included chronic lymphocytic
leukemia (CLL, n = 308), mantle cell lymphoma (MCL, n = 92), follicular lymphoma (FL, n = 180),
DLBCL (n = 741), multiple myeloma (MM, n = 559) and acute myeloid leukemia (AML, n = 149).
Using a risk-score formula we could predict the overall survival of the patients: the hazard-ratio of
high-risk versus low-risk groups for all the cases was 3.2 and per disease subtype were as follows:
CLL (4.3), MCL (5.2), FL (3.0), DLBCL not otherwise specified (NOS) (4.5), multiple myeloma (MM)
(5.3) and AML (3.7) (all p values < 0.000001). All 25 genes contributed to the risk-score, but their
weight and direction of the correlation was variable. Among them, the most relevant were ENO3,
TNFAIP8, ATF6B, METTL21A, KIF23 and ARHGAP19. Next, we validated TNFAIP8 (a negative
mediator of apoptosis) in an independent series of 97 cases of DLBCL NOS from Tokai University
Hospital. The protein expression by immunohistochemistry of TNFAIP8 was quantified using an
artificial intelligence-based segmentation method and confirmed with a conventional RGB-based
digital quantification. We confirmed that high protein expression of TNFAIP8 by the neoplastic
B-lymphocytes associated with a poor overall survival of the patients (hazard-risk 3.5; p = 0.018) as
well as with other relevant clinicopathological variables including age >60 years, high serum levels of
soluble IL2RA, a non-GCB phenotype (cell-of-origin Hans classifier), moderately higher MYC and
Ki67 (proliferation index), and high infiltration of the immune microenvironment by CD163-positive
tumor associated macrophages (CD163+TAMs). Conclusion: It is possible to predict the prognosis
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of several hematological neoplasia using a single gene-set derived from neural network analysis.
High expression of TNFAIP8 is associated with poor prognosis of the patients in DLBCL.

Keywords: Non-Hodgkin lymphoma; acute myeloid leukemia (AML); prognosis; artificial
intelligence; gene expression; TNFAIP8; diffuse large b-cell lymphoma; deep learning
(machine learning)

1. Introduction

According to the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues,
revised 4th edition, published in 2017, there are 21 disease groups. The WHO classification classifies
neoplasms primarily according to lineage (myeloid, lymphoid, or histiocytic/dendritic) and a normal
counterpart is postulated for each neoplasm. Among them we can identify the groups of acute myeloid
leukemia (AML) and the mature B-cell neoplasms. In adults, the relative frequencies of the B-cell
lymphoma subtypes are diffuse large B-cell lymphoma (DLBCL) (37%), follicular lymphoma (FL)
(29%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) (12%), extranodal
marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) (9%), mantle cell
lymphoma (MCL) (7%) and others with a frequency below the 3% such as primary mediastinal large
B-cell lymphoma (PMBL), high grade B not otherwise specified (NOS) (2.5%) and splenic marginal
zone lymphoma (SMZL), etc. [1]. The prognosis of these subtypes is heterogeneous, e.g., being more
indolent in CLL/SLL and FL, and more aggressive in AML, MCL and DLBCL [1]. Within the lymphoma
subtype there is also clinical variability. Therefore, the search of prognostic markers related to the
prognosis of the patients is necessary. The gene expression profile (GEP) has provided a basis for the
stratification of the prognosis of the patients. For example, in DLBCL GEP has classified the patients
into different molecular subtypes: germinal center B-cell-like (GCB) and activated B-cell-like (ABC) [2].
PMBL has a characteristic GEP with high PD-L1 and PD-L2 expression [3]. Burkitt Lymphoma between
pediatric and adult patients shows a different profile [4]. The GEP of CLL identified the ZAP70 gene,
which has prognostic relevance [5]. Nevertheless, to our knowledge, a gene signature with predictive
value in several lymphoma subtypes has not been identified yet.

The term neural network applies to a loosely related family of models, characterized by a
large parameter space and flexible structure, descending from studies of brain functioning. Neural
networks are the preferred tool for many predictive data mining applications because of their power,
flexibility, and ease of use. Predictive neural networks are particularly useful in applications where the
underlying process is complex. Among them, the multilayer perceptron (MLP) procedure produces a
predictive model for one or more dependent (target) variables based on the values of the predictor
variables [6]. Using MLP procedure on GEP data of 414 cases DLBCL we have recently identified a set
of 25 genes with predictive value, a signature that was independent of the cell-of-origin molecular
subtypes [7]. In the MLP procedure, the target variable (output) was the prognosis of the patients
and the predictor variables were the 54,614 gene-probes of the array. The results ranked the genes
according to their relative importance for the neural network model and above 70% we identified the
25 genes, which mainly associated to a poor prognosis. According to KEGG, these genes belonged
to the pathways of ribosome, RNA polymerase, Epstein–Barr virus (EBV) infection, glycolysis and
pyrimidine metabolism [7].

In this project, we aimed to know if this set of 25 genes also had a prognostic relevance in other
lymphoid neoplasia. We did not aim to perform an exhaustive analysis in each subtype with correlation
to many clinicopathological features, but more a general profiling and correlation with the outcome.
This series of 2029 cases included CLL, MCL, FL, DLBCL, multiple myeloma (MM) and AML. We found
that this single gene set can also predict the prognosis of the patients. In addition, we validated one of
the most relevant markers in an independent series of DLBCL from Tokai University and we found
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that high protein expression of TNFAIP8 also quantified using artificial intelligence associated with a
poor prognosis of the patients.

2. Materials and Methods

2.1. Subjects of Study and Set of Genes Derived from Artificial Intelligence Analysis

The subjects of study were obtained from several publicly available international lymphoma
series of gene expression which are described in Table 1. In total, the series comprised 2029 cases
as follows: CLL DataSet GSE22762 [8] (n = 107), CLL ICGC Dataset [9] (n = 201), MCL LLMPP [10]
(n = 92), FL Dataset GSE16131 GPL96 [11] (n = 180), DLBCL Dataset GSE10846 [12] (n = 414), DLBCL
Dataset GSE23501 [13] (n = 69), DLBCL E-TABM-346 [14] (n = 52), DLBCL TCGA [15] (n = 47), DLBCL
GSE4475 [16] (n = 159), MM Dataset GSE2658 [17] (n = 559) and AML TCGA [15] (n = 149).

Table 1. Series of cases and survival characteristics.

N. Series ID Cases Total Num.
(%)

Log-Rank
p Value 5-y OS (±95% CI) HR

p Value
HR

(95% CI)

Chronic lymphocytic leukemia (CLL)
1 GSE22762 GPL570 107 308 (15.2%) Reference 86.7% (84.9–88.5%) 3.59 × 10−48 reference2 ICGC CLLE-ES v.2016 201

Mantle cell lymphoma (MCL)
3 LLMPP Rosenwald 2003 92 92 (4.5%) 6.10 × 10−39 28.3% (26.7–29.9%) 2.45 × 10−26 6.6 (4.6–9.3)

Follicular Lymphoma (FL)
4 GSE16131 GPL96 180 180 (8.9%) 6.79 × 10−8 70.7% (68.2–73.2%) 9.24 × 10−8 2.4 (1.7–3.2)

Diffuse Large B-cell Lymphoma (DLBCL)
5 GSE10846 414

741 (36.5%) 1.03 × 10−17 56.5% (55.3–57.7%) 1.10 × 10−19 3.5 (2.7–4.6)
6 GSE23501 69
7 E-TABM-346 52
8 TCGA DLBCL v.2016 47
9 GSE4475 159

Multiple Myeloma (MM)

10 GSE2658 559 559 (27.6%) 2.47 × 10−8 62.7%
(59.95–65.5%) 7 × 10−5 1.9 (1.4–2.6)

Acute Myeloid Leukemia (AML)
11 TCGA-AML v.2016 149 149 (7.3%) 1.47 × 10−46 23.2% (22.1–24.3%) 6.11 × 10−37 8.3 (5.9–11.5)

All Series 1–11 2029 2029 (100%) 4.78 × 10−56 62.4% (61.6–63.2%) - -

N., number. HR, hazard-risk/ratio. In the “general” vs. “all” comparison analysis with Cox regression, the group
“All” was set as reference.

We had previously used the DLBCL gene expression set GSE10846 in our previous publication to
perform the MLP analysis, in which we had identified the top 25 most relevant genes for the disease
prognosis [7]. In summary, the MLP analysis was performed in a discovery set of 100 cases from
Western countries diagnosed from nodal DLBCL. The mean age was 62 year, the male/female ratio
was 1.2, the molecular subtype was activated b-cell type (ABC) in 49% (cell-of-origin classification
based on the gene expression profile) and the original International Prognostic Index (IPI) for DLBCL
was high-intermediate/high in 37% of the cases [7]. The samples were classified into a training group
(n = 70) and a testing group (n = 30). The neural network had an input layer of 54,614 covariates
(number of units), the hidden layer number was 1 (with 12 units) and used the hyperbolic tangent
activation function, the output layer was characterized by 1 dependent variable (status, survival
outcome of dead vs. alive), 2 unix, the Softmax activation function and the cross-entropy error function.
In the neural network output the covariates were ranked according to their relative importance and
the first 25th most relevant genes were identified as follows: SFTPC (100% normalized importance),
ARHGAP19 (87%), MESD (84%), SNN (82%), ALDOB (81%), SPACA9 (C9orf9, 76%), SWSAP1 (C19orf39,
77%), WDCP (C2orf44, 77%), ZSCAN12 (76%), DIP2A (75%), ATF6B (75%), CACNA1B (75%), TNFAIP8
(74%), RPS23 (74%), POLR3H (74%), ENO3 (73%), RAB7A (72%), SERPINB8 (72%), SZRD1 (C1orf144,



AI 2020, 1 345

72%), EMC9 (FAM158A, 71%), ARMH3 (C10orf76, 72%), LPXN (72%), KIF23 (71%), GGA3 (71%) and
METTL21A (FAM119A, 70%) [7].

This human study had been reviewed by the ethics committee of the participating Institutions.
Therefore, the investigation conforms to the principles outlined in the Declaration of Helsinki.
All persons had given their informed consent prior to their inclusion in the study.

2.2. Gene Expression Analysis

Gene expression analysis was performed as we previously described [7]. For survival analysis the
gene expression data was transformed to a prognostic index (also known as risk-score) to generate the
risk-groups. Calculation was performed by multiplying the gene expression values with the estimated
beta coefficients from the fitted Cox proportional hazards model. Of note, variables with positive
coefficients (the B values) are associated with increased hazard and decreased survival times, i.e., as the
predictor increases the hazard of the event increases and the predicted survival duration decreases.
Negative coefficients indicate decreased hazard and increased survival times. Exp(B) is the ratio of
hazard rates that are one unit apart on the predictor. After ranking the samples by their prognostic
index, the samples were split into low-risk vs. high-risk groups. The risk-group splitting was also
optimized using an algorithm that uses the inner-group p-value in order to identify the best cutoff for
survival (i.e., lower p value). Then, conventional survival analysis was performed [7,18–20]. Within the
25 genes set, the most relevant genes are those that are consistently differently expressed between
high-risk and low-risk groups although their weight and direction of the association is also taken
into account.

2.3. Statistical Analysis

The analysis was performed using R version 3.6.3 (2020-02-29) (http://cran.r-project.org) as well
as SPSS software (IBM SPSS Statistics 25, Armonk, NY, USA). The conventional criteria for overall
survival was used. Survival analysis was performed with Kaplan–Meier and log rank tests, and Cox
regression, method (enter), contrast (indicator). Hazard-ratios/risks (HR) were determined using Cox
regression analysis (exp(B) values).

2.4. Validation of TNFAIP8 in an Independent Series of DLBCL

We validated one of the most relevant markers with immunohistochemistry using diagnostic
biopsies in an independent series of 97 patients with Diffuse Large B-cell Lymphoma who were
diagnosed at Tokai University Hospital from the years 2004 to 2011. This study was approved by the
institutional review board (IRB 14R-080) and conducted in accordance with the Helsinki Declaration of
1975 as revised in 2008.

2.5. Immunohistochemistry of TNFAIP8 and Additional Markers

Immunohistochemistry (IHC) was performed in a Bond–Max fully automated IHC and in situ
hybridization (ISH) equipment following the manufacturer’s instructions (Leica K.K., Tokyo, Japan) and
using the 3,3′-Diaminobenzidine (DAB)-based BOND Polymer Refine Detection kit (#DS9800). For the
cell of origin classification (Hans’ classifier) the following antibodies were used: CD10 (Clone 56C6,
Novocastra, Leica K.K., Tokyo, Japan), BCL6 (LN22, Novocastra) and MUM1 (EAU32, Novocastra).
Epstein–Barr virus (EBV) infection status was assessed by in situ hybridization of EBV-encoded mRNA
(EBER, #BP0589, #AR0833, Novocastra). Macrophages were stained with anti-CD163 antibody (10D6,
Novocastra). Apoptosis regulator BCL2 was stained with anti-BCL2 antibody (bcl2/100/D5, Novocastra).
RGS1 expression was identified with an anti-RGS1 antibody (rabbit polyclonal, Thermo Fisher Scientific
K.K., Tokyo, Japan). TNFAIP expression by the neoplastic B-lymphocytes was assessed using an
anti-TNFAIP8 antibody (#14559-MM01, Sino Biological, Beijing, P.R. China), the proliferation index
with anti-Ki67 (MM1, Novocastra) and the MYC proto-oncogene with anti-MYC (Y69, Abcam K.K.,

http://cran.r-project.org
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Tokyo, Japan). The antigen retrieval in most of the cases was the BOND Epitope Retrieval Solution 2
(Leica K.K.).

2.6. Conventional and Artificial Intelligence-Based Digital Image Analysis

Slides were visualized in an optical microscope (Olympus BX63, Olympus K.K., Tokyo, Japan) and
later digitalized using a digital slide scanner (NanoZoomer S360, Hamamatsu Photonics, Hamamatsu
City, Japan). For conventional analysis the image was evaluated as an ordinal variable: 0 (no staining),
1+ (low), 2+ (intermediate) and 3+ (high positive). Artificial intelligence-based digital image analysis
was performed using Fiji software [(Fiji Is Just) ImageJ 2.0.0-rc-69/1.52p/Java 1.8.0_172 (64-bit)].
The artificial intelligence-based image analysis method quantified the marker based on the Waikato
Environment for Knowledge Analysis [Weka, version 3.9.3, The University of Waikako Hamilton,
New Zealand; with Java (TM) SE Runtime Environment, version 1.8.0_172-b11, Oracle Corporation,
Redwood City, California, United States]. The raw immunohistochemical image, which corresponded
with same area previously evaluated in the conventional analysis, was loaded into the analysis
software and directly analyzed without type change. For the training input three types of pixels
were selected: Class 1 (positive staining, DAB), Class 2 (negative areas) and Class 3 (absence of
cellularity). The segmentation settings included as training features the Gaussian blur, hessian,
membrane projections, Sobel filter and difference of Gaussians. The membrane thickness was set at
value 1, membrane patch size at 19, minimum sigma at 1.0 and maximum sigma at 16.0. The training
of the classifier included fast random forest. The classifying of the whole image used all available CPU
threads. Finally, the segmentation of the whole image was performed, and each class area was inked in
a different color and quantified using thresholds with Fiji software.

3. Results

3.1. Overall Survival of the Lymphoma Subtypes and Acute Myeloid Leukemia.

This series of 2029 cases (identified in the Tables as “All”) was comprised of the hematological
neoplasia’ subtypes of CLL, 308 cases (308/2029, 15%); MCL, 92 cases (5%), FL, 180 (9%); DLBCL,
741 (37%), MM, 559 (28%) and AML, 149 (7%) (Table 1). The follow-up time ranged from 0 to 26 years
(Figure 1). The 1, 3 and 5-year overall survival (OS) was 84% (95%CI: 83–85%), 72% (70–72%) and
62% (62–63%). The overall survival was different between the different lymphoma subtypes and AML
(p = 4.78 × 10−56). The subtype with better survival was CLL, followed by FL, MM, DLBCL, MCL and
AML. In comparison to CLL (reference in SPSS), the hazard-risk were the following: FL (2.4), MM (1.9),
DLBCL (3.5), MCL (6.6), and AML (8.3) (Table 1). Therefore, MCL is the lymphoma subtype with
poorest prognosis.
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log-rank tests, all p values were <0.0001. CLL, chronic lymphocytic leukemia; MCL, mantle cell 
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Figure 1. Overall survival of the series. (A) We have recently performed artificial intelligence analysis
using the multilayer perceptron technique in a series of cases of diffuse large B-cell lymphoma (DLBCL).
We have identified a set of 25 with prognostic relevance in DLBCL. We aimed to check the usefulness of
this set in other lymphoid neoplasia. (B) Overall survival of all the cases of the series (Subtypes 1 to 11)
and comparison according to each subtype. Based on the gene expression of a single set of 25 genes
and using a risk-score formula two groups were defined: low-risk and high-risk. In the log-rank
tests, all p values were <0.0001. CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; FL,
follicular lymphoma; DLBCL, diffuse large B-cell lymphoma; MM, multiple myeloma; AML, acute
myeloid leukemia.
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3.2. Survival Analysis According to the Risk-Score Based on the Set of 25 Genes

The set of 25 genes, previously identified in the MLP, were analyzed for prognosis in the
series of 2029 lymphoma cases. The analysis consisted on multivariate Cox regression analysis
and the calculation of the risk-score. The risk-score values in each series were used for finding
the most significant cut-off for overall survival and log-rank test (i.e., “maximized risk-groups”).
The hazard-risks were calculated and the different gene expression between the two risk-groups
were also tested. The analysis was made in each database independently as the gene expression was
performed in different experimental conditions (i.e., different array platforms). In each lymphoma
subtype, a final survival plot was created by merging the different risk-score groups (Figure 1).

In the Table 2 it is detailed the overall survivals data of the different subtypes according to the
risk-groups obtained from the gene expression data. It includes the number of cases per group,
the 5-year OS and the p value of the log-rank test, the hazard-risk/ratio and its p value. The risk-score
based on the 25 genes managed find two risk groups in all the hematological subtypes with p values
long below to 0.001 (the p values ranged from 6.58 × 10−8 to 3.92 × 10−42). The hazard-risks in average
were 3.2, with a range from 3.0 to 5.2, being the differences more important in MCL and MM subtypes.

Correlation with several clinicopathological characteristics was available in some of the series.
In MCL (Database Series 3), the prognostic relevance of the risk-groups was kept independently of
the cyclin dependent kinase inhibitor 2A (CDKN2A, also known as INK/ARF), ATM serine/threonine
kinase (ATM) and tumor protein p53 (TP53) deletion status. In case of FL (Series 4), the risk-groups
were independent of the IPI. In DLBCL (Series 5) of the cell-of-origin molecular subtype and Eastern
Cooperative Oncology Group (ECOG) performance status; and DLBCL of Series 6 and 9 from the
molecular subtype as well.
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Table 2. Overall survival according to the risk-groups based on the set of 25 genes.

Sub-Type Series
Low-Risk/High-Risk Log-Rank 5-Year OS (95% CI) HR HR

Num. (%) p Value Low-Risk High-Risk p Value (95% CI)

CLL 1–2 219 (71.1%)/89 (28.9%) 3.07 × 10−10 94.2% (92.6–95.8%) 69.2% (69.2–65.7%) 7.63 × 10−09 4.3 (2.6–7.0)
MCL 3 65 (70.7%)/27 (29.3%) 1.46 × 10−09 38.4% (35.6–41.2%) 0% (0–0%) 3.22 × 10−08 5.2 (2.9–9.2)

FL 4 113 (62.8%)/67 (37.2%) 6.58 × 10−08 79.3% (76.2–83.4%) 55.9% (52.4–59.4%) 2.59 × 10−07 3.0 (1.9–4.6)
DLBCL 5–9 587 (79.2%)/154 (20.8%) 3.92 × 10−42 68.1% (66.5–69.7%) 16.3% (15.7–16.9%) 1.32 × 10−35 4.5 (3.5–5.7)

MM 10 499 (89.3%)/60 (10.7%) 1.84 × 10−16 69.6% (66.6–72.6%) 0% (0–0%) 1.63 × 10−13 5.3 (3.4–8.2)
AML 11 116 (77.9%)/33 (22.1%) 1.23 × 10−09 29.7% (27.9–31.5%) 3.9% (3.8–4.0%) 1.66 × 10−08 3.7 (2.4–5.9)

All 1–11 1599 (78.8%)/430 (21.2%) 9.26 × 10−59 70.9% (69.9–71.9%) 34.4% (33.5–35.3%) 9.53 × 10−53 3.2 (2.8–3.7)

HR, hazard-risk/ratio. CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; FL, follicular lymphoma; DLBCL, diffuse large B-cell lymphoma not otherwise specified;
MM, multiple myeloma; and AML, acute myeloid leukemia.
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3.3. Gene Contribution to the Prognostic Model

The risk-groups are set up based on the risk-scores that are calculated with the beta values of the
multivariate COX regression and the gene expression values (Figure 2). All the markers contribute to
the final value of the risk-score as well as to the risk-group. Therefore, both beta and gene expression
values are informative of which genes are the most relevant for the model and the direction of the
association. In general, in our data, the most significant genes usually associated in the direction of
high expression with poor prognosis but in some genes the association was inverted.

For example, in CLL Database Series 1, the multivariate COX regression analysis showed that
among the 25 genes, 8 significantly contributed to the model (p < 0.05): MESD, SNN, SPACA9, DIP2A,
CACNA1B, TNFAIP8, SERPINB8, ARMH3. Among them, high SPACA9, CACN1A, TNFAIP8, SERPINB8
and ARMH3 correlated with higher probability of death (positive correlation) while high MESD, SNN
and DIP2A correlated with higher probability of being alive (inverse correlation). After risk-score
calculation and stratification to risk-groups, analysis showed that high expression of SPACA9, ATF6B,
ENO3, SERPINB8, ARMH3 and LPXN associated significantly to the high-risk group (p < 0.05).

In the MCL (Series 3), the array had only 5 of the genes of the 25 gene series. But with only
5 genes, it was possible to define the two risk-groups: high gene expression of ARHGAP19, SZRD1
and KIF23 associated to the high-risk group while high ALDOB to the low-risk group. In case of FL
(Series 4), high expression of SPACA9 and CACNA1B associated to the high-risk group while high
ARHGAP19, SNN, TNFAIP8 and EMC9 was associated to the low-risk group. In DLBCL (Series 5),
high expression of SWSAP1, WDCP, CACNA1B, TNFAIP8, POLR3H, ENO3, SERPINB8, SZRD1, KIF23,
GGA3, METIL21A associated to the high-risk group and high ZSCAN12 and LPXN to the low-risk
group. In case of MM (Series 10) and AML (Series 11) most of the genes were represented in the high
or low-risk profile. Please refer to the tables (e.g., Table 3) and figures for detailed information of all
the neoplastic subtypes and database series. Of note, high ENO3 associates to the high-risk group in
several subtypes including CLL, DLBCL, MM and AML.



AI 2020, 1 351
AI 2020, 1,  11 

 

Figure 2. Gene contribution to survival. (A) Beta values from the multivariate Cox analysis of the most 
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Figure 2. Gene contribution to survival. (A) Beta values from the multivariate Cox analysis of the most
relevant subtypes. The risk-scores were calculated with multiplication of the beta values with the gene
expression values. A positive beta value corresponds to a risk factor and a negative to protective factor
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for outcome (dead). (B) Heatmap of the Table 3. Correlation between high gene expression of a marker
with the risk-groups in the different subtypes: 1, high-risk group (red color); −1, low-risk group (green);
0, no risk-group association (white); genes that are not present in the array (grey). (C) Radial plots
of the most relevant subtypes. Black color lines correspond to the p values (1−p calculation) of each
gene in the multivariate Cox regression analysis. Grey colors correspond to the p values (1−p) of the
differential gene expression (DGE) between high-risk vs. low-risk groups (grey color). Values >0.95
correspond to p < 0.05. Note: risk-scores are calculated by multiplying the beta values with the gene
expression. The p values are useful to identify the most relevant markers, but all markers contribute to
the risk-score calculation. (D) Differential gene expression between high-risk and low-risk group in
three representative subtypes (Subtype 1 of CLL, FL 4 and MM 10).
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Table 3. Correlation between high RNA expression levels (RNA) and risk-groups (high-risk and low-risk).

High RNA of Gene CLL 1 CLL 2 MCL 3 FL 4 DLBCL 5 DLBCL 6 DLBCL 7 DLBCL 8 DLBCL 9 MM 10 AML 11 %

SFTPC NC NC - NC NC NC NC HR NC LR NC 20
ARHGAP19 NC - HR LR NC NC NC NC LR HR NC 40

MESD NC - - - NC NC - NC - LR * LR 33
SNN NC NC - LR NC NC NC NC LR NC HR * 30

ALDOB NC - LR NC NC NC NC NC NC LR NC 20
SPACA9 HR NC - HR NC - NC NC NC LR NC 33
SWSAP1 NC NC - - HR NC - NC - HR HR * 43
WDCP NC - - NC HR NC NC NC NC NC LR 22

ZSCAN12 NC - - NC LR NC NC HR* HR NC LR 44
DIP2A NC NC - NC NC NC NC HR NC NC NC 10
ATF6B HR - - NC NC LR NC NC HR HR LR 56

CACNA1B NC NC - HR HR HR NC NC NC LR NC 40
TNFAIP8 NC NC - LR HR NC HR HR HR NC LR 60

RPS23 NC - - NC NC LR NC NC NC NC LR 22
POLR3H NC - - - HR NC - LR - NC HR 50

ENO3 HR NC - NC HR NC HR HR* HR HR HR 70
RAB7A NC NC NC NC NC NC NC NC NC LR NC 9

SERPINB8 HR HR * - NC HR NC NC NC NC NC NC 30
SZRD1 NC NC HR NC HR NC NC NC NC HR NC 27
EMC9 NC - - LR NC NC NC LR LR HR NC 44

ARMH3 HR - - NC NC NC NC NC NC HR NC 22
LPXN HR - - NC LR LR NC NC LR NC NC 44
KIF23 NC NC HR NC HR NC NC NC LR HR LR 45
GGA3 NC - - NC HR NC HR NC HR NC LR 44

METTL21A NC - - - LR LR - NC - HR NC 50

HR, high-risk group; LR, low-risk group; NC, no correlation; “-”, the gene is not available in the gene expression array of the series. The asterisk “*” indicates that the p value is in the limit
of significance (0.1 < p value >0.05). The underlined genes are the most relevant. The percentage (%) indicates the percentage of the series with significant association with the high or
low-risk groups. Of note, all the genes contributed to the risk score and the risk score groups generation (i.e., to the overall survival of the patients), but their weight and direction of the
association was variable.



AI 2020, 1 354

3.4. Immunohistochemical Expression of TNFAIP8 in DLBCL

The characteristics of the subjects of the validation set of 97 cases from Tokai University Hospital
are present in the Table 4. The age ranged from 14 to 97 years old with a median of 68 years, and 54
were men (55.7%). According to the cell of origin classification by the Hans’ classifier 33% were GCB
and 67% non-GCB. Ninety-four percent of the cases had received RCHOP or RCHOP-like therapy.
Patients that had an unfavorable prognosis associated with age >60 years, high LDH, high sIL2RA,
ECOG performance status ≥2, clinical stage III–IV, extranodal sites >1, higher IPI score, a non-GCB
molecular subtype, high RGS1 expression, positive BCL2 expression and positivity for Epstein–Barr
virus (EBER+). The alive/dead ratio was 0.73.

Table 4. Clinicopathological characteristics of the validation series of diffuse large B-cell lymphoma
from Tokai University.

Variable Num. % p Value Hazard Risk
95.0% CI for HR

Lower Upper

Sex Male 54/97 55.7 0.714 1.124 0.603 2.095

Age > 60 68/97 70.1 0.004 3.968 1.555 10.126

Location
Nodal (+spleen) 52/97 53.6 Reference - - -
Extranodal

Waldeyer’s ring 9/97 9.3 0.238 0.238 0.032 1.774
Gastrointestinal 10/97 10.3 0.800 0.8 0.238 2.687
Other extranodal 26/97 26.8 1.625 1.625 0.847 3.12

LDH High (>219) 58/96 60.4 0.003 3.269 1.501 7.119

Seric IL2RA High (>530) 70/90 77.8 0.024 3.914 1.2 12.762

ECOG Performance Status ≥2 13/77 16.9 3.90 × 10−4 4.019 1.863 8.668

Clinical stage III or IV 41/88 46.6 0.047 1.981 1.01 3.884

Extranodal disease site >1 18/73 24.7 0.000381 3.784 1.816 7.884

B symptoms 18/79 22.8 0.311 1.491 0.689 3.226

International Prognostic Index (IPI)
Low risk (L) 30/80 37.5 Reference - - -
Low-intermediate risk (LI) 25/80 31.3 0.011 3.523 1.334 9.304
High-intermediate risk (HI) 14/80 17.5 0.046 3.053 1.022 9.114
High risk (H) 11/80 13.8 0.005 5.035 1.615 15.701

Cell-of-origin Subtype (Hans)
GCB 31/94 33 - - - -
Non-GCB 63/94 67 0.011 2.906 1.283 6.583

High RGS1 expression 52/96 54.2 0.032 2.147 1.066 4.323

Positive BCL2 expression 73/92 79.3 0.024 3.887 1.195 12.639

Epstein–Barr virus, EBER+ 17/95 17.9 0.005 2.822 1.371 5.809

Treatment
RCHOP 64/89 71.9 Reference - - -
RCHOP-like 20/89 22.5 0.148 1.715 0.826 3.561
Others 5/89 5.6 0.394 1.881 0.44 8.037

Response to treatment
CR 63/85 74.1 Reference - - -
PR+PD+SD+NC 22/85 25.9 2.06 × 10−12 16.044 7.401 34.779

Overall survival (outcome)
Dead 41/97 42.3 - - - -
Alive 56/97 57.7 - - - -

Statistically significant p values (p < 0.05) are underlined.
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The expression of TNFAIP8 ranged from 3.2% to 87.9%, with a median of 38.1% and a mean
of 41.2% ± 25.3 STD. The TNFAIP8 staining was also evaluated by the pathologist (J.C.) under the
microscope using a conventional ordinal scale approach (0, 1+, 2+ and 3+). Both quantifications had a
good correlation (Spearman’s rho correlation 0.887, p = 1.0088 × 10−33). The TNFAIP8 values from
the A.I.-based quantification were ranked and the most adequate cutoff point for overall survival was
calculated (≥19%). Patients with high TNFAIP8 expression had a 250% more risk of dying than the
patients with low expression (hazard risk = 3.5, 95% CI 1.244–9.849). The 5-year overall survival of
the patients, high vs. low TNFAIP8, was 53% (95% CI 63.8–41.2%) vs. 85% (95% CI 100.7–70.1%),
respectively [log rank (Mantel–Cox) p = 0.011]. The 10-years overall survival of the patients, high vs.
low TNFAIP8, was 42% (95%CI 55.5–28.1%) vs. 73% (95%CI 98.9–47.5%), respectively [Log Rank
(Mantel-Cox) p = 0.011]. TNFAIP8 expression was also correlated with several clinicopathological
characteristics. High TNFAIP8 correlated with age >60 years, high serum IL2RA, non-GCB phenotype
and high infiltration of CD163+ M2-like tumor associated macrophages (CD163+TAMs). TNFAIP8
also moderately correlated with MYC (Spearman’s correlation coefficient 0.389, p = 0.009) and Ki67
(proliferation index; Spearman’s correlation coefficient 0.48, p = 0.001). High TNFAIP8 also associated
(trend) a worse progression free survival (p = 0.052). Finally, a multivariate COX analysis between
TNFAIP8 (high vs. low) and IPI (low+low/intermediate vs. high/intermediate+high) show that only
TNFAIP8 kept the prognostic value (HR = 3.5, p = 0.040). All the information of this paragraph is
present in the Tables 4 and 5, and the Figure 3.

Table 5. Correlation between TNFAIP8 and the clinicopathological features of the patients of the
validation series of diffuse large B-cell lymphoma from Tokai University.

Predictors for High TNFAIP8 p Value Odds Ratio
95% C.I. for OR

Lower Upper

Sex Male 0.394 0.653 0.245 1.74
Age >60 0.022 3.167 1.177 8.519
Location

Nodal (+spleen) Reference - - -
Extranodal

Waldeyer’s ring 0.357 0.507 0.119 2.15
Gastrointestinal 0.941 0.946 0.215 4.154

Other extranodal 0.998 6.51 × 10+8 0 .
LDH High (>219) 0.522 1.369 0.523 3.582
Serum soluble IL2RA High (>530) 0.001 6 1.991 18.078
ECOG Performance Status ≥2 0.823 0.85 0.204 3.539
Clinical stage III or IV 0.373 1.577 0.579 4.298
Extranodal disease site >1 0.149 4.744 0.572 39.361
B symptoms 0.194 2.844 0.588 13.765
High-intermediate+high IPI 0.352 1.793 0.524 6.129
Non-GCB Subtype (Hans’ algorithm) 0.000474 6.588 2.289 18.963
High RGS1 protein expression 0.159 2.004 0.762 5.271
Positive BCL2 protein expression (>30%) 0.109 2.458 0.819 7.38
High CD163+ tumor-associated
macrophages (TAMs) 0.017 3.3 1.235 8.819

Epstein–Barr virus, EBER+ 0.968 0.975 0.283 3.363
Absence of clinical response to treatment 0.213 2.341 0.614 8.927

Binary logistic regression setup: dependent variable (TNFAIP8), predictors (clinicopathological features). Statistically
significant p values (p < 0.05) are underlined.
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Figure 3. Immunohistochemical analysis of the TNFAIP8 expression in diffuse large B-cell lymphoma
(DLBCL). (A) The expression of TNFAIP8 was quantified using an artificial intelligence-based
segmentation analysis. The expression of TNFAIP3 was found in the neoplastic B-lymphocytes
of the lymphoma (in some cases, TNFAIP8+plasma cells-like were found). (B) The expression of
TNFAIP8 in DLBCL correlated with the prognosis of the patients. High TNFAIP8 expression was
associated with a poor overall survival and progression free survival. Of note, good correlation was
found between the evaluation of TNFAIP8 by the pathologist (Carreras J.) using the microscope and
the digital image quantification based on A.I. method (p = 1.1855 × 10−12). Low expression: ordinal 0,
+1; A.I. quantification (3.2–18.9%). High expression: ordinal +2, +3; A.I. quantification (19.0–87.9%).
(C) The expression of TNFAIP3 correlated with several clinicopathological characteristics. A moderate
but significant correlation was also found with MYC and the proliferation index assessed with the
Ki67 marker.
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4. Discussion

Neural networks are a computer architecture, implementable in either hardware or software,
modeled after biological neural networks. Like the biological system, the computerized neural networks
that are known as perceptrons consist of neuron-like units. In our previous project, we focused on
DLBCL and we used a multilayer perceptron approach with a hidden layer with 12 units that allowed
us to identify the top 25 genes associated to the prognosis of the DLBCL patients [7,21]. Next, in this
research, we aimed to know if that set of 25 genes also had predictive value in other hematological
neoplasia. Therefore, we searched for available gene expression databases that we could easily use
for the analysis. We selected 11 gene expression series comprising CLL, MCL, FL, DLBCL, MM and
AML that in total included 2029 cases from Western countries. The follow-up of this series of 2029
cases ranged from 0 to 26 years and had a 1, 3 and 5-year OS of 84%, 72% and 62%, respectively.
This survival is the standard of a general lymphoma series. Each hematological neoplasia had a different
survival that was also in concordance with other series and as described in the WHO Classification of
Tumors of Hematopoietic and Lymphoid Tissues. [1] Therefore, we expected that the results of this
analysis would be applicable to patients of hematological neoplasia (mainly lymphoma subtypes) from
Western countries.

A detailed description of the biological function of each of the 25 genes is present in our previous
publication, [7] so refer to that publication for the thorough information. To the best of our knowledge,
the prognostic relevance in lymphoma of these 25 markers have not been reported yet. In general,
these markers are related to the following terms: ribosome, protein binding, RNA polymerase activity,
transferase activity and enzyme binding. According to the KEGG pathways, the most relevant were
ribosome, RNA polymerase, EBV infection, glycolysis and pyrimidine metabolism. [7] A functional
network association analysis did not find significant straightforward association between these
markers. [7] Therefore, these markers seem to be independent between them and do not belong to a
common pathway.

All markers contribute to the risk-score (i.e., prognostic score) but they differ in their weight and
in the direction of the association, which will be different in each series. Nevertheless, some markers
had a conspicuous role in the prognosis of the patients in across several subtypes: ENO3, KIF23, EMC9,
ARHGAP19 and TNFAIP8 were overexpressed in the high-risk or low-risk groups in several subtypes.
ENO3 protein is the beta-enolase, with main function in striated muscle development and regeneration.
This protein is involved in Step 4 of the sub pathway that synthesizes pyruvate from D-glyceraldehyde
3-phosphate. [22] Using bioinformatics analysis, ENO3 had been highlighted in the expression profile
of hepatocellular carcinomas. [23] In our series, ENO3 had a significant role in CLL, DLBCL, MM and
AML. KIF23 is a component of the centralspindlin complex that serves as a microtubule-dependent
and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle
cytokinesis. KIF23 is essential for cytokinesis in Rho-mediated signaling. [22] Therefore, KIF23 has
a role in mitotic cytokinesis. In addition, according to Reactome, KIF23 is associated to the antigen
processing and presentation of exogenous peptide antigen via MHC class II, [24] which is a function
of B lymphocytes. In gastric cancer, KIF23 promotes cancer by stimulating cell proliferation. [25]
KIF23 had a role in MCL, DLBCL, MM and AML. EMC9 is also known as ER Membrane Protein
Complex Subunit 9 but not additional information about this protein is known. The relationship
of EMC9 with lymphoid neoplasia is not reported as well. In our research, EMC9 had a role in FL,
DLBCL and MM. ARHGAP19 is a signal transductor located in the nucleus that has GTPase activator
activity. ARHGAP19 is predominantly expressed in hematopoietic cells and has an essential role in
the division of T lymphocytes. Overexpression of ARHGAP19 in lymphocytes delays cell elongation
and cytokinesis. [26] ARHGAP19 had a role in MCL, FL, DLBCL and MM. TNFAIP8 acts as a negative
mediation of apoptosis and may play a role in tumor progression. Polymorphisms are related to the risk
of non-Hodgkin’s lymphoma [27] and it has been previously identified in DLBCL [28]. TNFAIP8 had a
role in FL, DLBCL and MM. ATF6B is a transcriptional factor that acts in the unfolded protein response
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(UPR) pathway by activating UPR target genes induced during ER stress. [22] To date, no manuscript
has related ATF6B with lymphoma.

TNFAIP8 was one of the most relevant markers that we had identified by A.I. By gene expression,
TNFAIP8 associated to a poor prognosis of the patients. Among the different lymphoid neoplasia
subtypes, TNFAIP8 was especially relevant in DLBCL. Therefore, we decided to validate the prognostic
value of TNFAIP8 in an independent DLBCL series from Tokai University Hospital. This series
of Tokai is a conventional series of DLBCL as shown in Table 4. Therefore, our results should be
reproducible by other researchers. Ninety-seven patients with de novo DLBCL were selected and the
diagnostic biopsies were analyzed for protein expression of TNFAIP8 using immunohistochemistry.
The expression of TNFAIP8 was evaluated using a conventional approach as an ordinal variable
(0, 1+, 2+ and 3+) and with a novel digital image quantification method based on A.I. segmentation.
Of note, good correlation between both methods was found. High protein expression of TNFAIP8
correlated with a poor prognosis of the patients. Therefore, we have confirmed the prognostic value of
TNFAIP8 in DLBCL and we have shown how A.I. can be applied in the histopathological evaluations.
TNFAIP8 acts as a negative mediator of apoptosis and may play a role in tumor progression. TNFAIP8
suppresses the TNF-mediated apoptosis by inhibiting caspase-8 activity but not the processing of
procaspase-8, subsequently resulting in inhibition of BID cleavage and caspase-3 activation [29].
Interestingly, we also found correlation of TNFAIP3 with other clinicopathological characteristics that
usually associate to poor prognosis of DLBCL such as age > 60 years, high sILRA, non-GCB subtype
and high CD163+macrophages. The reason of these associations will need further investigation.

In conclusion, we have confirmed that it is possible to predict the prognosis of the patients with
hematological neoplasia (mainly B-cell non-Hodgkin lymphomas) with a risk-score formula based on
the gene expression of 25 genes, which were previously identified using artificial intelligence approach
in a series of DLBCL. In addition, we have found that high protein expression of TNFAIP8 is associated
to poor prognosis in DLBCL patients.
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