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Simple Summary: This research predicted the overall survival of patients and cell-of-origin molecu-
lar subtypes of diffuse large B-cell lymphoma from Tokai University using gene expression data. A
pancancer immune profiling panel was analyzed using artificial neural networks, and high accuracy
of prediction was found. Additionally, the results were explained with other machine learning
techniques and conventional bioinformatics analyses.

Abstract: Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent subtypes of non-
Hodgkin lymphomas. We used artificial neural networks (multilayer perceptron and radial basis
function), machine learning, and conventional bioinformatics to predict the overall survival and
molecular subtypes of DLBCL. The series included 106 cases and 730 genes of a pancancer immune-
oncology panel (nCounter) as predictors. The multilayer perceptron predicted the outcome with
high accuracy, with an area under the curve (AUC) of 0.98, and ranked all the genes according
to their importance. In a multivariate analysis, ARG1, TNFSF12, REL, and NRP1 correlated with
favorable survival (hazard risks: 0.3–0.5), and IFNA8, CASP1, and CTSG, with poor survival (hazard
risks = 1.0–2.1). Gene set enrichment analysis (GSEA) showed enrichment toward poor prognosis.
These high-risk genes were also associated with the gene expression of M2-like tumor-associated
macrophages (CD163), and MYD88 expression. The prognostic relevance of this set of 7 genes was
also confirmed within the IPI and MYC translocation strata, the EBER-negative cases, the DLBCL
not-otherwise specified (NOS) (High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6
rearrangements excluded), and an independent series of 414 cases of DLBCL in Europe and North
America (GSE10846). The perceptron analysis also predicted molecular subtypes (based on the
Lymph2Cx assay) with high accuracy (AUC = 1). STAT6, TREM2, and REL were associated with the
germinal center B-cell (GCB) subtype, and CD37, GNLY, CD46, and IL17B were associated with the
activated B-cell (ABC)/unspecified subtype. The GSEA had a sinusoidal-like plot with association to
both molecular subtypes, and immunohistochemistry analysis confirmed the correlation of MAPK3
with the GCB subtype in another series of 96 cases (notably, MAPK3 also correlated with LMO2, but
not with M2-like tumor-associated macrophage markers CD163, CSF1R, TNFAIP8, CASP8, PD-L1,
PTX3, and IL-10). Finally, survival and molecular subtypes were successfully modeled using other
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machine learning techniques including logistic regression, discriminant analysis, SVM, CHAID, C5,
C&R trees, KNN algorithm, and Bayesian network. In conclusion, prognoses and molecular subtypes
were predicted with high accuracy using neural networks, and relevant genes were highlighted.

Keywords: artificial intelligence; artificial neural networks; multilayer perceptron; radial basis
function; machine learning; diffuse large B-cell lymphoma; prognosis; overall survival; molecular
subtype; pancancer immune-oncology panel

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent non-Hodgkin
lymphomas (NHL) in developed Western and Asian countries, representing around 25% of
NHL cases [1–3].

DLBCL is a heterogeneous entity because of its diverse histological and genetic fea-
tures and clinical evolution. There are several subtypes of DLBCL, such as T cell/histiocyte-
rich large B-cell lymphoma, primary DLBCL of the mediastinum, intravascular large B-cell
lymphoma, primary DLBCL of the central nervous system, Epstein–Barr virus (EBV)-
positive DLBCL, etc. Additionally, some cases overlap with Burkitt lymphoma and were
previously referred as “Burkitt-like”. Currently, the term High-grade B-cell lymphoma
with MYC and BCL2 and/or BCL6 rearrangements is used [1,2].

With current rituximab-based therapy, DLBCL is curable in around 50% of cases [4].
Therefore, at diagnosis, it is important to identify and predict which patients will clinically
evolve unfavorably. The prognosis of DLBCL can be assessed with several variables, such
as the International Prognostic Index (IPI), which includes several clinical and biochemical
variables (age, LDH, ECOG performance status, clinical stage, and extranodal sites); cell of
origin molecular subtypes (gene expression profiling, Hans, Choi, and Tally algorithms,
and the Lymph2Cx platform) [5–9]; MYC, BCL2, and BCL6 abnormalities; and the tumor
immune microenvironment [10–13]. Based on gene expression, three types of DLBCL
have been defined: germinal center B-cell-like (GCB), activated B-cell-like (ABC), and
not-otherwise-specified type 3 (i.e., unclassified, unspecified).

It is recommended that all cases undergo assessment of the molecular subtype at
diagnosis. The gold standard is gene expression profiling (GEP) using the “lymphochip”
microarray, but this technique requires the use of frozen tissue, which is not always
available. Currently, the molecular subtype can be assessed using formalin-fixed paraffin-
embedded tissue (FFPET) samples using the nCounter NanoString platform [8]. This array
uses the gene expression of 32 genes, including the known markers of Hans’ classifier
MME (CD10), BCL6, and IRF4 (MUM-1), the LMO2 gene of the Tally algorithm, and other
relevant pathogenic genes such as BCL2, BTK, CARD11, MYD88, and TP53. Interestingly,
the genes GCET1 and FOXP1 of the Choi algorithm are excluded in this panel.

The immuno-oncology pathway is now important in the analysis of the pathogenesis
of DLBCL because through it, actionable gene expression profiles in the context of cancer
immunotherapy can be identified. The nCounter pancancer immune profiling panel per-
forms multiplex gene expression analysis in humans with 770 genes (40 housekeeping and
730 immune oncology genes) from different immune cell types, common checkpoint in-
hibitors, CT antigens, and genes covering both adaptive and innate immune response [14].

Some of the most impressive recent advances in artificial intelligence (AI) have been in
the field of deep learning [15]. Deep learning models have neared or even exceeded human-
level performance [15]. Artificial neural networks (ANNs) are a set of algorithms that
were designed based on the human brain to identify patterns [11,12,16]. ANNs interpret
sensory data through a kind of machine perception, labeling or clustering of raw input
data/information [11,12,16]. The patterns that ANNs recognize are numerical, contained in
vectors into which all real-world data (be they images, sound, text, or time series) must be
translated [11]. As an approach to machine learning, ANNs can handle complex patterns
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found in the most challenging real-word datasets. ANNs use nonlinear modeling to identify
complex relationships between variables and to create predictive models. ANNs provide
an alternative predictive capability to approaches such as regression and classification trees
and are characterized by being flexible and the lack of distributional assumptions [17,18].
In predictive applications, the multilayer perceptron (MLP) and the radial basis function
(RBF) networks are commonly used. Both networks are supervised, because the results
can be compared against known values of the target variables [10–12,17,18]. Both MLP and
RBF have a “feedforward architecture”, because the connections in the network flow from
the input layer to the output layer without any feedback loops. The architecture comprises
the following parts: (1) an input layer that contains the predictors; (2) a hidden layer with
unobservable nodes, or units; and (3) the output layer that contains the responses. The
value of each hidden unit is some function of the predictors. The choice between MLP and
RBF is influenced by the type of data to be analyzed and the level of complexity to uncover.
Generally, the MLP procedure can handle more complex relationships. Conversely, the
RBF procedure, which is characterized by one hidden layer, is usually faster [10–13,17–21].

Explainable AI (XAI) is attracting much interest in medicine [22]. XAI deals with the
implementation of transparency and traceability of statistical black-box machine learning
methods, particularly deep learning [22]. In the machine-based decision-making process,
it is crucial to reproduce and comprehend both the learning and knowledge-extraction
processes [22,23]. This is important, because for decision support it is necessary to under-
stand the causality of learned representations [22,23]. In this research, machine learning
techniques and conventional statistics were performed additionally to the neural network
analyses to make the results for explainable, because explainability of AI can help to
enhance trust of medical professionals in future AI systems [22,23].

In previous publications, we used publicly available data for ANNs. In this research,
we used ANNs to predict the overall survival outcomes and molecular subtypes of a series
of 106 cases from Tokai University Hospital, using gene expression data from the pancancer
immune profiling panel, and validated the relevant marker with immunohistochemistry
at protein level. We found that ANNs predicted survival and molecular subtypes with
high accuracy.

2. Materials and Methods
2.1. Patients, Samples and Gene Expression Data

The series included 106 patients from Tokai University Hospital. This research com-
plied with the Declaration of Helsinki and ethical principles regarding human experimen-
tation. The Tokai University Institutional Review Board approved this research (protocol
code IRB14R-080 and IRB-156).

The cases were diagnosed following the criteria of the 2016 revision of the World
Health Organization classification of lymphoid neoplasms [3] and corresponded to DLBCL
morphology. The cases were selected from 2006 to 2016, being from the years 2008–2016
in 74% of the cases. This series of cases were from the rituximab-treatment era: they
were mainly treated with R-CHOP (72.4%) or R-CHOP-like (22.4%) therapy. The main
clinicopathological characteristics of the samples were as follows: male sex in 65/104
(62.5%); male/female ratio 65/39 (1.67); age range (23–97); age > 60 years in 70/104 (67.3%),
and low International Prognostic Index (IPI) in 27/97 (27.8%), low–intermediate in 30/97
(30.9%), high–intermediate in 14/97 (14.4%), and high in 18/97 (18.6%). Based on the
Lymph2Cx assay, the cell-of-origin subtypes were GCB in 51/104 (49%), ABC in 31/104
(29.8%), and unclassified in 22/104 (21.2%). Notably, in two cases, the assay result was
nonassessable (total analyzed cases: 106). Epstein–Barr virus (EBV) positivity, assessed
using EBV-encoded RNA (EBER) in situ hybridization (ISH), was negative in 79/98 (80.6%)
and positive in 19/98 (19.4%) of the cases. The translocation status for BCL2, MYC, and
BCL6 was available in 72% of the cases: BCL2 translocation positive (TL+) cases were
19/76 (25%), MYC TL+ were 19/76 (25%), and BCL6 TL+ were 19/74 (25.7%). Cases
with MYC and BCL2 rearrangements, irrespective to BCL6 translocation status, were 8/76
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(10.5%). High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements
(HGBL) presented in 11 cases. The overall survival of this series according to the IPI and
EBER is shown in Figure 1. As expected in a conventional series of DLBCL, high IPI and
EBER-positive cases were associated with poor prognoses of patients.

Figure 1. Overall survival according to the international prognostic index (IPI) and Epstein–Barr virus infection (EBER).
Cases with IPI high–intermediate/high and EBER positivity were associated with poor overall survival (p < 0.01).

Whole tissue sections from formalin-fixed paraffin-embedded tissue blocks, con-
taining more than 70% tumoral cells, were outsourced to Celgene Corporation, where
RNA extraction was performed and applied to the nCounter pancancer immune profiling
panel (NanoString Technologies, Inc., Seattle, WA, USA). The molecular subtype was as-
sessed using the Lymph2Cx gene expression panel (NanoString). This panel comprises
730 immune-oncology genes and 40 housekeeping genes. The list of housekeeping genes
is shown in the Supplementary Materials.

In the Tokai series, immunohistochemistry using the Hans algorithm (CD10, BCL6,
and MUM-1) was performed [7].

2.2. Artificial Neural Network Analysis

The multilayer perceptron analysis (MLP) used the normalized and log2 transformed
gene expression data. We used the calibrated data, which had already been normalized to
positive control, for the “housekeeping gene normalization” procedure. The calibrated data
were the raw data multiplied by the calibration factors. The housekeeping gene normaliza-
tion was calculated using the following formula: log2((normData(,i)/hkGeomMeans(i))).
Notably, an alternative option was the following: log2((normData(,i)/hkGeomMeans(i))* scal-
ingFactor). This scaling factor could be a constant, for instance, 1000.

The complete procedure for MLP analysis was performed as we have previously
described [10–13,19–21]. In the MLP procedure, predictive model for one or more depen-
dent (target) variables is created based on the values of the predictor variables. The basic
structure of an MLP is shown in Figures 2 and 3 [10–13,19–21].
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Table 1. Multilayer perceptron analysis.

Dependent Variable OS Outcome Molecular Subtype (GCB,
ABC, Unspecified)

Molecular Subtype (GCB,
ABC+Unspecified)

Case processing
Training set 72/105 (68.6%) 77/104 (74.0%) 76/104 (73.1%)
Testing set 33/105 (31.4%) 27/106 (26.0%) 28/104 (26.9%)

Input layer
Covariates 730 730 730

Units 730 730 730
Rescaling Standardized Standardized Standardized

Hidden Layer
Number 1 1 1

Units 6 11 14
Activation function Hyperbolic tangent Hyperbolic tangent Hyperbolic tangent

Output layer
Num. Dependent variables 1 1 1

Units 2 3 2
Activation function Softmax Softmax Softmax

Error function Cross-entropy Cross-entropy Cross-entropy

Model summary
Training

Cross-entropy error 27.884 5.061 0.594
Incorrect predictions % 15.3 1.3 <0.0001

Stopping rule used 1 consecutive step(s) with no
decrease in error

1 consecutive step(s) with no
decrease in error

1 consecutive step(s) with no
decrease in error

Training time 00:01.4 00:01.1 00:00.6
Testing

Cross-entropy error 13.847 12.155 2.662
Incorrect predictions % 18.20 18.5 3.6

Classification (% correct)
Training 84.7 98.7 100
Testing 81.8 81.5 96.4

Area under the curve
0.898 (Alive) 0.995 (GCB) 1.0 (GCB)
0.898 (Dead) 0.994 (ABC) 1.0 (ABC+Unspecified)

0.989 (Unspecified)

OS, overall survival; GCB, germinal center B-cell-like; ABC, activated B-cell-like (ABC). The molecular subtypes were based on the
Lymph2Cx assay.

The dependent variables can be nominal, ordinal, or scale (continuous). The predictors
can be specified as factors (categorical) or covariates (scale). In this study, the dependent
variables were the overall survival outcome (dead vs. alive) and the Lymph2Cx molecular
subtype (GCB, ABC, and Unspecified). The dependent variables were nominal, because
their values represented categories with no intrinsic ranking. The predictors, which were
the gene expression values of the pancancer immune profiling panel, were specified as
covariates. The rescaling of covariates, which improves network training, was standard-
ized. The database was partitioned by randomly assigning the cases based on relative
numbers of cases: 70% to the training set and 30% to the testing set. In this analysis,
the holdout partition was set at 0%. During the procedure, categorical predictors and
dependent variables were temporarily recoded using one-of-c coding. When a variable has
c categories, it is stored as c vectors: the first category (1,0, . . . ,0), the next (0,1,0, . . . ,0),
and the final (0,0, . . . ,0,1).
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Figure 2. Basic structure of a multilayer perceptron (MLP). This figure shows the basic structure of
an MLP artificial neural network, the same type of network used in this research. The network is
characterized by a feedforward architecture with one hidden layer for predicting the overall survival
outcome. The connections in the network flow forward from the input layer to the output layer
without any feedback loop. The input layer contains the predictors (the gene expression data). The
hidden layer contains unobservable nodes (units). The output layer contains the responses. The
MLP network allows a second hidden layer. H (1:1) means hidden layer 1, node 1. In Table 1, the
specific details of the neural networks are shown. For instance, the hidden layer of the MLP for
overall survival had 6 nodes (H (1:1–6)), and that for the cell-of-origin molecular classification had 11
and 14 nodes.

Figure 3. Architecture of the multilayer perceptron (MLP). The MLP is an artificial neural network
that is characterized by a feedforward structure and supervised learning. The MLP network is a
function of one or more predictors (known as inputs or independent variables) that minimizes the
prediction error on one or more target variables (outputs). This figure shows the general architecture
for the MLP network and the corresponding notation.
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A series of parameters was set for architecture design. In the input layer, the nodes
included the expression values of each gene. In the selection of the hidden layer, the number
of layers (one or two), activation function (hyperbolic tangent or sigmoid), and number
of units were specified. The hyperbolic tangent function had the form γ(c) = tanh(c) =
(ec−e−c)/(ec + e−c), and the sigmoid function, the form γ(c) = 1/(1 + e−c). The output layer
contained the target (dependent) variables. The activation functions of the output layer
were the identity (γ(c) = c), softmax (γ(c k) = exp(c k)/Σjexp(c j)), the hyperbolic tangent,
and the sigmoid. Notably, the activation function chosen for the output layer determined
which rescaling methods were available. The rescaling of the dependent variables was
standardized ((x − mean)/s), normalized ((x − min)/(max − min)), adjusted normalized
((2*(x − min)/(max − min)) − 1), and none.

The type of training determined how the network processed the records. The training
types were batch, online, or minibatch. The batch, useful for small datasets, updated the
synaptic weights only after passing all training data records. The online, more suitable for
large datasets, updated the synaptic weights after every single training data records. The
minibatch, best for medium-sized datasets, divided the training data records into groups of
approximately equal size and updated the synaptic weights after passing one group. The
synaptic weights were estimated using the optimization algorithms, the scaled conjugate
gradient (only for batch training), and the gradient descent (for online, minibatch, and
batch). The training options were different according to the type and the optimization
algorithm. In the case of batch training and scaled conjugate gradient, the initial lambda
was set at 0.0000005, the initial sigma at 0.00005, the interval center at 0, and the interval
offset at ±0.5.

The network performance, which displays results used to determine whether the
model is “good”, was assessed by the classification results, receiver operating characteristic
(ROC) curve, cumulative gains chart, lift chart, predicted by observed chart, and residual
by predicted chart.

The classification results, presented in Table 1, showed the classification table for
each categorical dependent variable by partition and overall; the number of correctly and
incorrectly classified cases were given.

The ROC curve is a graphical plot that shows the diagnostic ability of a binary classifier
system as its discrimination threshold is varied. In a ROC curve, the true positive rate
(sensitivity) is plotted as a function of the false positive rate (1–specificity). It is displayed
for each categorical dependent variable. For each curve, the area under the curve (AUC) is
also shown. The AUC is a measure of how well a parameter can distinguish between two
diagnostic groups. A value of 0.5 means that the variable under study cannot distinguish
between two groups. A perfect separation leads to an AUC of 1 [10–13,17–21,24].

For categorical dependent variables, the predicted-by-observed chart displays clus-
tered boxplots of predicted pseudoprobabilities for the combined training and testing
samples. The x axis corresponds to the observed response categories, and the legend to
the predicted categories. Using 0.5 as the pseudoprobability cutoff for classification, the
proportion of the boxplot above the 0.5 mark on the y axis represents correct predictions
shown in the classification table. The proportion below the 0.5 mark represents incorrect
predictions. When there are only two categories in the target variable, the first two boxplots
are symmetrical about the horizontal line at 0.5 [10–13,19–21,25].

The cumulative gains chart shows the percentage of the overall number of cases in a
given category “gained” by targeting a percentage of the total number of cases. The lift
chart is derived from the cumulative gains chart; the values on the y axis correspond to the
ratio of the cumulative gains for each curve to the baseline [10–13,19–21,25].

Using a sensitivity analysis, the independent variables were ranked according to their
importance for predicting the dependent variable and in determining the neural network.
The importance of an independent variable is a measure of how much the network’s model-
predicted value changes for different values of the independent variable. Normalized
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importance is simply the importance values divided by the largest importance value and
expressed as percentages [10–13,19–21,25].

The predicted value or category and the predicted pseudoprobability for each depen-
dent variable were saved. The synaptic weights were exported to an xml file. The missing
values were excluded from the analysis. As stopping rules, the maximum steps without a
decrease in error were set at 1, the minimum relative change in training error was set at
0.0001, and the in-training error ratio was set at 0.001.

If it were necessary to exactly replicate the results, the same initialization value
for random number generation, the same data order, the same variable order, and the
same procedure settings should be used. Random number generation was used dur-
ing the procedures of assignment of partitions, random subsampling for initialization
of synaptic weights, random subsampling for automatic architecture selection, and the
simulated annealing algorithm used in weight initialization and automatic architecture
selection [10–13,19–21,25].

Radial basis function (RBF) analysis was also performed in a similar manner as MLP
analysis. For the RBF analysis, the best number of units in the hidden layer was specified
within a range or automatically computed, and the activation function was the normalized
or the ordinary radial basis function. The overlap among hidden units was computed or
specified. The user-missing values were excluded. The RBF algorithm is shown in Figure 4.

Figure 4. Architecture of the radial basis function (RBF). The RBF is a supervised feedforward
learning network that is characterized by only one hidden layer. This figure shows the architecture of
the three layers of the RBF network and the corresponding notation.

2.3. Statistical Analyses and Software

All statistical analyses were performed using several types of software, either for data
processing, preanalysis, final analysis, or confirmation of results [10–13,17–21,24,25]:

• NSolver (version 4.0, NanoString, Seattle, Washington, USA); https://www.nanostring.
com/products/analysis-solutions/ncounter-analysis-solutions/ (accessed on 29 Novem-
ber 2021);

• R (version 3.6.3) and R Studio (version 1.3.959, RStudio, Boston, MA, USA); https:
//www.rstudio.com/ (accessed on 29 November 2021);

• Excel (version 16, Microsoft, Redmond, WA, USA);

https://www.nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/
https://www.nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/
https://www.rstudio.com/
https://www.rstudio.com/
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• EditPad Lite (version 8, Just Great Software Co. Ltd., Rawai Phuket, Thailand);
• JMP Statistical Discovery (version 14, SAS, Cary, NC, USA); https://www.jmp.com/

ja_jp/home.html (accessed on 29 November 2021);
• IBM SPSS 26 and Modeler 18 (IBM, Armonk, NY, USA); https://www.ibm.com/jp-ja/

products/spss-statistics (accessed on 29 November 2021).
• Gene Set Enrichment Analysis (GSEA) software (version 4.1.0, Broad Institute, UC

San Diego, USA) [17,18]; https://www.gsea-msigdb.org/gsea/index.jsp (accessed on
29 November 2021); https://github.com/GSEA-MSigDB/gsea-desktop (accessed on
8 December 2021).

• Morpheus matrix visualization and analysis software (Broad Institute, Morpheus),
https://software.broadinstitute.org/morpheus) (accessed on 29 November 2021);

• String (version 11, String consortium 2020) [19]; https://string-db.org/ (accessed on
29 November 2021).

Comparisons between groups were performed using crosstabulation (chi-square tests,
including the Fisher’s exact test), and nonparametric tests for independent samples (Mann–
Whitney, and Kruskal–Wallis H tests). Overall survival was calculated from the time of
diagnosis to the time of death or the last alive follow-up time. Survival analysis was
performed using the Kaplan–Meier and log rank tests, including the Breslow and Tarone–
Ware tests. The hazard risks were calculated using Cox regression analysis. The association
of the most relevant genes, which were highlighted in the neural network, with molecular
subtypes was performed using binary logistic regression. Risk scores were calculated
by multiplying the beta values of the multivariate Cox regression analysis for overall
survival of each gene with the values of the corresponding gene expressions, as previously
described [10–13,17–21,24,25]. These analyses were performed using mainly IBM SPSS.
Survival analysis using R can be checked on the following web page: https://cran.r-
project.org/web/views/Survival.html (accessed on 8 December 2021) [19]. Random forest
is shown in http://genesrf.iib.uam.es/ and https://www.ligarto.org/rdiaz/software/
software#varSelRF (based on R, accessed on 8 December 2021) [19]. All the analyses were
performed on a Ryzen 7 3700X CPU workstation with 16 GB RAM and an NVIDIA GeForce
GTX 1650 GPU.

The data analysis workflow is shown in Figure 5.

2.4. Immunohistochemistry

Immunohistochemistry for MAPK3 (ERK1) and MAPK1 (ERK2) was performed in a
tissue microarray of 96 cases of DLBCL (Table A5). The clinicopathological characteristics
of this series of 96 cases are shown in the Table A4. The microarray had been created
from paraffin-embedded formalin-fixed tissue blocks and was stained using a rabbit mono-
clonal primary antibody against endogenous levels of phospho-p44/42 MAPK (Erk1/2)
(Thr202/Tyr204) (#4370, Cell Signaling Technology K.K. Tokyo, Japan). The staining was
performed using a Leica Bon-Max slide stainer (Leica Biosystems K.K. Tokyo, Japan) fol-
lowing the manufacturer’s instructions [26], Bond epitope retrieval solution 1 (pH 6.0, 30
min., #AR9961, Leica), and at a 1:400 dilution. After staining, the slides were scanned in a
NanoZoomer S360 digital slide scanner (#C13220-01, Hamamatsu K.K. Hamamatsu, Japan)
and visualized using the NDP.view2 viewing software (#U12388-01, Hamamatsu). The
MAPK-positive cells had morphology compatible with macrophages or dendritic cells.
The immunohistochemical signals were evaluated as an ordinal variable as 0 (no staining,
<1%), 1 + (few scattered positive cells, 1–20%), or 2 + (abundant cells, >20%) (Figure 6).
The correlation of MAPK as an ordinal variable with the molecular subtype according to
the Hans classifier was performed using binary logistic regression. Additional markers
for correlation with MAPK were LMO2 (mouse monoclonal, 299B, CNIO, Spain), CD163
(10D6, Leica), CSF1R (FER216, CNIO, Spain), and PD-L1 (E1J2J, Cell Signaling) [12,16].

https://www.jmp.com/ja_jp/home.html
https://www.jmp.com/ja_jp/home.html
https://www.ibm.com/jp-ja/products/spss-statistics
https://www.ibm.com/jp-ja/products/spss-statistics
https://www.gsea-msigdb.org/gsea/index.jsp
https://github.com/GSEA-MSigDB/gsea-desktop
https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
https://string-db.org/
https://cran.r-project.org/web/views/Survival.html
https://cran.r-project.org/web/views/Survival.html
http://genesrf.iib.uam.es/
https://www.ligarto.org/rdiaz/software/software#varSelRF
https://www.ligarto.org/rdiaz/software/software#varSelRF
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Figure 5. Data analysis workflow. This research used the gene expression data of 106 cases of DLBCL
from Tokai University. The gene set was composed of 730 genes from the pancancer immune profiling
panel. Two types of artificial neural network were used: multilayer perceptron (MLP) and radial
basis function (RBF). Besides these, other machine learning techniques were included in the analysis
in addition to conventional statistics.
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Figure 6. Immunohistochemistry for MAPK. The immunohistochemical signals were evaluated as an ordinal variable
as 0 (no staining, <1%), 1 + (few scattered positive cells, 1–20%), or 2 + (abundant cells, >20%). Positive staining, brown
color (DAB).
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3. Results
3.1. Prediction of the Overall Survival Outcome (Dead/Alive)
3.1.1. Analysis Using the 730 Genes of the Pancancer Panel

The 730 genes of the pancancer immune profiling panel were used to predict the overall
survival outcome using a multilayer perceptron (MLP) analysis. Table 1 shows the detailed
information of the artificial neural network, including case processing; characteristics of the
input, hidden, and output layers; a model summary for training and testing; classification;
and the area under the curve. The training set included 72 of 105 cases (67%) and the testing
set included 33 of 105 cases (31%). The performance of the network was satisfactory, with
only 15.3% incorrect predictions. The percentages of correct classifications in the training
and validation sets were 84.75% and 81.8%, respectively. The area under the curve was
0.898 for both alive and death survival outcome. According to the normalized importance,
the top 10 most relevant genes for this model were CD55, ARG1, SPANXB1, CTAG1B,
IFNA8, CASP1, IL2, TNFSF12, ANP32B, and CTSG (Table 2). Among the following genes
on the list, 11–20, other relevant genes in the pathogenesis of cancer were identified, such
as REL and CD8A.

3.1.2. Analysis Using the Top 20 Genes of the MLP

To comprehend and trust the results of the output created by the neural network, a
concept known as explainable artificial intelligence (XAI), the top 20 genes identified by the
MLP were correlated with the overall survival of patients. The correlation used univariate
(Table A1) and multivariate Cox regression analyses (Table 3) and gene-set enrichment
analysis (GSEA). The GSEA showed enrichment toward the dead phenotype, confirming
that some of the genes associated toward patients who died (Figure 7). In the multivariate
regression analysis, seven genes were the most relevant: ARG1, IFNA8, CASP1, TNFSF12,
CTSG, REL, and NRP1 (Table 3, Step 14 (last)). The overall survival plot for each gene is
shown in Figure 8. Finally, using a risk-score formula with the gene expression of 20 genes
or the 7 genes, two risk groups could be defined with different overall survival outcomes
(Figure 3). The high-risk group was characterized by higher expression of CD163, which is
a marker of M2-like tumor-associated macrophages (TAMs), and MYD88, which is a marker
of NF-kappa-B activation, cytokine secretion, and inflammatory response. High-risk vs.
low-risk group, 1.7 ± 3.5 vs. 0.4 ± 1.7 (p = 0.002) and 1.2 0.7 vs. 0.9 0.4 (p = 0.008). Table A3
shows the immune oncology annotations of the top 20 genes.
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Table 2. Top 20 genes identified by the multilayer perceptron analysis.

Overall Survival Outcome Molecular Subtype
Dead/Alive GCB/ABC/Unspecified GCB/ABC+Unspecified

Order Gene Normalized Importance Gene Normalized Importance Gene Normalized Importance

1 CD55 1.000 ARG1 1.000 CD37 1.000
2 ARG1 0.982 CTAG1B 0.959 STAT6 0.867
3 SPANXB1 0.949 CD55 0.950 ATF2 0.830
4 CTAG1B 0.946 IL22 0.915 ROPN1 0.819
5 IFNA8 0.853 PRG2 0.903 C4B 0.814
6 CASP1 0.851 SSX1 0.895 NOTCH1 0.805
7 IL2 0.834 JAK3 0.877 CTAG1B 0.797
8 TNFSF12 0.819 PPBP 0.869 ICAM3 0.796
9 ANP32B 0.795 APP 0.851 CEACAM1 0.783
10 CTSG 0.784 TAL1 0.839 NOD2 0.773
11 THY1 0.780 IL4R 0.831 LAG3 0.773
12 REL 0.779 F12 0.815 GNLY 0.767
13 TLR2 0.775 MAP2K2 0.810 TP53 0.762
14 C8A 0.767 MAP4K2 0.798 CD46 0.755
15 IL22 0.760 MAPK14 0.797 MAPK3 0.747
16 TIRAP 0.755 A2M 0.795 TREM2 0.739
17 CCL15 0.754 LILRA4 0.791 REL 0.736
18 NRP1 0.753 MAPK1 0.789 NUP107 0.722
19 XCL2 0.750 DMBT1 0.786 IL17RB 0.718
20 MFGE8 0.749 NT5E 0.781 SPACA3 0.714

The genes were ranked according to their normalized importance for predicting overall survival and molecular subtypes. The molecular
subtypes were based on the Lymph2Cx assay.

Table 3. Correlations between the top 20 genes of the multilayer perceptron and the overall survival
of the patients.

Gene Beta SE Wald Df p Hazard Risk
95.0% CI for HR
Lower Upper

Step 1
CD55 −0.06 0.29 0.04 1 0.851 0.9 0.5 1.7
ARG1 −0.54 0.22 6.00 1 0.014 0.6 0.4 0.9

SPANXB1 0.28 0.24 1.34 1 0.246 1.3 0.8 2.1
CTAG1B −0.02 0.17 0.01 1 0.903 1.0 0.7 1.4
IFNA8 0.47 0.26 3.22 1 0.073 1.6 1.0 2.7
CASP1 1.42 0.37 14.51 1 0.000 4.1 2.0 8.6

IL2 −0.04 0.28 0.03 1 0.874 1.0 0.6 1.7
TNFSF12 −1.00 0.37 7.28 1 0.007 0.4 0.2 0.8
ANP32B 0.06 0.53 0.01 1 0.907 1.1 0.4 3.0

CTSG 0.45 0.14 10.11 1 0.001 1.6 1.2 2.1
THY1 0.42 0.32 1.74 1 0.188 1.5 0.8 2.9
REL −0.32 0.25 1.60 1 0.205 0.7 0.4 1.2
TLR2 0.51 0.29 3.13 1 0.077 1.7 0.9 2.9
C8A −0.18 0.33 0.29 1 0.593 0.8 0.4 1.6
IL22 −0.10 0.17 0.31 1 0.580 0.9 0.6 1.3

TIRAP −0.32 0.39 0.69 1 0.406 0.7 0.3 1.6
CCL15 −0.17 0.33 0.29 1 0.593 0.8 0.4 1.6
NRP1 −0.78 0.35 5.07 1 0.024 0.5 0.2 0.9
XCL2 −0.09 0.16 0.31 1 0.579 0.9 0.7 1.3

MFGE8 −0.04 0.30 0.02 1 0.888 1.0 0.5 1.7

Step 14 (last)
ARG1 −0.46 0.19 5.84 1 0.016 0.6 0.4 0.9
IFNA8 0.37 0.20 3.64 1 0.056 1.5 1.0 2.1
CASP1 1.34 0.31 18.59 1 0.000 3.8 2.1 7.1

TNFSF12 −0.78 0.27 8.42 1 0.004 0.5 0.3 0.8
CTSG 0.37 0.13 8.00 1 0.005 1.4 1.1 1.9
REL −0.33 0.19 3.20 1 0.074 0.7 0.5 1.0

NRP1 −0.53 0.28 3.67 1 0.055 0.6 0.3 1.0
Multivariate Cox regression analysis for overall survival; backward conditional.
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Figure 7. Multilayer perceptron artificial neural network for predicting overall survival. The neural network predicted
the overall survival outcome as dead/alive using the 730 genes of the pancancer immune oncology profiling panel. The
network performance can be checked using several parameters such as the area under the curve (AUC), which had a value
of 0.89. The network performance outputs are the predictive by observed chart, the cumulative gains chart, and the lift
chard. The genes were ranked according to their normalized importance for prediction of the overall survival outcome, as
shown in the independent variable importance chart. The top 20 genes are listed. GSEA showed enrichment toward the
dead phenotype for some genes.
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Figure 8. Overall survival according to the top genes of the MLP analysis. Because of the MLP and multivariate Cox
regression analysis a final set of 7 genes were highlighted. Using a risk-score formula, the cases were divided into high and
low-risk groups that had different overall survival (p < 0.001). Additionally, using a cutoff for the gene expression values,
overall survival plots were calculated for each highlighted gene.

The predictive value for overall survival of these seven genes was evaluated in the
different subtypes/entities of DLBCL using the same risk groups and cutoffs (Figure 9). The
predictive value was kept in within the IPI L+LI and H+HI strata, within the EBER-negative
cases (but not in the EBER-positive cases), within MYC translocation positive and negative
cases, and within the non-High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6
rearrangements (i.e., DLBCL NOS) (but not in the 11 High-grade B-cell lymphomas).
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Figure 9. Overall survival according to the top genes of the MLP analysis in DLBCL subtypes/entities.
As a result of the MLP and the multivariate Cox regression analysis a final set of 7 genes were
highlighted. Using a risk-score formula, the cases were divided into high and low-risk groups that
had different overall survival when stratifying for IPI, Epstein Barr virus infection (EBER), MYC
rearrangement and High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangement.
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3.1.3. Multivariate Analysis Using the Set of Seven Genes and Clinicopathological Variables

A multivariate Cox regression analysis for prediction of the overall survival using
the variables of the final set of seven genes, IPI, and EBV was calculated. The results
were as follows: set of seven genes, p < 0.001, hazard risk (HR) = 3.6 (95% CI = 1.8–7.1);
IPI, p = 0.055, HR = 1.9 (0.9–3.6); and EBER, p = 0.054, HR = 0.054 (0.9–4.9).

When the molecular subtypes (GCB vs. ABC+Unspecified) were included in the
equation, the results were as follows: set of seven genes, p < 0.001, HR = 2.3 (1.1–5.2); EBER,
p = 0.036, HR = 2.3 (1.1–5.2); IPI, p = 0.134, HR = 1.7 (0.9–3.2); and molecular subtypes,
p = 0.107, HR = 1.8 (0.9–3.4).

Finally, when the set of seven genes was included in the equation with the IPI,
EBV, molecular subtypes, and High-grade B-cell lymphoma, only the set of seven genes
(p < 0.001, HR = 5.4) and EBER (p = 0.006, HR = 5.3) retained prognostic relevance. There-
fore, the final set of seven genes was an independent prognostic factor.

In this series, both the IPI and EBER had prognostic relevance (Figure 1). Within the
variables that make up the IPI (age >60, Ann Arbor stage III–IV, ECOG performance status
≥2, serum LDH level >1 x normal, and > 1 extranodal site), a univariate Cox regression
analysis revealed that for overall survival, only the stage (p = 0.039, HR = 2.0), LDH
(p = 0.024, HR = 2.4), and >1 extranodal site (p = 0.007, HR = 3.1) had prognostic relevance.
Since these variables were within the IPI, in the final Cox model, they were not included.

Notably, a multilayer perceptron analysis could be used to perform the multivariate
analysis in a nonlinear manner (Figure 10). The input variables (predictors, 15 units) were
the IPI, EBER, molecular subtypes, High-grade B-cell lymphoma, and the seven genes of
the set. The output variable was the overall survival outcome (dead vs. alive, two units).
The hidden layer had one layer with three units. The activation function was the hyperbolic
tangent in the hidden layer and softmax in the output layer. The network performance
was good, with an ROC area under the curve of 0.880 and 84.4% correct classification. The
most important factors, according to their normalized importance (NI), for predicting the
overall survival outcome (dead/alive) were as follows: ARG1 (100% NI), REL (63.5%),
CTSG (54.2%), IFNA8 (52.7%), NRP1 (52.0%), CASP1 (47.3%), TNFSF12 (36.0%), molecular
subtypes (34.9%), EBER (22.8%), high-grade B-cell lymphoma (8.7%), and IPI (6.7%).

Figure 10. Multivariate overall survival analyses. The set of 7 genes was used in addition to the
IPI, EBER, molecular subtypes, and HGBL to predict the overall survival outcome (dead/alive). A
multilayer perceptron analysis successfully classified the cases based on those parameters, with a
network performance having an area under the curve (AUC) of 0.880. The variables were ranked
according to their normalized importance for predicting the prognosis. The most relevant predictors
were ARG1, REL, and CTSG.
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3.1.4. Additional Machine Learning Analyses

In addition to artificial neural networks, other machine learning techniques were used.
Table 4 shows the overall accuracy of the tests and the numbers of fields that were used in
the final model. Logistic regression, discriminant analysis, and SVM predicted the overall
survival outcome with overall accuracies of 100% using the 730 genes of the panel. Besides
these, decision trees also predicted overall survival with high accuracy, and above 95% in
the case of CHAID and C5 trees. The CHAID method had the best accuracy among the
decision trees and used only 10 genes in the model, which were RUNX1, TBK1, ATF1, CSF2,
CXCL14, SMAD2, POU2F2, ADORA2A, FCGR2B, and CXCR1 (Figure 11).

Table 4. Machine learning analysis for predicting the overall survival outcome and
molecular subtypes.

Dependent Variable
(Target Variable) Model Overall Accuracy

(%)
Num. of Fields

(Genes)

Overall survival outcome
(Dead/Alive)

Logistic regression 100 730
Discriminant 100 730

SVM 100 730
CHAID tree 97.1 10

C5 tree 96.2 12
C&R tree 86.7 36

Neural net. 69.6 730
KNN algorithm 60.9 730

Bayesian net. 26.4 730

Molecular subtype
(GCB/ABC/Unspecified)

Logistic regression 100 730
Discriminant 100 730

SVM 100 730
C5 tree 96.2 7

CHAID tree 96.2 8
Neural net. 92.3 730

Quest 75.9 12
C&R tree 75 6

KNN algorithm 71.2 730
Bayesian net. 0.9 730

Molecular subtype
(GCB/ABC+Unspecified)

Logistic regression 100 730
Discriminant 100 730

SVM 100 730
Neural net. 99 730
CHAID tree 99.1 6

C5 tree 97.1 5
KNN algorithm 84.6 730

Quest 83.6 6
C&R tree 50.9 730

Bayesian net. 0 730

The modeling for overall survival using other machine learning techniques was
repeated using only the top 20 genes identified from the multilayer perceptron analysis.
The most accurate model was the Bayesian network, which had an overall accuracy of 93%
(Figure 11), followed by the C&R tree (77%), C5 tree (70%), KNN algorithm (70%), and
logistic regression (68%).

3.1.5. Validation in an Independent Series of DLBCL

Validation of the prognostic value of the set of genes identified in the Tokai series
was performed using the GSE10848 series, which includes 414 cases. Using the risk-score
formula [20] with the gene expression of the 20 genes or the 7 genes, two risk groups were
defined, which had different overall survival outcomes (log rank p < 0.0001, HR = 3.6 and p
< 0.0001, HR = 2.4, respectively) (Figure 11).
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Figure 11. Other machine learning techniques for predicting overall survival. In addition to the
artificial neural networks, other machine learning techniques were used. This figure shows the results
of the CHAID decision tree and the Bayesian network. CHAID, or chi-squared automatic interaction
detection, is a classification method for building decision trees by using chi-squared statistics to
identify optimal splits. A Bayesian network is a graphical model that displays variables (nodes) in a
dataset and the probabilistic, or conditional, independencies between them. Causal relationships
between nodes may be represented but the links (arcs) do not necessarily represent direct cause and
effect. Finally, the predictive value of the final set of 7 genes was tested in an independent series of
DLBCL of 414 cases, and the results were reproducible.

3.2. Prediction of the Three Molecular Subtypes (GCB, ABC, and Unspecified)

The multilayer perceptron analysis correlated the 730 pancancer immune profiling
genes with the molecular subtypes of GCB, ABC, and Unspecified. The artificial neural
network successfully predicted the molecular subtypes with high accuracy (Figure 12). The
classification was correct in 98.7% of the cases in the training set and 81.5% of those in
the testing set. The area under the curve was 0.99 for both GCB and ABC and 0.98 for the
Unspecified group. Table 1 shows the details of this artificial neural network. According to
their normalized importance for predicting the molecular subtype, the top most relevant
genes were A2M, ABCB1, ABL1, ADA, ADORA2A, AICDA, AIRE, AKT3, ALCAM, and
AMBP (Table 2).
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Figure 12. Multilayer perceptron analysis for predicting molecular subtypes (GCB, ABC, unspecified).
The neural network predicted molecular subtypes as GCB, ABC, and Unspecified using the 730 genes
of the pancancer immune oncology profiling panel. The network performance was checked using
several parameters, such as the area under the curve (AUC), which had a value of 0.99. The genes
were ranked according to their normalized importance for prediction, as shown in the independent
variable importance chart. The top 20 genes are listed. The molecular subtypes were based on the
Lymph2Cx assay.

Several machine learning techniques were applied, and logistic regression, discrimi-
nant analysis, and SVM predicted the molecular subtypes with overall accuracies of 100%
using the 730 genes of the panel. Decision trees also managed to predict the molecular
subtypes. The C5 and CHAID trees used 7 and 8 genes, respectively, with overall accuracies
of 96% (Table 4).

3.3. Prediction of the Two Molecular Subtypes (GCB, ABC+Unspecified)
3.3.1. Analysis Using the 730 Genes of the Pancancer Panel

The multilayer perceptron analysis correlated the 730 pancancer immune profiling
genes with the molecular subtypes as GCB versus ABC+Unspecified (Table 1, Figures 13 and 14).
In comparison to the other analyses, this artificial neural network had the best prediction
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accuracy, with lower percentages of incorrect predictions and cross-entropy errors. The
percentages of correct classification were 100% for the training set and 96.4% for the testing
set. The areas under the curve were 1.0 for both GCB and ABC+Unspecified. Table 2 shows
the most relevant predictive genes identified by the artificial neural network. The top
10 genes were CD37, STAT6, ATF2, ROPN1, C4B, NOTCH1, CTAG1B, ICAM3, CEACAM1,
and NOD2. Other relevant genes present within the 11-20 top genes were LAG3, TP53,
MAPK3, and REL.

Figure 13. Multilayer perceptron analysis for predicting molecular subtypes (GCB vs.
ABC+Unspecified). The neural network predicted the molecular subtypes as GCB and
ABC+Unspecified using the 730 genes of the pancancer immune oncology profiling panel. The
network performance was checked using several parameters, such as the area under the curve (AUC),
which had a value of 1.0. The genes were ranked according to their normalized importance for
prediction, as shown in the independent variable importance chart. The top 20 genes are listed. GSEA
analysis had a sinusoidal-like shape, with some genes associated with the GCB and others with the
ABC+Unspecified phenotype.
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Figure 14. Other machine learning techniques for predicting molecular subtypes. The different gene
expression levels between the two molecular subtypes are shown in a boxplot figure. In addition
to artificial neural networks, other machine learning techniques were used. This figure shows the
results of the CHAID decision tree and the Bayesian network. Finally, the predictive value of the
final set of MAPK was tested in an independent series of DLBCL of 96 cases from Tokai University,
and the results confirmed the association with the GCB phenotype. The expression of MAP3K was
correlated with LMO2 and M2-like tumor-associated macrophage markers including CSF1R, CD163,
and PD-L1. MAP3K correlated with LMO2 (odds ratio = 2.8, p = 0.039). Interestingly, though MAP3K
showed histological expression similar to that of macrophages, no correlation was found with the
markers (CD163, CSF1R, TNFAIP8, CASP8, PD-L1, PTX3, and IL-10).
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MAP3K was tested at the protein level using immunohistochemistry in another series;
the clinicopathological characteristics of this series are shown in Table A5. The frequen-
cies with immunohistochemistry for phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)
were as follows: 0, 32/90 (35.6%); 1+, 30/90 (33.3%); and 2+, 28/90 (31.1%). The im-
munohistochemistry confirmed the relevance of this marker as highlighted in the neu-
ral network. High expression of MAP3K associated with a GCB phenotype (odds ratio
of non-GCB = 0.543, 95% CI 0.3–0.96, p = 0.037). The expression of MAP3K was corre-
lated with LMO2 and macrophage markers including CSF1R, CD163, TNFAIP8, CASP8,
PTX3, and PD-L1. MAP3K correlated with LMO2 (a marker of the germinal center)
(odds ratio = 2.8, 95% CI: 1.1–7.2, p = 0.039). Interestingly, though MAP3K showed histo-
logical expression similar to that of macrophages, no correlation was found with markers
of M2-like tumor-associated macrophages (all p > 0.05).

3.3.2. Analysis Using the Top 20 Genes of the MLP

In Table 5, the associations between the top 20 genes and the molecular subtypes, as
calculated using multivariate binary logistic regression, are shown. In the final model, the
most relevant genes positively associated with the ABC+Unspecified subtype were CD37,
GNLY, and IL17RB; STAT6 and REL were inversely correlated. Table A2 shows the univari-
ate analysis results. Table A4 shows the immune oncology annotations. The GSEA analysis
showed a sinusoidal-like shape, with some markers associated with ABC+Unspecified and
others with GCB (Figure 5).
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Table 5. Associations between the top 20 genes identified by the multilayer perceptron and molecular
subtypes (GCB, ABC+Unspecified).

Gene Beta SE Wald df p Odds Ratio
(OR)

95.0% CI for OR
Lower Upper

Step 1
CD37 1.59 0.52 9.41 1 0.002 4.9 1.8 13.4
STAT6 −2.50 0.93 7.20 1 0.007 0.1 0.0 0.5
ATF2 0.02 1.27 0.00 1 0.990 1.0 0.1 12.2

ROPN1 0.33 0.49 0.45 1 0.503 1.4 0.5 3.6
C4B −0.15 0.34 0.20 1 0.654 0.9 0.4 1.7

NOTCH1 −0.42 0.80 0.27 1 0.605 0.7 0.1 3.2
CTAG1B 0.46 0.62 0.56 1 0.453 1.6 0.5 5.3
ICAM3 0.07 0.53 0.02 1 0.897 1.1 0.4 3.0

CEACAM1 0.30 0.28 1.12 1 0.291 1.3 0.8 2.4
NOD2 −0.01 0.42 0.00 1 0.990 1.0 0.4 2.3
LAG3 0.61 0.40 2.32 1 0.128 1.8 0.8 4.0
GNLY 0.78 0.34 5.35 1 0.021 2.2 1.1 4.2
TP53 −0.93 0.65 2.01 1 0.156 0.4 0.1 1.4
CD46 1.04 0.65 2.57 1 0.109 2.8 0.8 10.1

MAPK3 −0.87 1.05 0.70 1 0.404 0.4 0.1 3.2
TREM2 −0.82 0.42 3.77 1 0.052 0.4 0.2 1.0

REL −0.96 0.55 3.10 1 0.079 0.4 0.1 1.1
NUP107 0.59 1.03 0.33 1 0.568 1.8 0.2 13.7
IL17RB 0.31 0.19 2.70 1 0.100 1.4 0.9 2.0
SPACA3 −0.23 0.45 0.25 1 0.618 0.8 0.3 1.9
Constant 6.82 3.86 3.12 1 0.077 917.1

Step 14 (last)
CD37 1.05 0.37 8.17 1 0.004 2.9 1.4 5.9
STAT6 −1.96 0.75 6.76 1 0.009 0.1 0.0 0.6
GNLY 1.01 0.25 15.70 1 0.000 2.7 1.7 4.5
CD46 0.78 0.46 2.86 1 0.091 2.2 0.9 5.4

TREM2 −0.55 0.33 2.76 1 0.097 0.6 0.3 1.1
REL −1.13 0.49 5.28 1 0.022 0.3 0.1 0.8

IL17RB 0.38 0.15 6.35 1 0.012 1.5 1.1 2.0
Constant 4.67 2.53 3.41 1 0.065 107.0

Multivariate binary logistic regression for molecular subtypes (GCB vs. ABC+Unclassified), backward conditional.
In the regression analysis, the GCB is the reference group.

3.3.3. Additional Machine Learning Analyses

Other machine learning techniques also predicted the molecular subtype with high ac-
curacy. Some included the 730 genes in the model, such as logistic regression, discriminant
analysis, SVM, and KNN algorithm. However, the CHAID and C5 trees used six and five
genes, respectively (Table 5, Figure 13).

The modeling for overall survival using other machine learning techniques was
repeated using only the top 20 genes identified by the multilayer perceptron analysis. The
most accurate model was the Bayesian network, which had an overall accuracy of 93%
(Figure 14), followed by the C5 tree (88%), logistic regression (68%), and discriminant
analysis (86%).

3.4. Artificial Neural Network Analysis Using the Radial Basis Function

All of the data were reanalyzed with a radial basis function (RBF) ANN as in the
multilayer perceptron analysis. The neural network predicted both the overall survival
outcome and the molecular subtypes. The network performance for the survival outcome
was poor (AUC of 0.628). However, the performances for the molecular subtypes were
acceptable (0.83 and 0.85). Since the performance of the multilayer perceptron was better,
the results for the RBF are not shown in this manuscript.
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4. Discussion

DLBCL is heterogeneous in terms of morphological features, genetic alterations, biolog-
ical characteristics, and prognosis [1–3]. The preferred treatment is chemoimmunotherapy
with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone).
Gene expression has been extensively studied in DLBCL using microarray technology [27].
The cell of origin classification, which is based on unsupervised clustering, has dominated
the field. Despite the recent advances in diagnosis and treatment, there is a need to find
prognostic markers.

This research analyzed the microarray data using a novel approach based on artificial
neural networks and included conventional strategies to make the results more explainable.
Originally, the molecular subtypes were defined using frozen tissue. Using the Lymph2Cx
assay [28], the classification can now be conducted using formalin-fixed paraffin-embedded
tissue biopsies [9,29]. The Lymph2Cx panel included 37 genes, 32 “endogenous” and 5
“controls”. Among the “endogenous”, markers of the conventional Hans classifier are
present, such as MME (CD10), BCL6, and IRF4 (MUM-1). Other interesting markers for
the pathology of DLBCL are BTK, MYC, CARD11, LMO2, TP53, and MYD88. This research
classified the cases based on the Lymph2Cx assay: the frequency of the GCB subtype was
51/104 (49%), ABC 31/104 (29.8%), and Unspecified 22/104 (21.2%).

This research used a pancancer immune profiling panel, which was fully compat-
ible with clinically relevant formalin-fixed, paraffin-embedded (FFPE) tumor sections.
This panel had an immune cell coverage that included B-cells, T-cells, CD4-positive Th1
cells, regulatory T-lymphocytes (Tregs), CD8-positive cytotoxic T-lymphocytes, exhausted
CD8-positve T-lymphocytes, cytotoxic cells, dendritic cells, macrophages, mast cells, neu-
trophils, and NK cells. B-cells are primary mediators of the humoral immune response.
T-cells mediate cell-based immunity using cytokines and directly kill target cells. CD4-
positive Th1 cells release IL2 and interferon gamma and stimulate CD8-positive cytotoxic
T-lymphocytes, NK cells, and macrophages. Tregs play an important role in suppressing
immune responses, affecting both B- and T-cells [14]. Using the genes of this panel, we
predicted the overall survival outcome and molecular subtypes with high accuracy, and
the top 20 genes influencing each prediction were highlighted. The annotation of these
genes regarding the immune profiling panel is shown in the Appendix A. For example,
the top 20 genes that predicted overall survival belonged to the immune response, CT
antigen and cell type specific (Th and mast cells). Within the immune response, the most
relevant categories were cell functions (IL2, ANP32B/ARPRIL, and NRP1), chemokines
(TNFSF12, CCL15, and XCL2), and regulation (IL2, CTSG, and TIRAP). Regarding the
molecular subtypes, the annotations were immune response, cell type Th and cytotoxic
cells, and CT antigens. The most relevant immune response categories were regulation
(STAT6, NOTCH1, ICAM3, LAG3, and REL) and T- and B-cell functions (STAT6, LAG3,
and TP53). Therefore, we showed that the immune response is important for survival and
molecular subtype classification in the pathogenesis of DLBCL.

Artificial neural networks are the chosen tool for many predictive data mining ap-
plications because they are easy to use, flexible, and powerful [17,18]. Predictive neural
networks are especially useful when the underlying processes are complex, such as the
pathological background of DLBCL. This research used two types of neural networks, the
multilayer perceptron (MLP) and radial basis function (RBF). The type of data and the
level of complexity define the procedure to use. While the MLP procedure can find more
complex relationships, RBF is faster [17,18]. This research used both types, but we found
that the MLP made more accurate predictions. Therefore, the analysis was based mainly
on the MLP results.

Artificial neural networks are used in predictive applications and are supervised in the
sense that the model-predicted results can be compared against known values of the target
variables [17,18]. An advantage of neural networks is that they make minimal demands on
the model structure and assumptions, unlike traditional statistical methods. The traditional
linear regression model, when using the least-square method and storing the regression
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coefficients, is a special case of certain neural network. However, it has a rigid model
structure and a set of assumptions that are imposed before learning from the data. How-
ever, neural networks are flexible. The tradeoff is that the synaptic weights are not easily
interpretable [17,18]. For example, the synaptic weights for the most relevant gene for
predicting the overall survival outcome, CD55, were as follows: -0.441 for H(1:1), -0.204 for
H(1:2), 0.168 for H(1:3), 0.199 for H(1:4), -0.458 for H(1:5), and -0.733 for H(1:6). The synaptic
weight informs about the amplitude or the strength of the connection between two nodes
(neurons). Since ANNs are black-box models because of their multilayer nonlinear struc-
ture, the explanation of the underlying process that produces the relationship between the
dependent (target) and independent (predictors) variables is unintelligible, nontransparent,
and untraceable by humans [30]. The overall survival outcome and the molecular subtypes
of patients with diffuse large B-cell lymphoma (DLBCL) were predicted with high accuracy,
and the most relevant genes were highlighted using nonlinear analysis. To make the
results more understandable, i.e., explainable artificial intelligence (XAI), several machine
learning methods were applied. A thorough evaluation of the relationships between the
predictors and the predicted variables in these methods explained the underlying process
of the neural network. For example, the MLP highlighted 20 genes with high capability
to predict the overall survival outcome, and using conventional analyses such as GSEA,
we confirmed the association with bad prognosis. Multivariate Cox regression analysis
reduced the list to seven genes, with ARG1, TNFSF12, REL, and NRP1 associated with
good (HR < 1) and IFNA8, CASP1, and CTSG with bad prognosis (HR > 1). As individual
markers, these genes also predicted the prognosis, as shown in the Kaplan–Meier plots.
Additionally, the risk-score formula integrated all genes, and two groups with different risk
could be found among the results. Macrophages release interferon alpha-8 (IFNA8) [26],
and we found that the high-risk group was associated with high expression of CD163,
which is a marker of M2-like tumor-associated macrophages (TAMs). Caspase-1 (CASP1) is
involved in various inflammatory processes and initiates programmed cell death [31], and
we found that the high-risk group also associated with high MYD88 expression. Cathepsin
G (CTSG) belongs to the complement pathway [32]. It has been related to oral squamous
cell carcinoma [33], is broadly expressed in acute myeloid leukemia, and is an effective
immunotherapeutic target [34]. Finally, in this research the pancancer immune profiling
panel predicted with high accuracy molecular subtypes, and the most relevant markers
for the ABC/non-GCB phenotype were CD37, GNLY, and CD46. Membrane cofactor
protein (CD46) acts as a costimulatory factor for T-cells, which induces the differentiation
of Tregs [32]. Therefore, the data showed that the immune microenvironment plays an
important role in GCB and non-GCB differentiation, as shown in the germinal center
dynamics under physiological conditions.

We recently described that high expression of PTX3 was associated with poor progno-
sis in DLBCL [25]. Though the immunohistochemistry of MAPK showed a macrophage-like
pattern, no correlation was found between MAPK and PTX3. Similar results were found
for the TNFAIP8 marker [12]. We also previously described the gene expression of High-
grade B-cell lymphoma [35]. In this research, we identified seven genes that predicted the
overall survival of patients of non-High-grade B-cell lymphoma cases. Therefore, our data
suggested that AID is a poor prognostic marker of High-grade B-cell lymphoma with MYC
and BCL2 and/or BCL6 rearrangements, as it has a different pathological background.

Applying artificial intelligence for the analysis of gene expression not only is useful in
the analysis of individual entities, but allows differentiating between different lymphoma
subtypes, as we showed in non-Hodgkin lymphomas [19]. Deep neural networks are
characterized by having a multilayer nonlinear structure (i.e., black-box model). Therefore,
neural networks are criticized as being nontransparent because their predictions are not
traceable by humans. In this research, we combined artificial neural networks and machine
learning to make the results more understandable (explainable [22]). In the future, explain-
able artificial intelligence (XAI) may enable human users to understand, and hence trust,
artificial intelligence methods and results of high prediction accuracy.
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5. Conclusions

In conclusion, artificial intelligence analyses provide highly effective results. However,
these artificial neural network-based models are black-box models because the relational
link between input and output is unobservable. We successfully combined artificial neural
networks, machine learning, and conventional biomedinformatics to predict the overall
survival outcome and molecular subtypes of DLBCL. This approach identified molecular
targets that indicated poor and favorable survival in DLBCL in addition to showing that
MAPK3 correlated with the GCB subtype.
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Appendix A

Table A1. Correlations between the top 20 genes of the multilayer perceptron and the overall survival
of the patients (univariate analysis).

Order Gene Beta SE Wald df p Hazard Risk
95.0% CI for HR
Lower Upper

1 CD55 −0.12 0.22 0.31 1 0.577 0.9 0.6 1.4
2 ARG1 0.12 0.09 1.56 1 0.211 1.1 0.9 1.3
3 SPANXB1 0.14 0.13 1.15 1 0.283 1.2 0.9 1.5
4 CTAG1B 0.06 0.12 0.22 1 0.641 1.1 0.8 1.3
5 IFNA8 0.17 0.14 1.49 1 0.222 1.2 0.9 1.5
6 CASP1 0.45 0.20 5.24 1 0.022 1.6 1.1 2.3
7 IL2 0.04 0.15 0.09 1 0.767 1.0 0.8 1.4
8 TNFSF12 −0.05 0.16 0.11 1 0.74 0.9 0.7 1.3
9 ANP32B 0.06 0.31 0.04 1 0.851 1.1 0.6 1.9

10 CTSG 0.10 0.06 2.75 1 0.097 1.1 1.0 1.3
11 THY1 −0.08 0.14 0.30 1 0.586 0.9 0.7 1.2
12 REL −0.40 0.20 3.83 1 0.05 0.7 0.5 1.0
13 TLR2 0.24 0.16 2.20 1 0.138 1.3 0.9 1.7
14 C8A 0.06 0.19 0.10 1 0.752 1.1 0.7 1.6
15 IL22 0.06 0.13 0.17 1 0.677 1.1 0.8 1.4
16 TIRAP −0.01 0.28 0.00 1 0.967 1.0 0.6 1.7
17 CCL15 −0.03 0.22 0.02 1 0.901 1.0 0.6 1.5
18 NRP1 −0.08 0.18 0.19 1 0.663 0.9 0.7 1.3
19 XCL2 0.12 0.12 0.97 1 0.324 1.1 0.9 1.4
20 MFGE8 −0.11 0.13 0.68 1 0.41 0.9 0.7 1.2

Univariate Cox regression analysis for overall survival. Each gene was analyzed individually as a
quantitative variable.

Table A2. Correlations between the top 20 genes of the multilayer perceptron and the molecular
subtypes GCB vs. ABC+Unspecified (univariate analysis).

Order Gene Beta SE Wald df p Hazard Risk
95.0% CI for HR
Lower Upper

1 CD37 0.16 0.19 0.67 1 0.413 1.2 0.8 1.7
2 STAT6 −0.84 0.48 3.07 1 0.080 0.4 0.2 1.1
3 ATF2 −0.64 0.65 0.96 1 0.327 0.5 0.1 1.9
4 ROPN1 0.47 0.33 2.09 1 0.149 1.6 0.8 3.0
5 C4B 0.22 0.14 2.65 1 0.103 1.2 1.0 1.6
6 NOTCH1 −0.18 0.32 0.32 1 0.575 0.8 0.4 1.6
7 CTAG1B 0.28 0.24 1.32 1 0.250 1.3 0.8 2.1
8 ICAM3 0.44 0.28 2.55 1 0.111 1.6 0.9 2.7
9 CEACAM1 0.38 0.18 4.36 1 0.037 1.5 1.0 2.1

10 NOD2 0.27 0.18 2.26 1 0.133 1.3 0.9 1.9
11 LAG3 0.35 0.14 6.22 1 0.013 1.4 1.1 1.9
12 GNLY 0.62 0.17 13.10 1 0.000 1.9 1.3 2.6
13 TP53 −0.97 0.39 6.02 1 0.014 0.4 0.2 0.8
14 CD46 0.39 0.34 1.30 1 0.254 1.5 0.8 2.9
15 MAPK3 −0.49 0.49 0.99 1 0.319 0.6 0.2 1.6
16 TREM2 −0.19 0.22 0.76 1 0.383 0.8 0.5 1.3
17 REL −1.16 0.36 10.61 1 0.001 0.3 0.2 0.6
18 NUP107 −0.59 0.58 1.04 1 0.309 0.6 0.2 1.7
19 IL17RB 0.17 0.10 2.94 1 0.087 1.2 1.0 1.5
20 SPACA3 0.14 0.22 0.39 1 0.530 1.1 0.7 1.8

Univariate binary logistic regression analysis for molecular subtype. Each gene was analyzed individually as a
quantitative variable (GCB as reference).
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Table A3. Annotations of the overall survival top genes.

Order Gene Gene Class Immune Response
Category Annotation

1 CD55 Immune Response N/A CD molecules, innate immune response

2 ARG1 Immune Response N/A Response to drug

3 SPANXB1 CT Antigen N/A N/A

4 CTAG1B CT Antigen N/A N/A

5 IFNA8 Immune Response Interleukins Innate immune response, interleukins

6 CASP1 Immune Response N/A Innate immune response

7 IL2 Immune Response Cytokines, T-Cell
Functions, Regulation

Adaptive immune response, anti-inflammatory
cytokines, B-cell activation, cytokines and receptors,
innate immune response, interleukins, Th1 and Th2

differentiation, T-cell differentiation, T-cell
polarization, T-cell regulators

8 TNFSF12
(TWEAK) Immune Response Chemokines, TNF

Superfamily
Chemokines and receptors, TNF superfamily

members and their receptors

9 ANP32B
(APRIL)

Immune
Response—Cell Type

Specific (Th)
Cell Functions Basic cell functions, cell type specific

10 CTSG
Immune

Response—Cell Type
Specific (Mast cell)

Regulation, Pathogen
Defense

Cell type specific, defense response to fungus,
positive regulation of immune response

11 THY1 Immune Response N/A CD molecules

12 REL Immune Response Regulation Transcription factors

13 TLR2 Immune Response TLR CD molecules, innate immune response, toll-like
receptor

14 C8A Immune Response Complement Complement pathway, innate immune response

15 IL22 Immune Response Cytokines Acute-phase response, anti-inflammatory cytokines,
interleukins

16 TIRAP Immune Response N/A Innate immune response

17 CCL15 Immune Response Chemokines Adaptive immune response, chemokines and
receptors, inflammatory response

18 NRP1 Immune Response Cell Functions Basic cell functions, CD molecules

19 XCL2 Immune Response Chemokines Chemokines and receptors

20 MFGE8 Immune Response Transporter Functions Receptors involved in phagocytosis

N/A, not applicable; Th, T helper; TLR, toll-like receptor; CD, cluster differentiation.
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Table A4. Annotations of the molecular subtypes top genes.

Order Gene Gene Class Immune Response
Category Annotation

1 CD37 Immune Response N/A Adaptive immune response, CD molecules

2 STAT6
Immune
Response—Cell Type
Specific (Th2 cell)

Chemokines,
Regulation, T-Cell
Functions

Adaptive immune response, cytokines and receptors,
cell type specific, Th2 orientation, transcription
factors, transcriptional regulators

3 ATF2 Immune Response N/A Innate immune response

4 ROPN1 CT Antigen N/A N/A

5 C4B Immune Response Complement Complement pathway, innate immune response

6 NOTCH1 Immune Response Regulation Transcriptional regulators

7 CTAG1B CT Antigen N/A N/A

8 ICAM3 Immune Response Adhesion, Regulation Adhesion, CD molecules, regulation of immune
response

9 CEACAM1 Immune Response Adhesion Adhesion, CD molecules

10 NOD2 Immune Response Cytokines Innate immune response, cytokines and receptors

11 LAG3 Immune
Response—Checkpoint

Regulation, T-Cell
Functions

Adaptive immune response, CD molecules, negative
regulation of immune response, T-cell activation

12 GNLY

Immune
Response—Cell Type
Specific (Cytotoxic
cells)

Cell Functions,
Cytotoxicity

Adaptive immune response, basic cell functions, cell
type specific, cytotoxicity

13 TP53 Immune Response T-Cell Functions T-cell proliferation

14 CD46 Immune Response N/A CD molecules, innate immune response

15 MAPK3 Immune Response N/A Innate immune response

16 TREM2 Immune Response N/A Humoral immune response

17 REL Immune Response Regulation Transcription factors

18 NUP107
Immune
Response—Cell Type
Specific (Th cell)

Cell Cycle Cell type specific, M phase of mitotic cell cycle

19 IL17RB Immune Response Chemokines Chemokines and receptors

20 SPACA3 CT Antigen N/A N/A

N/A, not applicable; Th, T helper; TLR, toll-like receptor; CD, cluster differentiation.
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Table A5. Characteristics of the series of DLBCL used in the immunohistochemical analysis.

Variable Frequency (%) Univariate Cox Regression for Overall Survival
p Hazard R. Lower Upper

Male 54/97 (55.7) 0.941 1 0.5 1.9
Age > 60 67/97 (69.1) 0.004 4 1.6 10.3

Ann Arbor stage III–IV 42/89 (47.2) 0.06 1.9 0.9 3.7
ECOG performance status

≥2 13/78 (16.7) 0.0002 4.3 1.9 9.4

Serum LDH high (>219) 58/96 (60.4) 0.004 3.1 1.4 6.8
Extranodal sites >1 18/73 (24.7) 0.003 3.1 1.5 6.4

IPI
Low 31/81 (38.3) Reference - - -

Low–intermediate 25/81 (30.9) 0.008 3.7 1.4 9.8
High–intermediate 14/81 (17.3) 0.033 3.3 1.1 9.9

High 11/81 (13.6) 0.004 5.3 1.7 16.5
sIL2R high (>530) 70/91 (76.9) 0.017 4.2 1.3 13.7

B symptoms 19/80 (23.8) 0.395 1.4 0.7 3
Location

Nodal (+spleen) 53/97 (54.6) Reference - - -
Waldeyer’s ring 9/97 (9.3) 0.167 0.2 0 1.8
Gastrointestinal 10/97 (10.3) 0.748 0.8 0.2 2.8

Other extranodal 25/97 (25.8) 0.216 1.5 0.8 2.9
Treatment
RCHOP 65/91 (71.4) Reference - - -

RCHOP-like 20/91 (22.0) 0.136 1.7 0.8 3.6
Others 6/91 (6.6) 0.133 2.5 0.8 8.5

Response to treatment
CR 64/86 (74.4) Reference - - -
PD 11/86 (12.8) 6.5 × 10−11 26.3 9.8 70.2
PR 11/86 (12.8) 1.7 × 10−8 12.7 5.3 30.9

Epstein–Barr virus
(EBER+) 12/95 (15.8) 0.004 3 1.4 6.4

Hans classifier
GCB 31/95 (32.6) Reference - - -

Non-GCB 64/95 (67.4) 0.013 2.8 1.3 6.4
Immune phenotype

CD3+ 0/97 (0) N/A - - -
CD5+ 14/96 (14.6) 0.736 0.9 0.4 2.1
CD20+ 93/97 (95.9) 0.417 0.6 0.1 2.3
CD10+ 29/96 (30.2) 0.011 0.3 0.1 0.8

MUM1+ (IRF4) 76/96 (79.2) 0.193 1.7 0.8 3.9
BCL2+ 76/96 (79.2) 0.054 2.8 0.9 7.8
BCL6+ 64/96 (66.7) 0.821 0.9 0.5 1.8

RGS1 high (>3%) 51/95 (53.7) 0.013 2.5 1.2 5.2
Molecular analysis

MYD88 L265P mutation 3/39 (7.7) 0.542 0.5 0.1 4
BCL2 translocation 2/42 (4.8) 0.993 0.9 0.1 7.4
MYC translocation 7/46 (15.2) 0.814 0.9 0.3 2.9

BCL2/MYC double hit 1/42 (2.4) 0.321 2.8 0.4 21.6
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