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Simple Summary: The present study identified a panel of transcripts involved in the pathogenesis
of both severe asthma and lung cancer. The genes identified using publicly available transcriptomics
data were validated on cell lines, plasma samples, and archival tissue biopsies from asthmatic
and lung cancer patients. The functional roles of the identified markers in both the diseases were
ascertained from the literature. These molecular markers might be useful for diagnosing lung cancer
at early stages.

Abstract: Severe asthma and lung cancer are both heterogeneous pathological diseases affecting the
lung tissue. Whilst there are a few studies that suggest an association between asthma and lung
cancer, to the best of our knowledge, this is the first study to identify common genes involved in both
severe asthma and lung cancer. Publicly available transcriptomic data for 23 epithelial brushings from
severe asthmatics and 55 samples of formalin-fixed paraffin-embedded (FFPE) lung cancer tissue at
relatively early stages were analyzed by absolute gene set enrichment analysis (GSEA) in comparison
to 37 healthy bronchial tissue samples. The key pathways enriched in asthmatic patients included
adhesion, extracellular matrix, and epithelial cell proliferation, which contribute to tissue remodeling.
In the lung cancer dataset, the main pathways identified were receptor tyrosine kinase signaling,
wound healing, and growth factor response, representing the early cancer pathways. Analysis of
the enriched genes derived from the pathway analysis identified seven genes expressed in both the
asthma and lung cancer sets: BCL3, POSTN, PPARD, STAT1, MYC, CD44, and FOSB. The differential
expression of these genes was validated in vitro in the cell lines retrieved from different lung cancer
and severe asthma patients using real-time PCR. The effect of the expression of the seven genes
identified in the study on the overall survival of lung cancer patients (n = 1925) was assessed using
a Kaplan–Meier plot. In vivo validation performed in the archival biopsies obtained from patients
diagnosed with both the disease conditions provided interesting insights into the pathogenesis
of severe asthma and lung cancer, as indicated by the differential expression pattern of the seven
transcripts in the mixed group as compared to the asthmatics and lung cancer samples alone.
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1. Introduction

Lung cancer is a heterogeneous disease associated with a poor prognosis and is
a leading cause of cancer mortality in both men and women [1]. It is expected that,
by 2035, around 3 million deaths worldwide will be attributed to lung cancer [2]. The
pathophysiology of lung cancer is very complex and vaguely understood. Studies to date
show that repeated exposure to carcinogens, especially cigarette smoke, leads to dysplasia
of the lung epithelium, and continuous exposure may lead to specific gene mutations
that disrupt the cell cycle, thereby promoting carcinogenesis. The most common genetic
mutations identified in small-cell lung cancer (SCLC) patients are in the genes MYC, BCL2,
and p53, whereas mutations in genes such as EGFR, KRAS, and p16 are known to be
associated with non-small-cell lung cancer (NSCLC) [3–5].

Like lung cancer, asthma is a heterogeneous disease of the airways, the susceptibility
to which is determined by genetic characteristics and environmental triggers such as
respiratory infections and cigarette smoke [6]. The heterogeneity in asthma is due to the
complex mechanisms, mediators, and triggers of each phenotype. Among the subtypes of
asthma, type-2-driven asthma is classified into Th2-high and Th2-low asthma. Th2-high
asthma has three specific differentially expressed transcriptomic profiles, namely, periostin
(POSTN), chloride channel regulator 1 (CLCA1), and serpin peptidase inhibitor, clade B,
member 2 (SERPINB2), among which POSTN was found to be a more reliable surrogate
marker for Th2-high asthma [7,8].

Previous studies have focused largely on the genetic alterations in asthma [9] and lung
cancer [10] separately; however, to our knowledge, there are no studies that have identified
the common genetic variations associated with both lung cancer and asthma. Symptoms of
asthma can also be observed in other lung diseases such as chronic obstructive pulmonary
disease (COPD), emphysema, and chronic bronchitis. Moreover, similar symptoms were
observed in patients with early signs of lung cancer [11]. Asthmatic patients and the
physicians who treat them may attribute these symptoms to uncontrolled asthma and delay
treatment. Another reason for the delay could be the non-inclusion of asthmatic patients
who do not smoke in the high-risk group for eligibility for lung cancer screening [12].
Hence, the early diagnosis of lung cancer is compromised.

Both intrinsic and extrinsic cellular factors can drive chronic inflammation in the
bronchial epithelium, promoting lung carcinoma via specific genes. Particularly in the
case of asthmatics, studies have shown that the inflammatory state may predispose to
cancer in the lung and other organs such as the breast, colon, and prostate. A meta-analysis
conducted in 2017 showed a significant association of asthma with lung cancer risk [13].
A single-center study conducted by us at Rashid Hospital, Dubai, demonstrated that
asthmatic patients had a higher risk of developing tumors related to the breast, colon, lung,
and prostate. Lung cancer in asthmatics had the longest diagnosis period (36.6 years), while
prostate cancer had the shortest (16.5 years) [14].

Analysis of the mutational DNA status and the RNA and protein expression levels
of specific genes can provide important information; however, the redundancy of gene
function and the complexity of molecular pathways have led researchers to shift toward
transcriptomic analysis. Transcriptomics has provided an exceptional opportunity to study
the functional implications of genetic variability. However, to date, no molecular studies
have been able to identify markers correlating with the early onset of lung cancer. With the
availability of microarrays and sequencing technologies, combined with the accessibility
of publicly available genomic and transcriptomic data, a multilevel in silico approach
has proven to be profitable in both cancer and asthma gene investigation and pathway
analysis [15]. Pathway and network analyses allow researchers to gain an understanding
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of the functional biology underpinning tumors, allowing a comprehensive gene list to be
shortened and clustered with the identification of significant targets [16].

Hence, in this study, we aimed to identify common gene signatures differentially ex-
pressed between asthma and lung cancer, using publicly available transcriptomic datasets,
and to validate the identified genes using tissue biopsies obtained from asthma and lung
cancer patients by RT-qPCR. The present study may aid in the identification of biomarkers
for early lung cancer detection. Consequently, this approach could facilitate the develop-
ment of a comprehensive transcriptomics database that can link and predict early lung
cancer susceptibility or the early stages of the development of chronic inflammation in the
bronchial epithelium that could lead to lung carcinoma.

2. Materials and Methods
2.1. Study Design
2.1.1. Microarray Data Selection

The Gene Expression Omnibus (GEO) was manually mined for publicly available
severe asthma and lung cancer transcriptomic data (https://www.ncbi.nlm.nih.gov/geo/,
last access date was 30 June 2021) up to the end of 2020 in order to choose the appropriate
microarray datasets based on inclusion and exclusion criteria. The selection criteria include
studies exclusively for Homo sapiens, Caucasian, and based on a similar platform; also,
studies with severe asthma cases recruited as per asthma guidelines were only considered.
In the case of lung cancer, studies with non-small cell lung cancer cases were considered.
Datasets were also chosen based on the tissue samples; for example, bronchial central
epithelial biopsies or bronchial epithelial brush for severe asthma samples and FFPE
biopsies for lung cancer were only selected. Studies based on late-stage cancer or metastasis
or recurrence or involved in pharmacological manipulations were excluded. The two
datasets GSE64913 and GSE29013 were selected, which met all the criteria stated above and
were run on the same Affymetrix Platform U133 Plus 2.0, GPL570.

2.1.2. Patient Cohort for In Silico Analysis

A total of 17 asthmatics and 23 non-asthmatic healthy volunteers were considered
from the dataset GSE64913. The transcriptomic data for these samples were obtained from
epithelial brushings from both central and peripheral airways [17]. The severe asthmatics
in the set were characterized by a history of at least two exacerbations in the previous year
of collection, and 44% had a history of hospital admission for acute severe asthma in the
preceding year of sample collection. The mean age of the subjects was 41; all the subjects
were nonsmokers, except for three ex-smokers with a pack-year history <2 who had ceased
smoking for at least 1 year (Table 1).

Table 1. Details on the samples and the subjects retrieved from the database.

Accession Number GSE64913 GSE29013

Severe Asthmatic
(n = 17)

Healthy Control
(n = 23)

Lung Cancer
(n = 55)

Male 9 14 38

Female 8 9 17

No. of smokers 3 None 2

Age in years,
mean (range) 41 (20–63) 26 (19–54) 63.5

Exacerbations At least 2 per year NA NA

NSCLC stage NA NA
Stage 1 = 24
Stage 2 = 14
Stage 3 = 17

https://www.ncbi.nlm.nih.gov/geo/
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The dataset GSE29013 comprises data for formalin-fixed paraffin-embedded (FFPE) tumors
from 55 patients at stages 1–3 (24 patients = stage 1; 14 patients = stage 2; 17 patients = stage 3)
of non-small-cell lung carcinoma (NSCLC) [18]. The mean age of the subjects was 63.5 years;
38 of them were male; all were nonsmokers except for two (Table 1). From each FFPE block,
at least 50 mm2 of tumor tissue was collected, and RNA extraction was performed using a
patented process developed by Response Genetics Inc. (Los Angeles, CA, USA, United States
Patent Application 20090092979).

2.1.3. In Vivo Validation
Ethical Consideration

The in vivo validation in the present study was based on samples obtained from a
single center; Rashid Hospital, Dubai. The study protocol was reviewed and approved by
the Dubai Scientific Research Ethical Committee (DSREC) Dubai Health Authority with the
ethical approval number DSREC-SR-03L2019_01.

Formalin-Fixed Paraffin-Embedded Tissue Samples for In Vivo Validation

In total, 11 biopsies from the clinical archives of Rashid Hospital, Dubai (single center),
were identified that were related to the present study. The tissue samples obtained from
an independent clinical cohort of four severe asthmatics who fit the criteria mentioned
for severe asthma (all nonsmokers), four patients with NSCLC (three smokers), and three
asthmatic patients who developed lung cancer (all nonsmokers) were used for validation
by RT-qPCR (Table 2). The FFPE slides were reviewed by three pathologists (M.A., R.H.,
and Q.H.). The H&E slides showed the pathology of the asthmatic patients, suggesting
hyperinflamed lung tissue with inflammatory regions, with a thickness of the subepithelial
basement membrane indicative of tissue remodeling. However, lung cancer H&E staining
(Figure 1B) showed more invasive carcinoma within the lung tissue. Interestingly, the H&E
slides of asthma patients with lung cancer (Figure 1A,C) showed mixed features between
asthma and lung cancer, with more adenocarcinomas in situ (AIS) of the lung, which are
akin to preinvasive lesions.

Table 2. Clinical characteristics of patients whose tissues were collected for FFPE blocks.

Clinical Variables

Disease

Severe Asthmatic
(n = 4)

Asthmatic Patients That
Developed Lung Cancer

(n = 3)

Lung Cancer
(n = 4)

Age in years; mean (range) 49 (32–61) 62 (26–83) 58 (55–91)

No. of males; n (%) 1 (25) 2 (66.6) 2 (50)

% FEV1; mean (range) 50.7 (38–61) 53 (43–64) NA

Reversibility (% FEV1); mean (range) 16 (12–20) 21 (18–25) NA

NSCLC Stage

1 (%) NA 1 (33.3)

2 (%) NA 1 (33.3) 1 (25)

3 (%) NA 1 (33.3) 1 (25)

4 (%) NA 2 (50)
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Figure 1. Images of slides with H&E staining for tissue sections from (A) asthmatic, (B) lung cancer,
and (C) mixed cases.

The small sample size is due to the fact that, in general, it is not routine clinical practice
to perform biopsies for severe asthmatics.

Blood Samples

Whole blood was collected from three lung cancer and three severe asthma patients
in EDTA-treated tubes. The characteristics of the patients are provided in Table 3. The
plasma was immediately isolated and stored in aliquots at −80 ◦C until further use. Total
RNA was extracted from ~300 µL of plasma using the TRIzol (Invitrogen, Carlsbad, CA,
USA) method.

Table 3. Characteristics of the patients from whom blood samples were collected.

Patient ID Disease Gender Age FEV1 (/L)

AS6 Asthma Male 56 1.84
AS14 Asthma Female 57 1.33
AS17 Asthma Female 44 2.5
LC1 Lung cancer, stage 3 Male 58 -
LC2 Lung cancer, stage 4 Male 63 -
LC3 Lung cancer, stage 3 Male 77 -

Survival Analysis

An independent cohort of 1925 NSCLC patients was used to analyze the overall
survival and clinical implications of the expression of the seven genes using Kaplan–Meier
Plotter (https://kmplot.com/analysis/index.php?p=service&cancer=lung last access date
was 28 January 2022) [19]. The details regarding age, sex, smoking history, histology, stage,
grade were collected from different data sets previously published [18–28]. The mean age
for the cohort was 64 ± 10, 58% were male, while 17.8% never smoked. Supplementary
Data S1 summarizes the clinical properties for the cohort.

2.1.4. In Vitro Validation
Cell Culture

Asthmatic cells were obtained from bronchial biopsies of the severe asthma patients,
as listed in Table 4. Diseased human bronchial epithelial cells, asthmatic (DHBE-As) (Lonza,
Switzerland), and lung cancer cells with different stages of non-small-cell lung carcinoma
(AddexBio, San Diego, CA, USA) were commercially obtained. Details for the cell types are
provided in Table 4.

https://kmplot.com/analysis/index.php?p=service&cancer=lung
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Table 4. List of cell lines used in the study for molecular validation.

Cell ID Description Disease
Patient Details
Gender, Age,

Ethnicity
Catalog Number

A549 Lung epithelial Lung cancer Male, 58, Caucasian C0016002

SK-LU-1 Lung epithelial Lung cancer Female, 46, Caucasian C0016049

Calu3 Lung epithelial from
metastatic site: pleura

Lung cancer; grade
III epidermoid Male, 25, Caucasian C0016001

DHBE Asthmatic epithelial cells Asthma Female, 54, Hispanic 00194911

S13 Epithelial cells retrieved
from severe asthma patient Severe asthma Male, 53, East Asian Isolated from the

bronchial biopsy *

S14 Epithelial cells retrieved
from severe asthma patient Severe asthma Female, 46, East Asian Isolated from the

bronchial biopsy *
* These cells were isolated from the bronchial biopsies collected from severe asthma patients at Rashid Hospital,
Dubai. The FFPE blocks from the same tissues are mentioned above in Table 2.

A549, CALU-3, and SKLU-1 cells were grown in RPMI-1640 medium supplemented
with 10% fetal bovine serum (FBS), while the asthmatic cells (DHBE, S13, and S14) were
cultured in PneumaCult™ medium as described by the manufacturer. All the cells were
grown in a humidified chamber at 37 ◦C with 5% CO2. The medium was changed every
2 days until the cells in the flasks were 95% confluent. The cells were then collected for
RNA extraction. In total, three asthmatic and three lung cancer cell lines were used for
molecular validation.

2.2. In Silico Analysis
2.2.1. Microarray Data Analysis to Identify Differentially Expressed Genes between Severe
Asthmatics and Healthy Controls in Bronchial Epithelium

The Affymetrix Human Genome U133 Plus 2.0 Microarray chip has 54,675 probes,
where each gene is represented by more than one probe. Raw Affymetrix CEL files (n = 60,
23 severe asthmatic, and 37 healthy) were extracted from the GSE64913 dataset and normal-
ized using an in-house algorithm developed by Hamoudi et al. [16]. Briefly, the guanine
cytosine Robust Multi-Array Analysis (gcRMA) and Affymetrix Microarray Suite 5 (MAS5)
packages of the R Bioconductor statistical software version 3.6.3 were applied to normalize
and remove the background noise. gcRMA and MAS5 expression values were used for the
next nonspecific filtering based on the coefficient of variation (CV). The CV was calculated
as the mean/standard deviation of each probe across all cases. Subsequently, nonspecific
filtering was performed to remove nonvariant genes, and only the probes with MAS5
values ≥ 50 and CV values of 10–100% in the gcRMA across all cases were passed and
intersected to obtain a common set of variant probes. The enriched genes identified from
the differentially activated pathways were mapped to the raw data of the genes, and the
fold change was calculated. The flowchart of the entire workflow is presented in Figure 2.

2.2.2. Gene Set Enrichment Analysis for the Differentially Expressed Pathways among
Severe Asthmatics and Healthy Controls

The filtered probes were annotated and collapsed to their corresponding genes using
the GSEA software (http://software.broadinstitute.org/gsea/downloads.jsplast access
date was 24 December 2021) by choosing probes with the maximum expression of each
gene [29]. The control probes, along with those not assigned to a gene, were excluded.
Hence, the resultant filtered probes were only the variant probes as per the GSEA manual.
The filtered probes were collapsed to genes and used as input for the GSEA to identify
the significantly enriched pathways among sets related to the C5 Gene Ontology (GO)
gene set collection C5 biological process (BP) (c5. go.bp. v7.2. symbols) and C5 molecular
function (MF) (c5.go.mf.v7.2. symbols). The results of the GSEA were ranked according to
the nominal p-values, which were identified through absolute GSEA (<0.05), and the false

http://software.broadinstitute.org/gsea/downloads.jsplast
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discovery rate (≤0.25) as described previously [16,30] (Figure 3). In order to reduce the
dataset, a systematic cross-reference of each gene enriched within statistically significant
pathways was carried out. The genes with the highest frequency across the multiple
significant pathways were compared across the disease phenotypes.
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Figure 2. Flowchart outlining the steps of the bioinformatics approach used to identify differentially
expressed genes in severe asthmatic bronchial epithelium compared to healthy controls and lung
cancer compared to healthy controls. Abbreviations: GEO omnibus, Gene Expression Omnibus;
gcRMA, guanine cytosine Robust Multi-Array Analysis; MAS5, Affymetrix Microarray Suite 5.

2.2.3. Microarray Data Analysis to Identify Genes Differentially Expressed between
NSCLC Patients and Healthy Controls

Two datasets were selected: GSE29013 for lung cancer patients and GSE64913 for
healthy controls. Raw CEL files (n = 92) for 55 NSCLC and 37 healthy patients were
extracted, and the processing was performed as detailed in Figure 2. The processed probes
with >10% CV and >100-fold expression were filtered and further used for GSEA.

2.2.4. Gene Set Enrichment Analysis for the Differentially Expressed Pathways among
NSCLC Patients and Healthy Controls

The filtered probes for the lung cancer dataset compared to healthy controls were
processed as detailed previously for severe asthmatics. The 15,999 probes filtered among
the lung cancer dataset were collapsed to a list of 9206 genes, and the GSEA was performed
as described earlier for severe asthmatics (Figure 3).
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and lung cancer.

2.2.5. In Silico Identification of Intracellular Pathways among Asthmatic and NSCLC
Patients in Comparison to Healthy Controls

In order to identify the common pathways comprising most of the identified genes in
the gene set analysis, Metascape (http://metascape.orglast access date 15 January 2022) was
used to extract the top enriched pathways that were either upregulated or downregulated
in severe asthma and/or lung cancer compared to the healthy controls.

2.3. Molecular Validation
2.3.1. RNA Extraction

Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) blocks as
previously described [31] from three groups—(1) severe asthma (AS), (2) lung cancer (LC),
and (3) asthmatic cases who developed lung cancer (AC)—using the Recover All total
nucleic acid isolation kit as per the manufacturer’s protocol (Invitrogen, Waltham, MA,
USA), followed by DNA digestion using Turbo DNase (Invitrogen, Waltham, MA, USA).

The total RNA extraction from the plasma and cell lines was performed using TRIzol
reagent and the Pure link RNA extraction kit (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions. RNA was quantified using the Nanodrop
2000 Spectrophotometer (Thermo Fisher Scientific, USA).

2.3.2. cDNA Synthesis Using Gene-Specific Primer and Random Primer

The Superscript first-strand synthesis system for RT-PCR (Invitrogen, Cat. No. 11904-
018) was used for cDNA synthesis for RNA obtained from FFPE samples. cDNA synthesis
was carried out using gene-specific primers in three batches to include all the genes of
interest. To prepare the RNA/primer mixes, for each run, ~1 µg of amplified RNA was
taken from each sample, 1 µL of 1 pmol of nine different reverse primers per run (sequences
in Supplementary Table S1) were mixed, and 1 µL of 10 mM dNTP was added; the volume
was made up to 10 µL with nuclease-free water. The samples were then incubated in a

http://metascape.orglast


Cancers 2022, 14, 1663 9 of 27

thermocycler (Eppendorf) at 65 ◦C for 5 min and immediately placed on ice for at least
2 min. The reaction mixture for reverse transcription was prepared by mixing 2 µL of
10× RT buffer, 4 µL of 25 mM MgCl2, 2 µL of 0.1 M DTT, 1 µL of RnaseOUT enzyme, and
1 µL of Superscript III enzyme. The total 10 µL of the reaction mixture was added to the
RNA/primer mix previously prepared. The samples were then incubated at 50 ◦C for
50 min, followed by reaction termination at 85 ◦C for 15 min.

For plasma and cell line RNA, cDNA was synthesized using the high-capacity cDNA
synthesis kit (Applied Biosystems, Waltham, MA, USA) according to the manufacturer’s
protocol. The kit contains RT random primer for cDNA preparation from both mRNA
and rRNA

2.3.3. Quantitative Reverse Transcription PCR (RTq-PCR)

The expression of the genes identified by in silico analysis was validated by RTq-PCR
for cDNA obtained from the archival tissue biopsies, plasma, and cells. Approximately
50 ng of the gene-specific cDNA obtained from AS, LC, and AC tissues, as well as lung
cancer and asthmatic cells and plasma, was added to 2× maxima SYBR green master
mix (Thermo Fisher Scientific, Waltham, MA, USA) along with the primers as listed in
Supplementary Table S1. The reaction was carried out in a Quant Studio 3 cycler (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. The
cycling conditions were an initial single hold stage at 50 ◦C for 2 min, 95 ◦C for 10 min,
and then 40 cycles of 95 ◦C for 15 s, 60 ◦C for 1 min, and 95 ◦C for 15 s; there was then a
melt-curve stage: 60 ◦C for 1 min and 95 ◦C for 1 s. Each cDNA reaction was performed
in triplicate, and each experiment was repeated three times along with a negative cDNA
sample and a negative non-template control for each pair of primers. The Ct value of
the gene of interest was normalized against the expression of the housekeeping gene
(18S) for each sample, and the relative gene expression (2−∆∆Ct) was derived from the
∆Ct values [32,33]. The fold-expression values were normalized to log2, and the relative
expression of each gene was compared between the groups.

2.4. Statistical Analysis

Statistical analysis of the experimental data was performed from independent ex-
periments using the SPSS software version 23, and the Mann–Whitney test was used to
determine significance; p < 0.05 was considered statistically significant. The box plots for
all the analyses were prepared using the GraphPad Prism software (version 8).

3. Results
3.1. In Silico Identification of Significant Gene Sets and DEGs between Severe Asthma and Lung
Cancer Patients versus Healthy Controls

The transcriptomic datasets available in the public domain for severe asthma and
healthy controls (GSE64913) and the lung cancer patients (GSE29013) were used to identify
the differentially expressed genes (DEGs) among severe asthmatics and lung cancer patients.

Expression analysis of the microarray data for 23 severe asthmatic, 55 lung cancer, and
37 healthy controls was performed using nominal p-values from the absolute GSEA file
<0.05 and a false discovery rate q-value < 0.25. From the analysis, 1597 probes were filtered
from the 54,675 probes present in the Affymetrix Human Genome U133 Plus 2.0 Microar-
ray chip. These 1597 probes were collapsed to 1217 genes for severe asthmatic patients
versus healthy controls. For the lung cancer versus healthy control set, 15,999 probes were
obtained after filtration and collapsed to 9206 genes, as shown in Figure 2.

The results show that the most interesting gene sets were the annotated gene ontology
sets C5 BP and C5 MF. Using the GSEA methodology from those two sets identified
differentially activated cellular pathways between severe asthmatics and healthy controls.
In total, 101 significantly enriched gene sets were identified (p = 0.05 and FDR = 0.25).
These could be broadly classified into the following categories: signal transduction of
apoptosis, regulation of cell adhesion, transcription and protein modification, metabolic
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processes or cell motility, and miscellaneous (Table 5). Analysis of the leading-edge genes
underlying the enrichment of each individual gene set revealed that many were consistently
represented, suggesting that they strongly influenced the expression pattern in severe
asthmatics (Figure 4A–C).
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Figure 4. Gene set enrichment analysis (GSEA) of the differentially expressed genes between severe
asthmatic bronchial epithelium (n = 23) and healthy bronchial epithelium (n = 37) in GSE64913.
(A) DNA transcription, (B) regulation of cell death, (C) regulation of cell adhesion (left panel shows
the distribution of DNA transcription, regulation of cell death, and cell adhesion target genes
according to their rank position. The right panel shows a heatmap illustration of their expression
between asthmatic and healthy control). (D) The top enriched pathways whether upregulated or
downregulated in severe asthma compared to healthy controls using metascape (http://metascape.
org last access date 15 January 2022): a gene annotation and analysis online resource that generates a
graphical representation.
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Table 5. Gene sets differentially overrepresented in severe asthmatics vs. healthy controls.

Gene Sets Size Source ES NES NOM
p-Value

FDR
q-Value

FWER
p-Value Tag % Gene % Signal FDR

(Median)
Glob.

p-Value

Signal transduction

CELL_CELL_SIGNALING 22 GO:0007267 0.4642 1.5824 0.0281 0.2633 0.3560 0.636 0.3890 0.3960 0.0000 0.0850

GO_RAS_PROTEIN_SIGNAL
_TRANSDUCTION 17

GO_RAS_PROTEIN
_SIGNAL

_TRANSDUCTION
0.5485 1.6490 0.0123 0.0847 0.0670 0.529 0.3210 0.3640 0.0000 0.0580

GO_GTPASE_REGULATOR
_ACTIVITY 20

GO_GTPASE
_REGULATOR

_ACTIVITY
0.4371 1.5238 0.0171 0.2652 0.5940 0.65 0.4600 0.3570 0.1522 0.0530

POSITIVE_REGULATION_
OF_CELL_ DEATH 22 GO Biological

Processes 0.8167 1.7937 0.0000 0.0162 0.0239 0.682 0.1920 0.5610 0.0000 0.0060

GO_NEGATIVE_REGULATION
_OF_CELL_ DEATH 90

GO_NEGATIVE
_REGULATION

_OF_CELL_DEATH
0.3999 1.5361 0.0381 0.3468 0.8680 0.533 0.4350 0.3260 0.2031 0.0730

Regulation of
cell-to-cell adhesion

GO_REGULATION
_OF_CELL

_CELL_ADHESION
43

GO_REGULATION
_OF_CELL

_CELL_ADHESION
0.4729 1.5837 0.0236 0.1378 0.1082 0.535 0.3820 0.3430 0.0000 0.0860

GO_POSITIVE
_REGULATION_OF
_CELL_ADHESION

41
GO_POSITIVE

_REGULATION_OF
_CELL_ADHESION

0.5554 1.9064 0.0000 0.2381 0.1430 0.439 0.2050 0.3610 0.0000 0.0800

GO_REGULATION
_OF_CELL

_SUBSTRATE_ADHESION
26

GO_REGULATION
_OF_CELL

_SUBSTRATE
_ADHESION

0.5074 1.7722 0.0021 0.2739 0.4180 0.308 0.1310 0.2730 0.0000 0.0700

GO_BIOLOGICAL_ADHESION 134 GO_BIOLOGICAL
_ADHESION 0.3695 1.6123 0.0022 0.3383 0.7640 0.44 0.3840 0.3050 0.1880 0.0710

GO_CELL_CELL_ADHESION 77 GO_CELL_CELL
_ADHESION 0.4418 1.7117 0.0067 0.3622 0.5740 0.506 0.3820 0.3340 0.1444 0.0840
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Table 5. Cont.

Gene Sets Size Source ES NES NOM
p-Value

FDR
q-Value

FWER
p-Value Tag % Gene % Signal FDR

(Median)
Glob.

p-Value

Transcription and
protein modification

TRANSCRIPTION 46 GO:0006350 0.4410 1.5196 0.0365 0.1963 0.4560 0.5 0.3590 0.3330 0.0000 0.0340

TRANSCRIPTION__DNA
_DEPENDENT 41 GO:0006351 0.4573 1.5451 0.0340 0.1761 0.4210 0.537 0.3590 0.3560 0.0000 0.0270

GO_RNA_SPLICING 21 GO_RNA_SPLICING 0.4809 1.5485 0.0478 0.3423 0.8530 0.476 0.2770 0.3500 0.2007 0.0730

Miscellaneous

GO_HUMORAL
_IMMUNE_RESPONSE 16 GO_HUMORAL

_IMMUNE_RESPONSE 0.5810 1.5893 0.0366 0.3531 0.7910 0.5 0.3340 0.3370 0.1959 0.0790

GO_HORMONE
_TRANSPORT 23 GO_HORMONE

_TRANSPORT 0.4065 1.4568 0.0387 0.3800 0.9210 0.304 0.1950 0.2500 0.2441 0.0790

GO_GLYCOS
AMINOGLYCAN

_BINDING
18

GO_GLYCOS
AMINOGLYCAN

_BINDING
0.6212 1.8600 0.0000 0.1535 0.0500 0.333 0.0970 0.3060 0.0000 0.0500

Abbreviations: ES, enrichment score; NES, normalized ES; NOM, nominal; FDR, false-discovery rate; FWER, family-wise error rate; Tag %, the percentage of gene tags before (for
positive ES) of after (for negative ES) the peak in the running enrichment score; gene %, the percentage of genes in the gene list before (for positive ES) of after (for negative ES) the peak
in the running enrichment score; GO, gene ontology.
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Table 6. Gene sets differentially overrepresented in lung cancer patients vs. healthy controls.

Gene Sets Size Source ES NES NOM
p-Value

FDR
q-Value

FWER
p-Value Tag % Gene % Signal FDR

(Median)
Glob.

p-Value

Signal transduction

GO_NOTCH_SIGNALING
_PATHWAY 81

GO_NOTCH
_SIGNALING
_PATHWAY

0.3330 1.5135 0.0289 0.8450 0.2560 0.3210 0.2590 0.2400 0.0000 0.2540

REGULATION_OF_GENE
_EXPRESSION 351 GO:0010468 0.2664 1.4706 0.0111 0.2621 0.8460 0.5160 0.5030 0.2670 0.1746 0.0270

SECRETORY_PATHWAY 48 GO:0045045 0.4318 1.6364 0.0163 0.3425 0.5770 0.3960 0.2740 0.2890 0.1337 0.1000

NEGATIVE_REGULATION
_OF_APOPTOSIS 89 GO:0043066 0.3283 1.5110 0.0323 0.2598 0.7990 0.2920 0.2340 0.2260 0.1580 0.0310

NEGATIVE_REGULATION
_OF_PROGRAMMED

_CELL_DEATH
90 GO:0043069 0.3255 1.5061 0.0340 0.2575 0.8020 0.2220 0.1370 0.1940 0.1548 0.0290

Tissue and structure
morphogenesis

STRUCTURAL_CONSTITUENT
_OF_RIBOSOME 31 GO:0003735 0.5982 1.7802 0.0119 0.4095 0.2390 0.5810 0.1530 0.4940 0.0000 0.1600

ORGAN_MORPHOGENESIS 54 GO:0009887 0.3809 1.4301 0.0383 0.2742 0.8840 0.4630 0.3450 0.3050 0.2011 0.0210

ORGAN_DEVELOPMENT 224 GO:0048513 0.3165 1.3987 0.0383 0.2833 0.9160 0.4380 0.3870 0.2750 0.2173 0.0220

Transcription and protein modification

PROTEIN_CATABOLIC
_PROCESS 35 GO:0030163 0.4445 1.8389 0.0021 0.4918 0.2090 0.5140 0.3060 0.3580 0.0000 0.1470

CELLULAR_PROTEIN
_CATABOLIC_PROCESS 32 GO:0044257 0.4190 1.7027 0.0040 0.8381 0.4340 0.5000 0.3060 0.3480 0.0000 0.2620

PROTEIN_RNA_COMPLEX
_ASSEMBLY 35 GO:0022618 0.4196 1.6975 0.0085 0.7046 0.4440 0.5710 0.3360 0.3810 0.0000 0.2330

Miscellaneous

RESPONSE_TO_STRESS 252 GO:0006950 0.2780 1.4447 0.0439 0.2658 0.8740 0.4290 0.4290 0.2520 0.1908 0.0210

DNA_REPAIR 70 GO:0006281 0.3601 1.5256 0.0493 0.2525 0.7750 0.4430 0.3640 0.2840 0.1428 0.0320

CYTOKINE_PRODUCTION 24 GO:0001816 0.4521 1.7395 0.0103 0.6888 0.4040 0.7920 0.4500 0.4360 0.0000 0.2270

Abbreviations: ES, enrichment score; NES, normalized ES; NOM, nominal; FDR, false-discovery rate; FWER, family-wise error rate; Tag %, the percentage of gene tags before (for
positive ES) of after (for negative ES) the peak in the running enrichment score; gene %, the percentage of genes in the gene list before (for positive ES) of after (for negative ES) the peak
in the running enrichment score; GO, gene ontology.
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The microarray data from 92 patients (55 lung cancer and 37 healthy controls) using
the gene set GSE29013 and the absolute GSEA revealed the enrichment of transcripts among
the main pathways that contribute to tissue and structure morphogenesis, regulation of cell
death, transcription, and protein modification (Table 6).

In total, 628 genes differentially expressed between severe asthmatics and healthy
controls (527 upregulated and 101 downregulated) were identified with a fold-change
cutoff of 1.0 for upregulated and 0.75 for downregulated genes. The fold-change calculation
was carried out by mapping the enriched genes to the raw Affymetrix gene expression
values (Supplementary Data S2 and S3).

Overall, 6593 genes were identified that were differentially expressed among lung
cancer patients in comparison to healthy controls with a fold-change cutoff of 1.5 for
upregulated and 0.5 for downregulated genes (3635 upregulated and 2958 downregulated)
(Supplementary Data S2 and S3). The leading-edge analysis provided details on the
genes consistent across the gene sets, indicating their likely involvement in lung cancer
pathogenesis (Figure 5A–D).

3.2. In Silico Validation of Differentially Activated Pathways Using Metascape Analysis

In order to cross-validate the results obtained from GSEA, Metascape analysis was
carried out for the upregulated genes in the differential transcriptome of the asthmatic
samples and lung cancer samples, revealing the top enriched pathways as implicated in
Figures 4D and 5E, respectively (Supplementary Data S4 and S5). The Venn output revealed
that 38 pathways were commonly activated among both datasets, and 153 genes were
commonly upregulated in both lung cancer patients and asthmatics (Figure 6A,B).

From the Metascape analysis and the top enriched transcripts obtained, the genes over-
represented among both asthmatics and lung cancer patients were determined (Tables 7 and 8).
The DEGs identified in common across the datasets are highlighted in bold.

Table 7. Main pathways and their genes from the upregulated functional clusters (analyzed with
Metascape) in asthmatics versus healthy controls. The genes represented in bold indicate an overlap
with the lung cancer dataset.

Pathway Description List of the Genes Involved

Regulation of cell adhesion
ANXA1, CD44, EGR3, FUT3, CCN1, S100A10,
CXCR4, NR4A3, POSTN, MYADM, CCDC80,

S100A8, FCGR2A, HBB, JUN

Response to activity CXCR4, POSTN, PPARGC1A, G0S2, FOSB,
PDK4, NR4A3, PMAIP1

Embryonic placenta development CCN1, KRT8, SOCS3, TM4SF1, PSPH, ANXA1,
SERPINB5, NR4A3

Extracellular matrix organization CD44, CCN1, SERPINB5, POSTN, CCDC80,
CXCR4, NR4A3, SOCS3

Cell morphogenesis involved in differentiation EGR2, S100A10, CXCR4, NR4A3, POSTN,
MYADM, DPYSL3, CD44

Interferon signaling CD44, IFIT2, SOCS3

Epithelial cell development CXCR4, TFCP2L1, MYADM

Among the asthmatic clusters, pathways related to cell adhesion, extracellular matrix
organization, and interferon signaling were enriched (Figure 4D and Table 5). These regu-
latory pathways are, in general, associated with the inflammatory and tissue remodeling
events involved in asthma pathobiology.
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Figure 5. Gene set enrichment analysis (GSEA) of the differentially expressed genes between lung
cancer bronchial epithelium (n = 55) in GSE29013 and healthy bronchial epithelium (n = 37) in
GSE64913. (A) Notch signaling pathway, (B) cytokine production, (C) wound healing, (D) negative
regulation of cell death (left panel shows the distribution of notch signaling pathway, cytokine
production, wound healing, negative regulation of cell death according to their rank position. The
right panel shows a heatmap illustration of their expression between lung cancer and healthy control).
(E) The top enriched pathways, whether upregulated or downregulated in lung cancer, compared to
healthy controls using metascape (http://metascape.org last access date 15 January 2022): a gene
annotation and analysis online resource that generates a graphical representation3.2.
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Figure 6. Venn diagram showing common pathways and genes among lung cancer patients and
severe asthmatics. (A) Common pathways between asthmatics and lung cancer patients from
Metascape analysis. (B) Commonly upregulated genes between asthmatics and lung cancer groups.
Common pathways occurring between Metascape and GSEA analysis for (C) severe asthmatics and
(D) lung cancer patients.

Table 8. Main pathways and their genes from the upregulated functional clusters (analyzed with
Metascape) in lung cancer patients versus healthy controls. The genes represented in bold indicate an
overlap with the asthma dataset.

Pathway Description Example of Genes Involved

Signaling by receptor tyrosine kinases
DUSP6, EGFR, EGR3, ELK1, FGFR1, FN1, FYN,

GRB2, GRB10, ID2, IGF1R, IRSA6A, JCAD,
SNX6, PLEK

Signaling by Rho GTPases
BRCA1, PPP2R2A, PPP6C, TYMS, NSD2, WRN,

ALMS1, CDC7, RAE1, CDC23, CCNE2, PTTG1, KIF23,
ESPL1, RAB1B, CEP78, NEDD1

Blood-vessel development
STAT1, EGFR, PPARD, PCDC73, RAB33B, EPPK1,

FOXP1, ANLN, CORO1B, PLEKHG5, EPB41L5,
ARID5B, SYDE1, CYGB, DNMT1, NFATC1

Regulation of cell projection organization

FN1, FYN, GAK, GATA3, MYC, TGFBR1, BCL11A,
AMIGO2, ACTA2, NOS1, SERPINF2, MP14, MAP2K5,

RPS6KA1, SLC9A1, SPHK1, PPM1F,
ADNP2, EXOSC2

Response to growth factor
EGFR, EGR3, FRP4, SHC1, SPHK1, HGS, NREP,

USP15, LUM, POSTN, EHD1, FERMT2, TBC1D7,
WWOX, ERRFI1, IL17RD, FAM83G

Extracellular matrix organization

BCL3, BGN, BMP1, BSG, CAPN1, CAV1, CD36,
IGFBP4, MATN2, THBS2, TNFAIP6, SRPX, CILP,
EDIL3, SPON2, SPON1, MXRA5, TSKU, CRIM1,

CTHRC1, EMID1

Response to growth factor
COL4A2, CREBBP, DAB2, DCN, DTYMK, DUSP6,

E2F1, EGFR, EGR3, ERN1, FBN1, FGFR1, LUM,
POSTN, EHD1, FERMT2

A comparative set theory performed on the pathways identified by both GSEA and
Metascape analysis revealed commonly identified key pathways among severe asthmatics
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(Figure 6C). These important pathways include those related to cell adhesion and epithelial
cell proliferation, which are known to be modulated during tissue remodeling in asthmatics
(Supplementary Table S2). Hence, the data obtained from both methods were validated.

Similarly, the lung cancer dataset analysis showed the activation of key pathways such
as receptor tyrosine kinase signaling, growth factor response, blood-vessel development,
and cell adhesion (Figure 5E and Table 6).

3.3. Gene Expression Analysis from the Microarray Datasets for Severe Asthmatics and Lung
Cancer Patients

The results from the GSEA and metascape analysis of the microarray data led to the
identification of eight genes (by fold change and frequency count methods) overrepre-
sented in both severe asthmatics and lung cancer patients. Two genes, periostin (POSTN)
and lumican (LUM) were upregulated in severe asthmatics and lung cancer patients re-
spectively (Figure 7A,B and Supplementary Table S3). The other six genes, peroxisome
proliferator-activated receptor delta (PPARD), B-cell lymphoma 3 (BCL3), cluster of differ-
entiation 44 (CD44), protein fosB (FOSB), myelocytomatosis (MYC), and signal transducer
and activator of transcription 1 (STAT1), were detected with high frequency among severe
asthmatics and lung cancer patients (Supplementary Table S4) in the leading-edge analy-
sis. These genes were observed to be differentially expressed among the asthmatics and
lung cancer patients in comparison to healthy controls, as presented in Figure 7. The fold
changes for each gene among both datasets are listed in Supplementary Table S3.

Cancers 2022, 14, x FOR PEER REVIEW 17 of 28 
 

 

activated receptor delta (PPARD), B-cell lymphoma 3 (BCL3), cluster of differentiation 44 

(CD44), protein fosB (FOSB), myelocytomatosis (MYC), and signal transducer and activa-

tor of transcription 1 (STAT1), were detected with high frequency among severe asthmat-

ics and lung cancer patients (Supplementary Table S4) in the leading-edge analysis. These 

genes were observed to be differentially expressed among the asthmatics and lung cancer 

patients in comparison to healthy controls, as presented in Figure 7. The fold changes for 

each gene among both datasets are listed in Supplementary Table S3. 

Health
y 

Asth
m

a 

Lung C
ancer

0

1

2

3

4

Lo
g2

 N
or

m
al

iz
ed

 E
xp

re
ss

io
n

✱✱✱✱

✱✱✱✱

Health
y 

Asth
m

a 

Lung C
ancer

0

1

2

3

4

Lo
g2

 N
or

m
al

iz
ed

 E
xp

re
ss

io
n

✱✱✱

✱✱✱✱

Health
y 

Asth
m

a 

Lung C
ancer

0

1

2

3

4

Lo
g2

 N
or

m
al

iz
ed

 E
xp

re
ss

io
n

✱✱

✱✱✱

Health
y 

Asth
m

a 

Lung C
ancer

0

1

2

3

4

Lo
g2

 N
or

m
al

iz
ed

 E
xp

re
ss

io
n ✱✱✱✱

✱✱✱✱

✱✱✱

Health
y 

Asth
m

a 

Lung C
ancer

-2

0

2

4

Lo
g2

 N
or

m
al

iz
ed

 E
xp

re
ss

io
n

✱

✱✱✱✱

✱✱✱✱

Health
y 

Asth
m

a 

Lung C
ancer

0

1

2

3

4

Lo
g2

 N
or

m
al

iz
ed

 E
xp

re
ss

io
n

✱✱✱

✱✱✱✱

✱✱

Health
y 

Asth
m

a 

Lung C
ancer

0

1

2

3

4
Lo

g2
 N

or
m

al
iz

ed
 E

xp
re

ss
io

n
✱✱✱✱

✱✱✱✱

Health
y 

Asth
m

a 

Lung C
ancer

0

1

2

3

4

Lo
g2

 N
or

m
al

iz
ed

 E
xp

re
ss

io
n

✱✱

✱✱✱✱

BCL3

A B C

D E F

G

CD44

PPARDPOSTN LUM

MYC

FOSB

STAT1H

 

Figure 7. Boxplots for the differentially expressed genes in severe asthma and lung cancer from 
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STAT1 (Mann −Whitney test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 

The other genes, CD44, PPARD, and STAT1, were also observed to be highly upreg-

ulated in lung cancer samples compared to asthmatics and healthy controls (Figure 7A–

H). In addition to POSTN (a known prognostic marker for asthma), FOSB can be observed 
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(Mann −Whitney test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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The other genes, CD44, PPARD, and STAT1, were also observed to be highly upregu-
lated in lung cancer samples compared to asthmatics and healthy controls (Figure 7A–H).
In addition to POSTN (a known prognostic marker for asthma), FOSB can be observed to
be upregulated in asthmatics (Figure 7G).

As CD44 is known to occur in different isoforms, analysis for a specific probe for each
variant was performed. Supplementary Data S6 lists the probe ID and descriptions for
targets. However, from the datasets studied here, the expression for only four probes could
be retrieved. Supplementary Figure S1 shows that all four probes show an increase in
expression in Lung cancer samples.

3.4. In Vivo Validation Using Archival Biopsies by RT-qPCR

To validate the findings of the microarray analysis, the six genes identified (PPARD,
BCL3, CD44, FOSB, MYC, and STAT1), along with POSTN and LUM, were assessed using
RT-qPCR in 11 archival tissue biopsies from four severe asthmatics (AS), three asthmatics
who developed lung cancer (AC), and four lung cancer (LC) patients. The RT-qPCR data
revealed a significant increase in gene expression levels for BCL3, LUM, PPARD, POSTN,
and STAT1 among the LC group (Supplementary Table S5) and a trend toward an increase
in AC compared to the AS group. CD44, FOSB, and MYC were highly upregulated in LC
compared to the AS and AC groups, as predicted (Supplementary Table S5). The primers
used to analyze CD44 expression were designed in a common exon region shared by all
the isoforms or transcript variants. The data suggests that the DEGs identified by the
microarray study were consistent with the qPCR analysis for tissue biopsies (Figure 8A–H).
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Figure 8. Boxplots for the differentially expressed genes among severe asthmatics, lung cancer and
asthmatics with lung cancer development validated by RT-qPCR analysis in archival tissue biopsies.
(A) BCL3, (B) CD44, (C) PPARD, (D) POSTN, (E) LUM, (F) MYC, (G) FOSB, and (H) STAT1 (Mann
−Whitney test, significance * p < 0.05, ** p < 0.01, *** p < 0.001).
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3.5. Relative Gene Expression of the Eight Genes in Plasma Samples

The relative gene expression for the plasma samples collected from severe asthmatics
and lung cancer patients was tested for the eight genes predicted in silico. The fold change
in expression showed significant upregulation for the genes BCL3, CD44, PPARD, POSTN,
and STAT1 in lung cancer patients compared to asthmatics (Figure 9A–C,F). In the case
of FOSB (Figure 9E), the plasma showed a variation from the tissue biopsy, whereby the
relative expression of this gene was higher in lung cancer patients than in asthmatics
(Supplementary Table S6).
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Figure 9. Boxplots for the differential expression of genes identified in silico in plasma samples
collected from asthmatics and lung cancer patients. (A) BCL3, (B) CD44, (C) PPARD, (D) POSTN,
(E) FOSB, and (F) STAT1 (Mann −Whitney test, significance * p < 0.05, *** p < 0.001, **** p < 0.0001,
ns—not significant).

3.6. In Vivo Validation Using Independent NSCLC Patient Cohort

The survival pattern for the genes POSTN, LUM, BCL3, PPARD, CD44, MYC, FOSB,
and STAT1 in an independent NSCLC patient cohort of 1925 samples was analyzed using
the KM plot [19], as described in Section 2. The survival curve shown in Figure 10 reveals
that a higher expression of the genes POSTN, PPARD, BCL3, and MYC denotes poor
survival among lung cancer patients. In contrast, for the genes LUM and FOSB, lower
expression in lung cancer patients denote poor survival (Figure 10). CD44 and STAT1
showed a nonsignificant log p-rank value (Supplementary Table S7). However, analysis for
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probes specific for variants for CD44 showed no variation in survival plots where increase
in expression did not benefit overall survival (Supplementary Figure S2).

1 
 

 
Figure 10. In vivo validation for the effect of eight genes on overall survival in lung cancer patients
using KM Plot. (A) POSTN, (B) LUM, (C) BCL3, (D) PPARD, (E) CD44, (F) MYC, (G) FOSB, and
(H) STAT1. HR = Hazard ratio.

In addition, the effect of sex, smoking, and cancer stage on the survival pattern
for each gene was performed. Interestingly, a significant effect on the gene expression
and survival pattern was observed in the case of BCL3, PPARD, and MYC, where poorer
survival was observed among males and smokers either in stage 1 or 2 (Supplementary
Table S9 and Supplementary Figure S3). On the other hand, decreased mortality was
observed with an increase in the expression for the genes POSTN, FOSB, and LUM, mainly
in males diagnosed with early-stage lung cancer either 1 or 2 (Supplementary Table S9 and
Supplementary Figure S4).

3.7. In Vitro Validation Using Asthmatic and Lung Cancer Cell Lines

The differential expression pattern for the eight genes identified in silico was examined
in asthmatic and lung cancer cell lines (Supplementary Table S8). The fold changes in gene
expression in lung cancer relative to asthmatic cell lines were in line with the in silico
prediction for the genes BCL3, CD44, PPARD, POSTN, FOSB, and STAT1 (Figure 11). All
the genes except POSTN showed higher expression in lung cancer cells (A549, SK-Lu-1,
and Calu3). Asthmatic cells (DHBE, S13, and S14) displayed higher POSTN expression, as
expected (Figure 11D).
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Figure 11. Boxplots for the differential expression of the genes identified in silico in different asthmatic
and lung cancer cell lines. (A) BCL3, (B) CD44, (C) PPARD, (D) POSTN, (E) FOSB, and (F) STAT1
(Mann −Whitney test, significance * p < 0.05, ** p < 0.01, ns—not significant).

4. Discussion

The present study aimed to identify genes that putatively indicate the early transition
of the severe inflammatory state observed in severe asthmatic cases, which may also be
involved in the early progression of lung cancer.

In silico analysis using the gene set enrichment analysis (GSEA) of asthmatic and lung
cancer microarray datasets revealed essential pathways in their respective pathophysiology.
Interestingly, both datasets showed enrichment of transcripts that contribute to tissue and
structure morphogenesis.

One of the common pathways in asthma is the humoral immune response, a fact
supported by different studies related to the role of Th2 immunity in the immunopathology
of asthma, which influences the severity of the condition [34]. In addition, the results
identified pathways associated with asthma pathophysiology, including interferon sig-
naling, which is involved in the antiviral host response, the type 2 immune response for
environmental triggers such as allergens, and stress, which in turn disrupts the bronchial
epithelium, which activates the wound-healing response [35,36].

In the lung cancer dataset, pathways related to the response to stress and DNA repair
were enriched, which is supported by studies indicating the association of a somatic
and germline mutation in a DNA-repair gene with lung adenocarcinoma among 2.5% of
the cancer cases tested [37–39]. The intersection of the pathways using both GSEA and
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hypergeometric analysis (implemented using Metascape) identified 14 important pathways
for the severe asthma group, including cell adhesion and epithelial cell proliferation. A
similar comparison identified the wound-healing pathway in lung cancer.

The common key pathways upregulated in both functional clusters for asthma and
lung cancer datasets were events related to cell adhesion, extracellular matrix organization,
and growth factor response. These mechanisms are important in the pathobiology of
both diseases. Hence, the genes functioning among these clusters overrepresented in both
datasets were selected to determine molecular markers at the intersection of the transition
from severe asthma to lung cancer.

The expression of eight genes we retrieved from both datasets (BCL3, CD44, FOSB,
LUM, MYC, PPARD, POSTN, and STAT1) was confirmed by the differential expression in
FFPE biopsies from patients. Interestingly, the histopathology of asthma, lung cancer, and
asthma with lung cancer suggests that asthma and lung cancer exhibit similar molecular
mechanisms and pathways for the progression and/or increased risk of lung cancer in
severe asthma. This association was recently shown to be the case using epidemiological
data linking the two diseases [14,40].

We validated in silico data at multiple levels using FFPE, plasma, and cell lines from
both severe asthmatics and lung cancer patients. The gene expression pattern of the eight
genes in the tissue biopsies clearly ascertains the role of these genes in a specific disease
state as implicated in the functional pathway analysis. The severe inflammatory state
among the severe asthmatics can initiate the pathobiological events that result in lung
cancer [41]. The results obtained from this study showed that the genes differentially
expressed in both the lung cancer and the asthma datasets from in silico analysis were
differentially expressed at the tissue and cellular levels, as indicated by the validation
results using cell lines and plasma samples, which echoed the in silico observations.

The differential expression pattern seems to be implicated in both asthma and lung
cancer, suggesting a possible common molecular mechanism between the two diseases. In
particular, the genes BCL3, CD44, PPARD, and STAT1 showed an increase in expression
among the mixed group (asthmatics diagnosed with lung cancer) and lung cancer samples.

BCL3, an IkB member, interferes with the heterodimerization of NF-κB subunits,
thereby inhibiting the transcription of proinflammatory genes. On the other hand, higher
mRNA and protein expression of BCL3 is associated with overall survival among NSCLC
patients in stages 1 and 2 [42].

STAT1 is a known transcription factor with roles in both asthma and lung cancer
pathogenesis. STAT1 is activated by IL-4, IL-13, and IFNγ and forms either a homodimer
or a heterodimer with other STAT proteins to induce the expression of genes related to
apoptosis and immune-suppressive cytokines [43–45]. Among the STATs, STAT1 mRNA
expression was observed to be high in NSCLC compared to normal tissue [46], and it is
known to exhibit antitumor activity. The dual nature of STAT1 as a tumor suppressor
and tumor promoter has been addressed in many studies, but no clear mechanistic details
have been provided to elucidate the duality [47]. A few reports have postulated that the
isoforms of STAT1 could be differentially activated owing to either suppression or tumor
progression [48,49]. Some studies have mentioned that the expression levels of STAT1 and
pSTAT1 in specific cell types could be prognostic markers for cancer progression [50,51].

PPARD is also involved in inhibiting the transcription of NF-κB target genes by
disrupting the heterodimer formation of NF-κB subunits. The protumorigenic capabilities
of PPARD were clearly described by Wagner and Wagner (2020). As BCL3 and PPARD
are known to be associated with NF-κB [52,53] and have functional roles in cell adhesion,
inflammation, proliferation, and cancer progression, they could be key modulators in the
pathological changes at sites of tissue injury. A study showed that STAT1 interacts with
PPARγ in the induction of CD36 expression. STAT1 acetylation, which is controlled by
p300, is required for STAT1’s interaction with PPARγ [54].

POSTN (a known biomarker for asthma) was upregulated in the mixed group com-
pared to asthma and lung cancer samples. LUM was upregulated in the lung cancer dataset
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alone, as seen in the case of microarray analysis. Hence, it was not considered as a differen-
tial marker between lung cancer and asthma. Notably, POSTN, an important biomarker
for Th2-type asthma and a negative prognostic biomarker for lung cancer [55–57], was
observed to be upregulated in the mixed group. Periostin is an extracellular matrix protein
and is known to be involved in the epithelial–mesenchymal transition, a key mechanism in
the initial stages of cancer pathogenesis [56]. Moreover, the expression levels decreased
among the lung cancer samples compared to the mixed group, indicating its probable
involvement in the early development of lung cancer from an asthmatic state. Similarly,
BCL3, CD44, PPARD, and STAT1 were upregulated in both the mixed group and lung cancer
samples; thus, they may also be involved in the transition. Lumican, also an extracellular
matrix protein, is involved in cell adhesion and migration, similar to periostin [58].

The survival analysis for the eight genes was assessed in KM Plotter among the
lung cancer samples, which re-emphasized the fact that a higher expression of POSTN,
BCL3, PPARD, and MYC could be considered a marker for poor survival among lung
cancer samples. No correlation for the survival rate was observed in the case of STAT1, as
demonstrated in other studies [46].

Taken together, the molecular pathways and genes identified in this study are known to
be involved in various pathobiological events in severe asthma and lung cancer. Collectively,
the literature reveals that overlapping events in both disease conditions are due to the
common site of injury: the airway and bronchial epithelium. Although the starting point
of lung cancer may not be the asthmatic injury of the lungs, the incidence of lung cancer
among severe asthmatics is due to the state of chronic inflammation of the lung [59].
However, if the molecular markers identified in the study are indicative of a transition from
a severe inflammatory state of the lung affected with asthma toward an early lung cancer
condition, they could be used to screen patients for early stages of lung cancer.

In summary, the key molecular targets identified from this study can be potential
predictors of early stages of lung cancer, as their evident role in severe asthma suggests
an inflammation-induced cancer progression. The study used publicly available data to
identify putative biomarkers, which were then validated using asthma and lung cancer
tissue. Similarly, the validation in asthmatic and lung cancer cell lines reflected the observa-
tions from our in silico predictions. The differential expression patterns for the identified
genes in plasma samples obtained from severe asthma and lung cancer patients further
validate the findings. However, the results from this study warrant further investigation
into the molecular mechanisms of the four genes (PPARD, STAT1, BCL3, and POSTN) in
both asthma and lung cancer cell lines, independently and in combination. The results
from these investigations may reproduce the findings from the present study and help to
identify diagnostic and therapeutic targets for the early stages of lung cancer.

Study Limitations and Justification

The main limitation of this study was the small sample size; however, this was
circumvented by the large number of asthma and lung cancer samples in the in silico
analysis that was used for the discovery of key targets linked to both asthma and lung
cancer. Validation of the findings was conducted at multiple levels in plasma samples,
in tissue biopsies, and in vitro using asthma and lung cancer cell lines. Considering that
both in vitro and in vivo validation supported the findings from the in silico data, the
genes identified may act as putative biomarkers for early lung cancer. However, this was a
proof-of-concept study, and the findings require validation on a larger cohort to ascertain
the differential expression of the seven transcripts. In addition, the findings from this study
warrant further functional studies to characterize the role of the genes identified in the
pathogenesis of asthma and lung cancer.

5. Conclusions

This study identified genes and pathways distinctly regulated in severe asthma and
lung cancer using gene set enrichment analysis. The different etiologies of cancer as a
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genetic disease, and asthma caused by environmental factors, are reflected in their distinct
pathways. In line with the hallmarks of cancer, receptor tyrosine kinase signaling wound
healing and growth factors are activated in lung cancer and may be responsible for an
increased risk of lung cancer in severe asthma. This study also identified unique pathways
related to asthma, including adhesion, extracellular matrix, and epithelial cell proliferation.
Analysis of the enriched genes derived from the pathway analysis identified seven genes
present in both asthma and lung cancer: BCL3, POSTN, PPARD, STAT1, MYC, CD44, and
FOSB. The validation of the genes using archival patient tissue biopsies, cell lines, and liquid
biopsy samples revealed significant differential expression between asthma and lung cancer
patients, providing possible insights into some of the molecular mechanisms involved in
the pathogenesis between asthma and lung cancer. Subsequently, these transcripts may
be potentially used as markers for early lung cancer and could be useful in preventing the
progression to later stages of lung cancer.
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