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Hierarchical classical metastability in an open quantum East model
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We study in detail an open quantum generalization of a classical kinetically constrained model—the East
model—known to exhibit slow glassy dynamics stemming from a complex hierarchy of metastable states with
distinct lifetimes. Using the recently introduced theory of classical metastability for open quantum systems, we
show that the driven open quantum East model features a hierarchy of classical metastabilities at low temperature
and weak driving field. We find that the effective long-time description of its dynamics not only is classical, but
shares many properties with the classical East model, such as obeying an effective detailed balance condition
and lacking static interactions between excitations, but with this occurring within a modified set of metastable
phases which are coherent, and with an effective temperature that is dependent on the coherent drive.
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I. INTRODUCTION

With a strong focus of current research on nonequilibrium
physics, open quantum systems have come to the fore as a
natural platform for studying the associated phenomena: both
through the natural occurrence of nonequilibrium behavior
and through their use in quantum simulation based on, e.g.,
Rydberg atoms and optical lattices [1–7]. This experimental
prominence has been accompanied by the development of
varied numerical approaches and analytical techniques, such
as tensor networks [8], Monte Carlo methods [9–12], field the-
oretical studies [13–15], other variational approaches [16–18],
and machine learning [19–23].

Despite the change implicitly present in the background
of all nonequilibrium phenomena, most prior studies on open
quantum systems have focused on their nonequilibrium steady
states, with phase diagrams seeing a particular focus [24–30].
Classical phase transitions in the steady state, a distinctly
time-independent phenomenon, are nevertheless accompanied
by a critical slowing of the systems dynamics, with diverging
timescales at the transition parameters. For parameters near
the transition, or finite system sizes, this slowing results in
distinct timescales in the system dynamics, lending a rich
structure to the time evolution in such problems: this is com-
monly referred to as metastability. With a deep theory for
classical Markovian processes [31–35], recent work has been
done to extend this to open quantum systems [36–38].

While metastability always arises as a consequence of
proximity to phase transitions [36,39,40], it can occur without
any significant change in the stationary state at all, through
the presence of constraints in the dynamics. In classical ki-
netically constrained models [41–46], the evolution of system

components is conditioned on the state of other components,
which results in glassy dynamics with dynamical heterogene-
ity, i.e., excitations localized in both space and time, and
a hierarchy of relaxation timescales in observable averages
and correlations. This complex dynamics corresponds to the
occurrence of metastability despite the potential absence of
phase transitions in the stationary state. Quantum adaptions
of these models have been developed through the concept of
Rokhsar-Kivelson points [47,48], leading to quasi-many-body
localization behavior in closed quantum systems [49–51]. Re-
cent open quantum generalizations [52–54] are also known
to display dynamical heterogeneity, with recent experimental
work identifying similar constrained dynamics [55–57]. Here
we uncover its origin in the open quantum East model intro-
duced in Ref. [52] by utilizing the non-Hermitian perturbation
theory [58] and the recently formulated theory of classical
metastability in Markovian open quantum systems [36–38].

The complex relaxation is a consequence of an emerging
hierarchy of metastabilities: multiple timescales when average
system states appear stationary, although different from the
true, usually unique, stationary state. This is visible in the
spectrum of the master operator governing the dynamics as
large separations between real parts of its eigenvalues; see
Fig. 1(a). We find that metastabilities are effectively classi-
cal, with any density matrix after sufficiently long evolution
being a probabilistic mixture of distinct metastable phases;
see Fig. 1(b). Analogously to the classical East model, these
metastable phases correspond to localized excitations but in
a coherent basis and their number increases with system
size, which is also corroborated by the non-Hermitian per-
turbation theory analysis, which identifies the second-order
dephasing as the mechanism responsible for the emergence
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FIG. 1. Metastable. dynamics in the open quantum East model:
(a) Spectrum of the open quantum East model of N = 3 spins with a
large separation −λR

4 � −λR
5 [values shown in the log scale, λ1 = 0

not visible; degeneracy λR
2 = λR

3 due to the translation symmetry; cf.
Fig. 3(a)]. (b) Average site magnetization for random initial states.
Color represents time in the log scale, shown on the right. After the
initial relaxation on the metastable timescale τ ′ (yellow-green) states
approach a limited region of values captured by the blue simplex of
the magnetization with vertices corresponding to metastable phases
(blue dots), before the final relaxation until the relaxation time τ

(blue-purple) towards the unique stationary state (red dot); cf. Fig. 3.
(c), (d) Quantum jump Monte Carlo (QJMC) trajectories for N = 6
spins, for the noninteracting unconstrained case (c), and for fully
constrained case (d) with pronounced dynamical heterogeneity [color
indicates the number of jumps J−

j , Eq. (6b), for jth spin, grouped in
500κt time bins]. Parameters: (a, b) �/κ = 0.1 and γ /κ = 0.0001,
and p = 0.999, (c), (d) �/κ = 0.12 and γ /κ = 0.0096 with p = 0,
p = 1, respectively. See Appendixes A 1 and A 2 for the numerical
methods.

of fourth-order classical dynamics with respect to the driving
field amplitude. Importantly, these phases arise not only in
average dynamics but already in individual realizations of an
experimental run or its numerical simulation: when coarse-
grained in time over periods comparable to the metastable
timescales, emission records jump sharply between the rates
of the corresponding metastable phases leading to dynamical
heterogeneity; see Fig. 1(d) [cf. a trajectory without metasta-
bility in Fig. 1(c)]. Furthermore, dynamics of coarse-grained
emission records is determined by the effectively classical
long-time dynamics of the average system state, which shares
further properties with the classical East model: detailed
balance at an effective temperature dependent both on the
temperature and the driving field, and the lack of interactions
between excitation in metastable phases. Additionally, we
observe the emergence of an effective metastability for the

emission activity, which is not accompanied by a separation in
the master operator spectrum, as it appears before metastable
regimes for the system states.

This paper is organized as follows. We begin by introduc-
ing open quantum East model [52] in Sec. II. We verify the
presence of a spectral gaps inducing a hierarchy of metastabil-
ities in Sec. III A and discuss properties of the corresponding
metastable phases in Sec. III B. We then investigate the struc-
ture of the classical long-time dynamics with focus on both
the dynamics of the average system state in Secs. IV A and the
dynamics of quantum trajectories in Secs. IV B and IV B 4, as
well as the emergence of effective metastability in Sec. IV C.
Code for the numerical results is available at Ref. [59].

II. OPEN QUANTUM EAST MODEL

We now discuss the model we will consider in this paper,
the open quantum East model [52,53], a generalization of
the classical kinetically constrained East model [41] studied
in relation to glass physics [43,45,46,60,61]. Such classical
systems often exhibit multiple stages of relaxation on different
timescales, indicative of metastability, and we expect such
behavior to occur in their quantum counterparts.

A. Model

We consider dynamics of N spins-1/2 governed by a Lind-
blad master operator as (see Refs. [62–64])

d

dt
ρ(t ) = L[ρ(t )], (1)

where ρ(t ) is the density matrix describing the system state at
time t and the Lindblad operator L is given by

L(ρ) =
∑

j=1,...,N
α=−,+

(
−i[Hj, ρ] + Jα

j ρJα†
j − 1

2

{
Jα†

j Jα
j , ρ
})

, (2)

with Hj being the Hamiltonian and J−
j and J+

j the jump oper-
ators that act locally on jth spin, constrained on the state of
the preceding spin (see below). These jump operators describe
interactions between the system and its surrounding environ-
ment, which, if associated to emissions of energy quanta, can
be detected via continuous measurements [63], e.g., by count-
ing photons emitted by atoms coupled to the electromagnetic
vacuum [52–54,65].

For N = 1 spin, there are no constraints, and the dynamics
is due to the interplay of the coherent field � and thermal
fluctuations,

H = � Sx, (3a)

J− = √
κ S−, (3b)

J+ = √
γ S+, (3c)

where Sx and S∓ = Sx ∓ iSy are the spin operators that can be
associated with the photon emission and absorption, respec-
tively. This dynamics features a unique stationary state [52],

ρss,1 =
⎡
⎣ �2+κ (γ+κ )

(γ+κ )2+2�2 −i (γ−κ )�
(γ+κ )2+2�2

i (γ−κ )�
(γ+κ )2+2�2

�2+γ (γ+κ )
(γ+κ )2+2�2

⎤
⎦, (4)
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expressed in the basis |0〉, |1〉. The eigenstates |u〉 and |e〉
of ρss,1 = λu |u〉〈u| + λe |e〉〈e|, approach |0〉 and |1〉, as the
coherent field tends to 0, and we refer to them as the unexcited
and the excited states, respectively (see Appendix B).

The many-body model [52,54] with N � 2, in analogy to
the classical East model, is constructed using a constraint
operator

F = (1 − p)1 + p |e〉〈e| . (5)

The constraint, parametrized by p, is absent when p = 0, for
p = 1 is referred as hard, and for 0 � p < 1 as soft. The
dynamics in Eq. (2) is then defined as [cf. Eq. (3)]

Hj = � F 2
j−1 Sx

j , (6a)

J−
j = √

κ Fj−1 S−
j , (6b)

J+
j = √

γ Fj−1 S+
j , (6c)

where the subscript j denotes the operators acting on jth spin,
and we assume periodic boundary conditions, i.e., 0 �→ N in
operator indices.

For p < 1, the stationary state of the dynamics is unique
and given by a product state of the single-spin stationary
state, ρ⊗N

ss,1 [cf. Eq. (4)]. This follows directly from the con-
struction of the dynamics, as the constraint commutes with
the stationary state of a single spin, and as such, the state
of a neighboring spin is acted on as if the master operator
were that of a noninteracting system, but with κ , γ and �

rescaled by 1 − pλu. For the hard constraint, dynamics of the
jth spin occurs only if the state of ( j − 1)th spin features
some probability of being in the excited state |e〉. Therefore,
the so-called dark state (|u〉〈u|)⊗N is disconnected from the
dynamics and thus stationary, as no constraint is fulfilled [cf.
Fig. 1(d) and see Appendix B].

As a consequence of its noninteracting structure, the sta-
tionary state features no static transitions, and cumulants of
all system observables remain analytic. Nevertheless, at low
temperatures (γ /κ � 1) and small values of coherent field
(|�|/κ � 1), the dynamics manifests a significant change as
p tends to 1, with jumps in trajectories becoming localized
both spatially and temporally [53], thus leading to dynamical
heterogeneity [see Figs. 1(c) and 1(d)]. In this work, we unfold
this dynamical phenomenon using the approach for classical
metastability in open quantum systems recently introduced in
Ref. [38]. In order to motivate the use of this approach, we
first discuss the approach via a mean-field approximation and
results from the non-Hermitian perturbation theory.

B. Mean-field theory

A common informative treatment of open many-body
quantum systems is mean-field theory and its extensions
[40,66], often resulting in the prediction of multiple stationary
states [15,65]. These stationary states can often be identified
with metastable phases in the finite-size system, with the
mean field describing short-time evolution into the metastable
manifold [37,39,40], and long-time dynamics neglected due
to the lack of correlations acting as noise on this set of states
[40]. While the stationary state of the quantum (and classi-
cal) East model is homogeneous, the dynamical heterogeneity
of trajectories suggests the long-time dynamics takes place

between states which are not translation-symmetric and thus
cannot be reproduced in the homogeneous mean-field ansatz
(1/2 + xSx + ySy + zSz )⊗N . Indeed, it is known that mean
field is ineffective in the classical case (� = 0) as the removal
of spatial dependence in the state causes the constraint’s direc-
tionality to be lost. This will also be the case in the quantum
regime (� �= 0), unless we allow for the spacial dependence
by considering a tensor product of different single-state den-
sity matrices, ⊗N

j=1(1/2 + x jSx + y jSy + z jSz ). In this case,
however, the number of parameters is reduced from 4N − 1
merely to 3N , and at the price of solving nonlinear (quadratic)
differential equations. As such, we forgo the mean-field
treatment.

C. Perturbation theory

The dynamical heterogeneity is present in the East model
dynamics at low temperatures (γ /κ � 1), small values of
coherent field (|�|/κ � 1), and constraint close to hard (p =
1 − ε ≈ 1, equivalent to |ε| � 1). Such separation of scale in
the dynamical parameters motivates the use of non-Hermitian
perturbation theory [58] for the dynamics with jumps J−

j
featuring the hard constraint,

J (0)
j = √

κ|1〉〈1| j−1 |0〉〈1| j, (7)

perturbed with respect to the low temperature γ , the weak co-
herent field, �, and the soft constraint, ε, to the dynamics with
the Hamiltonian and jumps operators in Eq. (6) [cf. Eq. (5)].
In Appendix C we derive the first-, second-, and third-order
corrections to the dynamics of the system consisting of any
number of spins, and also discuss the finite-size effects. Here
we summarize those results, with the further discussion in the
context of findings of the approach from Ref. [38] in the later
sections.

The stationary states of jumps J (0)
j [Eq. (7)] correspond

to the states which feature no excitations, |0 . . . 0〉, or only
isolated excitations, | . . . 010 . . .〉, as such states are dark to
jump operators J (0)

j , i.e., the action of the jump operators is 0
on these states. This further leads to all coherences between
such states being stationary, so that they form a decoherence
free subspace (DFS) [67–69] (see Appendix C 1). Upon per-
turbing, this DFS becomes a quantum metastable manifold
[36] and undergoes slow dynamics at the timescales we now
discuss.

Low temperature. For γ /κ � 1, already in the first order,
the perturbative dynamics proportional to γ leads to the decay
of the dark DFS towards states with excitations followed at
least by two unexcited sites, i.e., |0 . . . 0〉, | . . . 00100 . . .〉,
with no coherences being stationary any longer. Therefore,
the metastable manifold is classical in the perturbative regime
of low temperatures. Furthermore, in higher orders of γ ,
nondecaying excitations are separated by a distance growing
exponentially with the order of the corrections. Ultimately,
this leads to only two states being stationary: the state with
no excitations, |0 . . . 0〉, and the uniform state with a single
excitation, N−1∑N

j=1 |0 . . . 01 j0 . . . 0〉, which approximate, in
the zero order of γ , the two stationary states of dynamics with
hard constraint. Higher-order corrections in the structure are
also recovered by the perturbation theory (see Appendix C 2).
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Soft constraint. Softening the constraint in the regime
|ε| � 1, with ε = 1 − p, leads to dynamics featuring removal
of isolated excitations with the rate proportional to κε2 (see
Appendix C 3 a). This leads to decay of coherences and facil-
itates a unique stationary state, |0 . . . 0〉, which approximates
in the zero order the unique stationary state at p < 1. We note
that even for finite values of temperature and coherent field, a
perturbative dynamics between two disjoint stationary states
takes place in the limit |ε| � 1 (see Appendix C 3 b).

Weak coherent field. Here the perturbation in � intro-
duces both the Hamiltonian and the change of constraints [cf.
Eq. (6)]. In Appendix C 4, we show there are no odd-order
corrections in � to the dynamics. Furthermore, the second-
order corrections correspond to dephasing of all coherences
in the DFS with rates proportional to �2/κ , while probabilis-
tic mixtures of the states of none, |0 . . . 0〉, or only isolated
excitations, | . . . 010 . . .〉, remain stationary. Meanwhile, the
first-order corrections to the state structure introduce the ro-
tation of |0〉 and |1〉 towards coherent states |u〉 and |e〉, with
coefficients proportional to �/κ . Therefore, also in this case
we conclude that the metastable manifold is classical, but with
respect to a now-coherent basis, which we expect to coincide
with |u〉 and |e〉. Although the classical metastable manifold
is analogous to the case of the perturbative dynamics due to
γ , we have that the dynamics of excitations, e.g., the removal
of one of a pair of excitations separated just by a single neigh-
bor, can take place at earliest in the fourth-order, with rates
proportional to �4/κ3. Indeed, the stationary state [Eq. (4)]
with probabilities λu = 1 − λe = 1 − γ /κ − 16�4/κ4 + · · ·
(see Appendix B) suggests that the coherent field in the fourth
order may play an analogous role to the temperature in the
coherent basis |u〉, |e〉. Because of the complexity of the
fourth-order non-Hermitian perturbation theory, we investi-
gate those hypotheses using instead the approach of Ref. [38].

Open boundary conditions. Interestingly, in the case of
hard constraint and open boundary conditions, the dark
state (|u〉〈u|)⊗N and N states with isolated excitations
(|u〉〈u|)⊗( j−1) ⊗ |e〉〈e| ⊗ ρ

⊗(N− j)
ss,1 are stationary. Furthermore,

in the limit of small temperature and weak coherent field, the
soft constraint connects single excitations mostly to the dark
state, but not to one other, and the dark state has a significantly
longer lifetime (see Appendix D), so that the facilitated dy-
namics features excitations localized in both time and space,
which is characteristic of the dynamical heterogeneity.

Finally, we note that the perturbations in the temperature,
the coherent field, or softness of the constraint, are local [cf.
Eq. (6)]. Therefore, the timescales of the resulting pertur-
bative dynamics may be proportional to the system size, in
which case the validity of the perturbation theory is limited to
γ N � κ , |�|N � κ , and |1 − p|N � κ (as κ/2 is the slowest
eigenvalue of the dynamics with J− at the hard constraint);
see, e.g., Appendix C 3 b. This size-dependent regime is not
an issue for the numerical methods of Ref. [38], which we
exploit in the rest of the paper.

III. CLASSICAL METASTABLE MANIFOLD

We now investigate the presence and character of metasta-
bility in the open quantum East model using the theory
of metastability in open quantum systems introduced in
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FIG. 2. Separation in master operator spectrum: The ratios of the
master operator eigenvalues (the real parts) demonstrate two gaps in
the spectrum at (a) m = 7 and (b) m = 10 for N = 6 spins, which
shows a hierarchy of metastabilities in the open quantum East model
(note the difference in scale of vertical axes). Softness p = 0.99.
Sampling: (a) (51 × 51) points and (b) (51 × 26) points, linearly
spaced for γ /κ and (�/κ )2.

Refs. [36,38]. For metastability in classical stochastic dynam-
ics, see Refs. [31–35].

A. Hierarchy of metastabilities

Since the operator in Eq. (2) defining the time evolution of
the average state ρ(t ) is linear, the timescales of the dynamics
are determined by its eigenvalues through the expansion

ρ(t ) = etL[ρ(0)] = ρss +
∑
k�2

etλk ckRk, (8)

where Rk is the eigenmode corresponding to the eigenvalue
λk , and the coefficient ck = Tr[Lkρ(0)], with Lk being the
eigenmode of L† with the same eigenvalue, normalized such
that Tr(L†

k Rl ) = δkl . The real parts of eigenvalues must sat-
isfy λR

k � 0, where zero eigenvalues correspond to stationary
states [70,71], and we order the eigenvalues by decreasing
real part, so that λ1 = 0. For a unique stationary state (i.e.,
p < 1; see Sec. II A), we have R1 = ρss and L1 = 1 (from
trace preservation), while τ = −1/λR

2 is the timescale of the
final relaxation.

In the rest of this work, we focus on the dynamics of the
open quantum East model with N = 6 spins and softness p =
0.99. Here, in the presence of small temperature and weak
coherent field, we observe a large separation in the spectrum
between λR

m and λR
m+1 for m = 7 [see Fig. 2(a)], and, at smaller

values of the temperature and the field, another separation for
m = 10 [see Fig. 2(b)]. A large enough separation in the real
part of the spectrum is known to correspond to the occurrence
of metastability [36], since for time −1/λR

m+1 � t � −1/λR
m

any system state can be approximated as stationary,

ρ(t ) = ρss +
m∑

k=2

ckRk + · · · , (9)

by neglecting the presence of the fast modes, k > m, and the
decay of slow modes, 2 � k � m [cf. Eq. (8)]. Such states are
called metastable and the corresponding time regime referred
to as the metastable regime with the relaxation timescale
−1/λR

m+1. In particular, at intermediate values of the field and
temperature, we have a hierarchy of two metastable regimes
in the open quantum East model, and a hierarchy of the re-
laxation timescales given by −1/λR

11, −1/λR
8 and −1/λR

2 . A
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FIG. 3. Example of classical metastable manifold: (a) The
metastable manifold in the open quantum East model of N = 3 spins
with periodic boundary conditions, illustrated by the coefficients
(c2, c3, c4) [cf. Eq. (9)] of uniformly sampled pure initial states
(small green dots). The blue lines show the simplex of m = N + 1 =
4 metastable phases (found at the vertices). (b) The long-time evolu-
tion inside the metastable manifold towards the stationary state [red
circle corresponding to (0,0,0) coefficients] for initial states shown in
Fig. 1(b). Softness p = 0.999 and other parameters as in Fig. 1(a).

similar hierarchy of metastabilities can be observed at other
system sizes, which, as we will see, is a consequence of the
classical and local structure of the manifold of metastable
states and of the dynamics within.

B. Hierarchy of metastable phases

The manifold of metastable states is fully characterized by
linear combinations of the stationary state ρss and the low-
lying modes R2, . . . , Rm with coefficients (c2, . . . , cm) [cf.
Eq. (9)]. However, the modes do not represent physical states
of the system [as Tr(Rk ) = 0 for k > 2 from orthogonality of
the modes]. Nevertheless, we will show that the structure of
the metastable manifolds in the open quantum East model is
classical, with metastable states approximated as probabilistic
mixtures of m distinct metastable phases with localized exci-
tations.

1. Classicality

For the system with N = 3 spins, a single gap at m = 4
is present in the spectrum, so that the metastable manifold
can be sampled by plotting the coefficients for random pure
initial states as in Fig. 3(a). We observe that the metastable
manifold is classical, that is, approximated by a simplex,
with coefficients of any metastable state approximated by a
probabilistic mixture of the coefficients corresponding to the
simplex vertices, which describe states with a single or no
excitation [cf. Fig. 1(b)]. Since for m > 4, as relevant for
larger system sizes, such a visual verification of metastable
manifold classicality is not possible, we instead turn to the
recently proposed approach from Ref. [38], which we sketch
now.

For a set of m candidate states ρ1, . . . ., ρm, the correspond-
ing metastable states ρss +∑m

k=2 c(l )
k Rk = ρ̃l , l = 1, . . . , m,

can be considered as a physical basis replacing the low-lying
modes, so that [cf. Eq. (9)]

ρ(t ) =
m∑

l=1

p̃l ρ̃l + · · · . (10)

0.00 0.02γ/κ
0.000

0.008

(Ω
/κ

)4

Cm=7

10−4

10−2

0.00 0.02γ/κ
0.000

0.002

(Ω
/κ

)4

Cm=10

10−4

10−2
(a) (b)

FIG. 4. Accuracy of classical approximation: An upper bound
on the average distance (on the maximal distance when multiplied
by 2N−1) of barycentric coordinates to probability distributions for:
(a) m = 7 and (b) m = 10. We consider L1 norm, in which probabil-
ity distributions are normalized; see Appendix A 3 for the definition
of the bound. Softness p = 0.99 and size N = 6. Data are grayed
out for parameters where the relevant gaps are not present in the
spectrum of master operator, while white dashed lines indicate that
for smaller parameters in panel (a) the gap at m = 10 is present, while
in panel (b) the gap at m = 7 is absent (cf. Fig. 2).

Here p̃l =∑m
k=1(C−1)lkck with (C)kl = c(l )

k , are the barycen-
tric coordinates with respect to the simplex of ρ̃1,..., ρ̃m

in the coefficient space. When the distance of barycentric
coordinates from probability distributions is negligible, the
metastable state can be approximated as a probabilistic mix-
ture of ρ̃1,..., ρ̃m. If this is true for any metastable state, the
metastable manifold is classical and we refer to ρ̃1,..., ρ̃m as
metastable phases.

For the range of temperatures and field amplitudes corre-
sponding to presence of gaps in the spectrum of the master
operators (cf. Fig. 2), using a version of the algorithm from
Ref. [38] (see Appendix A 3 for details), we found sets of m
states for which both the average distance and the maximal
distance of barycentric coordinates to probability distributions
are negligible; see Fig. 4. In particular, Fig. 4(a) shows that
the metastable manifold with m = 7 is well approximated by
seven metastable phases for broad regime of low temperatures
and weak coherent field exactly corresponding to the large
separation at m = 7 in the master operator spectrum—with
the parameter values above a certain threshold [shown as
black line with gray region below; cf. Fig. 2(a)]. Below the
threshold, the metastable manifold instead consists of m = 10
metastable phases [see Fig. 4(b) with the discussed threshold
now shown as white dashed line] except for negligibly small
values where the separation at m = 10 in the spectrum also
disappears (cf. Fig. 2). These phases remain metastable also
above the threshold, but for a smaller range of values of
the field and temperature than in the case of m = 7, which
correspond to the hierarchy of metastabilities, i.e., two gaps
in the spectrum of master operator at m = 7 and m = 10 [cf.
Fig. 2(b)]. These results are in agreement with the pertur-
bation theory results derived in Appendix C, which predict
emergence of a classical manifold from a quantum metastable
manifold at small γ and �, but at zero temperature and in
the absence of the field indicate that softening the constraint
leads to quantum decay of excitations within the quantum
metastable manifold (cf. Sec. II C).

We conclude that, at the chosen soft constraint, the
metastable manifolds are classical for low temperatures and
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FIG. 5. Classical metastable manifold: (a) The average site-wise z-magnetization for the metastable phases: dark state and examples of
the single- and double-excitation states, respectively. The set of all metastable phases is formed by adding all translations of these states with
single (six states) and double (three states) excitations. The insets show the sitewise z magnetization in the |u〉, |e〉 basis, S̃z = (|e〉〈e| − |u〉〈u|)/2.
(b) The purities of the metastable phases, chosen as in panel (a). Data are grayed out for parameters where the gap in the spectrum is not present
at m = 10; cf. Fig. 2(b).

weak coherent fields (except for their negligibly small val-
ues) and there exists an intermediate parameter region with
a hierarchy of metastabilities corresponding to two classical
metastable manifolds. We will understand the emergence of
hierarchy by studying properties of the metastable phases and
their long-time dynamics.

2. Metastable phases

We now discuss the properties of the metastable phases
whose probabilistic mixtures approximate the classical man-
ifold of metastable states present in the open quantum East
model at low temperatures and weak field [cf. Eq. (10)]. We
focus on the parameter regime where there exists a gap in
the master operators at m = 10 [below white dashed line in
Fig. 4(a)], which captures all values for which a hierarchy
of metastabilities is present, but also a region where a gap at
m = 7 is absent [below white dashed line in Fig. 4(b)].

In Fig. 5(a) we show the spin magnetization along z axis
for the metastable phases. For m = 7 (first two rows, above
the white dashed line), the metastable manifold consist of the
state with all spins down (no excitation), and six states with a
single spin up (a single excitation). For m = 10, the manifold
additionally contains three states with two excitations at max-
imally separated sites, i.e., followed by two empty sites [see
third row in Fig. 5(a)].

As the probability of a spin up or down seems to de-
crease with the stronger coherent field, we also confirm (see
the insets), that the spins in metastable phases are actually
aligned with the rotated eigenbasis, |u〉 and |e〉, of the sta-
tionary state [see Eq. (4) and Appendix B]. Therefore, the
metastable phases with no excitations, single excitation, and
two excitations can be approximately viewed as |uuuuuu〉,
|euuuuu〉, |euueuu〉, respectively, and their translations. We
obtained such a structure in the first-order perturbation theory
with respect to temperature (|000000〉, |100000〉, |100100〉
with translations; see Appendix C 2), and now we confirm it
is the case in the presence of the coherent field.

These pure states, however, are not stable since the pres-
ence of an excited spin facilitates dynamics on the spin to its
right, in turn facilitating dynamics further along the chain: the
metastable states thus feature excitations as much separated

as possible, so that the relaxation is as slow as possible. Fur-
thermore, the dynamics facilitated by these excitations cause
photon emissions from their right neighbor, resulting in a
mixed rather than pure metastable state, i.e., |e〉〈e| ⊗ |u〉〈u| re-
placed by |e〉〈e| ⊗ ρss,1 (cf. Appendix D and Sec. IV B). This is
confirmed by the purity of the metastable phases in Fig. 5(b),
where the phases with a single or double excitation feature a
purity slightly below 1, with a lower purity for the state with
more excitations. Furthermore, in the first-order corrections
due to temperature, purity is lowered proportionally to γ /κ ,
and Fig. 5(b) suggests it is also the case for the coherent field,
with the lowest order contribution scaling with �4/κ4.

Finally, we note that the pure states are exactly orthogonal,
and thus the metastable phases are approximately disjoint, as
expected from the general theory [38]. Furthermore, the set
metastable phases is invariant under the translation symmetry,
which is a consequence of the metastable manifold inheriting
the symmetry of the dynamics in Eq. (2) with periodic bound-
ary conditions [38,39].

IV. CLASSICAL LONG-TIME DYNAMICS

After a metastable regime, t � −1/λR
m, the decay of low-

lying modes can no longer be neglected [cf. Eqs. (8) and (9)],

ρ(t ) = ρss +
m∑

k=2

cketλk Rk + · · · . (11)

Nevertheless, since the contribution from the fast modes can
be neglected, the long-time dynamics takes place essentially
inside the metastable manifold [see Figs. 1(b) and 3(b)].

In the basis of metastable phases, the long-time dynamics
corresponds to the dynamics of barycentric coordinates [cf.
Eq. (10)]

ρ(t ) =
m∑

l=1

p̃l (t ) ρ̃l + · · · , (12)

where p̃l (t ) =∑m
k=1(C−1)lketλk ck . The dynamics is linear,

d

dt
p̃l (t ) =

m∑
k=1

(W̃)lk p̃k (t ), (13)
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FIG. 6. Effective classical generator: (a) Absolute values of the
effective master operator entries in the basis of metastable phases
for �/κ = 0.024, γ /κ = 0.0016, and m = 10. The horizontal labels
indicate the number of excitations in a metastable phase, delineated
by the black lines. (b) The normalized distance �+ to the clos-
est classical stochastic generator over (top) the metastable region
of the parameter space and (bottom) the classical �/κ = 0 cross
section. We consider the operator norm induced by L1 norm; see
Appendix E 2. Data are grayed out in panel (b) for parameters where
the gap at m = 10 in the spectrum is not present; cf. Fig. 2(b).

with (W̃)lk =∑m
n=1(C−1)lnλn(C)nk . This generator corre-

sponds to the master operator in Eq. (2) expressed in the
metastable phase basis (when it is restricted to low-lying
modes), and we will use it to understand the physical prop-
erties of the long-time dynamics in the open quantum East
model from a classical perspective.

A. Properties of long-time dynamics

We now verify that the dynamics within the metastable
manifold is classical. This enables us to investigate classical
features in the dynamics characteristic of the classical East
model: the presence of the detailed balance and the absence
of interactions in the stationary state.

1. Classicality

The effective generator W̃, pictured in Fig. 6(a) encodes
all information needed to predict the evolution of the average
system state at long times. It conserves the sum of barycentric
coordinates, i.e.,

∑m
l=1(W̃)lk = 0, which is a consequence

of the master operator in Eq. (2) being trace-preserving
[38]. Although it does not generate positive dynamics (cf.
Appendix E 1), its diagonal elements are negative, while its
off-diagonal approximately positive, so that it can be approx-
imated by a classical stochastic generator (cf. Appendix E 2).
Importantly, Fig. 6(b) confirms that the effective dynamics
can be approximated by classical stochastic dynamics across
the entire metastable region of the parameter space, with the
normalized distance of W̃ to the set of classical stochastic gen-
erators much smaller than 1. In fact, this is a consequence of
the classicality of the metastable manifold [38] we discussed
in Sec. III B.

We also note that in Fig. 6(a), the dynamics features the
translation symmetry, i.e., (W̃)π (l )π (k) = (W̃)lk , where π is
the permutation that the metastable phases undergo under
the translation of spins [cf. Fig. 5(a)]. This symmetry is in-
herited from the translation symmetry of the open quantum
East model with periodic boundary conditions [38]. While it
reduces the free parameters of the effective dynamics [to 10

FIG. 7. Detailed balance: (a) Absolute values of entries in the
similarity-transformed effective master operator in Fig 6(a) [cf.
Eq. (14)] display the transposition symmetry associated with the de-
tailed balance. Furthermore, the diagonal elements are negative while
all the off-diagonal are positive. (b) The ratio of the total current and
total activity in the stationary state [Eqs. (15) and (16)] over (top) the
metastable region of the parameter space and (bottom) the classical
�/κ = 0 cross section confirms the approximate detailed balance.
Data are grayed out in panel (b) for parameters where the gap at
m = 10 in the spectrum is not present; cf. Fig. 2(b).

for N = 6 and m = 10], it does not guarantee the presence of
detailed balance we demonstrate next.

2. Detailed balance

In the effective dynamics, the stationary probability cur-
rent between the kth and lth metastable phase is given by
(W̃)kl (p̃ss)l − (W̃)lk (p̃ss)k , where p̃ss is the stationary distri-
bution of W̃ (or equivalently the barycentric coordinates for
ρss). Detailed balance is then defined to be when a systems
stationary state exhibits no currents (see Appendix E 3).

As a first check of detailed balance in the effective dynam-
ics, we consider the similarity transformation which renders
classical detailed-balance generators symmetric,

(W̃′)lk = (p̃ss )
− 1

2
l (W̃)lk (p̃ss)

1
2
k . (14)

For the effective generator in Fig. 6(a), we indeed obtain an
approximately symmetric matrix in Fig. 7(a).

To verify detailed balance across the range of parameters
for which metastability occurs, we consider in Fig. 9(b) below
the ratio of the total stationary current

J̃ = 1

2

m∑
k,l=1

|(W̃)kl (p̃ss )l − (W̃)lk (p̃ss)k| (15)

to the total activity

K̃ = −
m∑

l=1

(W̃)ll (p̃ss)l , (16)

which ratio bounds the normalized distance to the closest de-
tailed balance dynamics (see Appendix E 3). We observe that
the current across all metastable parameters is small compared
to the system’s activity, and thus the long-time dynamics can
be well approximated by dynamics with detailed balance. This
is also the case for the classical East model (� = 0), which
features only approximate detailed balance when restricted to
the metastable manifold [see the bottom panel in Fig. 7(b)],
although there are no stationary currents between the 2N con-
figurations of up and down spins in the classical system.
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For the classical model, these results can be traced back to
the perturbative dynamics between configurations. The pertur-
bation effect of the soft constraint removes one excitation at
a time with rates proportional to (1 − p)2κ , or reintroduces,
removes, or shifts a single excitation, at rates proportional
to (1 − p)2γ . For the small temperature, phases with double
excitations are reduced to a single excitation at rates propor-
tional to γ 2/κ , while at rates proportional to γ 3/κ2 a second
excitation can be introduced or removed, or a single excitation
can be shifted. The result is a ladder structure of the dynamics
with respect to the number of excitations which necessarily
implies detailed balance, though the approximation worsens
for larger γ or (1 − p) due to higher order corrections; see
Appendixes C 2 and C 3 for details.

Approximate detailed balance observed also in the pres-
ence of a weak coherent field in Fig. 7(b), suggests that
a similar mechanism may be responsible for the long-time
dynamics in the open quantum East model. This is indeed
confirmed for the parameters chosen in Fig. 6(a): the most
probable transitions (yellow-light green) are associated with
the removal of the second excitation, or removal of a single
excitation towards the unexcited state; the less likely transi-
tions (green) correspond to a shift of a single excitation, the
introduction of one excitation, or removal of two excitations;
while the least likely transitions (blue) correspond to the in-
troduction of two excitations simultaneously, or shift of two
excitations [see also Figs. 9(b) and 9(c)].

3. Noninteracting stationary state

Since the long-time dynamics possesses approximate de-
tailed balance, the stationary state of the effective master
operator is effectively thermal. We discuss now its effective
free energy function.

In the full classical East model, whose stationary state is
a product state, the free energy is simply a function of the
number of excitations, but not their relative distance (i.e.,
it is not dependent on any type of interactions). Due to the
exponential form of a thermal distribution, this can be tested
by considering ratios of state probabilities: the exponents-only
state dependence will be a linear function of the number of
excitations. We test this property in Fig. 8(a) for the distri-
bution over the metastable phases of the stationary state of
the the open quantum East model, by comparing the ratio
of probabilities of finding the stationary state in one of the
single or double excited states, p̃2/p̃1, to the ratio of finding
it in the unexcited state or one of the single excitation states,
p̃1/p̃0. We would expect these ratios to differ when interac-
tions contribute to the effective energy of the phase, due to the
presence of multiple excitations in the phase with probability
p̃2. However, we find that the ratio of these ratios is close to
1 at all metastable parameters, suggesting that in the quantum
model interactions do not play a role in the free energy of the
metastable phases, as in the classical East model.

Furthermore, the free energy per excitation is directly de-
termined by the ratio of probabilities for excited and unexcited
states in the single-site dynamics; see Fig. 8(b). This is again
the consequence of the product structure of the stationary
state, and the metastable states being approximated simply as
pure states with a single or double excitations [cf. Fig. 5(a)],
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FIG. 8. Stationary state properties: (a) The free energy of the
metastable phases does not depend on the number of interactions,
as the ratio of the stationary probabilities between the state with
a single excitation and the unexcited state, p̃1/ p̃0 approximately
equals the ratio of the probabilities for a double excitation and a
single excitation p̃2/ p̃1. (b) The ratio p̃1/ p̃0 actually corresponds to
the ratio of the stationary probabilities in as single state dynamics,
Eq. (4), of the excited state, λe, and unexcited state, λu. Both plots
are shown over (top) the metastable region of the parameter space
and (bottom) the classical �/κ = 0 cross section. Data are grayed
out for parameters where the gap at m = 10 in the spectrum is not
present; cf. Fig. 2(b).

which appear as the leading order corrections to the stationary
state above the no-excitation contribution [72]. Therefore, the
error of this noninteracting approximation of the free energy
will increase as temperatures and coherent field values grow
[cf. Fig. 8(b)].

B. Dynamical heterogeneity

The long-time dynamics between metastable phases is di-
rectly related to dynamics of quantum trajectories: periods of
higher or lower activity in trajectories are identifiable with
metastable phases featuring different numbers of excitations,
with transition rates between these distinct periods described
by the effective generator [37,38]. We now discuss this corre-
spondence in terms of the dynamical heterogeneity observed
in the open quantum East model [52,53]. We also demonstrate
the resulting proximity to dynamical phase transitions [73].

1. Lifetimes of metastable phases

The effective lifetimes of the metastable phases, i.e., the
distinct periods in quantum trajectories, are given by the in-
verse magnitude of the diagonal elements of the effective
generator. From the translation symmetry of the metastable
manifold, the lifetimes of metastable phases connected under
the symmetry must be the same, i.e., we have: the lifetime τ0

of the homogeneous unexcited phase, the lifetime τ1 of six
phases with a single excitation, and the lifetime τ2 of three
phases with double excitations [see Fig. 9(a)].

The unexcited state is the longest lived metastable phase,
as it can only be excited via to the softness of constraint in
Hj or J+

j (for any j = 1, . . . , N) [cf. Eq. (6)], which takes
place at the rate proportional to N (1 − p)2(�2/κ + γ ) + · · ·
in the perturbative regime |1 − p| � 1 (see Appendix C 3 b).
The simple dependence of the rate on the system size N is due
to the translation symmetry: the excitation can be introduced
at any of the N spins. In contrast, the removal of a single exci-
tation of jth spin, again requires the softness of constraint in
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FIG. 9. Effective stochastic dynamics and quantum trajectories: (a) Effective lifetimes of the metastable phases as a function of the
parameters, plotted relative to the next longest lifetime. Data are grayed out for parameters where the gaps at m = 10 in the spectrum is
not present; cf. Fig. 2(b). (b), (c) The component magnitudes of the effective master operators for (b) �/κ = 0.024, γ /κ = 0.0016, and
(c) �/κ = 0.12, γ /κ = 0.0096, indicated by the crosses (white with black border) in (a). (d), (e) Sample QJMC trajectories corresponding to
panels (b) and (c), respectively. Trajectories are split into 500 time bins for which the total activity of jumps J−

j (photon emissions from jth
spin) within each bin is plotted [see Eq. (6b)]. Note the presence of simultaneous excitations from two sites.

J−
j (or in Hj , which, however, is of lower order), and thus takes

place at the faster rate κ (1 − p)2 + · · · , leading to the sepa-
ration of timescales τ1/τ0 ≈ N (�2/κ2 + γ /κ ). Furthermore,
when two gaps are present in the master operator spectrum
[above the white dashed line in Fig. 9(a)], the hierarchy of
metastabilities (m = 7, 10; cf. Sec. III B) is manifested in the
distinct values of the lifetimes τ1 and τ2, while for a single
gap (m = 10; below the white dashed line), these lifetimes are
necessarily comparable, which we now explain.

The softness of constraint causes the removal rate of an
excitation from metastable phases with a single excitation and
double excitation to be the same (except from the fact that
two possible sites to decay in the double excited state), while
for hard constraint only the second excitation can be removed
due to the temperature of the coherent field (by flipping the
unexcited spins between two excitations which allows for the
hard constraint to be fulfilled). When the constraint is soft,
the absence or presence of separation between τ1 and τ2 is
determined by the softness-induced and temperature-induced
dynamics being faster, respectively. In Fig. 9(a) the regime of
smaller (greater) γ and � below (above) the threshold corre-
sponds to the former (latter) process being the fundamental
mechanism in relaxation of the metastable phase with double
excitation towards the stationary state.

2. Structure of effective dynamics

In Figs. 9(b) and 9(c), we show examples of the effective
master operator for two sets of parameters, indicated by the
crosses in Fig. 9(a), corresponding to the cases with a single
metastability and a hierarchy of two metastabilities. In both
cases, a double-excitation phase is most likely transformed
into one of two single-excitation phases (equally likely due
to the translation symmetry by three sites of the double-
excitation phase), with one excitation inducing relaxation of
the other. A single-excitation phase is most likely transformed
into no-excitation phase, which in turn gets excited most likely
with only a single excitation (into one of six single-excitation
phases). This ladder structure of the effective classical

dynamics supports detailed balance in the dynamics discussed
in Sec. IV A.

Beyond those leading order transformations, however,
shifts of a single excitations are possible due to two different
mechanisms. In Fig. 9(b) we observe that the shift of a single
excitation is possible to all sites except that corresponding to
the possible position of a second excitation, in which case the
second excitation is introduced instead. This indicates that the
shift is actually facilitated by the introduction of excitations
and their subsequent decay, which can be facilitated either by
several excitations by the temperature or coherent field, or the
softness of constraint allowing for introduction of excitations
directly in unexcited sites. The uniform probability of shifts to
different sites in Fig. 9(c) suggests that the two processes con-
tribute equally, while, in the case of hierarchy in Fig. 9(b), the
larger values of the coherent field and temperature dominate
the latter process and only some shifts are possible. This is
directly supported by the perturbation results in the classical
model; see Appendix C. We note, however, that for considered
system size of N = 6 and the chosen constraint with p = 0.99,
we do not yet capture the hallmark behavior of the classical
East model, where required order of temperature contributing
to the dynamics of excitations scales logarithmically with
their distance (cf. Appendix C 2 b). In particular, we cannot
verify whether the necessarily (quadratically) higher orders in
which the local coherent field contributes to the dynamics of
in the open quantum East model (cf. Appendix C 4 b) alter this
characteristic.

Although there is no apparent directionality in the dynam-
ics for both cases, which is likely due to the small system
size N = 6 (cf. Appendix C 2 d), we would in general expect
this to follow from the presence of the constraint to the left
[cf. Eq. (6)], and such directionality is present in perturbation
theory with respect to temperature for larger system sizes.
Nevertheless, we observe in both cases that the unexcited
metastable lifetime is much longer than the metastable phases
with a single or double excitations; in trajectories of the clas-
sical effective dynamics most time is spent in the unexcited
state, and excitations are present at isolated moments in time.
These periods are also isolated in space, due to the symmetry
structure of the metastable manifold (see also Appendix D).
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3. Dynamical heterogeneity

We now discuss how metastability and the structure of
long-time dynamics manifests itself in the emission patterns in
individual experimental realizations of the system dynamics
[52,53].

Consider first dynamics in the case of the state being (on
average) in one of the metastable phases featuring a single
or double excitations. An excitation of site ( j − 1) fulfils the
hard constraint of the single spin dynamics of the jth spin [cf.
Eqs. (3) and (6)], enabling dynamics on this site and thus its
relaxation towards the single-spin stationary state in Eq. (4).
Thus, for times shorter than relaxation of the considered
metastable phase, t � τ1, τ2, in an individual realization of an
experiment (or quantum trajectories obtained in QJMC simu-
lations) photon emissions occur from jth spin corresponding
to the jump J−

j [Eq. (6b)], so that the metastable phase with
an excitations appears locally bright. These emissions occur
at the rate κTr(S+S−ρss,1) ≈ �2/κ + γ + · · · , so that the site
next to the excitation appears brighter for higher temperature
or coherent field values [see Figs. 9(d) and 9(e)]. In contrast,
for the unexcited metastable phase, the hard constraint in the
dynamics is not fulfilled, and therefore, this phase appears
dark in quantum trajectories before it relaxes due to the soft
constraint introducing of a single excitation at t � τ0.

At longer times, higher order processes introducing several
excitations or exploiting softness of constraint become non-
negligible on average, contributing to the long-time dynamics
of the metastable phases by connecting disjoint parts of state
space. In individual quantum trajectories these processes take
place separately and at fluctuating times, but are typically
followed by the fast decay of excitations due to satisfied hard
constraints (on timescales t � −1/λR

m+1; m = 10) towards
another metastable phase. Therefore, a time coarse grain-
ing of quantum trajectories leads to the system transitioning
only between metastable phases. As averaging over trajecto-
ries returns the evolution with the master operator [Eq. (1)],
transitions in coarse-grained quantum trajectories must be
governed by the effective long-time generator [Eq. (13)]. This
is corroborated in Fig. 9(d) where, correspondingly with the
transition rates of the effective stochastic generator, in the
case of a single metastable regime, mostly transitions between
the excited states and dark states are observed. Meanwhile,
in Fig. 9(e), for the hierarchy of two metastabilities, there is
also a significant presence of transitions between states with a
single excitation, shifting the location of emissions.

We conclude that the dynamical heterogeneity in the quan-
tum trajectories is the microscopic counterpart to the classical
stochastic jumps between phases with different numbers of
excitations at different sites, which arise as a result of tempo-
ral coarse graining of quantum trajectories. This is a general
phenomenon, detailed theoretically in Ref. [38]. In particular,
this relation could be used to explore possible differences in
the contributions to the dynamics from the temperature and
the coherent field at larger system sizes accessible in QJMC
simulations.

4. Proximity to dynamical phase transitions

Systems with intermittent dynamics are commonly found
to exist near a dynamical phase transition in the statistics

of the activity, i.e., the number of jumps per unit time
[53,65,73,74]. Here we demonstrate this for the global activity
for jumps related to loss of excitations. Since our system
exhibits dynamical heterogeneity, we also find the system in
proximity to transitions in the statistics of the local activity.

Dynamical phase transitions in global jump activity. The
intermittent emissions in trajectories have a direct effect on
the time integrated statistics of their corresponding jumps.
The statistics of a trajectory-observable chosen as the number
K−(t ) of J−

j jumps up to time t summed across all sites, is
encoded by the cumulant generating function


(s, t ) = ln[Z (s, t )], (17)

where

Z (s, t ) =
∑
K−

p(K−, t )e−sK− = Tr(etLsρ ) (18)

can be obtained using the biased master operator

Ls(ρ) = L(ρ) + (e−s − 1)
N∑

j=1

J−
j ρ J−†

j (19)

[cf. Eq. (2)]. Furthermore, the statistics of the activity k−(t ) =
K−(t )/t is encoded in the long-time limit by the scaled cumu-
lant generating function (SCGF)

θ (s) = lim
t→∞


(s, t )

t
, (20)

given by the leading eigenvalue of Ls [cf. Eqs. (17) and (18)].
The corresponding eigenmode ρss(s) of Ls is the average
asymptotic state in the biased trajectory ensemble, where each
trajectory is weighted by e−sK−(t ), before the overall ensemble
is then renormalized [cf. Eq. (18)]. The SCGF plays the role
of free energy in nonequilibrium statistical mechanics [75],
with its nonanalyticities corresponding to dynamical phase
transitions [53,65,73,74].

In Fig. 10(a) two sharp changes are found in the first
derivative of θ (s), i.e., the average activity k(s) = −dθ (s)/ds,
at negative bias s close to 0, between the values equal zero,
one or twice the average single spin activity proportional
to �2/κ + 2γ + · · · [see Eq. (4)]. This indicates that the
proximity of the physical dynamics s = 0 to two first-order
dynamical phase transitions. Furthermore, these changes oc-
cur as the perturbation due to the bias becomes larger than
λm for m = 7 and m = 10, which indicates their relation to
the presence of the hierarchy of metastabilities. This is also
supported by Fig. 10(b), where in a decomposition of ρss(s)
between metastable phases (in its barycentric coordinates),
at s = 0 it corresponds mostly to the dark metastable phase,
while for a large enough negative bias s (towards more active
trajectories) can be characterized as the equal mixture of six
single-excitation metastable phases (1/6th probability each)
or the equal mixture of three double-excitation metastable
phases (1/3rd probability each). This homogeneity follows
from the translation symmetry of Ls.

These results actually follow from the correspondence of
θ (s) to an SCGF for integrated metastable phase activity
in classical trajectories of the long-time dynamics [38] (cf.
Ref. [76]), which holds for small to moderate values of s
[when contributions from fast modes are negligible; cf. the
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FIG. 10. Global jump statistics: (a) The leading eigenvalue θ (s)
(light) of the biased master operator, Eq. (19), and the corresponding
activity k(s) (dark), plotted on a log or linear scale, respectively, for
negative values of s. The inset shows a larger range of parameters on
a linear scale with an additional transition corresponding to the ef-
fective metastability (see Sec. IV C). (b) The barycentric coordinates
of ρss(s) with respect to the dark state (dark), a single excited phase
(light), and a two-excitation phase (intermediate). The inset shows a
larger range of parameters, along with the distance between ρss(s)
and the corresponding metastable state (dashed) [cf. Eq. (9)]. Pa-
rameters are chosen as �/κ = 0.15, γ /κ = 0.0004, and p = 0.999,
while θ (s) and ρss(s) are obtained by numerical diagonalization
of Ls

inset in Fig. 10(b)] and metastable phases distinguished by
the average jump activities dominating rates of the long-time
dynamics. This is exactly the situation in the open quantum
East model due to the constraint in J−

j fulfilled by excitations
present in metastable phases [cf. Fig. 5(a)]. Indeed, biasing
trajectories with negative s effectuates postselection towards
more active trajectories, which in this case correspond to
metastable phases with a single or double activity for smaller
or larger |s| (respectively, in order to make up for the shorter
lifetime τ2 � τ1 due to the hierarchy of metastabilities present
for the chosen parameters; probability of trajectories with
even higher activity remains negligible). In contrast, for posi-
tive s inactive trajectories are preferred, corresponding to the
dark metastable phase with no excitations.

Dynamical phase transitions in local jump activity. Rather
than the global activity of jumps across the system, we can
consider local jump activity, with the locally biased master
operator [cf. Eq. (19)]

Ls1,...,sN (ρ) = L(ρ) +
N∑

j=1

(e−s j − 1)J−
j ρ J−†

j (21)

encoding the joint statistics of number K−
j of jumps J−

j at sites
j = 1, . . . , N observed up to time t . Similarly to Fig. 10 for
the full jump statistics, in Fig. 11 we observe sharp changes in
the first derivative of the corresponding maximal eigenvalue
of Ls1,...,sN .

In Figs. 11(a) and 11(b), we look at a cross section with
s1 = s and s j = 0 for j �= 1. This biases towards trajecto-
ries containing significant periods of the single excitation
metastable phases, and ignores the double-excitation phases:
indeed, in Fig. 11(a) there is only a single jump in the activity
to a value corresponding to the activity of single-excitation
phases, while the overlap with the phase featuring an excita-
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FIG. 11. Local jump statistics: (a), (c) The leading eigenvalue of
the biased master operator in Eq. (21) (left axis) and the correspond-
ing activity (right axis) as a function of the local bias, (a) on a single
site s1 = s, (c) on two sites s1 = s4 = s. (b), (d) The barycentric
coordinates of ρss(s) with respect to: the dark phase (dark), the phase
with a single excitation on the third or sixth site (light) and the phase
with two excitations on the third and sixth site (intermediate). Pa-
rameters are chosen as �/κ = 0.15, γ /κ = 0.0004, and p = 0.999,
while θ (s) and ρss(s) are obtained by numerical diagonalization of
Ls1,...,s6 .

tion at site 6 that induces emissions on site 1, turns out to be
dominant at negative values of s in Fig. 11(b).

To target a double excitation state, we look in Figs. 11(c)
and 11(d) at a cross section with s1 = s4 = s and s j = 0 for
j �= 1, 4, targeting the phase with excitations on sites 3 and
6. As expected, there is a pair of jumps in the activity in
Fig. 11(c), corresponding to the activity of single-excitation
phases and double-excitation phases, respectively. For smaller
negative values of s, the overlap with the metastable phases in
Fig. 11(b) is split evenly across the single-excitation phases
on sites 3 and 6, as expected in comparison with Fig. 10; for
large values the only relevant overlap becomes the double-
excitation phase that was targeted with this choice of bias.

Metastable phases from biased trajectories. Beyond clar-
ifying the relation of first-order dynamical phase transitions
to metastability, Figs. 10 and 11 demonstrate that metastable
phases differing in activity can be obtained as the asymptotic
average states in the biased ensemble of trajectories. This
result indicates an alternative method to uncover the structure
of metastable manifold, which does not require the diago-
nalization of the master operator (cf. Appendix A 3). While
methods for efficient sampling of biased classical trajectory
ensembles are common [77–82], with some work in this di-
rection for quantum systems [83,84], more development is
needed to achieve the speed needed for many-body quantum
systems. A possible direction could be the use of tensor net-
work techniques, as done in recent classical large deviation
studies [85,86].

044121-11



DOMINIC C. ROSE et al. PHYSICAL REVIEW E 105, 044121 (2022)

10−3 107κt
−0.5

0.5

m
z

Exact

Eff

10−3 107κt
−0.5

0.5

m
z

Exact

Eff 1

Eff 2

(a) (b)

FIG. 12. Effective metastability of magnetization: (a), (b) Exact
(solid) and effective (dashed, dash-dotted) evolution of the total z
magnetization from an initial all up state, corresponding to mas-
ter operators with one and two metastable timescales shown in
Figs. 9(b) and 9(c), respectively. The two effective curves in panel
(b) correspond to restricting the effective master operator to only
the m = 7 (slower) modes (Eff 1) or all m = 10 low-lying modes
(Eff 2). Parameters are chosen as �/κ = 0.15, γ /κ = 0.0004, and
p = 0.999.

C. Effective metastability of observables

Metastability can be observed experimentally in the be-
havior of statistical quantities such as expectation values or
autocorrelations of system observables [36–38,87], with each
metastable regime manifesting as a plateau in the observable
dynamics. In particular, for the average of an observable M
we have [cf. Eq. (8)]

〈M(t )〉 = Tr[Mρ(t )] = 〈M〉ss +
∑
k�2

etλk ckdk, (22)

where 〈M〉ss is the average in the stationary state ρss and
dk = Tr(MRk ) are coefficients of the decomposition of M into
the eigenmodes Lk . After the relaxation towards a metastable
regime, t � −1/λR

m+1, evolution of the average is determined
only by the slow modes [cf. Eq. (11)]

〈M(t )〉 = 〈M〉ss +
m∑

k=2

etλk ckdk + · · · , (23)

so that during the metastable regime, −1/λR
m+1 � t �

−1/λR
m, the average is approximately stationary manifesting

as a visible plateau on a log timescale.
In Fig. 12 for N = 6 spins of the open quantum East model

initialized from the all up state, the observable is chosen
as z magnetization per spin, mz(t ) =∑N

j=1〈Sz
j (t )〉/N , which

corresponds to the number of excitations in the system [cf.
Fig. 5 and see also Fig. 1(b)]. We indeed observe plateaus
due to the presence of metastable regimes, as indicated by the
agreement with the long-time dynamics [Eq. (23)]. These are
preceded by the necessary decay of excitations, as metastable
phases feature at most two excitations, while final relaxation
removes all excitations to reach the unexcited stationary state.

Interestingly, the exact dynamics features an additional
(anomalous) plateau at earlier times, which is not due to any
further gap present in the spectrum of the master operator, but
results instead from the zero overlap of either the initial state
(ck = 0) or the observable (dk = 0) with many eigenmodes in
Eq. (22), creating an effective gap in the eigenvalues of the
master operator that do contribute to the dynamics, and thus

an effective metastability. We have verified that this gap does
not simply arise due to the choice of a symmetric observable,
i.e., is not present in the eigenvalues of the symmetric modes.

Furthermore, the average magnetization is related to instant
activity of jumps J−

j [Eq. (6b)] per spin
∑N

j=1〈J−†
j J−

j 〉/N =
mz + 1/2. This links the existence of metastable phases dif-
fering in magnetization to sharp changes in the activity of
quantum trajectories (cf. Fig. 10). When the effective metasta-
bility is present, also another jump in the activity occurs
corresponding to a higher number of excitations than in the
metastable phases and at a more negative bias [see the inset
in Fig. 10(a) and the inset in Fig. 10(b) where the dashed line
represents the distance between the average state in trajecto-
ries with a given activity and its projection onto the metastable
manifold]. This suggests the effective metastability results
from the magnetization overlaps with the modes, rather than
the specific choice of the initial state.

V. CONCLUSIONS

In this work, we have investigated a quantum generaliza-
tion of the classical East model, uncovering a hierarchy of
classical metastable manifolds characterized by the number
of excited sites, similar to the case of the classical East model.
The long-time effective dynamics of the model was shown not
only to be classical and featuring a hierarchy of timescales,
but also to possess detailed balance, with an effective free
energy depending only on the number of excitations and not
their distance: both properties also found in the classical East
model, but here persisting even in the presence of a coherent
driving that is comparable in strength to the temperature. The
dynamics thus mimics the classical model, with an effective
temperature taking into account both the coherent driving field
and temperature, and effective classical configurations given
by a modified basis of quantum states. This demonstrates
for the the usefulness the methods for metastability in open
quantum systems introduced in Ref. [36,38] for uncovering
complex relaxation dynamics in many-body quantum systems
without static phase transitions.

Code written in Python for this project is available online
at Ref. [59].
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APPENDIX A: NUMERICS

Here we summarize key points of numerical methods used
in this work.

044121-12



HIERARCHICAL CLASSICAL METASTABILITY IN AN … PHYSICAL REVIEW E 105, 044121 (2022)

1. Diagonalization of master operator

To diagonalize the master operator in Eq. (2), with the
spectrum shown in Figs. 1(a), 1(b), and 2, we use the Liou-
ville representation for a chosen basis {|ψk〉}2N

i=1 of the system
space. The density matrix is represented as a vector,

ρ =
2N∑

k,l=1

〈ψk|ρ|ψl〉 |ψk〉 ⊗ |ψl〉, (A1)

and the master operator as matrix,

L = − i(H ⊗ I − I ⊗ HT )

+
∑

j

[
Jj ⊗ J∗

j − 1

2

(
J†

j J j ⊗ I + I ⊗ JT
j J∗

j

)]
, (A2)

where the transposition and complex conjugation take place
in the chosen basis. L shares the same spectrum with L, and
the eigenmodes of L can be recovered from eigenvectors of
L by the inverse transformation to Eq. (A1). This approach
can also be used for diagonalization of the biased operators in
Eqs. (19) and (21).

The translation symmetry of the master operator with peri-
odic boundary conditions(and of the biased operator for the
total activity) is exploited by considering a basis of states
invariant under the translation of spins (up to a phase); cf.
Refs. [88–90].The construction of the matrix in Eq. (A2) is
further simplified by considering plane-wave jump operators
instead of local jump operators [91].

2. QJMC simulations

The QJMC algorithm, which is used to obtain trajectories
shown in Figs. 1(c), 1(d), 9(d), and 9(e), is implemented
largely following the standard procedure (see, e.g., Ref. [12])
with one key difference: the time of a jump is found utilizing
a binary search as proposed in Chapter 2 of Ref. [92] (see also
the implementation in Ref. [93]). We sketch it below.

While it is standard to discretize the time evolution for ef-
ficiency, this leads to a competition between accuracy of jump
times, requiring a fine-grained discretization, and efficiency
of time evolution, desiring larger time steps. To meet both
these aims, rather than restricting to a single time step for
evolution we use a set of NU nonunitary evolution operators Uk

for k = 1, . . . , NU , related by Uk = U 2
k+1. With UNU inducing

a time evolution of �t , Uk thus induces a time evolution of
2NU −k�t . Evolution between jumps is then initially done using
U1, allowing for large steps in time of 2NU −1�t . Once the
norm of the state drops below the random number drawn to
determine when a jump occurs, the sequence of unitaries is
then used to perform a binary search, identifying the time of
the jump with the chosen accuracy at much higher speed.

3. Generation of metastable phases

We now sketch a version of the computational approach in
Ref. [38], which we use in this work to verify the classicality
of the metastable manifold in the open quantum East model
(cf. Fig. 4) and to find its metastable phases (cf. Fig. 5).

a. Upper bound on distance to probability distributions

We first explain how to estimate from above the distance
of barycentric coordinates in Eq. (10) from probability dis-
tribution for any metastable state. This allows us verify how
well the metastable manifold is approximated by probabilistic
mixtures of the chosen metastable states.

For a set of candidate states ρ1, ..., ρm, the corresponding
metastable states

ρ̃l ≡ ρss +
m∑

k=2

c(l )
k Rk, l = 1, . . . , m (A3)

can be used as a basis replacing the stationary state ρss an the
low-lying modes R2, . . . , Rk , provided that they are linearly
independent. The decomposition of a metastable state in terms
of barycentric coordinates for Eq. (A3) is given in Eq. (10).
The barycentric coordinates can be obtained as p̃l = Tr(P̃lρ),
where

P̃l =
m∑

k=1

(C−1)kl Lk, l = 1, . . . , m (A4)

is the dual basis to Eq. (A3), analogously to the coefficients
defined as ck = Tr(Lkρ). Note that Eq. (A4) is well defined
only when the coefficient matrix for candidate states, (C)kl =
c(l )

k , is invertible, i.e., for linearly independent ρ̃1, ..., ρ̃m. We
use the dual basis to test the accuracy of the approximation of
the metastable manifold in terms of probabilistic mixtures of
Eq. (A3), as follows.

While
∑m

k=1 p̃k = 1 is guaranteed to hold for all states by
definition of barycentric coordinates, individual coordinates
are not restricted to be positive in contrast to probability dis-
tributions. In particular, whenever a coordinate takes a value
below 0 or above 1, the corresponding metastable state is
found beyond the simplex of states in Eq. (A3). Since the
barycentric coordinates correspond to the expected values of
the dual basis elements in Eq. (A4), their average distance in
L1 norm from probability distributions can be bounded from
above by (cf. Appendix C 1 in Ref. [38])

C = 1

2N−1

m∑
l=1

2N∑
k=1

{
max

[− λ
(l )
k , 0

]+max
[
λ

(l )
k −1, 0

]}
, (A5)

where λ
(l )
k is kth eigenvalue of P̃l and we consider uniformly

sampled pure initial states. Note that C is simply proportional
the sum over l of distances of P̃l spectrum to [0,1] inter-
val. Furthermore, 2N−1C is an upper bound on the distance
of barycentric coordinates for any initial state to probability
distribution. This bound is shown in Fig. 4 for the metastable
candidate states in Fig. 5.

We conclude that when C of Eq. (A5) is small in compar-
ison to 1 (which is the L1 norm of probability distributions),
the metastable manifold is well approximated by probabilis-
tic mixtures of the candidate metastable states in Eq. (A3).
Therefore, by checking the spectrum of the dual basis in
Eq. (A4), we can investigate the classicality of the metastable
manifold, as long as candidate states can be generated effi-
ciently, which we discuss next.
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b. Generation of candidate states

We now explain how sets of candidate states can be gen-
erated efficiently. We work with the assumption that the
metastable manifold is classical, i.e., has an approximate sim-
plex structure in the coefficient space [cf. Fig. 3(a)], and,
thus, we attempt to find a set of m metastable states which
define the largest volume simplex contained within the subset
of the coefficient space corresponding to the MM. We also
make use of the translation symmetry of the open quantum
East model with periodic boundary conditions. The approach
used here is a simplified version of the algorithm introduced in
Ref. [38].

Algorithm. Below we outline the steps to efficiently gener-
ate sets of candidate states.

(1) Diagonalize L to find the left low-lying eigenmodes,
Lk with k = 2, . . . , m.

(2) Construct candidate metastable states:
(i) Diagonalize the (randomly rotated) eigenmatrices

Lk .
(ii) Add the eigenstates associated to their extreme

eigenvalues as initial states for candidate metastable states.
(iii) Repeat Steps 2 i and 2 ii for r random rotations.
(iv) Apply spin translations to the candidate metastable

states to construct their cycles.
(v) Cluster cycles according to their relative distance in

the space of coefficients.
(3) Find best candidate metastable states:

(i) Choose sets of cycles providing the simplex with the
largest volume, i.e., the largest |detC|.

(ii) Calculate the corresponding corrections C.
Discussion. In the above approach, we assume that the

eigenmodes Lk found in Step 1 are Hermitian. Such a choice is
always possible due to the system dynamics being Hermiticity
preserving, L(ρ†) = L(ρ)†, as follows. First, for a real eigen-
value λk , both Lk and Rk can be chosen Hermitian. Second, for
a complex λk , there exists another eigenvalue equal λ∗

k with
the corresponding left and right eigenmodes L†

k and R†
k . In this

case, instead of Lk and L†
k , we consider their Hermitian and

anti-Hermitian part, (Lk + L†
k )/2 and (Lk − L†

k )/2i, respec-
tively [while the right eigenmodes are replaced with (Rk + R†

k )
and i(Rk − R†

k )]. Furthermore, to consider all coefficients on
equal footing, we normalize Lk so that the difference between
its extreme eigenvalues equals 1.

In Step 2 we construct metastable states which achieve
extreme values of coefficients in order to find vertices of
the maximal simplex within the metastable manifold. For
(m − 1) left eigenmodes, we obtain 2(m − 1) candidate states
in Steps 2(i) and 2(ii). A metastable state corresponding to
an extreme value of a coefficient necessary corresponds to
a metastable phase (or their mixture, in the degenerate case
of many vertices of the maximal simplex featuring the same
value of the coefficient). Although it is not guaranteed that all
vertices achieve an extreme value in at least one coefficients,
this is remedied by additionally considering random rotations
of L2, ...., Lm in Step 2(iii) (which also removes degeneracy of
coefficients for the maximal simplex vertices). Furthermore,
as the set of metastable phases is known to be invariant under
any symmetry of the dynamics [38,39], candidate metastable
states should form cycles under the symmetry, which moti-

vates Step 2(iv). Actually, for N = 6 spins in our model, we
find that this step removes the need for considering random
rotations (this is due to the presence of both the hierarchy and
translation symmetry). Finally, any repetitions in candidate
metastable states are removed in Step 2(v).

In general, there are more than m candidate metastable
states obtained in Step 2, because beyond metastable phases,
we also obtain their mixtures as a result of degeneracies of
extreme values of coefficients. Therefore, we next consider
the volumes of sets of m candidate metastable states, and
choose those corresponding to the simplex with the largest
volume in the coefficient space [where the volume equals
|detC|/(m − 1)!]. Importantly, due to the translation symme-
try of the model, in Step 3(i), it is enough to consider only
sets of cycles with lengths summing up to m, i.e., the required
number of phases. Finally, in Step 3(ii), the quality of the
corresponding approximation of the metastable manifold is
assessed using Eq. (A5), and, if required, can be further im-
proved by increasing the number r of rotations in Step 2(iiii).

We note that the presence of symmetry can be exploited
even further in the algorithm; see Ref. [38]. Nevertheless,
in this work, we successfully identify the metastable states
corresponding to the hierarchy of two classical metastable
manifolds (cf. Figs. 4 and 5).

APPENDIX B: STATIONARY STATES OF OPEN
QUANTUM EAST MODEL

1. Stationary state of single spin

The unique stationary state of a single spin dynamics, with
the Hamiltonian H1 and jumps J−

1 and J+
1 in Eq. (3), is given

by Eq. (4), which diagonalizes [52],

ρss,1 = λu |u〉〈u| + λe |e〉〈e|, (B1)

with the probabilities

λu,e = 1

2
± (κ − γ )�

(κ + γ )2 + �2
(B2)

and the eigenstates

|u〉〈u| =
(

1
2 + κ+γ

2�
i�
�

− i�
�

1
2 − κ+γ

2�

)
, (B3)

|e〉〈e| =
(

1
2 − κ+γ

2�
− i�

�

i�
�

1
2 + κ+γ

2�

)
, (B4)

where � =
√

(κ + γ )2 + 4�2 and we considered the basis
|0〉, |1〉.

2. Stationary states of constrained dynamics

In the presence of hard constraint (ε = 1 − p = 0), there
are two stationary states of the open quantum East model with
periodic boundary conditions (for open boundary conditions,
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see Appendix D),

ρ (0)
ss = ‖u〉〉⊗N ,

ρ (1)
ss = [

(λu‖u〉〉 + λe‖e〉〉)⊗N − λN
u ‖u〉〉⊗N

]
/
(
1 − λN

u

)
, (B5)

where j = 1, . . . , N , and we introduced ‖ . . .〉〉 = | . . .〉〈. . . |
to denote a density matrix. Note that ρ (0)

ss is disconnected from
the dynamics, as it is orthogonal to the constrain |e〉〈e|, and in
the second stationary state ρ (1)

ss , we subtracted the contribution
without excitations to make the two stationary states disjoint
(orthogonal).

In the presence of soft constrain (ε �= 0), the stationary
state is unique,

ρss = λN
u ρ (0)

ss + ρ (1)
ss

(
1 − λN

u

) = (λu‖u〉〉 + λe‖e〉〉)⊗N

= ρ⊗N
ss,1 , (B6)

which features no correlations as a product state of single-
spin stationary states [Eq. (4)]. For the dynamics leading from
Eq. (B5) to Eq. (B6), see Appendix C 3 b.

APPENDIX C: PERTURBATION THEORY FOR OPEN
QUANTUM EAST MODEL WITH PERIODIC

BOUNDARY CONDITIONS

We consider non-Hermitian perturbation theory [58,76,94–
96] in the following parameters: the coherent field �, the
temperature, γ , and the constrain softness with ε = 1 − p. We
first consider independent contributions from the temperature
and the field, and discuss influence of a soft constrain on
the dynamics. We discuss the mixed contributions at the end.
Periodic boundary conditions are assumed throughout. The
case of open boundary conditions and its relation to dynamical
heterogeneity are discussed in Appendix D.

1. Dark stationary states at zero temperature and without
coherent field

We consider stationary states of dissipative dynamics with
the jump operators

J− = √
κ|1〉〈1| ⊗ |0〉〈1|, (C1)

which remove an excitation provided that the neighboring spin
to the left is in the excited state. The stationary states are
formed by dark states with, if present, isolated excitations, i.e.,
composed of empty sites, |0〉, and single excitations followed
by an empty site, |12〉 = |10〉,
| . . . 0 . . . 0 . . .〉, | . . . 12 . . . 0 . . .〉, . . . | . . . 12 . . . 12 . . .〉.

(C2)

As these stationary states are dark, i.e., J−|12〉 = 0 = J−|00〉,
also coherences between them are stationary, forming a
decoherence-free subspace [67–69].

2. Classical dynamics due to temperature

We first consider influence of classical dynamics due to
nonzero temperature, i.e., jumps

J+ = √
γ |1〉〈1| ⊗ |1〉〈0|, (C3)

in order to see how a classical metastable manifold arises from
the quantum DFS in Eq. (C2).

a. Stationary states

The stationary states for κ, γ �= 0 (without coherent field,
� = 0, and the hard constraint, ε = 0) are known to be [cf.
Eqs. (B3) and (B4)]

ρ (0)
ss = ‖0〉〉⊗N , (C4)

ρ (1)
ss = [

(λ0‖0〉〉 + λ1‖1〉〉)⊗N − λN
0 ‖0〉〉⊗N

]/(
1 − λN

0

)
,

where

λ0 = κ

κ + γ
, λ1 = γ

κ + γ
(C5)

[cf. Eq. (B2)]. In particular, due to a hard constrain (ε = 0),
ρ (1)

ss is disconnected from the dynamics, and the final contribu-
tion to it in the asymptotic state equals the initial contribution,
limt→∞ ρt = λρ (0)

ss + (1 − λ)ρ (1)
ss , where λ = 〈0|⊗Nρ0 |0〉⊗N .

In particular, considering γ /κ as a small parameter, i.e., the
low-temperature limit, we recover from Eq. (C4)

ρ (0)
ss = ‖0〉〉⊗N , (C6)

ρ (1)
ss =

[
1 − γ

κ
(N − 1)

] 1

N

N∑
j=1

‖ . . . 1 j . . .〉〉

+ γ

κ

1

N

N∑
j=1

N∑
j>k

‖ . . . 1 j . . . 1k . . .〉〉 + · · · , (C7)

where we introduced the notation ‖ . . . 1 j . . .〉〉 =
‖0〉〉⊗( j−1) ⊗ ‖1〉〉 ⊗ ‖0〉〉⊗(N− j) and ‖ . . . 1 j . . . 1k . . .〉〉 =
‖0〉〉⊗( j−1) ⊗ ‖1〉〉 ⊗ ‖0〉〉⊗(k− j−1) ⊗ ‖1〉〉 ⊗ ‖0〉〉⊗(N−k).

b. Perturbative dynamics

Before the discussion of the perturbative dynamics, let us
note that the state ‖0〉〉⊗N = ρ (0)

ss , in agreement with Eq. (C4),
is decoupled from the dynamics to all orders, as the hard
constraint in the no-zero temperature dynamics [Eq. (C3)]
cannot be satisfied.

First-order dynamics. In the first order, we obtain following
transformation, which corresponds to the decay of closest
isolated excitations,

| . . . 1212 . . .〉〈. . . 1212 . . . | �−→ γ

2
(| . . . 1202 . . .〉〈. . . 1202 . . . |

−| . . . 1212 . . .〉〈. . . 1212 . . . |),
| . . . 1202 . . .〉〈. . . 1202 . . . | �−→ 0,

| . . . 121̄2 . . .〉〈. . . 121̄2 . . . | �−→ 0,

| . . . 1̄2 . . .〉〈. . . 1̄2 . . . | �−→ 0,

| . . . 02 . . .〉〈. . . 02 . . . | �−→ 0,

where we introduced |1̄2〉 = |01〉 and |02〉 = |00〉, and . . . in
| . . . 1212 . . .〉〈. . . 1212 . . . | denote any configuration allowed
by Eq. (C2), also configurations corresponding to coherences,
i.e., different in the ket and bra (this is in direct analogy to
the tensor product structure in J+ which acts on the state of
a pair of spins, independently from the state of the rest of
spins). The notation used hereafter describes the dynamics due
to the (first) perturbation acting on the leftmost spin. In order
to recover full dynamics of a given state, it is necessary to
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consider the above dynamics with respect to each of the spins
in the system (i.e., all translations).

The coherences are affected by nonzero temperature as
follows:

| . . . 1202 . . .〉〈. . . 1212 . . . | �−→ −γ

3
| . . . 1202 . . .〉〈. . . 1212 . . . |,

| . . . 121̄2 . . .〉〈. . . 1212 . . . | �−→ −γ

3
| . . . 121̄2 . . .〉〈. . . 1212 . . . |,

| . . . 1202 . . .〉〈. . . 121̄2 . . . | �−→ 0,

| . . . 12 . . .〉〈. . . 1̄2 . . . | �−→ −γ

2
| . . . 12 . . .〉〈. . . 1̄2 . . . |,

| . . . 12 . . .〉〈. . . 02 . . . | �−→ −γ

2
| . . . 12 . . .〉〈. . . 02 . . . |,

| . . . 1̄2 . . .〉〈. . . 02 . . . | �−→ 0,

and dynamics of the Hermitian conjugates follows from the
Hermiticity preservation of the dynamics (i.e., Hermitian con-
jugation of equations above). Here we assumed the system
of N � 3 spins (see below for the discussion of finite-size
effects). The above dynamics can be interpreted as quantum
dynamics with three types of jumps:

J0 =
√

γ

2
|1202〉〈1212|,

J1 =
√

γ

3
(|1202〉〈1202| + |121̄2〉〈121̄2| + |1212〉〈1212|),

J2 =
√

2γ

3

(
|1202〉〈1202| + |121̄2〉〈121̄2| + 1

2
|1212〉〈1212|

)
.

(C8)

The jump operator J0, corresponds to the decay of neighbor-
ing excitations, while the jump operators J1 and J2, cause
dephasing of states with different locations of excitations. In
particular, the dephasing jumps J1 and J2 lead to decay of
all coherences in the DFS. Therefore, the manifold of states
stationary with respect to the first-order dynamics is classical.
Furthermore, due to the decay represented by J0, the stationary
states consist of isolated excitations followed by at least two
empty sites, |13〉 = |100〉,
‖ . . . 0 . . . 0 . . .〉〉, ‖ . . . 13 . . . 0 . . .〉〉, . . . ‖ . . . 13 . . . 13 . . .〉〉.

(C9)

Second-order dynamics. In the second order, the dynamics
due to jumps J+ is classical and features decay of the neigh-
boring excitations,

‖ . . . 1313 . . .〉〉 �−→ 2

3

γ 2

κ
(‖ . . . 1303 . . .〉〉 − ‖ . . . 1313 . . .〉〉),

‖ . . . 1413 . . .〉〉 �−→ 1

4

γ 2

κ
(‖ . . . 1403 . . .〉〉 − ‖ . . . 1413 . . .〉〉),

‖ . . . 15 . . .〉〉 �−→ 0, (C10)

where |14〉 = |1000〉 = |1202〉 and |15〉 = |10000〉. Here we
assumed N � 5 spins (see below for the discussion of finite-
size effects). Therefore, the remaining stationary states are
composed of empty sites and excitations followed by at least

four empty sites, |15〉,
‖ . . . 0 . . . 0 . . .〉〉, ‖ . . . 15 . . . 0 . . .〉〉, . . . ‖ . . . 15 . . . 15 . . .〉〉.

(C11)
Third-order dynamics. In the third order, we have two

contributions to the dynamics of the states in Eq. (C11): from
the (third-order) perturbation by the temperature outside the
dark space [Eq. (C2)], and the (second-order) perturbation
with the effective dynamics [Eq. (C10)] inside the classical
space [Eq. (C9)]. We thus obtain the decay of the neighboring
excitations,

‖ . . . 1515 . . .〉〉 �−→ 4

3

γ 3

κ2
(‖ . . . 1505 . . .〉〉 − ‖ . . . 1515 . . .〉〉),

‖ . . . 1615 . . .〉〉 �−→ 2

3

γ 3

κ2
(‖ . . . 1605 . . .〉〉 − ‖ . . . 1615 . . .〉〉),

‖ . . . 1715 . . .〉〉 �−→ 4

11

γ 3

κ2
(‖ . . . 1705 . . .〉〉 − ‖ . . . 1715 . . .〉〉),

‖ . . . 1815 . . .〉〉 �−→ 1

8

γ 3

κ2
(‖ . . . 1805 . . .〉〉 − ‖ . . . 1815 . . .〉〉),

‖ . . . 19 . . .〉〉 �−→0, (C12)

which leads to remaining stationary states composed of empty
sites and excitations followed by at least eight empty sites,

‖ . . . 0 . . . 0 . . .〉〉, ‖ . . . 19 . . . 0 . . .〉〉, . . . ‖ . . . 19 . . . 19 . . .〉〉.
(C13)

We have assumed N � 9 spins (see below for the discussion
of finite-size effects). We note that the order or perturbation
necessary for the decay of neighboring excitation is not linear
in the distance between excitations, but follows the logarith-
mic scaling instead.

Alternatively, we can consider the third-order dynamics in
the set of states of Eq. (C9), which will reintroduce neighbor-
ing excitations as

‖ . . . 1515 . . .〉〉 �−→ γ 3

κ2

(
2

3
‖ . . . 1317 . . .〉〉 + 1

4
‖ . . . 1416 . . .〉〉

+ 5

12
‖ . . . 1505 . . .〉〉− 4

3
‖ . . . 1515 . . .〉〉

)
,

‖ . . . 1615 . . .〉〉 �−→ γ 3

κ2

(
2

3
‖ . . . 131315 . . .〉〉

+ 1

4
‖ . . . 1417 . . .〉〉

+ 1

12
‖ . . . 1605 . . .〉〉 − ‖ . . . 1615 . . .〉〉

)
,

‖ . . . 17 . . .〉〉 �−→ γ 3

κ2

(
1

2
‖ . . . 1314 . . .〉〉 + 1

4
‖ . . . 1413 . . .〉〉

− 3

4
‖ . . . 17 . . .〉〉

)
. (C14)

Here we omitted the modes decaying in the second order, as
they will lead to higher order corrections, e.g., in the station-
ary state, and we assumed N � 7 spins (see below for the
discussion of finite-size effects).

Hierarchy of timescales and metastable manifolds. In the
discussion above, we obtained a hierarchy of timescales
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corresponding to the dynamics with different orders of per-
turbation in the temperature parameter γ . In particular, the
structure of the modes invariant to the dynamics of a partic-
ular order [see Eqs. (C9), (C11), and (C13)] determines the
metastable manifold in the timescales until the contribution
from the following-order becomes significant. Finally, we
note that for the perturbation theory to hold, the parameter γ

must be small enough when multiplied by the system size N ,
due to the locality of the perturbative dynamics. We discuss
the examples of finite system sizes in Appendix C 2 d.

c. Corrections to state structure

Introduction of nonzero dynamics, not only changes the
timescale of the dynamics, introducing decaying modes, but
also changes their structure.

First-order corrections. We now consider first-order cor-
rections to Eq. (C9). Only the states with an excitation are
corrected with(

1 − 4
γ

κ

)
‖10000 . . .〉〉 + γ

κ
(‖11000 . . .〉〉 + ‖10100 . . .〉〉

+ ‖10010 . . .〉〉 + ‖10001 . . .〉〉), (C15)

where the first-order corrections are due to the first-order
perturbation outside the dark DFS [Eq. (C2)], the second-
order corrections inside the DFS, but beyond the invariant
states in Eq. (C9), and the third-order corrections inside this
set, but beyond the states in Eq. (C11) (the last two terms),
respectively; see [76]. We therefore recover the structure of
the stationary states in Eq. (C4).

Corrections acquired during dynamics. Although all the
corrections in Eq. (C15) are of the first order, their origin is
due to different orders of perturbative dynamics. Therefore,
for an initial state ‖10000 . . .〉〉, the term ‖11000 . . .〉〉 will
be acquired after the first-order dynamics takes place, i.e.,
for times t � γ −1, the term ‖10100 . . .〉〉 will be acquired
for times t � κγ −2, while the terms ‖10010 . . .〉〉 + ‖10001〉〉
for t � κ2γ −3, etc. This directly corresponds to the fact that
the state ‖10000 . . .〉〉 fulfils the constraint for the dynamics
of the second spin, which takes place at the rate γ lead-
ing to each stationary state (cf. the first-order dynamics in
Appendix C 2 b). The presence of the excited state in the
stationary state of second spin can further facilitate the dy-
namics of the third spin (see the second-order dynamics in
Appendix C 2 b), etc.

d. Finite size

We now consider how the perturbative dynamics in the
first, second, and third order is changed for N = 3, 4, 5, 6,
which are system sizes relevant for the discussion in the main
text.

Three spins. There are four dark states of N = 3 spins [cf.
Eq. (C2)]

|000〉, |100〉, |010〉, |001〉. (C16)

As there is only at most a single excitation present, the first-
order dynamics in Eq. (C8) leads to dephasing of coherences
between different states, which gives the classical manifold,

‖000〉〉, ‖100〉〉, ‖010〉〉, ‖001〉〉. (C17)

In the second order, the single excitation couples to itself via
the periodic boundary [cf. Eq. (C10)],

‖100〉〉 �−→ γ 2

κ

[
1

3
(‖100〉〉 + ‖010〉〉 + ‖001〉〉)− ‖100〉〉

]
,

(C18)

yielding the uniform stationary state ρ (1)
ss in Eq. (C4).

Four spins. There are seven dark states of N = 4 spins [cf.
Eq. (C2)]

|04〉, |14〉, . . . , |1212〉, |1̄21̄2〉 (C19)

with dots between the states denoting the three states obtained
under the translation. The first-order dynamics in Eq. (C8)
leads to the classical stationary states with at most a single
excitation present, without coherences [cf. Eq. (C9)]

‖04〉〉, ‖14〉〉, . . . . (C20)

In the second order, similarly as in the case N = 3, the single
excitation, can couple to itself via the periodic boundary [cf.
Eq. (C10)]

‖14〉〉 �−→ γ 2

4κ
(‖0212〉〉 − ‖14〉〉). (C21)

Finally, in the third order, the two modes left invariant by the
second-order dynamics, couple as

1

2
(‖14〉〉 + ‖0212〉〉) �−→ γ 3

2κ2

[
1

2
(‖1̄202〉〉 + ‖021̄2〉〉)

− 1

2
(‖14〉〉 + ‖0212〉〉)

]
,

leading to the uniform stationary state ρ (1)
ss [cf. Eq. (C4)].

Five spins. There are 11 dark states of N = 5 spins [cf.
Eq. (C2)]

|05〉, |15〉, . . . , |1213〉, . . . . (C22)

The first-order dynamics in Eq. (C8) leads to the classical sta-
tionary states with at most a single excitation present, without
coherences [cf. Eq. (C9)]:

‖05〉〉, ‖15〉〉, . . . . (C23)

These states are also invariant to the second-order dynamics
in Eq. (C10). In the third order, the remaining degeneracy is
lifted, by coupling of the single excitation to itself, as follows:

‖15〉〉 �−→ 4

3

γ 3

κ2

[
1

2
(‖0213〉〉 + ‖0312〉〉) − ‖15〉〉

]
, (C24)

with other transformations following by the translation sym-
metry of the dynamics. Therefore, we recover two stationary
states as [cf. Eq. (C4)]

‖05〉〉, 1
5 (‖15〉〉 + · · · ). (C25)

Six spins. There are 18 dark states at 0-temperature are [cf.
Eq. (C2)]

|06〉, |16〉, . . . , |1214〉, . . . , |1313〉, . . . , |121212〉, . . . .
(C26)
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The first-order dynamics [Eq. (C8)] leads to only the follow-
ing classical states being stable [cf. Eq. (C9)]

‖06〉〉, ‖16〉〉, . . . , ‖1313〉〉, . . . , (C27)

while in the second order [Eq. (C10)] the decay

‖1313〉〉 �−→ 2

3

γ 2

κ

(‖16〉〉 + ‖0313〉〉
2

− ‖1313〉〉
)

(C28)

leads to only two types of states being stationary [cf.
Eq. (C11)]

‖06〉〉, ‖16〉〉, . . . . (C29)

In the third order, due to coupling of a single excitation to
itself via the boundary, we obtain

‖16〉〉 �−→ 2

3

γ 3

κ2

[
1

2
‖0313〉〉+ 1

4
(‖0214〉〉− ‖0412〉〉) − ‖16〉〉

]
,

(C30)

which again recovers the two uniform stationary states of
Eq. (C4). Alternatively, we can consider third-order dynamics
including double excitations (C27),

‖16〉〉 �−→ γ 3

κ2

[
2

3
‖1313〉〉 + 1

6
(‖0214〉〉 + ‖0412〉〉) − ‖16〉〉

]
,

(C31)

which dynamics together with the second-order dynamics,
Eq. (C28), obeys detailed balance (as a consequence of trans-
lation symmetry and at most a single excitation removed or
injected at a time). Note that we neglected the third-order dy-
namics of ‖1313〉〉, which already undergoes the second-order
dynamics, as it will lead to second-order corrections in the
stationary state.

Directionality in the perturbative dynamics. Above we
discuss the perturbative dynamics with constraint from the
spin to the left; see Eqs. (C1) and (C3). This directionality
is apparent in the notation used for the description of the
dynamics in Appendix C 2 b. For the system of a finite size,
it can directly be observed in the first-order dynamics for
sizes N = 5, 6. Indeed, in the first order, the decay of the
states |1213〉, |1214〉, ...to |15〉, |16〉, ..., respectively, manifests
interactions to the left. However, in the second and the third
orders, dynamics would be the same when considering action
of the constraint from the spin to the right.

3. Decay dynamics due to soft constraint

a. Dynamics due to soft constraint at small temperature
and without coherent field

We now consider changing the hard constraint |1〉〈1|
to |1〉〈1| + ε|0〉〈0| with 0 < ε � 1, i.e., changing the jump
operator (C1) to

J− + ε δJ− = √
κ (|1〉〈1| + ε|0〉〈0|) ⊗ |0〉〈1|. (C32)

The stationary state of this dynamics is unique and equal to the
noninteracting (tensor-product) state ‖0〉〉⊗N [cf. Eq. (B6)].

At low temperature, γ � κ , the perturbation from δJ−,
will compete with the temperature itself, J+ in Eq. (C3), lead-
ing to the interplay of dynamics with different timescales, as

we explain below. The change in the constrain of J+ will con-
tribute in a higher order with δJ+ = √

γ (|1〉〈1| + ε|0〉〈0|) ⊗
|1〉〈0| [cf. Eq. (C32)], and since, as we explain below, two
former contributions lead to a unique stationary state, it can
be neglected in the dynamics.

First-order dynamics. There are no first-order corrections
in ε, as we now explain. First, since the DFS in Eq. (C2) is
dark to J−, the action of the jump is 0 on any dark state, while
the anticommutator terms contain (δJ−)†J− = 0 = (J−)†δJ−
(due to orthogonality of the constraints |0〉 and |1〉). There-
fore, there are no first-order corrections in dynamics of the
structure of states due to δJ−, nor there are any-higher or-
ders corrections. Similarly, δJ+ will not contribute in the first
order proportional to γ ε. Indeed, (δJ+)†J+ = 0 = (J+)†δJ+,
and thus only coherence | . . . 01 . . .〉〈. . . 11 . . . | can be created
from | . . . 00 . . .〉〈. . . 10 . . . | at the rate γ ε (and the same for
the Hermitian conjugates), which nevertheless decays to 0.
As we will see below, however, in the higher order, J+ will
crucially contribute to the corrections to the structure of the
stationary state.

Second-order dynamics. Depending on the ratio between
ε2 and γ , we need to consider the second-order dynamics in-
duced by the soft constraint in different metastable manifolds;
see Eqs. (C9), (C11), and (C13).

Regime of γ = O(ε2). We consider the dissipative dynam-
ics with δJ− in the DFS of dark states [Eq. (C2)]. In this case,
we obtain decay of isolated excitations,

| . . . 1̄2 . . .〉〈. . . 1̄2 . . . | �−→ ε2 κ , (| . . . 02 . . .〉〈. . . 02 . . . |
− | . . . 1̄2 . . .〉〈. . . 1̄2 . . . |),

which associated decay of coherences as

| . . . 1̄2 . . .〉〈. . . 02 . . . | �−→ −ε2

2
κ | . . . 1̄2 . . .〉〈. . . 02 . . . |,

| . . . 1̄2 . . .〉〈. . . 12 . . . | �−→ −ε2

2
κ | . . . 1̄2 . . .〉〈. . . 12 . . . |,

which dynamics exactly corresponds to the jump operator
δJ−. Therefore, even in the presence of the competing first-
order dynamics due to temperature [Eq. (C8)], all the modes
decay at timescales proportional to ε2 (plus γ ), with the
unique stationary state without any excitations,

ρss =
(

1 − N
γ

κ

)
‖0〉〉⊗N + γ

κ
(‖1N 〉〉 + · · · ), (C33)

where · · · denotes the translations. At 0-temperature, γ = 0,
this is the stationary state to all orders in ε [cf. Eq. (C4)],
while for γ > 0 the corrections are due to the second-order
perturbation from δJ+, which can be equivalently understood
as the result of the second-order dynamics with δJ+.

Regime of γ 2 = O(ε2). Here the perturbations act on the
classical manifold in Eq. (C11) invariant to the first-order
temperature dynamics. The second-order dynamics with δJ−
leads again to decay of excitations

‖ . . . 0213 . . .〉〉 �−→ ε2 κ (‖ . . . 05 . . .〉〉 − ‖ . . . 0213 . . .〉〉).

This will again lead to the stationary state without excitations
in Eq. (C33). We note that the dynamics induced by the soft
constrain, δJ−, preserves the structure of the classical man-
ifold, and thus there are no higher order corrections to the
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dynamics. Here the perturbation acting on the second most
left spin indicated in the state.

In contrast, the second-order dynamics introducing excita-
tions due to δJ+ when projected on the classical manifold in
Eq. (C11), would introduce excitations

‖ . . . 05 . . .〉〉 �−→ ε2 γ (‖ . . . 0213 . . .〉〉 − ‖ . . . 05 . . .〉〉),

(C34)

but also leads to decay of neighboring excitations and move-
ment of excitations,

‖ . . . 1313 . . .〉〉 �−→ ε2 γ (‖ . . . 16 . . .〉〉 − ‖ . . . 1313 . . .〉〉),

‖ . . . 1413 . . .〉〉 �−→ ε2

2
γ (‖ . . . 17 . . .〉〉 − ‖ . . . 1413 . . .〉〉),

‖ . . . 0313 . . .〉〉 �−→ ε2 γ (‖ . . . 0214 . . .〉〉 − ‖ . . . 0313 . . .〉〉),

‖ . . . 0413 . . .〉〉 �−→ ε2 γ (‖ . . . 0215 . . .〉〉 − ‖ . . . 0413 . . .〉〉).

(C35)

The dynamics described above is induced by the perturbation
acting on the second most left spin indicated in the state and
takes place in the higher order ε2 γ = O(ε4).

Regime of γ (n+1) = O(ε2). In general, the soft constraint
will lead to decay of neighboring excitations with rates pro-
portional to κ in the metastable states invariant to nth order
dynamics with J+. In particular, when degeneracy is lifted by
the temperature to only two states, the soft constraint will lead
further to the unique stationary state. We discuss such dynam-
ics for arbitrary values of the temperature and the coherent
field in Appendix C 3 b.

Finite-size example. We consider regime γ 2 = O(ε2) and
the system of N = 6 spins with the stationary states of the
first-order dynamics in γ given by Eq. (C27). The soft con-
straint in jump operators yields the following dynamics:

‖1313〉〉 �−→ 2 ε2 (κ + γ )

(‖16〉〉 + ‖0313〉〉
2

− ‖1313〉〉
)

,

‖16〉〉 �−→ ε2

[
κ (‖06〉〉 − ‖16〉〉)

+ 3γ

(‖1313〉〉 + ‖0412〉〉 + ‖1̄6〉〉
3

− ‖16〉〉
)]

,

‖06〉〉 �−→ 6 ε2 γ

(‖16〉〉 + · · ·
6

− ‖06〉〉
)

, (C36)

where ...denotes possible translations and ‖1̄6〉〉 = ‖000001〉〉.
This dynamics obeys detailed balance as a consequence of
translation symmetry and at most a single excitation removed
or injected at a time (a ladder structure), which structure
will also be left unchanged by the second-order perturbation
theory with γ ; see Eq. (C31). In particular, the soft constraint
leads to the unique stationary state

ρss =
(

1 − 6
γ

κ
+ 33

γ 2

κ2

)
‖06〉〉 +

(
γ

κ
− 6

γ 2

κ2

)
(‖16〉〉 + · · · )

+ γ 2

κ2
(‖1313〉〉 + · · · ), (C37)

where we expanded in the two-lowest order of γ , but ne-
glected the first-order corrections outside the metastable
manifold in Eq. (C11) [cf. Eq. (C15)].

b. Dynamics due to soft constraint at finite temperature
and coherent field

For dynamics with a hard constraint at finite temperature,
γ > 0, and finite coherent field, � �= 0, there exist two sta-
tionary states given in Eq. (B5). The soft constraint in the limit
|ε| � 1 induces perturbative dynamics between those states,
which in the second order is given by

ρ (0)
ss �−→ ε2 N (κ|e0|4 + γ |e1|4)

(
ρ (1)

ss − ρ (0)
ss

)
,

ρ (1)
ss �−→ ε2 N

λN−1
u

1 − λN
u

λe(κ|e1|4 + γ |e0|4)
(
ρ (0)

ss − ρ (1)
ss

)
,

where we defined we defined e0 = 〈0|e〉 and e1 = 〈1|e〉, so
that |e0|2 = 1 − |e1|2. This leads to a single noninteracting
stationary state in Eq. (B6) as we have λu(κ|e0|4 + γ |e1|4) =
λe(κ|e1|4 + γ |e0|4). In particular, for a small field � and a
low temperature γ , we obtain a separation of timescales in
the lifetime of two phases

τ1

τ0
= 1 − λN

u

λN
u

= N

(
γ

κ
+ �4

κ4

)
+ · · · , (C38)

so that the dark state should be prevalent in quantum trajecto-
ries.

4. Dephasing dynamics due to coherent field

We now consider influence of coherent dynamics due to
nonzero coherent field �, i.e., the Hamiltonian

H (�) = � |e〉〈e| ⊗ 1
2 (|1〉〈0| + |0〉〈1|)

=: �H + �2δH + · · · . (C39)

The constraint also appears in jump operators,

J−(�) = √
κ |e〉〈e| ⊗ |1〉〈0| =: J− + �δJ− + �2δ2J−

(C40)

and is determined by the eigenbasis of a single-spin stationary
state, which is rotated due to the presence of the coherent field
�,

|e〉〈e| =
(

1
2 − κ

2�
− i�

�

i�
�

1
2 + κ

2�

)
, (C41)

where � = √
κ2 + 4�2 [cf. Eq. (B4)].

a. Stationary states

The stationary states of dynamics with (C39) and (C40),
while at the hard constraint (ε = 0) and zero temperature (γ =
0), are given by [cf. Eq. (B5)]

ρ (0)
ss = ‖u〉〉⊗N , (C42)

ρ (1)
ss = [

(λu‖u〉〉+ λe‖e〉〉)⊗N − λN
u ‖u〉〉⊗N

]/(
1 − λN

u

)
, (C43)
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where ‖e〉〉 = |e〉〈e| is defined in Eq. (C41) and

‖u〉〉 =
(

1
2 + κ

2�
i�
�

− i�
�

1
2 − κ

2�

)
(C44)

[cf. Eq. (B3)], with the corresponding probabilities

λu,e = 1

2
± κ�

κ2 + �2
(C45)

[cf. Eq. (B2)]. Therefore, in the limit of small field �, we
obtain

ρ (0)
ss = ‖u〉〉⊗N , (C46)

ρ (1)
ss =

[
1 − �4

κ4
(N − 1)

]
1

N

N∑
j=1

‖ . . . e j . . .〉〉

+ �4

κ4

1

N

N∑
j=1

N∑
j>k

‖ . . . e j . . . ek . . .〉〉 + · · · ,

(C47)

where ‖ . . . e j . . .〉〉 = ‖u〉〉⊗( j−1) ⊗ ‖e〉〉 ⊗ ‖u〉〉⊗(N− j) and
‖ . . . e j . . . ek . . .〉〉 = ‖u〉〉⊗( j−1) ⊗ ‖e〉〉 ⊗ ‖u〉〉⊗(k− j−1) ⊗
‖e〉〉⊗ ‖u〉〉⊗(N−k). Comparing Eqs. (C6) and (C46), suggests
that the field � could act in the fourth order as the temperature
parameter γ , in the rotated basis formed by ‖u〉〉 and ‖e〉〉.
Below we recover metastable states as classical states with
isolated excitations in the second-order perturbation theory,
so that the next order corrections are of the fourth order,
while in the main text we confirm numerically that the
fourth-order and higher perturbations indeed correspond to
the temperature.

b. Perturbative dynamics

First-order dynamics. There are no first-order correc-
tions in �. In the first order, we have perturbations from
the Hamiltonian H = � |1〉〈1| ⊗ (|1〉〈0| + |0〉〈1|)/2, and an-
ticommutator with [(J−)†δJ− + (δJ−)†J−]/2 = i�(|1〉〈0| −
|0〉〈1|)/2 ⊗ |1〉〈1|, which introduce coherences of the dark
states [Eq. (C2)] to the states with double excitations, and thus
such contributions decay to 0.

Second-order dynamics. We have the following contribu-
tions to the second-order dynamics in �.

The dynamics due to the second-order perturbation in the
Hamiltonian, δH = i(|1〉〈0| − |0〉〈1|) ⊗ (|1〉〈0| + |0〉〈1|)/2,
leads to the unitary dynamics in the dark DFS corresponding
to movement of excitations,

| . . . 0100 . . .〉〈. . . | �−→ −�2

2κ
| . . . 0010 . . .〉〈. . . |,

| . . . 0010 . . .〉〈. . . | �−→ �2

2κ
| . . . 0100 . . .〉〈. . . |, (C48)

where in the above expressions we considered the perturbation
δH acting on the second and third spins, on the ket only.

The dynamics due to the second-order perturbation in the
jump operator, δ2J− = �2(|0〉〈0| − |1〉〈1|)/2 ⊗ |0〉〈1|/√κ

3, is
analogous to the first-order dynamics with the soft constraint
discussed in Sec. C 3 a, and thus gives no contribution.

The dissipative dynamics with the first-order perturbation
to the jump operators, δJ− = i�(|1〉〈0| − |0〉〈1|) ⊗ |0〉〈1|/√κ ,
which similarly to δH facilitate movement of interactions, in
the DFS causes both movements of excitations and decay of
neighboring excitations,

| . . . 0010 . . .〉〈. . . 0010 . . . | �−→ �2

κ
(| . . . 0100 . . .〉〈. . . 0100 . . . | − | . . . 0010 . . .〉〈. . . 0010 . . . |),

(C49)

| . . . 1010 . . .〉〈. . . 1010 . . . | �−→ �2

κ
(| . . . 1000 . . .〉〈. . . 1000 . . . | − | . . . 1010 . . .〉〈. . . 1010 . . . |),

with the corresponding decay of coherences

| . . . · 010 . . .〉〈. . . | �−→ −�2

2κ
| . . . · 010 . . .〉〈. . . |, (C50)

where in the above expression (·) stands for either 0 or 1 and we considered the perturbation δJ− acting on the second and third
spins, and on the ket only.

The second-order correction due to H taking the states outside the dark DFS also leads to completely positive trace-preserving
dynamics, similar to the first-order corrections from the nonzero temperature in Eq. (C8),

| . . . 1010 . . .〉〈. . . 1010 . . . | �−→ �2

4κ
(| . . . 1000 . . .〉〈. . . 1000 . . . | − | . . . 1010 . . .〉〈. . . 1010 . . . |),

(C51)| . . . 100 · . . .〉〈. . . 100 · . . . | �−→ 0,

with coherences decaying as

| . . . 1010 . . .〉〈. . . 100 · . . . | �−→ −�2

4κ
| . . . 1010 . . .〉〈. . . 100 · . . . |,

| . . . 1010 . . .〉〈. . . 010 · . . . | �−→ −�2

4κ
| . . . 1010 . . .〉〈. . . 010 · . . . |,

| . . . 1010 . . .〉〈. . . 00 · · . . . | �−→ −�2

4κ
| . . . 1010 . . .〉〈. . . 00 · · . . . |,
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| . . . 100 . . .〉〈. . . 010 . . . | �−→ −�2

2κ
| . . . 100 . . .〉〈. . . 010 . . . |,

| . . . 100 . . .〉〈. . . 00 · . . . | �−→ −�2

2κ
| . . . 100 . . .〉〈. . . 00 · . . . |, (C52)

where we considered the perturbation H acting on the first and second spins.
The second-order dynamics due to the first-order perturbation in dissipation, which takes the states outside the dark DFS, is

| . . . 0010 . . .〉〈. . . 0010 . . . | �−→ −�2

κ
(| . . . 0100 . . .〉〈. . . 0100 . . . |

− | . . . 0010 . . .〉〈. . . 0010 . . . |),

| . . . 1010 . . .〉〈. . . 1010 . . . | �−→ −3

4

�2

κ
(| . . . 1000 . . .〉〈. . . 1000 . . . |

− | . . . 1010 . . .〉〈. . . 1010 . . . |), (C53)

where the perturbations act on the second and third spins,
while the coherences obey

| . . . 0010 . . .〉〈. . . | �−→ �2

2κ
| . . . 0010 . . .〉〈. . . |,

(C54)

| . . . 1010 . . .〉〈. . . | �−→ �2

4κ
| . . . 1010 . . .〉〈. . . |,

where the perturbation acts on the second and third spins,
and on the ket only. Note that the generated dynamics is
trace-preserving but not positive. Nevertheless, when added
to Eqs. (C49) and (C50), it becomes completely positive.

Finally, the mixed second-order contribution from the per-
turbation in dissipation and the Hamiltonian gives

| . . . 1010 . . .〉〈. . . 1010 . . . |

�−→ −�2

2κ
(| . . . 1000 . . .〉〈. . . 1000 . . . |

− | . . . 1010 . . .〉〈. . . 1010 . . . |), (C55)

where the first Hamiltonian perturbation acts on the first and
second spins, while the first dissipative perturbation on the
second and third spins. This also leads to the dynamics of
coherences as follows:

| . . . 100 · . . .〉〈. . . 1010 . . . |

�−→ �2

2κ
| . . . 100 · . . .〉〈. . . 1010 . . . |. (C56)

Finally, we also obtain unitary dynamics [cf. Eq. (C48)],

| . . . 0100 . . .〉〈. . . | �−→ �2

2κ
| . . . 0010 . . .〉〈. . . |,

(C57)

| . . . 0010 . . .〉〈. . . | �−→ −�2

2κ
| . . . 0100 . . .〉〈. . . |,

where the contribution corresponds to the second and third
spins being perturbed.

Total second-order dynamics. Summing all the second-
order contributions above we obtain no dynamics of occupa-
tions,

| . . . 1010 . . .〉〈. . . 1010 . . . | �−→ 0,
(C58)| . . . 0010 . . .〉〈. . . 0010 . . . | �−→ 0,

while the coherences undergo dephasing,

| . . . 1010 . . .〉〈. . . | �−→ −�2

2κ
| . . . 1010 . . .〉〈. . . |,

(C59)

| . . . 100 · . . .〉〈. . . | �−→ −�2

4κ
| . . . 100 · . . .〉〈. . . |.

Therefore the manifold of states invariant to the second-order
dynamics is classical with isolated excitations followed at
least by one empty site [cf. Eq. (C9)]

‖ . . . 0 . . . 0 . . .〉〉, ‖ . . . 010 . . . 0 . . .〉〉, . . .
× ‖ . . . 010 . . . 010 . . .〉〉, . . . . (C60)

Third-order dynamics. As stationary states of the second-order
dynamics are classical, it follows that there are no third-order
corrections in � to the perturbative dynamics. Indeed, the
eigenvalues of the induced stochastic dynamics must be neg-
ative, while �3 can be both positive and negative.

c. Corrections to state structure

First-order corrections. We now consider first-order cor-
rections to (C9) for states with isolated excitation, which are
stationary under the second-order dynamics in �. We have
that the perturbation by the field outside the dark DFS yields
[cf. Eq. (C2)]

| . . . 010 . . .〉〈. . . 010 . . . |
− i

�

κ
(| . . . 011 . . .〉〈. . . 010 . . . |

− | . . . 010 . . .〉〈. . . 011 . . . |) + · · ·
− i

�

κ
(| . . . 110 . . .〉〈. . . 010 . . . |

− | . . . 010 . . .〉〈. . . 110 . . . |) + · · · ,

where the corrections in the first line are due to the Hamilto-
nian H , while in the second line due to the anticommutator
with [(J−)†δJ− + (δJ−)†J−]/2 [cf. Eqs. (C39) and (C40)].
These corrections directly correspond to the transformation of
|0〉 and |1〉 into the rotated basis of |u〉 and |e〉 [cf. Eqs. (C41)
and (C44)].
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APPENDIX D: PERTURBATION THEORY FOR OPEN
QUANTUM EAST MODEL WITH OPEN

BOUNDARY CONDITIONS

Here we show that the dynamics at a very low softness
(ε � 1), in the case of open boundary conditions, leads to
dynamical heterogeneity. For the case of periodic boundary
conditions, see Appendix C 3 b.

1. Stationary states for hard constraint

We first consider dynamics at any temperature and with
arbitrary coherent field, but with a hard constraint, i.e., the
Hamiltonian and jump operators,

H = � |e〉〈e| ⊗ (|0〉〈1| + |1〉〈0|)/2,

J− = √
κ |e〉〈e| ⊗ |0〉〈1|, (D1)

J+ = √
γ |e〉〈e| ⊗ |1〉〈0|,

for a neighboring pair of spins.

a. Stationary states

There are N + 1 orthogonal stationary states in the model
with open boundary conditions and the hard constraint (ε =
0) [cf. Eq. (B5)]

ρ (0)
ss = ‖u〉〉⊗N ,

(D2)
ρ ( j)

ss = ‖u〉〉⊗( j−1) ⊗ ‖e〉〉 ⊗ (λu‖u〉〉 + λe‖e〉〉)⊗(N− j),

where j = 1, . . . , N . The states ‖u〉〉 = |u〉〈u| and ‖e〉〉 =
|e〉〈e| defined in Eqs. (B3) and (B4), and the probabilities λu,
λe defined in Eq. (B2), correspond to the stationary state of
single-spin dynamics. Moreover, the coherences between the
pure ρ (0)

ss and ρ (N )
ss (i.e., the coherences of N th spin) are also

stationary,

C+ = ‖u〉〉⊗(N−1) ⊗ |e〉〈u|,
(D3)

C− = ‖u〉〉⊗(N−1) ⊗ |u〉〈e|,
which corresponds to the existence of a qubit DFS. This
structure of stationary states is a consequence of the first spin
undergoing no dynamics due to the absence of its neighbor to
the left, but acting as a constraint, while the last spin under-
going dynamics only in the presence of the penultimate spin
in the excited state. We note, however, that the coherence in
the first spin, |e〉〈u| ⊗ (λu‖u〉〉 + λe‖e〉〉)⊗(N−1) (and similarly
in other spins ‖u〉〉⊗( j−1) ⊗ |e〉〈u| ⊗ (λu‖u〉〉 + λe‖e〉〉)⊗(N− j)),
is not conserved, but instead, due to the first spin act-
ing as constraint, decays with the effective Hamiltonian
−iHeff = −i�(|0〉〈1| + |1〉〈0|) − κ

2 |1〉〈1| − γ

2 |0〉〈0|, acting on
the second spin ( j + 1-th spin) with the eigenvalues − κ+γ

4 ±√
( κ−γ

4 )2 − �2 featuring negative real parts.
Finally, we note that for small values of the temperature

and the coherent field γ , |�| � κ , we have λe ≈ 0, so that
the stationary states ρ (0)

ss and ρ
( j)
ss in Eq. (D2) can be viewed

as states with none and a single excitation of jth spin, re-
spectively. This is analogous to the structure of the latest
metastable manifold in the model with periodic boundary
conditions.

b. Conserved quantities

The corresponding projections on the stationary states in
Eq. (D2) are determined by their support,

�0 = u‖⊗N ,

� j = u‖⊗( j−1) ⊗ e‖ ⊗ 1
⊗(N− j)
2 , (C+)† and (C−)†, (D4)

and conserved by the dynamics. We have introduced ·‖ =
‖·〉〉†. The asymptotic state is determined as, limt→∞ ρt =
p0 ρ (0)

ss +∑N
j=1 p j ρ

( j)
ss + c C+ + c∗ C−, with probabilities

p j = Tr(� jρ0) and coefficients c = Tr{[C+]†ρ0}. In
particular, we have that �0 +∑N

j=1 � j = 1, which
corresponds to the trace preservation of the dynamics.

2. Dynamics due to soft constraint

We now consider dynamics due to soft constraint 0 < ε �
1. The change of softness in the constraint leads to the follow-
ing shifts in the original Hamiltonian H and jump operators
J− and J+ in Eq. (D1) [cf. Eq. (6)]:

δH = ε2 � |u〉〈u| ⊗ (|0〉〈1| + |1〉〈0|)/2,

δJ− = ε
√

κ |u〉〈u| ⊗ |0〉〈1|,
δJ+ = ε

√
γ |u〉〈u| ⊗ |1〉〈0|. (D5)

There are no first-order perturbations to the dynamics. This
is due to orthogonality of the constraint in J± and δJ±, which
gives (J±)†δJ± = 0 = (δJ±)†J±.

We have two independent second-order contributions from
the dissipative dynamics with the jumps operators δJ+, and
δJ−, and from the unitary dynamics in the DFS induced by
the Hamiltonian δH . There are no mixed contributions from
J± and δJ±, again due to orthogonality of their constraints.

a. Classical dynamics

Effective dynamics. In the absence of the field, � = 0, we
obtain

ρ (0)
ss �−→ ε2 γ

[
N∑

j=2

ρ ( j)
ss − (N − 1)ρ (0)

ss

]
,

ρ (1)
ss �−→ 0,

ρ ( j)
ss �−→ ε2 γ

[
j−1∑
k=2

ρ (k)
ss − ( j − 2)ρ ( j)

ss

]

+ ε2κ

⎡
⎣λN− j

0 ρ (0)
ss + λ1

N∑
k= j+1

λ
k−( j+1)
0 ρ (k)

ss − ρ ( j)
ss

⎤
⎦,

ρ (N )
ss �−→ ε2 γ

[
N−1∑
k=2

ρ (k)
ss − (N − 2)ρ (N )

ss

]
+ ε2 κ

[
ρ (0)

ss − ρ (N )
ss

]
,

C+ �−→ −ε2

2
(κ + γ )C+,

where j = 2, . . . , N − 1. Therefore, in the classical model at
small temperature, γ � κ , from Eq. (B2) we recover that, due
to softening of the constraint, the coherences simply decay at
the rate ε2(κ + γ )/2, while the inverse of the lifetime of the
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states ρ (0)
ss and ρ

( j)
ss , j = 2, . . . , N , is given, respectively, by

τ−1
0 = ε2 γ (N − 1) + · · · ,

τ−1
j = ε2 [κ + γ ( j − 2)] + · · · ,

while τ−1
1 = 0, as ρ (1)

ss is decoupled from the perturbative dynamics.
Stationary states. Indeed, there are two stationary states of the perturbative dynamics, given by two possible states of the

unconstrained first spin with the rest of the system in a local stationary state,

‖e〉〉 ⊗ (λ0‖0〉〉 + λ1‖1〉〉)⊗(N−1) = ρ (1)
ss ,

‖u〉〉 ⊗ (λ0‖0〉〉 + λ1‖1〉〉)⊗(N−1) = λN−1
0 ρ (0)

ss + λ1

N∑
j=2

λ
j−2
0 ρ ( j)

ss . (D6)

The stationary states in Eq. (D6) are actually the solutions of the dynamics with open boundary conditions to all orders in ε.
Dynamical heterogeneity. Furthermore, we observe from Eq. (D6), that there exists a separation of timescales, τ j/τ0 = (N −

1)γ /κ + · · · . Moreover, the excited state ρ
( j)
ss is transformed into ρ (0)

ss with the overwhelming probability 1 − (N − 2)γ /κ + · · · ,
rather than into ρ (k)

ss , k �= j. This together with the separation of timescales leads to dynamical heterogeneity for small enough ε

and γ /κ .

b. Quantum dynamics

Effective dynamics. In the presence of the field, � �= 0, from the perturbation of jump operators we obtain the dissipative
dynamics

ρ (0)
ss �−→ ε2(κ|e0|4 + γ |e1|4)

[
N∑

j=2

ρ ( j)
ss − (N − 1)ρ (0)

ss

]
+ ε2

2
{eiφe∗

0e∗
1[κ (1 + 2|e0|2) − γ (1 + 2|e1|2)]C+ + H.c.},

ρ (1)
ss �−→ 0,

ρ ( j)
ss �−→ ε2(κ|e0|4 + γ |e1|4)

[
j−1∑
k=2

ρ (k)
ss − ( j − 2)ρ ( j)

ss

]

+ ε2(κ|e1|4 + γ |e0|4)

⎡
⎣λN− j

u ρ (0)
ss + λe

N∑
k= j+1

λk−( j+1)
u ρ (k)

ss − ρ ( j)
ss

⎤
⎦,

ρ (N )
ss �−→ ε2(κ|e0|4 + γ |e1|4)

[
N−1∑
k=2

ρ (k)
ss − (N − 2)ρ (N )

ss

]
+ ε2(κ|e1|4 + γ |e0|4)

[
ρ (0)

ss − ρ (N )
ss

]

+ ε2

2
{eiφe∗

0e∗
1[κ (1 + 2|e1|2) − γ (1 + 2|e0|2)]C+ + H.c.},

C+ �−→ ε2

2
(κ − γ )e−iφe0e1(1 − 2|e1|2)

[
ρ (0)

ss − ρ (N )
ss

]
− ε2

2
[κ|e1|2(1 + 2|e0|2) + γ |e0|2(1 + 2|e1|2)]C+ − ε2(κ + γ )e−i2φe2

0e2
1 C−,

where j = 2, . . . , N − 1 and we defined e0 = 〈0|e〉, e1 = 〈1|e〉, so that |e0|2 = 1 − |e1|2 and u0 = 〈0|u〉 = eiφe∗
1, u1 = 〈1|u〉 =

−eiφe∗
0 with the relative phase φ ∈ R. The perturbation of constraint in the coherent field, δH , yields the unitary dynamics in the

DFS,

ρ (0)
ss �−→ ε2

2
�
[
ieiφ
(
e∗2

0 − e∗2
1

)
C+ + H.c.

]
,

ρ ( j)
ss �−→ 0,

ρ (N )
ss �−→ −ε2

2
�
[
ieiφ
(
e∗2

0 − e∗2
1

)
C+ + H.c.

]
,

C+ �−→ ε2

2
�ie−iφ

(
e2

0 − e2
1

)[
ρ (0)

ss − ρ (N )
ss

]− iε2 �(e0e∗
1 + e∗

0e1)C+,

where j = 1, . . . , N − 1.
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Stationary states. Although the dynamics of coherences is more complex than the simple decay present in the classical
dynamics, we note the dissipative dynamics of N th spin in the DFS (i.e., in the coupling between ρ (N )

ss , ρ (0)
ss , C+ and C−) features

the stationary state given by ρ (0,N )
ss = λuρ

(0)
ss + λeρ

(N )
ss = ‖u〉〉⊗(N−1) ⊗ (λu‖u〉〉 + λe‖e〉〉), without any stationary coherences.

Indeed, this follows from λu(κ|e0|4 + γ |e1|4) = λe(κ|e1|4 + γ |e0|4) and λue∗
0e∗

1[κ (1 + 2|e0|2) − γ (1 + 2|e1|2)] + λee∗
0e∗

1[κ (1 +
2|e1|2) − γ (1 + 2|e0|2)] + (λu − λe)�i(e∗2

0 − e∗2
1 ) = 0 [see Eqs. (B2)–(B4) and consider e0 � 0, so that e∗

0e∗
1 = −i�/� and

e∗2
0 − e∗2

1 = 1]. The effective dynamics involving the rest of spins can then be represented as

ρ (0,N )
ss �−→ ε2(κ|e0|4 + γ |e1|4)

[
N∑

j=2

ρ ( j)
ss − (N − 2)ρ (0)

ss

]
,

ρ (1)
ss �−→ 0,

ρ ( j)
ss �−→ ε2(κ|e0|4 + γ |e1|4)

[
j−1∑
k=2

ρ (k)
ss − ( j − 2)ρ ( j)

ss

]
+ ε2(κ|e1|4 + γ |e0|4)

×
⎡
⎣λN−( j+1)

u ρ (0,N )
ss + λe

N−1∑
k= j+1

λk−( j+1)
u ρ (k)

ss − ρ ( j)
ss

⎤
⎦,

which leads ultimately to two stationary states,

‖e〉〉 ⊗ (λu‖u〉〉 + λe‖e〉〉)⊗(N−1) = ρ (1)
ss ,

‖u〉〉 ⊗ (λu‖u〉〉 + λe‖e〉〉)⊗(N−1) = λN−2
u ρ (0,N )

ss + λe

N−1∑
j=2

λ j−2
u ρ ( j)

ss , (D7)

which directly correspond to two possible states of
the unconstrained first spin, with the rest of the sys-
tem equilibrated. Note that ρ (1)

ss is again disconnected
from the perturbative dynamics. Moreover, the station-
ary states in Eq. (D7) are actually the solutions of the
dynamics with open boundary conditions to all orders
in ε.

Dynamical heterogeneity. In the presence of the small field
and at the small temperature, the inverses of the lifetime of
ρ (0,N )

ss and ρ
( j)
ss are given by

τ−1
0,N = ε2

(
�4

κ3
+ γ

)
(N − 2) + · · · ,

τ−1
j = ε2

[
κ − 2

�2

κ
+
(

�4

κ3
+ γ

)
( j − 2)

]
+ · · · ,

where j = 2, . . . , N − 1, which again corresponds to a sepa-
ration of timescales,

τ j

τ0,N
=
(

�4

κ4
+ γ

κ

)
(N − 2) + · · · , (D8)

where j = 2, . . . , N − 1. Furthermore, the excited state ρ
( j)
ss ,

j = 2, .., N − 1 is transformed into ρ (0,N )
ss again with the over-

whelming probability equal 1 − (N − 3)[�4/κ4 + γ /κ] +
· · · . This, together with the separation of timescales, leads to
dynamical heterogeneity for small enough ε, γ /κ and �4/κ4.

While coherences contribute nontrivially to dynamics in
the DFS of ρ (0)

ss and ρ (N )
ss , in the limit of small temperature

and the field, the dynamics of ρ (N )
ss is dominated by the decay

to ρ (0)
ss with rate ε2κ + · · · . Similarly, ρ (0)

ss is excited to ρ (1)
ss

directly with rate ε2(�4/κ3 + γ ) + · · · , as the second-order
contribution in softness constraint via coherences, which
should be proportional to ε4�2/κ , cancels out.

APPENDIX E: ASPECTS OF CLASSICAL DYNAMICS

1. Classical stochastic dynamics

For a classical system with configurations labeled by l =
1, . . . , m, the stochastic dynamics of corresponding probabil-
ities pl (with 0 � pl � 1 and

∑m
l=1 pl = 1),

d

dt
pl (t ) =

m∑
k=1

(W)lk pk (t ), (E1)

is governed by the generator which fulfils
m∑

k=1

(W)kl = 0, (E2)

so that total probability is conserved, and

(W)ll � 0, (W)kl � 0 for k �= l, (E3)

so that probabilities remain positive.

2. Distance to classical dynamics

For a probability-conserving operator W̃, the distance
to the set of classical generators measured in the oper-
ator norm induced by L1 vector norm [that is, ‖W̃‖1 =
max1�l�m

∑m
k=1 |(W̃)kl |] is given by

min
W

‖W̃ − W‖1 = 2 max
1�l�m

∑
k �=l

| min[(W̃)kl , 0]|. (E4)

The normalized distance [that is, ‖W̃ − W‖1/(‖W̃‖1 +
‖W‖1) for W being the closest classical generator] is

�+ =
max

1�l�m

∑
k �=l | min[(W̃)kl , 0]|

max
1�l�m

|W̃ll +∑k �=l min[(W̃)kl , 0]| . (E5)
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This normalized distance is shown in 6(b). For derivations of
Eqs. (E4) and (E5), see Ref. [38].

3. Distance to detailed balance

a. Detailed balance

The stationary current of probability from kth to lth con-
figuration is given by

jkl = (W)kl (pss)l − (W)lk (pss)k, (E6)

where k, l = 1, . . . , m and pss denotes the stationary proba-
bility distribution for W. Detailed balance takes place when
there are no stationary currents,

(W)kl (pss)l = (W)lk (pss )k. (E7)

In this case, the generator W becomes symmetric under a
similarity transformation

(W′)kl = (pss)
− 1

2
k (W)kl (pss )

1
2
l . (E8)

b. Breaking of detailed balance

For a classical generator W, breaking of detailed balance
can be quantified with respect to its stationary distribution
pss as

min
Wdb

m∑
k,l=1

|(W)kl − (Wdb)kl |(pss)l , (E9)

where Wdb features detailed balance and the stationary distri-
bution identical to pss [cf. Eq. (E7)]. Note that in Eq. (E9)
we consider an entrywise matrix norm weighted with re-
spect to pss, which is in general smaller than ‖W − Wdb‖1 =
max1�l�m

∑m
k=1 |(W)kl − (Wdb)kl |. Below we show that it is

bounded by twice the total stationary current [cf. Eq. (E6)]

J = 1

2

m∑
k,l=1

| jkl |. (E10)

Furthermore, the normalized distance �db corresponds to
Eq. (E9) divided by twice the sum of the total activity K

in W,

K = 1

2

m∑
k,l=1

|(W)kl |(pss)l =
m∑

l=1

|(W)ll |(pss)l , (E11)

and in the optimal Wdb (which equals 1
2

∑m
k,l=1 qkl � 0), so

that

�db � J

K
. (E12)

Proof. We now prove that Eq. (E9) is bounded by 2J in
Eq. (E10). The sum on the left-hand side of Eq. (E9) corre-
sponds to

1

2

m∑
l=1

⎧⎪⎨
⎪⎩

m∑
k=1
k �=l

[|(W)kl (pss )l − qkl | + |(W)lk (pss)k − qkl |]

+

∣∣∣∣∣∣∣
m∑

k=1
k �=l

[(W)kl (pss)l − qkl ]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
m∑

k=1
k �=l

[(W)lk (pss)k − qkl ]

∣∣∣∣∣∣∣
⎫⎪⎬
⎪⎭,

where in the first line we introduced qkl = (Wdb)kl

(pss)l = qlk and the second line corresponds to |(W)ll (pss )l −
(Wdb)ll (pss)l | from the probability conservation of W and
Wdb. The minimum of the first line equals total cur-
rent [cf. Eq. (E10)] and is achieved for min[(W)kl (pss )l ,

(W)lk (pss)k] � qlk � max[(W)kl (pss )l , (W)lk (pss)k] [as the
minimization can be considered separately for each qkl (where
k > l)]. By the triangle inequality the second line is bounded
by the first line and thus the minimum is not larger than 2J .
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