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Abstract— To realize a higher-level autonomy of surgical knot
tying in minimally invasive surgery (MIS), automated suture
grasping, which bridges the suture stitching and looping proce-
dures, is an important yet challenging task needs to be achieved.
This paper presents a holistic framework with image-guided
and automation techniques to robotize this operation even under
complex environments. The whole task is initialized by suture seg-
mentation, in which we propose a novel semi-supervised learning
architecture featured with a suture-aware loss to pertinently learn
its slender information using both annotated and unannotated
data. With successful segmentation in stereo-camera, we develop
a Sampling-based Sliding Pairing (SSP) algorithm to online
optimize the suture’s 3D shape. By jointly studying the robotic
configuration and the suture’s spatial characteristics, a target
function is introduced to find the optimal grasping pose of the
surgical tool with Remote Center of Motion (RCM) constraints.
To compensate for inherent errors and practical uncertainties,
a unified grasping strategy with a novel vision-based mechanism
is introduced to autonomously accomplish this grasping task.
Our framework is extensively evaluated from learning-based
segmentation, 3D reconstruction, and image-guided grasping on
the da Vinci Research Kit (dVRK) platform, where we achieve
high performances and successful rates in perceptions and robotic
manipulations. These results prove the feasibility of our approach
in automating the suture grasping task, and this work fills the
gap between automated surgical stitching and looping, stepping
towards a higher-level of task autonomy in surgical knot tying.
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Note to Practitioners—This paper aims to automate the suture
grasping task in surgical knot tying by leveraging stereo visual
guidance. To effectively robotize this procedure, it requires multi-
disciplinary knowledge to achieve suture segmentation, 3D shape
reconstruction, and reliable automated grasping, while there are
no existing works tackling this procedure especially using robots
with RCM kinematics constraints and under complex environ-
ments. In this article, we propose a learning-driven method
along with a 3D shape optimizer, which can conduct the suture
segmentation and output its accurate spatial coordinates, serving
as guidance for automated grasping operation. Apart from this,
we introduce a unified function to optimize the grasping pose, and
a vision-based grasping strategy is also proposed to intelligently
complete this task. The experiments extensively validate the
feasibility of our framework for automated suture grasp, and
its successful completion can serve as a basis for the following
looping manipulation, hence filling a step gap in robot-assisted
knot tying. This framework can be also encapsulated into the
medical robotic system, and by simply indicating (e.g. mouse
click) the rough position of the suture’s tip in one camera frame,
the overall framework can be initialized and further accomplish
the suture grasping task, which further prompts a full autonomy
of surgical knot tying in the near future.

Index Terms— Medical robotics, vision-based manipulation,
automated suture grasping, surgical knot tying.

I. INTRODUCTION

W ITH enhanced capability in precision, dexterity, and
maneuverability, robot-assisted surgery (RAS) nowa-

days is becoming a popular paradigm in the operating
theater [1], [2], helping surgeons in gynecological [3], otorhi-
nolaryngological [4], and ophthalmological [5] surgeries.

Surgical autonomy, acting as a fast-growing sector [6] in
RAS, integrates state-of-the-art techniques in the field of
medical robotics to enable the robotic system with capa-
bilities of conducting preoperative planning by multi-modal
data fusion [7], carrying out intraoperative sensor-based
interventions [8], and implementing learning-driven opera-
tions [9]. The prosperous developments in surgical automation
at present are not only encouraging the integration of artificial
intelligence [10], [11] and multiple sensors-based control
schemes [12], [13] with medical robotic systems, but also
enhancing the efficiency and altering operational modes of
numerous kinds of surgical sub-tasks in clinical room.

Surgical suturing and knot tying is among one of these
sub-tasks which is tedious yet important [14], [15], and it
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Fig. 1. Image-guided automated suture grasping on the dVRK platform.
(a) The illustration of suture grasping using surgical robots with RCM
constraints. (b) Typical example of the grasping scenario and the end-effector’s
pose.

exists from in-vitro cuticle wound closure [13] to in-vivo
transanal total mesorectal excision (taTME) [16], and from
macro-scale suturing in laparoscopic hysterectomy [17] to
micro-scale endoscopic vascular anastomosis [18]. To reduce
fatigues from surgeons when conducting this manipulation,
researchers put their attentions on developments of automa-
tion skills in the aspects of the task planning [19], [20],
soft tissue manipulation [21], [22], hardware design [23],
[24], learning-based robotic manipulations [25], [26], and etc.
However, some of these on-the-shelf approaches only focused
on generations of system level human-machine collaborative
modes [23], [26] for surgical knot tying, in which the robot
needs continuous supervision and control from human. In addi-
tion, other works focused on automating the sub-tasks of
suture stitching [20], [24], [25] and its looping operations [13],
[19]. As claimed in [27], the suture needs to be cut after
the stitching manipulation, especially when adopting the inter-
rupted suturing technique. Consequently, an automated suture
grasping between the aforementioned two sub-tasks (stitching
and looping) is urgent to be achieved.

To resolve this problem, in this paper, we proposed a
holistic framework to pave the way towards this automated
suture thread grasping. Based on our prior works [27], [28],
this approach can achieve a task-level autonomy [6] with
the integration of multidisciplinary knowledge, and it can be
seamlessly deployed on the da Vinci Research Kit (dVRK)
platform, emulating the state-of-the-art paradigm of surgical
knot tying as is depicted in Fig. 1. This paper is a compre-
hensively improved version of our previous work [29], and to
the best of our knowledge, this is the first work that paves the
way towards robotizing the suture grasping operation, setting
a solid foundation for surgical knot tying automation.

Our main contributions can be summarized as follows:
1). Considering complex and varying environments in sur-

gical knot tying, we develop an evolved suture segmentation
scheme using a semi-supervised learning architecture, in which
a small number of labeled data and a large portion of unla-
beled images containing sutures under various conditions are
utilized, so as to generate a more generic model and save the
massive labeling time. Besides, a suture-aware loss which can
learn a suture’s curvilinear and slender structure is designed
to improve the overall segmentation performance.

2). The pixel-wise topological sequence of a suture is
completely figured out in the camera frame. To precisely
yield its 3D shape, a sampling-based sliding pairing (SSP)

scheme is jointly exploited to align the suture’s featureless key
points in the stereo Endoscopic Camera Manipulator (ECM)
for triangulation and 3D shape optimization.

3). By analyzing the characteristics of the suture’s 3D shape,
we propose universal criteria and pose optimization functions,
calculating the grasping position and orientation of a RCM
constrained Patient Side Manipulator (PSM), and the final
deployment position of the suture after its successful grasping
is also formulated.

4). To compensate for practical errors induced from the
hand-to-eye calibration [30], inherent mechanical deviations,
3D computational errors, and etc., we generate a novel strategy
by conducting the grasping trial with four designated actions.
In contrast to the human-in-the-loop system, an autonomous
vision-based mechanism is also proposed to identify the grasp-
ing status of the suture, thereby further liberating the manual
supervision from the operational loop.

The rest of this article is organized as follows. In Section II,
we review relevant research topics towards the realization of an
automated suture grasping, and then the learning-enabled and
optimization-based framework is systematically introduced
in Section II. The performances of our approach, ranging
from visual perception to robotic manipulations, are thor-
oughly validated, and some future works are also discussed in
Section IV. We finally raise our conclusion and acknowledge
in Section V and V.

II. RELATED WORKS

Regarding our proposed framework, relevant literature can
be systematically reviewed from three-folds, including the
curvilinear object segmentation, 3D shape reconstruction, and
image-guided automated grasping operation.

For the segmentation task, there are some existing works
implemented in relevant domains, such as catheter detec-
tion [31]–[33], vascular and retinal [34]–[37] segmentation.
In [31], Hernandez-Vela et al. proposed a fully automatic
approach which integrates the local and contextual information
to detect tubular structures, e.g. the catheter and the vessel’s
centerline, and Hoffmann et al. [32] introduced a graph-search
method with manual initialization for the electro-physiology
catheter detection. Besides, Lee et al. [33] used deep-learning
method and developed a cascading segmentation system for
catheter’s localization. In addition, Li et al. [36] remolded the
vessel segmentation task as a cross-modality data transfer from
retinal image to vessel structure using a supervised learning
approach, and Yan et al. [37] optimized their loss function
to well balance the thick and thin structures among retinal.
These methods, however, segment curvilinear objects using
radiology images [31]–[33], and our ECM system may contain
different environmental noises when conducting image-guided
manipulations. When adopting transitional method or image
operators [34], [35], the outcome may contain massive noises.
Besides, the learning-based methods typically rely on vast
labeling data [36], [37], and it will be time-consuming to
manually output masks in new images. Our semi-supervised
learning method tackles these existing problems and provides
a more feasible way for the suture’s perception in knot tying.

As for the 3D reconstruction, the depth camera is a com-
monly used tool, such as for the indoor environment or object
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Fig. 2. (a). The workflow of our learning-enabled and optimization-based suture grasping scheme. From the stereo images-based suture’s segmentation
and its 3D reconstruction, to the robotic execution using PSM to pick up the suture. (b). The semi-supervised learning architecture for suture segmentation.
We combine an enhanced supervised loss, the contour loss, and the consistency loss to train a model that can segment the suture under ECM imaging system.

reconstruction [38]–[40] and the 3D curvilinear object (rope)
computation [41]. But the inherent limitation is the minimum
sensing depth of the camera, which cannot provide accu-
rate feedback within limited space in MIS. Stereo-camera is
another option in the intro-operative imaging system. However,
matching featureless key points of the suture precisely in
two frames is a critical issue before its 3D reconstruction.
In [32], the 3D shape of the curved-like catheter was calculated
by triangulating the segmented 2D curves in two images
directly. Besides, Jackson et al. [42] used a non-uniform ratio-
nal B-spline (NURBS) curve-based method to track the suture
and aligned stereo feature points by minimizing a matching
energy. Similarly, Padoy and Hager [43] combined discrete
Markov random field and NURBS to formulate their 3D
computation scheme. Our method, however, gets rid of the
limitation of the curve model so as to realize a pixel-level
understanding of a suture’s sequence, and the optimized key
points matching scheme ensures a complete and accurate 3D
model output.

On the topic of automated grasping, it historically involves
various works inspired by model-based methods [44], [45],
sensor-guided manipulations [46], [47], and learning-driven
approaches [48], [49]. However, these existing works mainly
focused on the automated grasping of domestic objects using
macro-scale robotic grippers, and the demand of the grasping
accuracy will dramatically increase when it comes to the
autonomy in laparoscopic surgery. Different to [46], [49]
in which uncertainties can be induced from the inference
procedure or reinforcement learning, one of our focuses is
to explicitly exploit the pose of our instrument towards the
grasping of the designated suture. Besides, some grasping
tasks in MIS, e.g. automated needle’s grasping, are conducted

in a structured environment [50], or rely on the improvement
of the hand-to-eye calibration [30], [51], [52]. Our method
does not rely on additional marker information and can also
tolerate practical errors in such RCM constrained operations.

III. METHODOLOGY

A. Overview of Framework
We develop a holistic framework using visual guidance

to autonomously execute the suture grasping manipulation in
various scenarios. As depicted in Fig. 2(a), the operator only
needs to click around the suture’s cutting tip in one image to
initialize the task.

By leveraging a learning-based method, our framework can
segment the entire suture under complex and unstructured
environments, so as to facilitate its pixel level sequence infer-
ence in the stereo-camera. Utilizing this result, an optimal 3D
shape of the suture can be obtained. With this visual perception
outcome, a grasping strategy that can tolerate inherent errors is
forwarded. We also design a vision-based approach to monitor
the suture grasping status, so that manual supervision can be
further released from the loop.

B. Semi-Supervised Learning for Suture Segmentation
Acting as the initial sensory guidance, an accurate segmen-

tation of the suture plays a key role in our framework. When
there exist environmental noises, traditional image processing
methods such as color filtering, edge operator, or Hessian
matrix-based approach can hardly output satisfactory results.
With prompt developments of sophisticated architectures, deep
learning-based approach is a potential solution to resolve
this dilemma. To generate a reliable model for the suture’s
segmentation task, we consider the following principles:
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Principle 1: Since sutures’ annotations are tedious and
time-consuming, operators or surgeons are unwilling to spend
their energies on generations of various mask labels especially
when the dataset goes large. To maintain the usability of our
segmentation model, it should be capable of rapidly learning
the suture’s curvilinear structure and texture feature with
limited labeled data.

Principle 2: In practice, there exist larger numbers of sim-
ilar legacy images that were recorded from different surgical
demonstrations or on-site manipulations. To make full use of
them, the proposed architecture should also be able to grab
our interested information in an unsupervised manner, and in
return, cultivate a more robust and reliable model that can
adapt to more scenarios and output satisfactory results even
under complex environments.

As a result of these concerns, we build up our
semi-supervised curvilinear suture segmentation model by
integrating the U-Net architecture [53] to the mean teacher
structure [54] as is shown in Fig. 2(b). U-Net exhibits supe-
rior performances in biomedical image processing, which
can provide an exceptional feature extraction base for our
semi-supervised learning architecture. To embed the mean
teacher model, our structure is divided into the supervised
and unsupervised parts, namely the student and teacher models
respectively, both using U-Net as backbones.

In our task, the training dataset is formulated with NL

annotated and NU unlabeled images. We respectively denote
the labeled and unlabeled images as DL = {(IN i ,LAi )}NL

i=1
and DU = {IN i }NL +NU

i=NL +1, where IN i ∈ R
HI×WI×3 is the input

image and LAi ∈ {0, 1}HI×WI denotes normalized annotations
of sutures. To compensate for data noises and maintain the
overall stability, we purposely induce random perturbations
sξU and tξU when importing unlabeled images to the student
and teacher models. The objective of our semi-supervised
learning task can be formulized as the minimization of the
following suture-aware loss function:

min{
NL∑
i=1

LS(W(IN i),LAi )+ λ1

NL∑
i=1

Lcont(W(IN i),

LAi)+ λ2

NL +NU∑
i=NL +1

Lcons(W(IN i ,
s ξU ),W(IN i ,

t ξU ))} (1)

Within Eq. (1), W(•) represents the segmentation workflow,
and this loss has three main terms explained as follows:

Term 1: LS denotes a hybrid supervised loss computed
using DL through the student model. To highlight the slender
information of the suture in the supervised learning branch,
this hybrid loss LS is formulated as:

LS = w1LCE +w2LG−Dice + (1 −w1 −w2) · LLovasz (2)

where LCE is the commonly used cross entropy loss, and
LG−Dice depicts the generalized dice loss [55] which is fea-
tured of trading off the foreground and background areas by
assigning balancing weights when training the network. The
Lovász loss [56] is also combined with the LS , so as to
improve the performance of Intersection of Union (IoU) for
the slender suture segmentation. In our work, we tried different

values of weight ratios w1 and w2, aiming to achieve the
best model that can be applied to suture thread segmentation.
Finally, we optimize these two values as w1 = 0.2 and
w2 = 0.4, accordingly.

Term 2: Lcont is a novel contour loss that is adopted
to ensure the completeness of the suture segmentation by
particularly emphasizing its continuous peripheral contour.
This term is derived as:

Lcont = −
HI∑

RI =1

WI∑
CI =1

{∂(LAi )

∂uim
· log[∂(W(IN i))

∂uim
]

+∂(LAi )

∂vim
· log[∂(W(IN i))

∂vim
]}|{RI ,CI } (3)

where uim , vim denote the horizontal and vertical directions,
RI , CI are the row and column numbers in the image. By cal-
culating derivatives along the suture’s boundary, it penalizes
the false segmentation along the contour, hence improving the
overall prediction accuracy. Since the labeling and segmen-
tation values are between 0 and 1, it ensures Lcont can be
positive by introducing the logarithm operation in Eq. (3).

Term 3: Lcons is the consistency loss for measuring predic-
tion differences between the teacher and student models under
random perturbations, and we use the exponential moving
average (EMA) with a standard decay parameter to update the
teacher model’s weights in the training process. With the effect
of Lcons , the total suture-aware loss, in return, can enhance the
quality of the student model, and the entire semi-supervised
architecture can be gradually modified. Besides, λ1 and λ2 in
Eq. (1) are the ramp-up parameters that adjust the weights
between the Lcont /Lcons and LS .

C. Perception and Optimization of 3D Suture

Let lXŜl
and rXŜr

represent the predicted 2D masks of the
suture in the left and right cameras. Using the composite cost
function based searching strategy introduced in our previous
paper [29], the pixel-level sequence lXSl ∈ lXŜl

, rXSl ∈ rXŜr

can be obtained and denoted as:{
lX1∼Sl = [lX1,

lX2, . . . ,
lXφ, . . . , lXSl ]

rX1∼Sr = [rX1,
rX2, . . . ,

rXφ, . . . , lXSr ]
(4)

where Sl and Sr are the total numbers of valid pixels along the
suture in two frames. As the workflow shown in Fig. 2, the 3D
shape of the suture can be afterwards computed with the results
in Eq. (4). Based on the assumption of parallel optical axes
of the stereo ECM, we should ideally obtain: Sl = Sr . Thus,
by allocating pixels with the same sequential number, dense
3D point clouds representing the suture can be theoretically
constructed. However, due to the limited imaging resolution,
as well as inherent errors from the camera calibration, suture
segmentation, and sequence inference, it may result in 3D
results with unexpected deviations or a grotesque shape if
merely matching 2D points with the same sequential number.

To confront this problem, we proposed a sampling-based
sliding pairing (SSP) approach, in which multiple candidates
for each key point can be constructed in the 3D space.
As depicted in Fig. 3, let use the stereo pair computation of lXφ
for a detailed explanation. In the SSP method, the sequential

Authorized licensed use limited to: University College London. Downloaded on May 18,2022 at 14:11:29 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LU et al.: TOWARD IMAGE-GUIDED AUTOMATED SUTURE GRASPING UNDER COMPLEX ENVIRONMENTS 5

Fig. 3. Gaussian sampling-based sliding pairing (SSP) approach for the 3D
shape computation of the suture with the 3D graph enhancement.

number of the pairing point with respect to lXφ follows a
general normal distribution rule: spis ∼ N (φ, 1), in which the
sampling probability g(•) is expressed as:

g(spis |(φ, 1)) = 1√
2π

exp (−1

2
(spis − φ)2) (5)

where φ ∈ N is the current key point’s sequential number
among [1,min {Sl,Sr }], and spis ∈ R

+ represents the number
obtained at n th sampling in between [1,min {Sl,Sr }]. Eq. (5)
enables pixels closer to rXφ with a higher probability when
sampling the stereo pair, while remote ones can be rarely
selected. Besides, we use linear interpolation to attain the pixel
coordinates of the candidate point when the sampling number
is not integral, which can compensate for the inaccuracy
introduced from the limited image resolution. In our case, the
sampling time is set as 9 to generate multiple stereo pairs
for each key point, and the corresponding 3D candidates can
be hence calculated based on the triangulation, as is denoted
by: {rX spis

φ , lXφ}is=[1,9] → cXφ,is . In the following contents,
we adopt •X◦ to express the 3D Coordinates of Point ◦ in
• Frame. Here, cXφ,is depicts the 3D coordinates of is th
candidate of φ th key point in the camera frame. Repeating
this step, multiple candidates can be generated in 3D space.

To reconstruct the suture, we adopt Dijkstra’s shortest path
theory [57] with our enhance 3D graph in order to obtain an
optimal shape based on all these 3D candidates. In this sector,
our 3D graph, acting as a critical component, is established
to characterize the spatial structure of the suture, adapting to
complex topologies and ensuring the generality of our method.
To obtain this graph, we first construct multiple paths by
connecting any two candidates with the following equation:

∀{cXφ,is ,
cXψ, js }; {is, js} ∈ [1, 9], {φ,ψ} ∈ [1,min{Sl,Sr }] :

Dφ↔ψ(is, js) =
{

|cXφ,is − cXψ, js |, |cXφ,is − cXψ, js | � TS

∞, |cXφ,is − cXψ, js | > TS

where Dφ↔ψ(is, js) denote the length of the valid path between
φ th and ψ th key points formed by their is th and js th
sampling candidates. It should be noticed, φ 
= ψ and all valid
paths are limited within a predefined physical length TS. Thus,

the physical length graph Glen can be written as:

Glen(9(φ − 1)+ is, 9(ψ − 1)+ js) =
{

Dφ↔ψ(is, js), φ 
= ψ

∞, φ = ψ

(6)

Based on Glen , a shortest path which has a global minimal
length between the designated starting and ending points
can be figured out. However, when computing a suture with
self-intersections or cross over with other sutures, it may
potentially output a 3D shape with sharp turning at any
crossing point, without reaching other necessary components.
To characterize the entire 3D information, we hence developed
another penalty graph Gpen to virtually increase length of paths
that are connected by two candidates with a large difference
in between their sequential number:
Gpen(9(φ − 1)+is, 9(ψ − 1)+ js)=1 + exp (

|φ − ψ|
scale

− 2)

(7)

When searching for valid candidates, we prefer to add more
probabilities on points which are closer to the central space.
Hence, we additionally define and compute a clustering degree
parameter for each candidate with the following steps:

1. Set up a virtual sphere which is centered by point cXφ,is

with a radius ϒ , which we set as 1.5mm in our case;
2. Count the total number Nclu(φ, is) which measures how

many other candidates exit within this virtual sphere;
3. Compute the clustering weight for each candidate using

wclu(φ, is) = sclu/(−Nclu(φ, is)) with setting up the scale
factor as sclu = 10 in our case;

4. Generate the clustering weighting graph Gclu for each
path by multiplying the clustering degree parameters of its
two end points, which is expressed as:
Gclu(9(φ − 1)+is, 9(ψ − 1)+ js)=wclu(φ, is) · wclu(ψ, js)

(8)

Taking Eq. (6) and (7) into account, the optimized graph GO

with path enhancements can fully characterize the 3D suture,
and it can be calculated using the Hadamard product:

GO = Glen � Gpen � Gclu (9)

As shown in Fig. 3, with concentrated 3D points generated
by our SSP method, the overall suture shape cXsuture with
self-intersections can be smoothly obtained using the shortest
path theory with our enhanced spatial graph. Acting as a visual
guidance, the enhancement in 3D suture shape accuracy can
significantly benefit the following grasping manipulation. The
general steps of our 3D shape optimization is listed in Alg. 1.

D. Suture Grasping With Pose Optimization

In this subsection, we first define: F•: notation of • Frame;
•X◦: 3D coordinates of Point ◦ in • Frame; •R◦: Rotation
matrix from ◦ Frame to • Frame; •P◦: Translation vector from
◦ Point to • Point; •T◦: Transformation matrix from ◦ Frame
to • Frame; •X , •Y , •Z : X, Y, Z axis of • Frame; Rot(•, ◦):
Rotate about • Axis for ◦ angle(s).
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Algorithm 1 Suture 3D Shape Optimization With SSP

Data: Segmentation Results lX1∼Sl and rX1∼Sr

1 Load triangulate, graph MATLAB functions;
2 if |Sl − Sr | � 20 then
3 for φ ∈ [1,min {Sl,Sr }] do
4 for is ∈ [1, 9] do

5 lXφ Eq.(5)−−−→ Probabilistic Sampling: spis ;
6 triangulate(lXφ , rX spis

φ ) → cXφ,is ;
7 end
8 end

9 Construct Dφ↔ψ(is, js)
Eq.(6),(7) and (8)−−−−−−−−−−→ compute

Glen,Gpen, and Gclu
Eq.(9)−−−→ calculate GO ;

10 Compute spatial graph → graph(GO)
Begin Node−−−−−−→
End Node

Output 3-D Suture cXsuture ;
11 else
12 Print “Error in Segmentation!”
13 end

Fig. 4. Suture grasping using the dVRK system. (a). The illustration of the
ECM-PSM robotic system with a computed 3D suture and its resting surface;
(b). The orientation of Fe and F j when grasping the suture.

As depicted in Fig. 4, the origin of the end-effector’s frame
Fe is located at the distal joint of PSM, and e Z represents
the rotational axis. With eY pointing to its tip along the
longitudinal direction, e X can be settled using the right-hand
rule. To grasp the suture using PSM, we also defined a jaw
frame F j , whose origin is located at the half length of the
jaw. As defined in Fig. 4 (b), its j X is perpendicular to
the jaw’s opening and closing plane, while j Z and j Y are
accordingly along eY and -e X . In contrary to the dynamic Fe

and F j , the base frame Fr of PSM is mounted at RCM point,
which is passive and stable during the overall manipulation.

On the dVRK platform, PSM is operated by controlling the
motion of Fe with respect to Fr . Hence, to obtain a generic
suture grasping method, certain criteria regarding the grasping
pose of Fe relative to Fr should be investigated, so as to obtain
the corresponding r Te. According to the configuration of our
system, this transformation relationship can be formulated
using the following chain rule:

r Te = r Tc · cT j · j Te (10)

By leveraging Tsai’s hand-to-eye calibration method [58],
r Tc can be obtained offline after setting the passive joints of

PSM and ECM. According to the definitions of Fe and F j on
the dVRK system, j Te can be formed using:

j Te =
[
Rot( j Z ,−π/2) · Rot( j X, π/2) j Pe

0 1

]
(11)

Since j Z overlaps the jaw’s longitudinal direction, with l jaw

denotes its length, j Pe can be expressed as: [0, 0,−l jaw/2].
Towards automating this task, the critical issue by now is
to figure out cT j when conducting the grasping operation.
To tackle this problem, three criteria regarding the translation
and rotation relationships from F j to Fc are forwarded:

Criterion 1: The grasping point cXg should overlap the
origin of F j when PSM’s jaw successfully grasps the suture;

Criterion 2: j X should point along the spatial tangent direc-
tion of the suture when conducting the grasping operation;

Criterion 3: To avoid secondary injuries, j Z should be
aligned orthogonal to the suture’s resting surface as much as
possible.

In Criterion 1, it directly gives the translation vector as
cP j = cXg . To satisfy Criterion 2, the tangent direction at
cXg is computed by taking all its nearby vectors formed by
successive 3D key points into account, hence depicting j X as:
j X (t0)=

j X̂

‖ j X̂ ‖ , s.t . j X̂ =
nt∑

i=−nt

f p(i) ·
cXg+i −cXg+i−1

‖ cXg+i −cXg+i−1 ‖
(12)

where j X ∈ R
3 is under ECM (camera) frame Fc, g ∈ R

and t0 denote the grasping point number and the initial time.
Because a dense 3D vertex graph of the suture is constructed,
we can assign a large number nt to approximate the direction
of j X . Besides, f p(i), which obeys the normal distribution:
f p(i) = 1√

2π
exp(− i2

2 ), is adopted as the weighting parameter

in Eq.(12). This method considers the suture’s local shape
around cXg and implies that the vector with a remoter index
has a fewer impact on the determination of j X , and thus
can compensate for fortuitous errors among those nearby key
points without the loss of computational generality.

Before aligning j Z using Criterion 3, we randomly ini-
tialize an j Z(t0) which only satisfies j Z(t0) ⊥ j X (t0), while
j Y (t0) can be calculated by j Z(t0)× j X (t0). Therefore, an ini-
tial cR j (t0) ∈ R

3×3 can be obtain:
cR j (t0) = [ j X (t0),

j Y (t0),
j Z(t0)] (13)

The further adjustment of j Z(t0) according to Criterion 3
can be regarded as a rotation around j X (t0) for θ angle as is
shown in Fig. 4(b), and the grasping orientation of F j with
respect to Fc can be adjusted as:

cR j (t0, θ) = cR j(t0) · Rot( j X (t0), θ)

=
⎡⎣r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤⎦ ·
⎡⎣1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎤⎦
(14)

Extracted from Eq. (14), j Z(t0, θ) is hence written as:

j Z(t0, θ) =
⎡⎣−r12 sin(θ)+ r13 cos(θ)

−r22 sin(θ)+ r23 cos(θ)
−r32 sin(θ)+ r33 cos(θ)

⎤⎦ (15)
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To satisfy Criterion 3, j Z(t0, θ) should align close to
the normal vector cng of the suture’s resting surface as is
depicted in Fig. 4(a). The resting surface of the suture can be
approximated using a polynomial surface fitting by adopting
all computed 3D vertexes of the suture [59], and cng is hence
achieved by the bi-cubic interpolation at cXg point, which is:

cng = [
n1, n2, n3

]�
(16)

To minimize the angle between j Z(t0, θ) and cng , a target
function f(θ) which measures the variation between each other
is formulated as follows:

f(θ) = cn�
g · j Z(t0, θ) = Â · sin θ + B̂ · cos θ

=
√

Â2 + B̂2 · sin(θ +
) (17)

where Â = (−r12n1 − r22n2 − r32n3), B̂ = (r13n1 + r23n2 +
r33n3), and 
 = arctan(B̂/ Â). To fulfill the objective listed
in Criterion 3, we need to maximize f(θ) by figuring out an
optimal rotation angle θ around j X (t0), which can be thereby
computed as:

θ = π

2
− arctan(B̂/ Â) (18)

where θ ∈ [0, π]. Substituting all results obtained according
to our proposed criteria into Eq.(10), the desired grasping pose
of PSM’s end-effector is hence give by:

r Te = r Tc︸︷︷︸
H and2E ye

·
[

cR j (t0, θ), cXg

0 1

]
︸ ︷︷ ︸

cT j

· j Te︸︷︷︸
Eq.(11)

(19)

where r Te = [
r Re(t0, θ),

r Pe(t0, θ)

01×3, 1
], in which r Re(t0, θ) and

r Pe(t0, θ) accordingly denote the orientation and position that
controls the grasping pose of PSM.

E. Grasping Strategy and Planning

Considering practical errors from hand-to-eye calibration
and inherent mechanical offsets, we may fail to grasp the
suture if barely drive PSM to r Te since there may exist
offset between the true grasping point and the computed one
as is depicted in Fig. 5(a). Besides, due to the calibration
error, we cannot use PSM’s kinematic image re-projection to
guide the motion. Although the vision-servoing control can
potentially solve this problem, it requires a robust and dynamic
tracking of tools with various poses under different scenarios,
which is another challenging topic and also computational
costly.

Facing these problems, a grasping strategy which integrates
a vision-based mechanism is developed to compensate for
the aforementioned errors. Before the grasping, we first drive
PSM to a modified target position r Pe(t0, θ) expressed as:
r Pe(t0, θ) − lres · r re,2(t0, θ), in which the end-effector is
retracted along its grasping direction by lres distance. Here,
r re,i (t0, θ) is the i th column of r Re(t0, θ). After reaching
r Pe(t0, θ), PSM will go towards r Pe(t0, θ) with a step incre-
ment 5mm along eY direction, in order to make up for errors in
depth. Besides, we also plan 5 grasping positions with position
deviations li · r re,1(t0, θ) as depicted in Fig. 5(b). Here, li is

Fig. 5. (a). An image-guided grasping with errors between the computed
result and ground truth; (b). Multiple grasping trials at one grasping depth;
(c). Four main actions in a grasping loop; (d). Motion trajectories of the
end-effector plotted by the recorded kinematics in one typical grasping task.

set as: ·[0, 1, 2,−1,−2]�mm. It is worthy noticing that our
method compensates for errors in e X and eY , whereas assumed
the suture can be grasped with deviations along its longitudinal
direction e Z . Using this mechanism, the end-effector can
cover a comparatively large grasping space, while reducing
the execution time by simplifying the traversal searching
complexity from 3D space to 2D e X − eY plane.

As shown in Fig. 5(c), we also designed four typical actions
to form a universal loop when executing each grasping trial:

ACTION 1 - JAW-CLOSING: In the ninc th increment, the
3D position now is r Pe(t0, θ)− (lres − 5mm · ninc)

r re,2(t0, θ).
By adding the deviation li ·r re,1(t0, θ), PSM goes to the desired
point and closes the jaw;

ACTION 2 - PULL-UP: After Action 1, PSM pulls up by:
−20mm · r re,2(t0, θ) in order to pick up the suture;

ACTION 3 - TRANSVERSE: Then, we embed a lateral
motion by adding an additional term: −30mm · r re,2(t0, θ).
In this action, we enable a vision-based mechanism to
autonomously determine whether the suture is grasped or not.
Using the 3D information, we can obtain the grasping point
by reserving a 20mm ∼ 30mm long suture to the cutting tip.
Based on the segmentation results, we only monitor the 2D
pixels from the cutting tip to the grasping point in the left
camera. As shown in Fig. 6(a1-a4), lX t1

1∼g = [lX t1
1 ∼ lX t1

g ]
are taken as references. With the extraction of lX ti

1∼g in the
following grasping trial, we compare the vector similarity
between lX t1

1∼g and lX ti
1∼g by measuring the Frobenius norm:

SIMIt1↔ti = 1 − 2 · ||lX t1
1∼g − lX ti

1∼g ||/(||lX t1
1∼g|| + ||lX ti

1∼g||)
(20)

If SIMIt1↔ti is larger than 80%, it indicates the suture not
being grasped, and Action 4 should be followed up.

ACTION 4 - RETURN: Without successful grasping, PSM
returns to r Pe(t0, θ) so as to finish one operational loop, and
the next grasping trial will be followed up until Action 3
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Fig. 6. (a1-a4). A vision-based mechanism to monitor the suture grasping
status; (b). After the suture grasping, it is pulled up to a semi-straight status
to prepare for the following automated looping operation.

outputs the signal that the suture has been grasped. In Fig. 5(d),
we intuitively plot the end-effector’s trajectories in multiple
trials, and different colors represent different typical actions.
Using this strategy, the suture’s status in the grasping proce-
dure can be successfully estimated.

After grasping the suture, we need to further pull the suture
up and keep it in a semi-straight state, in order to prepare for
the following looping manipulation [13], [19]. To unify this
step and adapt to different shapes, we establish an auxiliary
exit frame exF in which the final deployment coordinates of
the suture can be properly obtained. As shown in Fig. 6(b), the
origin of exF is at cXend , with ex Z overlaps the normal vector
cnend and ex Y points to the suture’s tangent direction. It hence
outputs the relation cRex = [ex X, ex Y, ex Z ]. PSM finally pulls
the suture to ex Xp, which is calculated as:

exXpi = [(−1)i · rex cos (ex�), rex sin (ex�), 0]�, i ∈ {1, 2}
(21)

where rex is the length between cXg and cXend obtained using
the suture’s 3D information, ex� denotes the pull-up angle
between the suture and ex X-ex Y plane which is set as 75◦ in
order to be close to the following looping task setup [13].

With cTex = [
cRex ,

cXend

01×3, 1
], we can achieve [r Xpi , 1]� =

r Tc
cTex · [exXpi , 1]�. By reading the current end-effector’s

position r Xe, we can alternate in between r Xp1 and r Xp2 and
select the one which is closer to r Xe as the final suture’s
deployment position, so as to finish the overall framework.
The pseudo code of our grasping strategy is listed in Alg. 2.

IV. EXPERIMENTAL RESULTS

We conduct extensive experiments in the aspects of the
suture segmentation capability, 3D shape reconstruction accu-
racy, and image-guided grasping outcome, in order to compre-
hensively evaluate the performance of each critical function
block in our framework. As shown in Fig. 7, our experiments
are performed on the dVRK platform which is equipped with
a stereo ECM imaging system, providing the 640 by 480
resolution visual feedback. We adopt the large needle driver as
the manipulation tool, and the robotic system is connected to
a PC, whose processer and graphics are intel@ i7-10700 with
2.9GHz×16 and TITAN RTX, respectively.

A. Data Preparation and Evaluation of Suture Segmentation

To train a model for an online suture segmentation without
losing the generality, we first prepare the training and testing

Algorithm 2 Automated Suture Grasping Strategy
Data: 3D suture and grasping point cXsuture, cXg

1 Load fit, surfnorm MATLAB functions;
2 fit(cXsuture) → surfnorm(cXg) → cng → cT j ;

3 Compute desired grasping pose: cXg
Eq.(19)−−−−→ r Te;

4 Modify initial grasping point as: r Pe(t0, θ);
5 Initialize T r = 1, move to: (r Re(t0, θ),r Pe(t0, θ)) ;
6 while T r < Design Number do
7 Move to: (r Re(t0, θ), r Pe(t0, θ)+ 5Tr · r re,2(t0, θ));
8 for i ∈ 5 designed Positions do
9 Jaw Opening → Move to: (Posi tion i );

10 ACTION 1 → 2 → 3
Eq.(20)−−−−→ SIMI;

11 if SIMI � 80% then
12 Break and End(while);
13 else
14 Continue → i = +
15 end
16 ACTION 4 ( Move to: (r Re(t0, θ),r Pe(t0, θ)) );
17 end
18 end
19 if SIMI � 80% then
20 Move to: (r Re(t0, θ),r Xpi ) → Print: “Finished”
21 else
22 Print: “Grasping Fail”
23 end

Fig. 7. Experimental setups of the suture grasping using the dVRK platform.

data with multiple backgrounds, i.e. different suturing phan-
toms, artificial organs and color-printed surgical scenes. Due
to inherent features of U-Net based architecture backbone,
we can rapidly learn the suture’s information by using a
few annotated images. In our work, 60 labeled images (DL )
with 480 unlabeled ones (DU ) are utilized as the training set,
and another 20 annotated images are leveraged as the testing
set for our semi-supervised training workflow, which saves
massive data preparation time for practitioners. We use the
cross validation for comprehensive evaluation and build up
Split 1-4 as categorized in Table. I to accordingly train and
test the performance of our model. Apart from this, we also
include 2 extra splits in which the testing set contains some
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TABLE I

COMPARISONS OF SUTURE SEGMENTATION UNDER VARIOUS CONDITIONS USING THE TRADITIONAL APPROACH, THE U-NET ARCHITECTURE, AND
OUR PROPOSED LEARNING-BASED WORKFLOW

Fig. 8. Typical results of suture segmentation using traditional Frangi filter, the U-Net architecture, and our proposed semi-supervised learning method.

similar but unseen backgrounds in the training stage, so as to
evaluate the adaptation capability of our model.

To distinguish our proposed learning method from the tradi-
tional Frangi filter [28] and classical U-Net architecture using
the cross entropy loss, we demonstrate both the qualitative and
quantitative results in Fig. 8 and Table. I. The performance
is assessed by comparing Intersection of Union (IoU), Dice
Similarity, and Recall Coefficient between the segmentation
results and ground truths. As is noticed in the table, the Frangi
filter, which is widely adopted for filtering out curvilinear
objects, although obtains relatively close numbers comparing
to two learning-based methods over Recall Coefficient, its

lowest scores in IoU and Dice indicate a majority of false
positive segmentation, which is correspondingly revealed by
the qualitative results in Fig. 8. Especially under the complex
environments as shown in Typical Scenario 5 and 6, the
sprawling filtering results cannot be used for the following
suture pixel-wise sequence inference, hence terminating the
workflow in halfway.

For the classical U-Net Architecture [29], it obtains rela-
tively high scores in IoU (80%), Dice (89.1%) and Recall
(88.5%), rejecting the majority of the background noises as
shown in Fig. 8. Since the suture is a slender object, our
proposed approach, as highlighted in the table, outperforms
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TABLE II

SUTURE SEGMENTATION PERFORMANCE USING DIFFERENT RATIOS OF
LABELED AND UNLABELED IMAGES. LABELED IMAGES: 30

around 4%, 2.5% and 4% in average regarding three metrics,
which is not a remarkable jump in numbers when comparing
to this traditional method. However, it is worthy noticing
that such improvements lie in inpainting the broken segmen-
tation patterns under complex backgrounds, e.g. with simi-
lar appearance or background reflection, and distinguishing
our desired suture from other disturbed objects, e.g. silver
needle. The superior performance may result from our elab-
orated suture-aware loss function and the learning mecha-
nism, in which our model highlights the suture’s boundary
completeness and learns more knowledge from large amounts
of unannotated data. As can been seen from the results in
Split 5 and 6, our proposed can also maintain relatively high
performance with some unseen backgrounds in the testing set,
and especially in Split 6, our method outperforms 7% and 9%
in IoU and Recall compared to [29].

To evaluate the impact of the ratio between labeled-
unlabeled images for our semi-supervised learning-based seg-
mentation, we re-organize Split 6 by reducing the labeled
images to 30, and the validation results under different ratios
(1:1, 1:5, and 1:16, with totally 480 unlabeled images) are
listed in Table. II. By feeding more unlabeled data into the
training workflow, we can notice the overall segmentation
performances can be gradually improved. By comparing with
U-Net, as noticed, the performance is initially inferior when
both fewer supervised and unsupervised data (30 labeled
and 30 unlabeled images) is utilized, yet it can exceed U-Net
when the ratio is 1:5, which proves the effectiveness of
model enhancement by adopting more unlabeled images. But
it should also notice that even when the ratio reaches 1:16,
the performance cannot outperform the model trained using
two times supervised data (60 images), which consequently
validates the importance of labeled data in training.

B. Evaluation of 3D Reconstruction With SSP Optimization

Based on the learning-enabled segmentation technique, the
suture’s pixel-wise sequence can be figured out in both
ECM frames using the method proposed in our previous
paper [29]. In this part, we will further verify the perfor-
mance of our SSP method for the suture’s 3D reconstruction.
To formulate a generic testing experiment, we use the suturing
phantom, color-printed surgical scenes, laparoscopic torso
phantom and porcine tissues to pursue environmental diversi-
ties, with sutures featured with two different lengths - 110mm
and 190mm. For the 110mm long one, we only orientate
it to curved and one self-intersection shapes, whilst for
190mm length, sutures are additionally orientated with two
self-intersections.

We qualitatively assess the testing results as shown in Fig. 9,
and then quantitatively compare the computed length to the

ground truth. Besides, we intensively compare our optimized
method to the approach only uses stereo key points matching
for triangulation without SSP for enhancement, and the overall
results are listed in Table. III. For each suture length under
each background, 7 tests are conducted to verify and compare
the reconstruction results. For the ease of reading, we also
highlight the largest errors in each group and plot the error
charts in Fig. 10 for intuitive comparisons.

As shown in the table, our optimized method can achieve
an average absolute error under 2mm regardless of the suture’s
length and shape, nevertheless this error remarkably increases
above 6mm without using our SSP optimization. Although
the non-SSP method can achieve comparable precision in
some cases, it takes credit to accurate alignments of stereo
key points. Under complex shapes and orientations, e.g. self-
intersections, small deviations in segmentation and sequence
inference may result in incremental errors in stereo pairings,
thus bring larger errors, e.g. there exist cases whose errors
in the overall 3D length are more than 10mm. Referring to
Fig. 10, the bar charts representing their errors are unstable.
If a large computational deviation happens around the desired
grasping point, it may potentially result in a grasping failure
when guiding the automated manipulation with this inaccurate
3D output. As for our proposed optimization method, it can
minimize the online computational errors and maintain a
certain degree of curvature continuity. As can be seen in Fig. 9,
satisfactory 3D shape can be obtained even when sutures
possess intricate structures, hence it can serve as a reliable
sensory feedback to automate the following grasping task.

C. Experiments on Automated Grasping
With validations from 2D to 3D perceptions, in this part,

we carry out extensive experiments by implementing the
overall framework to the automated suture grasping task.
To achieve a verification generality, we use 3 different suturing
phantoms, 1 laparoscopic torso phantom, and the porcine
tissue as experimental objects with sutures stitched on them.
10 experiments are conducted under each background.

To quantitatively assess our grasping strategy, we list results
regarding 4 proposed evaluation criteria (E1-E4) in Table. IV.
To demonstrate the grasping procedure, we use one case
under each background and select typical frames from our
recorded videos to show some key steps. Besides, we record
the kinematics of the end-effector and plot its trajectory using
the gradient curves in Fig. 11(a), as well as highlighting the
workspace occupied by PSM during the overall manipulation
with the magenta color. In addition, errors between the true
grasping point and the computed position are also illustrated in
Fig. 11(b1)-(b5). As noticed, larger errors may happen in the
suture’s depth estimation, which results from the short baseline
of the laparoscopic stereo lens. There exist 26% experiments
in which grasping errors exceed 10mm as revealed by E3, and
as the data summarized in Fig. 11(c1), our grasping strategy
can compensate for various local deviations in different direc-
tions, which consequently proves the ability of our method in
confronting these practical errors in suture grasping.

Apart from these, we analyze X/Y/Z/Total grasping errors
with respect to the grasping time as plotted in Fig. 11(c2),
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TABLE III

WE USE SUTURES WITH DIFFERENT LENGTHS AND MULTIPLE TYPOLOGIES TO ANALYZE OUR ENHANCED 3D COMPUTATIONAL SCHEME. BG 1, 2, 3,
AND 4 ACCORDINGLY DENOTE THE suturing phantom, color-printed surgical scenes, laparoscopic phantom, and porcine tissue. UNIT: MM

Fig. 9. We put sutures with different lengths on different backgrounds, and show typical results in which sutures are oriented with multiple shapes. The input
images are from ECM, and 3D results contain the reconstructed 3D shape with its resting surface, and the zoomed-in shape with multiple sampling points.

Fig. 10. Error comparisons of suture’s 3D length computation with and
without SSP optimization under different unstructured environments.

and adopt Pearson Coefficient to evaluate the linear correlation
between them. For errors in X/Y directions relative to the time
spending, we obtain low correlations which are only 24.7%

and 28.3%. For Z direction and total errors, they are 69.5%
and 73.8%. Intuitively, multiple trials are conducted in each
depth, hence the time spending may substantially grow when
larger errors occur in the depth direction. However, such time
spending is essential at the current stage to maintain a reliable
grasping, which sets a solid foundation for the following
works. Although the visual servoing may potentially save
the operational time, it requires quite accurate and real-time
tracking of surgical tools under complex environments, which
is another popular topic yet out of the scope in this article.
Additionally, SIMI values calculated by Eq.(20) are also
plotted in Fig. 11(c3), and we can notice they all under 0.8,
which proves the SIMI threshold is empirically reliable.

It is worthy noticing that there is one failure case as is
highlighted in Table. IV when testing on the laparoscopic
torso phantom. The main reason comes from the rugged
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TABLE IV

GRASPING RESULTS REGARDING: E1: SUCCESSFULLY GRASP THE SUTURE OR NOT; E2: GRASPING TIME (UNIT: SECONDS); E3: TOTAL ERROR
BETWEEN THE TRUE GRASPING POINT AND THE COMPUTED POSITION (UNIT: MM); E4: SIMI VALUE WHEN THE SUTURE IS GRASPED

Fig. 11. (a). Typical snapshots of automated suture grasping under different backgrounds along with their occupied work-space from multiple views; (b1-b5).
Grasping errors in all experiments; (c1-c3). Grasping error analysis, grasping time versus grasping errors, and SIMI values when successfully grasp the suture.

and complex structures around the grasping region. When
conducting this task, our framework focuses on the perception
and manipulation of the suture, without adding the exact

sensing and reconstruction of the surrounding space. When
the end-effector touches other surrounding tissues/organs,
our vision-based mechanism can keenly observe such tiny
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environmental changes and terminate the grasping trials to
ensure the manipulation safety. In our future works, we can
further improve our perception ability in surrounding envi-
ronment reconstructions, so as to achieve a versatile online
planning and grasping approach to handle more challenging
conditions.

V. CONCLUSION

In this paper, a learning-driven and online optimization-
based framework is introduced to precept the 3D information
of a suture. Its segmentation capability and 3D shape compu-
tational accuracy for the slender suture have been accordingly
tested based on different suturing phantoms, laparoscopic
torso, and porcine tissues. Based on satisfactory perceptions,
we then propose a novel grasping strategy with a vision-based
mechanism to automate the suture grasping operation using
the dVRK system. This is a pioneering study that integrates
vision, deep learning, and automation techniques to bridge the
automated suture stitching and looping procedures. Through
extensive experiments, it is proved that our framework is
feasible for this sub-task in surgical knot tying with a high
successful rate of grasping in practice.

In the next step, automated looping techniques presented in
our previous paper [13] can be embedded into the framework
and further achieve a double-loop suture through dual arms
motion plannings and dynamic manipulations. By exploring
a control strategy which considers simultaneous motions of
robot end-effectors and the looped suture, we are planning
to design a suture’s end grasping method by integrating the
learning-driven endpoint detection method that we proposed
in [28], which hence can facilitate the completion of a single
surgical square knot. To repetitively conduct knot tying along
the wound, popular needle detection approaches, e.g., [24],
can be adopted to automate needle’s localization, grasping,
and wound stitching operations. Additionally, dynamic 2D
segmentation and 3D reconstruction methods that leverage the
spatial and temporal information of robotic arms can be further
investigated to precept and track the whole suture when it
is partially occluded by instruments. By building up these
technologies, a fully automated knot tying workflow can be
developed to contribute one step further towards a higher-level
of task autonomy in robotic surgery.
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