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INTRODUCTION
This paper is intended primarily as an 
update to the previous assessment of 
Arctic sea ice published a decade ago 
in Oceanography (Perovich et  al., 2011). 
Over that decade, substantial changes 
in Arctic sea ice have been observed 
(e.g.,  Meier et  al., 2014; Barber et  al., 
2017), with declining sea ice cover being 
one of the clearest indicators of change, 
along with thinning of the ice cover 
(Kwok, 2018). Spring melt is occur-
ring earlier and freeze-up is trending 
later, allowing the ice-ocean system to 
absorb more solar radiation and increas-
ing the energy input into the Arctic. At 
this point, it is highly likely that ice-free 
conditions will emerge in September 
by the middle of the century (e.g.,  Notz 
and SIMIP, 2020). It is only under lim-
ited future emissions scenarios that the 
likelihood of largely sea ice-free condi-
tions during summer can be avoided on 
a regular basis. The impacts of sea ice loss 
are myriad within the Arctic: warmer 
ocean waters, longer fetch, more frequent 
storms, and increased coastal erosion, 
along with associated effects on the Arctic 
ecosystem and human activities in the 
region. The loss of sea ice also amplifies 
Arctic warming, impacting Greenland 
ice mass loss and permafrost thawing. 
The ramifications of sea ice loss outside 

the Arctic are uncertain, with conflicting 
evidence of connections to more extreme 
weather events in the mid-latitudes.

OBSERVING
Ice Concentration and 
Sea Ice Extent
A series of satellite-borne passive micro-
wave sensors provides a consistent and 
nearly complete long-term record of 
sea ice concentration and extent since 
November 1978. Sea ice extent (sum 
of the area with at least 15% concentra-
tion) has been a workhorse in assessing 
the state of the ice cover because of the 
available long, consistent record. Several 
time series of extent have been pro-
duced from passive microwave bright-
ness temperatures via various empirically 
derived sea ice concentration algorithms 
(e.g.,  Comiso, 1986; Spreen et  al., 2008; 
Lavergne et  al., 2019). Here, we use the 
extent record from the US National Snow 
and Ice Data Center (NSIDC) Sea Ice 
Index (Fetterer et al., 2017) derived from 
NASA Team algorithm concentration 
fields (Cavalieri et al., 1999); extent here 
is defined as the total area where concen-
tration is greater than 15%. The concen-
tration product begins in November 1978 
(Cavalieri et  al., 1996), with the most 
recent data (for 2021 in this manuscript) 
augmented by near-real-time processing 

(Maslanik and Stroeve, 1999).
Sea ice concentration and extent are 

declining everywhere in the Arctic, with 
the most pronounced losses in summer 
occurring within the Beaufort, Chukchi, 
East Siberian, and Laptev Seas, and the 
largest ice losses in winter within the 
Barents Sea and the Sea of Okhotsk. 
(Figure 1a,b). Much of the concentra-
tion trend is due to complete loss of ice 
(i.e.,  decline in extent and retreat of the 
ice edge), but some areas within the ice 
pack are also trending toward lower con-
centration. This suggests a less compact 
ice pack that allows more solar absorp-
tion during summer and less resistance to 
wind and other dynamic forcing.

The sea ice extent trend in September, 
when the annual minimum occurs, is 
–12.7% per decade, while winter trends 
are smaller but still statistically signif-
icant (p <0.05) (Figure 1c). Trends for 
1979–2021 are negative and statistically 
significant for all months, with extents 
since 2005 consistently well below nor-
mal, particularly during spring and 
autumn (Figure 1d). The largest depar-
tures from average conditions recently 
have occurred in October, with the largest 
negative anomaly being the October 2020 
extent that was 3.7 standard deviations 
below the 1981–2010 mean.

Despite statistically significant negative 
trends, the overall linear trend is marked 
by strong interannual and decadal vari-
ability. Nevertheless, each decade’s sea 
ice extent has been lower than that of the 
previous decade. The most recent decade 
has seen particularly extreme September 
extents with the record low extent reached 
in September 2012 (3.39 × 106  km2), 
and the second lowest extent occur-
ring in September 2020. Overall, the last 
15 years (2007–2021) have the 15 lowest 
September extents in the 43-year (1979–
2021) satellite record. However, the trend 
has been relatively flat over those years 
(–8,200 ± 57,400 km2 yr–1).

Looking at sea ice extent decade by 
decade, the variability is evident, with 
the strongest trend during the 2001–2010 
decade and the weakest trend in the past 

ABSTRACT. Sea ice is an essential component of the Arctic climate system. The Arctic 
sea ice cover has undergone substantial changes in the past 40+ years, including decline 
in areal extent in all months (strongest during summer), thinning, loss of multiyear ice 
cover, earlier melt onset and ice retreat, and later freeze-up and ice advance. In the past 
10 years, these trends have been further reinforced, though the trends (not statistically 
significant at p <0.05) in some parameters (e.g., extent) over the past decade are more 
moderate. Since 2011, observing capabilities have improved significantly, including 
collection of the first basin-wide routine observations of sea ice freeboard and thick-
ness by radar and laser altimeters (except during summer). In addition, data from a 
year-long field campaign during 2019–2020 promises to yield a bounty of in situ data 
that will vastly improve understanding of small-scale processes and the interactions 
between sea ice, the ocean, and the atmosphere, as well as provide valuable validation 
data for satellite missions. Sea ice impacts within the Arctic are clear and are already 
affecting humans as well as flora and fauna. Impacts outside of the Arctic, while garner-
ing much attention, remain unclear. The future of Arctic sea ice is dependent on future 
CO2 emissions, but a seasonally ice-free Arctic Ocean is likely in the coming decades. 
However, year-to-year variability causes considerable uncertainty on exactly when this 
will happen. The variability is also a challenge for seasonal prediction.
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b decade, 2011–2020 (Table 1). However, 
most of the decadal trends are not statis-
tically significant due to the short time 
period of the data. But change in extent 
is evidenced by the 2011–2020 decade 
being nearly 1 × 106 km2 lower than the 
previous decade and almost 2.5 × 106 km2 
below the first complete decade in the 
record (1981–1990).

Ice Age
Sea ice age provides yet another long-
term indicator of change in the Arctic. 
Age is tracked via Lagrangian parcels 
(Tschudi et  al., 2020), and a data prod-
uct (Tschudi et  al., 2019a,b) for age is 
available beginning in 1985. Older, level 
ice is generally thicker than younger ice 
(ignoring dynamic thickening), so age 
provides a general proxy for thickness. 
Changes in the age distribution within 
the Arctic indicate a substantial loss of 
older ice. While multiyear ice (ice that 
has survived at least one summer melt 
season) and >4-year-old ice extent have 
declined almost since the beginning of 
the record, the last 10 years have seen 
an almost complete disappearance of ice 
>4 years old, with extents persistently 
below 500,000 km2 since 2012 (Figure 2). 
The total area of multiyear ice has shown 
interannual variability since the record 
low extent in 2012, but it has continu-
ously been well below values seen before 
2007. Simply put, sea ice is not remaining 
in the Arctic as long as it once did.

There are two apparent reasons for 
this shorter lifetime of ice in the Arctic. 
One reason is faster ice motion (Kwok 
et al., 2013). This increase in speed is not 
explained by increasing wind forcing or 
currents, but rather it is a greater response 
to forcing by the younger and thinner ice 
cover, as well as a less compact ice pack, 
as noted above in the concentration trend 
data. This leads to increased area export 
(Smedsrud et  al., 2017), though vol-
ume export appears to decrease due to 
thinning (Spreen et  al., 2020). In some 
respects, this can be thought of as a 
potential positive feedback mechanism: 
thinner and less compact ice (due to 

TABLE 1. Statistics on September sea ice extent. Trends are given with two standard devia-
tion ranges; significant trends (p <0.05) are in bold. Percent trends are relative to a 30-year 
(1981–2010) climatological average.

YEAR RANGE AVERAGE (106 km2) TREND (103 km2 yr–1) TREND (% Decade–1)

1979–2021 5.99 –81.2 ± 12.9 –12.7 ± 2.0

1981–1990  7.06 –55.6 ± 86.5 –8.5 ± 13.5

1991–2000  6.67 –64.1 ± 118.2 –10.0 ± 18.4

2001–2010  5.51 –197.9 ± 103.2 –30.9 ± 16.1

2011–2020 4.57 –17.6 ± 117.8 –2.7 ± 18.4

FIGURE 1. Arctic sea ice trends for 1979 to 2021. Percent per decade (relative to the 1981–
2010 average) concentration trend for (a) March and (b) September. (c) Percent per decade 
(also relative to the 1981–2010 average) extent trends for March and September with lin-
ear trend lines. (d) Standardized anomalies in Arctic sea ice extent relative to the 1981–2010 
long-term average.
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warming) responds more to forcing and 
moves faster, exiting the Arctic sooner, 
which results in a thinner ice cover.

The other aspect leading to less older 
ice is in situ melting. In particular, in the 
Beaufort and Chukchi Seas, where ice 
once circulated clockwise in the Beaufort 
Gyre, the ice age data show that much 
of the ice is melting out during sum-
mer in that region. This may be due to 
a combination of warmer ocean waters 
and a less compact ice pack (which 
may in turn be due to a thinner, more 
dynamic ice cover).

Ice Thickness and Snow Depth
While we now have over 43 years of con-
sistent observations of sea ice area and 
extent, we do not have a similarly long-
term data record of sea ice thickness. 
Thickness, when combined with ice extent 
or area, provides estimates of ice volume, 
arguably a more important metric of the 
overall amount of ice being lost in the 
Arctic Ocean. Our earliest observations 
of sea ice thickness were primarily based 
on submarine upward-looking sonar 
data collected in the 1980s and 1990s 
(NSIDC, 1998). In regard to satellite- 
based approaches, most are based on 
using radar or laser altimeters. Neither of 
these technologies actually measure the 
sea ice thickness, but instead they mea-
sure either the radar freeboard, or in the 
case of laser altimeter, the snow + ice 
freeboard relative to the water surface. 
Together with estimates of snow depth, 
and snow, ice, and water densities, sea 
ice thickness can then be inferred by 
assuming the sea ice and its overlying 
snow cover are in hydrostatic equilib-
rium (e.g.,  Laxon et  al., 2013). In the 
case of radar altimetry, a further assump-
tion as to the location of the dominant 
backscattering surface is needed. This is 
often assumed to be the snow/ice inter-
face at Ku-band, though this assumption 
is likely only valid for a cold snow pack 
over multiyear ice. Altimetric records 
have higher uncertainties for thinner ice. 
For thin ice, the use of passive micro-
wave brightness temperatures at L-band 

have also been used (e.g., Kaleschke et al., 
2012), but these estimates are limited to a 
thickness of about 50 cm, though they can 
be combined with Ku-band radar altime-
ter data from ESA’s CryoSat-2 mission for 
an optimal estimate (Ricker et al., 2017).

The first estimates of sea ice thick-
ness for a substantial part of the Arctic 
(up to 81.5° N) came from the ERS-1 
radar altimeter satellite for 1993 to 2001 
(Laxon et al., 2003). This was followed by 
NASA’s Ice, Cloud, and land Elevation 
Satellite (ICESat) laser altimeter mission; 

however, because of technical problems 
with the lasers, ICESat only provided 
snapshots of Arctic sea ice thickness 
during spring and autumn from 2003 
to 2009. Since 2010, CryoSat-2 has pro-
vided nearly pan-Arctic observations of 
ice thickness. Beginning in 2018, NASA’s 
ICESat-2 laser altimeter began providing 
complementary estimates to CryoSat-2. 
While these different satellite missions 
offer glimpses into sea ice thickness vari-
ability and change, it remains challeng-
ing to blend these data into a consistent 

(a) EASE-Grid Sea Ice Age, v4.1
August 27–September 2, 1985

(c) Extent of Multiyear Ice in the Arctic
Week of Minimum Total Extent, 1985–2021

(a) EASE-Grid Sea Ice Age, QL
September 3–9, 2021

FIGURE 2. Weekly average sea ice age field from the end of summer (week before the annual min-
imum total extent) for (a) 1985 (from Tschudi et al., 2019a) and (b) 2021 (“QL” = QuickLook version 
from Tschudi et al., 2019b). (c) Extent of age of multiyear ice (black) and >4 year old ice (red) within 
the Arctic Ocean domain (inset) for 1985 to 2021. Figure from Meier et al. (2021)
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record of ice thickness. This in part stems 
from different sensors (i.e., laser vs. radar 
altimeter), spatial resolution (i.e.,  larger 
footprint of ERS-1 vs. CryoSat-2 gen-
erates inconsistencies in the dominant 
scattering surface observed), differences 
in assumptions about snow/ice densities, 
and differences in snow depth estimates 
used in thickness retrievals. Because 
snow depth has not yet been accurately 
observed by satellite, a climatology for 
snow depth is often applied. Yet, using 
a climatology can lead to large biases in 
sea ice thickness trends, especially in the 
marginal ice zone. There, snow depth 
is observed to be declining, in part due 
to later autumn freeze-up and thus less 
time for the snow to accumulate on the 
ice (e.g.,  Stroeve et  al., 2020). Figure 3 
shows an example of trends in April ice 
thickness from 2011 to 2020 from the 
CryoSat-2 data record. In this example, 
ice thickness retrievals using snow depth 
and density from Liston et  al. (2020) 
were compared against those using a 
snow depth and density climatology 
(e.g., Warren et al., 1999). Conversion of 
radar freeboard to thickness was based 
on an algorithm from Landy et al. (2020).

What is clear is that thickness trends 
are overall larger in magnitude when 

using a dynamic snow loading data set 
versus a fixed climatology, and there 
are some spatial pattern differences in 
regions with positive or negative thick-
ness trends. However, many regions 
where the trends are statistically signif-
icant at the 95% confidence interval are 
broadly similar regardless of which snow 
data set is used. From this we can con-
clude that during the CryoSat-2 period, 
end of winter ice thickness is declining 
most strongly in the Beaufort, Chukchi, 
East Siberian, Laptev, Lincoln, and East 
Greenland Seas as well as within the 
Canadian Arctic Archipelago and Baffin 
Bay, but thickness is increasing north of 
the Canadian Arctic Archipelago and in 
the Barents and Kara Seas (Figure 3).

For a longer-term perspective, Mallett 
et  al. (2021) showed that using a newly 
developed dynamic snow depth and den-
sity product (Liston et al., 2020), ice thick-
ness declined 60%–100% faster between 
2002 and 2018 compared to using the 
Warren et al. (1999) snow depth and den-
sity climatology. The most recent syn-
thesis of thickness changes using earlier 
submarine and mooring data together 
with measurements from electromagnetic 
induction sensors on helicopters and air-
craft, and airborne and satellite lidar data 

(Lindsay and Schweiger, 2013) found that 
between 1975 and 2012, the mean ice 
thickness declined from 3.59 m to 1.25 m. 
These ice thickness changes are consistent 
with the shift from an Arctic Ocean dom-
inated by multiyear ice to one dominated 
by first-year ice.

As noted above, knowledge of snow 
depth is essential to retrieve ice thickness 
from altimetry. Thus, it is useful to briefly 
comment on progress in monitoring 
snow depth. The first satellite estimates 
were based on use of passive microwave 
brightness temperatures to retrieve snow 
depth over first-year ice (e.g.,  Markus 
et  al., 2011). This was later extended to 
also include multiyear ice (e.g., Rostosky 
et  al., 2018). Another satellite-​derived 
method is based on the assumption that 
radar backscatter at Ka-band comes from 
the snow surface, while that from Ku-band 
comes from the ice surface, and thus the 
difference between the two provides an 
estimate of snow depth (e.g.,  Guerreiro 
et  al., 2016; Lawrence et  al., 2018). This 
has been extended to using a combina-
tion of ICESat-2 and CryoSat-2 free-
boards (e.g.,  Kwok et  al., 2020). Other 
approaches attempt to model snow accu-
mulation using atmospheric reanalyses 
combined with various levels of snow 
modeling sophistication (e.g., Blanchard-
Wrigglesworth et  al., 2018; Petty et  al., 
2018; Liston et  al., 2020) in either a 
Lagrangian or Eulerian framework. The 
Liston et al. (2020) approach is currently 
the most sophisticated snow modeling 
system available for providing physically 
constrained estimates of snow depth and 
density. The different approaches pro-
vide differing magnitudes in total snow 
depth and trends, as well as spatial pat-
terns (Zhou et al., 2021). However, most 
of the reanalysis-based approaches show 
negative trends in snow accumulation in 
the marginal ice zone (Figure 4), consis-
tent with later ice formation (see next sec-
tion). Slight positive trends in snow accu-
mulation are seen north of Greenland and 
the Canadian Arctic Archipelago, with 
some data products stretching across the 
pole (see Zhou et al., 2021).

APRIL SEA ICE THICKNESS TREND 2011–2020
(a) CS2+SMLG (b) CS2+aW99

FIGURE 3. Trends in April sea ice thickness in meters per decade between 2011 and 2020 
derived from CryoSat-2 (CS2) freeboard retrievals using the Landy et  al. (2020) algorithm with 
(a) SnowModel-LG (SMLG) snow depth and density (Liston et al., 2020) and (b) snow depth and den-
sity climatology (adjusted W99; Warren et al., 1999; Laxon et al., 2003). Stippling indicates signifi-
cance at p <0.05. Figure provided by J. Landy (University of Bristol)
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Melt Onset and Freeze-up
The sensitivity of microwave emissivity to 
the presence of liquid water in the snow-
pack has also allowed for the mapping of 
changes in the timing of melt onset and 
freeze-up (e.g., Markus et al., 2009; Bliss 
and Anderson, 2018; Peng et  al., 2018). 
As expected in a warming Arctic, the melt 
season is starting earlier than it once did, 
with the largest changes observed in the 
marginal seas of the Arctic, with trends 
on the order of 10–20 days earlier each 
decade (Figure 5). Slight delays in melt 
onset occur in the central Arctic (two to 
five days later each decade). Earlier melt 
onset has been linked to advection of 
warm, moist air masses into the Arctic 
(Kapsch et al., 2013; Mortin et al., 2016).

Trends in autumn freeze-up are in 
general larger than those of melt onset, 
with particularly large delays in freeze-up 
observed in the Beaufort, Chukchi, and 
East Siberian Seas (up to a month later 
each decade in the northern Chukchi 
Sea; Figure 5). Freeze-up is both a mea-
sure of when the surface refreezes and 
also when new ice forms. Despite more 
modest trends in melt onset compared 
to freeze-up, earlier melt onset lowers the 
surface albedo earlier in the melt season, 
helping to enhance the ice-albedo feed-
back (e.g.,  Stroeve et  al., 2014). Earlier 
formation of melt ponds and open water 
areas results in absorption of more of the 
sun’s energy, in turn fostering more ice 
melt. The heat gained in the ocean mixed 
layer as a result of earlier melt onset 
and earlier ice retreat is strongly linked 
to the timing of ice formation and thus 
freeze-up (e.g., Stroeve et al., 2016, 2014).

Finally, earlier melt onset allows for 
earlier formation of melt ponds, and 
thus trends toward earlier melt pond for-
mation would be expected. This may be 
especially important given the role melt 
ponds may play in the amount of ice left 
at the end of summer (e.g.,  Liu et  al., 
2015). Tracking of melt ponds with sat-
ellite data remains challenging given the 
relatively coarse spatial resolution of sat-
ellite data. However, in the past decade 
substantial progress has been made using 

optical satellite imagery, such as from 
NASA’s Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument 
(e.g.,  Tschudi et  al., 2008; Rösel et  al., 
2012; Lee et  al., 2020), as well as data 
from the Medium Resolution Imaging 
Spectrometer (MERIS) satellite (Zege 
et  al., 2015). Data from each has pro-
duced melt pond estimates at different 
spatial and temporal resolutions, mak-
ing an intercomparison between prod-
ucts difficult. For long-term trends, only 
Lee et al. (2020) have developed products 
through 2020, whereas the other prod-
ucts end in 2011 or 2012. Overall, no sta-
tistically significant trends toward earlier 

melt pond development are observed in 
any of the data products between 2000 
and 2011, though Lee et al. (2020) show 
positive trends during July and August 
when the record is extended to 2020.

DRIVERS OF SEA ICE CHANGES
While the overall long-term decline in 
Arctic sea ice extent is clear (Figure 1), 
how well a particular year tracks with 
the linear trend depends strongly 
on atmospheric circulation patterns 
(e.g., Parkinson and Comiso, 2013; Ding 
et  al., 2019). Earlier studies show link-
ages between atmospheric modes of vari-
ability, such as the Arctic Oscillation 

(a) April Snow Depth Trend 1981–2020 (b) October Snow Depth Trend 1981–2020
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FIGURE 4. Snow depth trends for 1981 to 2020 during (a) spring (April) and (b) autumn (October). 
Only statistically significant trends (at p <0.05) are shown in color; gray indicates trends that are not 
significant. Figure provided by R. Mallett (University College London)

(a) Melt Onset Trend 1979–2021 (b) Freeze-Up Trend 1979–2021
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FIGURE 5. Melt onset (a) and freeze-up (b) trends. Data updated from Markus et al. (2009)
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(e.g., Rigor et al., 2002), and summer sea 
ice extent. However, in recent years, low 
summer extents have continued regard-
less of the atmospheric mode. One rea-
son for this is that today’s Arctic ice is 
considerably thinner than it was four 
decades ago. Higher temperatures and 
a thinner ice cover serve to precondi-
tion the ice cover to be more sensitive 
to seasonal weather patterns (e.g.,  Babb 
et  al., 2015). Thus, an unusually warm 
summer (e.g.,  Stroeve et  al., 2008), or a 
strong cyclone (Parkinson and Comiso, 
2013), can result in large reductions 
in both volume and extent regardless 
of the atmospheric mode. Conversely, a 
colder than average summer may reduce 
ice melt and permit a relatively thin ice 
cover to survive.

Another factor in sea ice change is 
warming of the ocean, which also acts as 
a positive sea ice-albedo feedback: loss of 
ice results in more solar absorption in the 
ocean and warming of the water, which 
melts more ice (e.g., Perovich et al., 2007). 
One study found a fivefold increase in 
summer solar heat absorption in the 
northern Chukchi Sea between 1987 and 
2017 (Timmermans et  al., 2018). There 
is also evidence in the Eurasian Basin 
that the halocline between the colder, 
fresher surface waters and the warmer, 
saltier Atlantic Water below is weaken-
ing and contributing to sea ice loss in 

the region (e.g.,  Polyakov et  al., 2017, 
2020; Ricker et  al., 2021). Earlier snow 
melt onset and melt pond formation are 
also part of a positive feedback mech-
anism, as they decrease surface albedo 
and increase solar absorption by the ice 
(e.g., Perovich et al., 2007).

The variability in forcing and the 
changing Arctic sea ice response to that 
forcing make seasonal forecasting chal-
lenging. Forecasts of September sea ice 
with one- to three-month lead times 
have shown varying but limited skill 
(e.g.,  Blanchard-Wrigglesworth et  al., 
2015; Hamilton and Stroeve, 2016). 
Forecasting may be becoming more diffi-
cult with the thinner ice cover. When the 
Arctic Ocean was covered by thick ice, 
an unusually warm summer may have 
melted a relatively large volume of ice, 
but this would not have been reflected 
in a change in extent to the degree that it 
would be now.

There is still much to learn about the 
complex processes of the sea ice cover 
and their interactions with the ocean 
and atmosphere. While satellite data 
have greatly expanded our knowledge 
of these processes, field observations are 
still essential to validate satellite data 
and models and to better understand 
small-scale processes. One of the most 
momentous undertakings in the history 
of Arctic science occurred in the past 

decade: the Multidisciplinary Drifting 
Observatory for the Study of Arctic 
Climate (MOSAiC; Shupe et  al., 2020). 
The German icebreaker Polarstern was 
frozen into the ice and drifted across the 
Arctic from October 2019 to September 
2020, collecting ice, ocean, atmosphere, 
and biogeochemistry data through a full 
annual cycle. The data are still being pro-
cessed and substantial results have yet to 
be reported. But the data collected prom-
ise to be a treasure trove for future under-
standing of the changing Arctic sea ice.

Though details of sea ice processes and 
interactions with the ocean and atmo-
sphere are still not completely under-
stood, the shrinking and thinning of 
Arctic sea ice has a clear fingerprint from 
rising concentrations of atmospheric 
greenhouse gases. Notz and Stroeve 
(2016) examined the linear relation-
ship between September sea ice decline 
and cumulative CO2 concentrations. 
When this evaluation was expanded to 
all months of the year, it indicated that 
all calendar months demonstrate a clear 
linear relationship, though the relation-
ship is strongest in September. Updating 
this analysis through 2021 shows that 
the linear relationship still holds today 
(Figure 6). Thus, the long-term fate 
of sea ice will be determined by which 
emission scenario (denoted in the IPCC 
AR6 Report as Shared Socioeconomic 
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Pathways [SSPs]) is realized within Earth’s 
climate in the coming decades. Although 
the target for limiting global warming 
is 1.5°C, the warming in the Arctic will 
greatly exceed this amount, with warm-
ing as large as 6°C in autumn and winter. 
If the planet warms to 2.0°C, the warming 
will exceed 8°C in the Arctic (Figure 6b).

IMPACTS OF CHANGES
The loss of sea ice has myriad impacts 
within the Arctic. A comprehensive 
assessment of such impacts is beyond the 
scope of this paper, but they are detailed in 
various assessment reports (e.g.,  AMAP, 
2017) and other studies (e.g., Post et al., 
2019). Here, we provide brief examples of 
some of the impacts.

Less sea ice has led to longer fetch, 
more coastal wave action, and, coupled 
with permafrost thaw, more coastal ero-
sion (e.g., Overeem et al., 2011; Fritz et al., 
2017), results that threaten Indigenous 
communities and other human infra-
structure in the north. Earlier retreat 
and later advance of ice is opening up 
shipping routes, and as sea ice declines 
further, shipping through the Arctic 
will become more viable in the future 
(Mudryk et al., 2021).

The loss of ice has fostered earlier and 
more widespread phytoplankton blooms 
(e.g.,  Hill et  al., 2018). Double blooms 
(Ardyna et  al., 2014), as well as large 
under-ice blooms (Arrigo et  al., 2012), 
have been observed in recent years. A lack 
of ice during Bering Sea winters resulted 
in substantial effects on the regional 
ecosystem, including seabird die-offs 
(e.g., Duffy-Anderson et al., 2019). There 
are also well-known negative impacts 
on the megafauna of the Arctic, such as 
polar bears (Pagano and Williams, 2021), 
although habitats are expanding for non-
ice species, such as killer whales and some 
fishes (Stafford et al., 2022, in this issue).

While the impacts within the Arctic 
are clearly visible, the influence of sea ice 
and Arctic change outside of the Arctic is 
far more uncertain. Francis and Vavrus 
(2012) first proposed a connection 
between Arctic sea ice loss and warming 

and mid-latitude weather extremes via a 
slowing jet stream. Their analysis indi-
cated a detectable change in the jet stream 
pattern that they related to the warming 
and sea ice loss. However, almost imme-
diately, other studies found contradictory 
results (e.g.,  Barnes, 2013). Since then, 
myriad studies have provided contradic-
tory information. Synthesis studies have 
tried to reconcile the conflicting research 
(e.g.,  Overland et  al., 2016), but the 
debate continues, with studies both sup-
porting (e.g., Cohen et al., 2021) and con-
tradicting (Blackport and Screen, 2021) 
the hypothesis.

SUMMARY
It is difficult to produce an assessment of 
Arctic sea ice because changes are hap-
pening so rapidly—this document will 
likely be out of date shortly after publica-
tion. In some ways, the story is the same 
as in the previous report published in 
Oceanography (Perovich, 2011): the rap-
idly changing Arctic is marked by sea 
ice loss. On the other hand, substantial 
developments have emerged in the past 
10 years. There was a new record low 
September ice extent in 2012 and several 
other extreme low years since then. The 
oldest ice, already in steep decline 10 years 
ago, has virtually disappeared and shows 
no signs of recovery. Since 2011, there 
have also been substantial new observ-
ing capabilities, particularly from altim-
eters, providing the most complete satel-
lite estimates of freeboard and thickness 
ever, though there remains important 
uncertainty in the retrievals (particularly 
due to snow properties). The Arctic sea 
ice is showing a consistent response to 
warming across the myriad observations: 
decreases in concentration and extent, 
a younger and thinner ice cover, earlier 
melt, and later freeze-up.

New projections of sea ice cover con-
firm an ultimate dependence on future 
emissions scenarios, though consider-
able uncertainty will continue in year-to-
year variability. Extending the still rela-
tively short records of observations of ice 
thickness and snow depth and reducing 

uncertainties in their estimates will help 
constrain model projections. And future 
improvements in models (e.g.,  param-
eterizations, vertical/horizontal resolu-
tion) should also yield more precise pro-
jections. A controversial line of research 
has emerged in the last 10 years, positing 
a connection between Arctic warming 
and sea ice loss and mid-latitude weather 
extremes. Despite numerous studies, 
the connection remains uncertain and 
debated within the scientific commu-
nity. More data, particularly on weather 
extremes, and improved modeling may 
help to resolve this question in the future.

What is certain is the impact of sea ice 
loss within the Arctic. Even 10 years ago, 
the impacts of sea ice loss on the regional 
climate, local communities, and the eco-
system were clear and have become only 
more so since then. 
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