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Abstract: The objective of this work was to create a robust automatic software tool for
measurement of the levator hiatal area on Transperineal ultrasound (TPUS) volumes,
and to measure the potential reduction in error and time taken for analysis in a clinical
setting. The proposed tool automatically detects the C-plane (i.e. the plane of minimal
hiatal dimensions) from a 3D transperineal UltraSound (US) volume and subsequently
uses the extracted plane to automatically segment the levator hiatus, using a
convolutional neural network (CNN). The automatic pipeline was tested using 73
representative TPUS volumes. Reference hiatal outlines were obtained manually by
two experts and compared with the pipeline’s automated outlines. The Hausdorff
distance, area, a clinical quality score, C-plane angle, and the C-plane Euclidean
distance were used to evaluate C-plane detection and quantify levator hiatus
segmentation accuracy. A visual Turing Test was created to compare the performance
of the software to the expert, based on the visual assessment of C-plane and hiatal
segmentation quality. The overall time taken to extract the hiatal area with both
measurement methods (i.e. manual and automatic) was measured. Each metric was
calculated both for computer-observer differences, and for inter-and intra-observer
differences. The automatic method gave similar results to the expert when determining
the hiatal outline from a TPUS volume. Indeed, the hiatal area measured by the
algorithm and by an expert were within the intra-observer variability. Similarly, the
method identified the C-plane with an accuracy of 5.76 ± 5.06 ° and 6.46 ± 5.18 mm in
comparison to the inter-observer variability of 9.39 ± 6.21° and 8.48 ± 6.62 mm. The
visual Turing Test suggested that the automatic method identified the C-plane position
within the TPUS volume visually as well as the expert. The average time taken to
identify the C-plane and segment the hiatal area manually was 2 minutes and 35 ± 17
seconds, compared to 35 ± 4 seconds for the automatic result. This study presents a
method for automatically measuring the levator hiatal area using AI-based
methodologies whereby the C-plane within a TPUS volume is detected and
subsequently traced for the levator hiatal outline. The proposed solution was
demonstrated to be accurate, relatively quick, robust and reliable, and – importantly - to
reduce time and expertise required for pelvic floor disorder assessment.
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Helena Williams 

KU Leuven, Belgium 

Helena.williams@kuleuven.be 

2nd February 2021 

Dear Editor in Chief of Ultrasound in medicine and biology,  

We wish to submit an original research article entitled “Automatic extraction of hiatal 

dimensions in 3D transperineal pelvic ultrasound recordings” for consideration of publication in 

your journal. We confirm that this work is original and has not been published elsewhere, nor is 

it currently under consideration for publication elsewhere. 

 

In this paper, we present a novel, automatic software tool able to identify the plane of minimal 

hiatal dimensions and further delineate the levator hiatus from a 3D Transperineal Ultrasound 

volume. The assessment of the levator hiatus area is helpful for tailoring treatment of patients 

with pelvic organ prolapse. We feel this work is significant because currently, within clinic, it is 

a manual process requiring a high level of training and expertise. Furthermore, the current 

clinical workflow is time-consuming, labour-intensive and prone to inter-observer error. Experts 

may have different techniques, in locating the minimal hiatal dimensions and delineating the 

levator hiatus, therefore, automation may standardise the procedure. 

 

In this work we perform extensive validation on a challenging clinical dataset (with a high 

proportion of pathology cases). We show that our proposed method is clinically acceptable. The 

proposed tool performs with a higher accuracy than the recorded inter-observer error, thus it will 

reduce error in the clinical setting. The proposed pipeline is roughly 2 minutes quicker than an 

expert, meaning it may save clinicians’ time to spend on patient counselling and treatment 

planning. The proposed pipeline also lowers the expertise required to perform Transperineal 

ultrasound imaging.  

 

We believe that this manuscript is appropriate for publication by Ultrasound in medicine and 

biology because it is clinically relevant research within the field of ultrasound in medicine and 

pelvic floor disorder assessment. Furthermore, this work is novel, intuitive and performs well 

with a small training dataset- rare for deep learning applications, thus it could be applied to other 

clinical applications where plane selection or landmark detection is required for medical imaging 

analysis. 

Please address all correspondence concerning this manuscript to me at 

helena.williams@kuleuven.be. 

Thank you for your consideration of this manuscript.  

Cover Letter

mailto:helena.williams@kuleuven.be


Sincerely, 

Helena Williams 
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August 4, 2021

These parts are annotated with [RiCj ] referring to the comment j associated
with reviewer i.

1 Manuscript Modifications

There were no main modifications which were asked of by the reviewers in the
second reading.

We thank the reviewer’s again for their careful reading and feedback, it has
greatly improved the clarity of the paper.

2 Answer to Reviewer 1’s second review

C[R1C1]: The authors have made all the changes I requested making the paper
clearer.

R: Thank you for your comments and feedback.

3 Answer to Reviewer 2’s second review

C[R2C1]: Thank you for revising this manuscript. The additions and rephrasing
of sections of the manuscript make it stronger, logical and coherent. The work
adds to the evidence base for the use of deep learning for patients with suspected
pelvic disease.

Well done.
A minor change is to use third person rather than ’herself ’
I look forward to seeing your work published and reading future work of yours

on this topic.

R: Thank you for your kind comments and feedback. The paper has been
changed to ’themself’ instead of ’herself’. P15 L318.
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Abstract 1 

 The aim of this work was to create a robust automatic software tool for measurement of the levator hiatal 2 

area on Transperineal ultrasound (TPUS) volumes, and to measure the potential reduction in variability and 3 

time taken for analysis in a clinical setting.  The proposed tool automatically detects the C-plane (i.e. the 4 

plane of minimal hiatal dimensions) from a three-dimensional (3D) transperineal UltraSound (US) volume 5 

and subsequently uses the extracted plane to automatically segment the levator hiatus, using a convolutional 6 

neural network (CNN). The automatic pipeline was tested using 73 representative TPUS 7 

volumes.  Reference hiatal outlines were obtained manually by two experts and compared with the 8 

pipeline’s automated outlines. The Hausdorff distance, area, a clinical quality score, C-plane angle, and the 9 

C-plane Euclidean distance were used to evaluate C-plane detection and quantify levator hiatus 10 

segmentation accuracy. A visual Turing Test was created to compare the performance of the software to 11 

the expert, based on the visual assessment of C-plane and hiatal segmentation quality. The overall time 12 

taken to extract the hiatal area with both measurement methods (i.e. manual and automatic) was measured. 13 

Each metric was calculated both for computer-observer differences, and for inter-and intra-observer 14 

differences.  The automatic method gave similar results to the expert when determining the hiatal outline 15 

from a TPUS volume. Indeed, the hiatal area measured by the algorithm and by an expert were within the 16 

intra-observer variability. Similarly, the method identified the C-plane with an accuracy of 5.76  5.06  17 

and 6.46  5.18 mm in comparison to the inter-observer variability of 9.39  6.21 and 8.48  6.62 mm. 18 

The visual Turing Test suggested that the automatic method identified the C-plane position within the TPUS 19 

volume visually as well as the expert. The average time taken to identify the C-plane and segment the hiatal 20 

area manually was 2 minutes and 35  17 seconds, compared to 35  4 seconds for the automatic result. 21 

This study presents a method for automatically measuring the levator hiatal area using AI-based 22 

methodologies whereby the C-plane within a TPUS volume is detected and subsequently traced for the 23 

levator hiatal outline. The proposed solution was demonstrated to be accurate, relatively quick, robust and 24 

reliable, and – importantly - to reduce time and expertise required for pelvic floor disorder assessment.  25 

 26 

Keywords:  ultrasound, levator hiatus, transperineal ultrasound, segmentation, deep learning, 27 

automatic clinical workflow28 
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Introduction 29 

 30 

Pelvic Floor Ultrasound examination (PFUS) is increasingly being used in the assessment 31 

of the pelvic floor anatomy in women with pelvic floor dysfunction (IUGA, 2019). 32 

Typically, an abdominal 3D transducer is placed on the labia to assess the urogenital 33 

organs, the levator ani muscle (LAM), and where indicated, the anal sphincter. The LAM 34 

is a broad muscular sheet attached to the internal surface of the pelvis and supports the 35 

urogenital organs and ano-rectum(Schwertner-Tiepelmann, et al. 2012). Levator integrity 36 

and the hiatal area assessment for organ descent is helpful when counselling and tailoring 37 

treatment of patients with pelvic organ prolapse. Levator avulsion enlarges the genital 38 

hiatus (Abdool, et al. 2009) and is associated with anterior and middle compartment 39 

prolapse, as well as recurrence of prolapse after native tissue repair, hence can be 40 

considered a biomarker to assess pelvic floor dysfunction(Dietz and Simpson 2008, 41 

Ismail, et al. 2016).  Additionally, delivery-induced sarcomeric hyperelongation may 42 

cause substantial, irreversible ultrastructural trauma in the LAM(Brooks, et al. 1995, 43 

Lien, et al. 2004). Irreversible over-distention of the levator hiatus (‘microtrauma’) has 44 

been described in postpartum women as a possible consequence of muscular atrophy, 45 

reduction in function and can alter pelvic floor distensibility after vaginal delivery (Shek 46 

and Dietz 2010). 47 

 Manual detection of the levator hiatus in a 3D transperineal ultrasound (TPUS) 48 

acquisition requires significant offline post-processing of the volumetric recordings by 49 

specifically trained sonographers. UltraSound (US) manufacturers have implemented and 50 

previous works (Li, et al. 2019, Sindhwani, et al. 2016, van den Noort, et al. 2019) have 51 

developed semi-automatic and automatic tools to aid PFUS. For instance, real-time 52 
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visualisation of the desirable C-plane from a manually identified approximation of the C-53 

plane was developed in Omniview-VCI (GE Healthcare, Austria). Clinicians assess the 54 

levator hiatus on the plane where the anteroposterior distance (between the dorsocaudal 55 

end of the symphysis pubis (SP), and the ventral end of the levator), is the smallest, and 56 

refer to this plane as the plane of minimal hiatal dimensions (MHD) or C-plane.  However, 57 

a fully automatic levator hiatus detection from a TPUS volume should obtain a more 58 

accurate representation of the anatomical findings, would be less operator-dependent, and 59 

may save clinicians time to allow more focus on patient care and counselling. Automation 60 

would lower the minimal threshold of expertise for clinicians to be using TPUS. This 61 

study aimed to build a fully automatic workflow that consists of C-plane detection 62 

followed by hiatal segmentation. A solution to this clinical problem (IUGA, 2019) which 63 

ensures the trustworthiness and interpretability from experts while following the clinical 64 

guidelines is likely to have a strong clinical value. 65 

 66 

Material and Methods 67 

Abbreviations 68 

In order to make tables and figures more readable, abbreviations  have been introduced 69 

throughout this paper. A table of abbreviations and definitions can be seen in table S1, 70 

in the Supplementary material. 71 

 72 

Manual C-plane detection 73 

 74 

3D-TPUS acquisition is performed orienting the 3D abdominal probe as on conventional 75 

transvaginal ultrasound images (cranioventral aspects to the left, dorsocaudal to the right) 76 
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(Dietz 2010). The so-acquired 3D-image of the pelvic floor shows the midsagittal plane 77 

in the top left corner (A), the axial plane in the top right corner (B) and the coronal plane 78 

in the bottom left corner (C) (Figure 1). In order to visualise the C-plane on the coronal 79 

plane of the US image, clinicians manually align the SP and the LAM to a horizontal 80 

direction on the midsagittal plane. Eventually, the LAM lies on the axial plane, as shown 81 

in Figure 1. This makes the levator hiatus clearly visible on the coronal plane as the pubic 82 

bones ventrally, and the LAM dorsally is hyper-echogenic compared with the hypo-83 

echogenic pelvic organs. By analysing the levator hiatus, one can diagnose levator 84 

avulsion and hiatal ballooning (IUGA,2019). 85 

 86 

 Proposed biomarker extraction pipeline 87 

 88 

The proposed automatic data analysis pipeline is composed of two sequential parts: a C-89 

plane extractor, and a levator hiatus outline extractor (Figure 2). The C-plane extractor is 90 

based on our previous work, see (Williams, et al. 2020) for more in-depth technical 91 

details. The proposed pipeline expands on this work to automatically outline the levator 92 

hiatus from the C-plane extractor’s output. The proposed pipeline utilises advances in 93 

CNNs, landmark detection, semantic segmentation and follows the IUGA/AIUM (IUGA, 94 

2019) clinical guidelines to ensure interpretability of the results. The solution requires no 95 

user input and is thus completely automatic. In brief, the pipeline starts by automatically 96 

detecting the SP and LAM extreme coordinates within a TPUS via CNN landmark 97 

regression. The extreme coordinates are defined as the voxel coordinates with the shortest 98 

Euclidean distance between the 3D segmentations of the SP and LAM within a Mid-99 

Sagittal (MS) slice, as shown in Figure 3. Post-processing identifies the vector of MHD, 100 
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and a transformation matrix can be formed to resample the TPUS volume as the desired 101 

2D C-plane. The extracted C-plane is then used as input to a pre-trained 2D semantic 102 

segmentation CNN model that segments the levator hiatus, defining the hiatal area.  103 

 104 

Description of the biomarker pipeline  105 

i) 3D landmark regression of the SP and LAM extreme coordinates 106 

The first step of the C-plane extractor accepts a TPUS volume as input and 107 

results in a heatmap of the SP and LAM extreme coordinates within the TPUS 108 

volume. The heatmap is a data visualisation technique which encodes the 109 

probability of a landmark being located at a certain voxel position within the 110 

TPUS volume. In this study, the heatmap voxels near the extreme coordinate 111 

have high values (with the highest at the extreme coordinate), and they 112 

smoothly and rapidly decrease with increasing distance from the extreme 113 

coordinate, as shown in Figure 3. 114 

The rationale behind this approach was that regressing one coordinate from a 115 

large volume can be difficult to train, and a heatmap is more robust (Williams, 116 

et al. 2020). The CNN architecture used was an adaptation of U-Net (Çiçek, 117 

et al. 2016) and the heatmaps were regressed in training. A multi-task 118 

approach was used, to determine the distinct SP and LAM heatmaps 119 

simultaneously, utilising transfer learning between the two tasks. Finally, the 120 

SoftMax layer of U-Net was removed to generate a continuous output. 121 

 122 

ii) Post-processing to identify minimal hiatal dimension 123 
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The second step identifies the extreme coordinates from the regression output. 124 

This was achieved with a computational post-processing step inspired by the 125 

IUGA clinical guidelines (IUGA,2019).  While our landmark regression was 126 

performed in 3D, clinicians normally identify the plane defining ‘extreme 127 

coordinates’ within a single 2D MS plane (Williams, et al. 2020). Thus, to 128 

follow clinical guidelines, a 2D approach was also followed in our automatic 129 

pipeline, to create a workflow that was comparable to the clinical one. The 130 

combined voxel maxima of the SP and LAM heatmaps were determined 131 

within a small range of 2D MS planes to reduce computational load and 132 

running time. Thus, the SP and LAM combined overall voxel maxima, 133 

corresponding extreme coordinates and MS plane were identified.   134 

 135 

iii) Extraction of the C-plane 136 

The final step of task one was to slice and resample the 3D TPUS as the 137 

automatically defined 2D C-plane. The C-plane was defined as the plane 138 

orthogonal to the depth direction of the TPUS volume at acquisition, thus 139 

contains the orthogonal vector, |001|. The C-plane also contains the vector, 140 

𝐴𝐵⃗⃗⃗⃗  ⃗, that joins the extreme coordinates of the SP and LAM identified in the 141 

previous step. The cross product of these two orthogonal vectors defines the 142 

final orthogonal vector as −𝐴𝐵𝑦𝒊 + A𝐵𝑥𝒋 + 0𝒌.  Clinical guidelines suggest 143 

the vector 𝐴𝐵⃗⃗⃗⃗  ⃗ has a magnitude within the x and y directions only, as the 144 

extreme coordinates lie within the same MS plane (z slice) (Williams, et al. 145 

2020), which was determined in the previous section. Therefore, the bases of 146 

the C-plane are defined as, 147 
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‖𝑏𝑥‖‖𝑏𝑦‖‖𝑏𝑧‖ = ‖

𝐴𝐵𝑥 −𝐴𝐵𝑦 0

𝐴𝐵𝑦 𝐴𝐵𝑥 0

0 0 1

‖.                             (1) 148 

Once the TPUS volume was rotated, the C-plane was extracted at the mid-149 

point between the SP and LAM extreme coordinates.  150 

 151 

iv) Levator hiatus segmentation 152 

The second task of the proposed pipeline was to automatically define the hiatal 153 

area from the extracted 2D C-plane, elaborating on previous work (Bonmati, 154 

et al. 2018, Sindhwani, et al. 2016). In this study, a 2D CNN accepts the 155 

extracted 2D C-plane from the previous task and automatically classifies the 156 

voxels as levator hiatus (1) or background (0). The network architecture 157 

utilised was an implementation of 2D U-Net (Ronneberger, et al. 2015). Due 158 

to the nature of US, segmentation can be difficult due to noise, artefacts and 159 

blurring, thus advanced data augmentation was used including elastic 160 

deformation and our own adaptation of the original mix-up (Zhang, et al. 161 

2018), where three images and their corresponding ground-truth labels were 162 

linearly combined instead of two. Post-processing morphological operators 163 

were applied to the CNN output, such as connected component analysis, fill-164 

holes and Gaussian blur of sigma value 0.5. This post-processing was used to 165 

ensure that the segmentation was complete (i.e. no holes) and that the 166 

boundary was smooth, which ensures the hiatal output was more realistic.  167 

 168 

 Implementation details 169 

 170 
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The CNN models were implemented using NiftyNet (Gibson, et al. 2018) on a desktop 171 

with a 24GB NVIDIA Quadro P6000 (NVIDIA, California, United States) 172 

 173 

3D landmark regression  174 

The network architecture of 3D U-Net (Çiçek, et al. 2016) was adapted to have one input 175 

(i.e. TPUS volume) and two outputs (i.e. SP and LAM heatmaps) at testing, to ensure a 176 

multi-task approach to learning. The final SoftMax layer was removed to output a 177 

continuous value which ranges between zero and a maximum value. The loss function 178 

was a combined L2 loss of the SP and LAM heatmaps with an initial learning rate of 10-179 

4. A RMSprop optimiser, parametric ReLU activation function, weighted decay factor of 180 

10-5 and batch size of six were used. Histogram based normalisation and whitening were 181 

used, thus the volume was set to have zero-mean and unit variance. A combined smooth 182 

version of the heatmaps was used for weighted sampling during training. The following 183 

data augmentation were used: random scaling (with a range of -10, +10%), random 184 

rotation of all axes (with a range of -10°, +10°) and our own adaptation of mixup (Zhang, 185 

et al. 2018). Methods were optimised until network convergence of a validation set (i.e. 186 

subset of TPUS volumes from the training dataset).  187 

 188 

C-plane hiatal area segmentation 189 

The network architecture used was an adaptation of 2D U-Net (Ronneberger, et al. 2015) 190 

as it has proven to perform well in other 2D US semantic medical imaging tasks (Bonmati, 191 

et al. 2018, Li, et al. 2019). An Adam optimiser, ReLU activation function, weighted 192 

decay factor of 10-5 and batch size of 32 were used. Whitening was applied to reduce the 193 

effects of noise; thus, the image was set to have zero-mean and unit variance, and 194 
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histogram normalisation was further performed (Pal and Sudeep 2016). A loss function 195 

of combined cross entropy and Dice score was used, with an initial learning rate of 10-3. 196 

Balanced window sampling was used during training (i.e. regions of label and background 197 

were equally sampled). During training the following data augmentation were used: 198 

random rotation (with a range of -5°,+5°), elastic deformation (deformation sigma = nine, 199 

number of control points= four and proportion to deform 0.5), random scaling (range of 200 

-20,+20%), vertical ‘flipping’ and our implementation of mixup (Zhang, et al. 2018). 201 

 202 

 Data collection 203 

 204 

Analysis of anonymised, archived, ultrasound images was retrospective, therefore, no 205 

ethics committee approval was required by KU Leuven, Belgium. 206 

 207 

Training data - C-plane detection 208 

Regarding the 3D C-plane detection task, a training dataset of 25 3D TPUS volumes was 209 

used. This was the same dataset used in our previous study (Williams, et al. 2020). The 210 

training dataset comprised of 13 clinical cases with a range of pelvic floor dysfunctions, 211 

assessed at the pelvic floor clinic in UZ Leuven, Belgium. Multiple TPUS volumes were 212 

obtained from the 13 clinical cases (i.e. at rest, Valsalva and/or pelvic floor contraction). 213 

3D segmentations of the SP and LAM were provided by an expert human annotator 214 

(referred to as expert 1) and used to generate the heatmaps via the process shown in Figure 215 

3. Expert 1 was chosen for their experience in this domain and in annotating the 3D LAM 216 

and SP structures from a TPUS volume, expert 1 had 12 months of experience in 217 

annotating the SP and LAM in 3D TPUS volumes prior to data curation. 218 



   

 

   

 

11 

 219 

Training data- 2D levator hiatus segmentation 220 

Regarding levator hiatus segmentation, a training dataset of 256 2D C-planes and 221 

corresponding ground truth labels of the levator hiatus were used to train the CNN 222 

segmentation model. The training dataset comprised two sets of archived clinical images 223 

with expert annotations, acquired by several operators, which allows the CNN to learn a 224 

variety of acquisition parameters and image qualities. Within the training dataset a subset 225 

of 91 2D C-planes with expert annotations were used in our previous studies (Bonmati, 226 

et al. 2018, Sindhwani, et al. 2016), in this dataset the expert had over four years of 227 

experience in acquiring and analysing pelvic floor TPUS volumes.   228 

 229 

Test data 230 

The test data included a randomised selection of 73 anonymised TPUS volumes from 37 231 

other symptomatic women assessed at the pelvic floor clinic, between February and June 232 

2019. There is no patient overlap across training and testing sets. The test data was 233 

evaluated in a previous study (Williams, et al. 2020) and was not used to train the CNN 234 

models; it was used purely for testing the proposed pipeline. Detailed patient information 235 

is included in Table S2 in the Supplementary material.   236 

Hiatal measurements were delineated by expert 1, resulting in Gold Standard (GS) C-237 

plane orientations and levator hiatus segmentations used for validation. The GS C-plane 238 

orientations were extracted using GE 4DView software (GE Healthcare, Zipf, Austria) 239 

and the corresponding GS hiatal segmentations were delineated using 3D Slicer software 240 

(Slicer 2020, Fedoroy, et al. 2012). Two operators (expert 1 and expert 2) participated in 241 

the inter-operator reliability studies. At the time of the analysis, both experts had over 242 
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four years of experience in acquiring and analysing pelvic floor TPUS volumes. Both 243 

experts work as  clinicians in the pelvic floor disorder clinic at UZ Leuven, Belgium, and 244 

were asked to identify the C-plane following the IUGA guidelines (IUGA, 2019). The 245 

experts  identified the C-plane using the multi-planar technique (Williams et al., 2020) on 246 

GE 4D View software (GE Healthcare, Zipf, Austria). The experts performed manual 247 

hiatal outlining and C-plane detection on all 73 TPUS volumes.   248 

 249 

Quantitative metrics for evaluation 250 

 251 

Several metrics were used to describe the similarity of the manual C-plane detection and 252 

the levator hiatus segmentation to the computer-generated output. As this was a ‘two-253 

task’ pipeline both ‘tasks’ were evaluated independently as well as jointly. 254 

 255 

C-plane detection  256 

Validation of the C-plane detection task was similar to the previous study (Williams, et 257 

al. 2020). To validate the accuracy of the plane detection task, the angular difference 258 

between the identified C-plane against the GS plane was measured as well as the 259 

Euclidean distance of the midpoints of the planes within the TPUS volume. The angular 260 

difference computed was the averaged x axis and y axis angular difference, as the z axis 261 

was fixed as per guidelines (IUGA, 2019). To evaluate clinical relevance, a visual Turing 262 

Test was proposed and evaluated on 10 TPUS volumes. Hereto, expert 1 was asked to 263 

blindly rate a randomised selection of (manually and automatically detected C and MS 264 

planes to give a Likert scale score from zero to five (5 being excellent, 4, above average, 265 

3, average, 2, below average, 1, poor, and 0, of no clinical use). Test one was based on 266 
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the placement of the C-plane within the TPUS volume. Test two was based on the C-267 

plane quality for clinical diagnosis. A paired Wilcoxon test was performed to compare 268 

the performance of the proposed method against expert 1’s GS recording, this generated 269 

an output score which was averaged per TPUS volume. The paired Wilcoxon test is 270 

calculated by deducting expert 1’s GS score from the method’s (i.e. algorithm, inter-271 

observer or intra-observer) score. The score ranges from a negative value to a positive 272 

value, depending on the performance of the detected C-plane against the GS. If the score 273 

was positive, it suggests the detected C-plane method performed ‘better’ visually than the 274 

manual GS; if the overall score was negative it suggests the detected method performed 275 

‘worse’ visually than the manual GS, and a score of zero means the methods performed 276 

the same.  277 

 278 

Levator hiatus localisation and segmentation 279 

The levator hiatus outline (i.e. hiatal area) identified in the C-plane is a biomarker used 280 

for the analysis of given pelvic floor disorders. In order to assess the extracted biomarker 281 

quality, the following metrics were computed: the Hausdorff Distance (HD) and the 282 

Robust 95th percentile HD of the levator hiatus segmentation that were evaluated against 283 

the GS manual hiatal segmentation from the GS C-planes. The hiatal area is an important 284 

biomarker; thus, the area of the GS hiatal outline was compared to the hiatal outline of 285 

the automatic extracted C-plane. Moreover, the hiatal area difference and absolute hiatal 286 

area difference were calculated. To evaluate clinical acceptability of the segmentations, 287 

another visual Turing Test (Turing Test 3) is proposed and evaluated on 10 extracted C 288 

planes and corresponding segmentations. The hiatal segmentations were rated a ‘clinical 289 

score’ by expert 1, from zero to five as above, and compared to the score of the GS in a 290 
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paired Wilcoxon test. Expert 1 performed the test three months after they annotated the 291 

GS hiatal segmentations to limit the impact of pre-learning bias. The average result per 292 

TPUS volume was presented and the score will range between +5 and -5.  293 

 294 

Computer-observer, intra-observer and inter-observer differences 295 

The computer-observer differences (COD), intra-observer differences (IAOD) and inter-296 

observer differences (IEOD) were evaluated. COD were evaluated by calculating all 297 

similarity metrics between automatic hiatal segmentations on automatic C-planes and 298 

expert 1 manual hiatal segmentations on GS C-planes. The IAOD was evaluated by 299 

calculating similarity metrics between identified C-planes and hiatal outlines generated 300 

by expert 1 GS and a second analysis from expert 1 taken a month after the GS was 301 

generated.  The  second  analysis was  undertaken  two  months  before  the Turing  test 302 

analysis, in order to reduce bias and the risk of the expert recognising their analysis and 303 

thus  rating  it higher subconsciously.  In addition as the experts are active members of 304 

the clinical team at UZ Leuven, they analyse  new TPUS volumes  daily and we assume 305 

bias is limited as this is a common and repetitive task. Finally, IEOD was evaluated by 306 

calculating similarity metrics between expert 2 and the first assessment from expert 1.   307 

 308 

Statistical analysis  309 

To evaluate the reliability of the automatic method, a paired f-test was used to test several 310 

null hypotheses. The first was that the automated method agreed with expert 1’s GS at 311 

least as well as expert 1 agreed with themself (i.e. the variance of the differences between 312 

the automatic method and the GS was not larger than the variance in intra-observer 313 

differences). The second null hypothesis tested was that the automated method agreed 314 
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with expert 2 at least as well as expert 2 agreed with expert 1’s GS result (i.e. the variance 315 

of the differences between the automatic method and the GS was not larger than the 316 

variance in inter-observer differences). The final null hypothesis tested was that expert 2 317 

agreed less with expert 1’s GS results than expert 1 agreed with themself (i.e. the variance 318 

in inter-observer differences was statistically greater than the variance intra-observer 319 

differences). Type one statistical errors (i.e. multiple testing) were accounted for using a 320 

Bonferroni correction, hence the p-value obtained was reduced by a factor of three. 321 

Therefore, the p-value  0.017 was used as a cut-off to show statistical significance. To 322 

further evaluate the reliability of the automatic method, the Bland-Altman limits of 323 

agreement were calculated for COD, IAOD and IEOD. 324 

To evaluate the possibility of bias between the methods (i.e. automatic, expert 1 and 325 

expert 2) to expert 1’s GS, several paired t-tests were used to test several null hypotheses.  326 

The null hypotheses were the same as above, however, based on the mean difference, i.e. 327 

bias, rather than on the variance of the differences. As above, type one statistical errors 328 

(i.e. multiple testing) were accounted for using a Bonferroni correction, and a p-value  329 

0.017 was used as a cut-off to show statistical significance.  330 

 331 

 332 

 333 

Results 334 

 335 

Figure 4 shows examples of the C-plane position within the TPUS volume and the 336 

corresponding extracted C-planes and hiatal segmentations. The images represent the 0th, 337 

25th, 50th, 75th and 100th percentiles, respectively, of the 95th Hausdorff distance metric 338 
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(the corresponding 95th HD distance are included along with the hiatal areas). The red 339 

lines and masks represent the automatic method, and the green lines and masks the GS. 340 

Qualitatively, the computer-generated C-planes and levator hiatus segmentations 341 

matched well with the GS C-planes and hiatal segmentations. 342 

 343 

Table 1 shows the semi-qualitative average result of the COD, IEOD and IAOD from the 344 

visual Turing Tests. The results show that the pipeline performs better than IEOD and 345 

IAOD, in relation to the C-plane detection task within a TPUS volume, as COD scored 346 

0.00±0.77 for Turing Test 1. The pipeline scored comparable to the GS with a score of 347 

0.00±1.07 for Turing Test 2 (C-plane quality), which was a lower error than IEOD scoring 348 

-0.20±0.77.  The proposed pipeline scored -1.50±1.01 for Turing Test 3 (hiatal 349 

segmentation quality) whereas IEOD scored -0.80±0.60.   350 

 351 

The quantitative results from the C-plane detection task (Table 2) demonstrate that the 352 

COD’s bias and variance are not significantly higher than the IAOD and are significantly 353 

smaller than the IEOD. Moreover, as expected, for all C-plane detection metrics the IEOD 354 

was statistically larger than the IAOD for both bias and variance. 355 

The quantitative results from the second task (i.e. levator hiatus segmentation) are given 356 

in Table 3.  The COD and IEOD  both have a statistically higher bias and variance than 357 

the IAOD’s bias and variance, for the 95th Robust HD, and the HD. However, the variance  358 

and bias of the COD were not statistically different from that of the IEOD for the 95th 359 

Robust HD and HD.  360 

Table 3 shows that for the hiatal area difference, the COD’s bias and variance were not 361 

statistically higher than the IEOD’s bias and variance.  The COD’s variance was 362 
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statistically higher than the measured IAOD’s variance, and the IEOD’s bias was 363 

statistically higher than the IAOD’s bias.  364 

Regarding the absolute hiatal area, the bias and variance of the COD was not statistically 365 

different from those of the IAOD or IEOD, and the IEOD was not statistically different 366 

from the IAOD for the bias and variance.   367 

Table 4 shows the limits of agreement of COD, IAOD and IEOD for all metrics evaluated 368 

in this study.  369 

The computer automated C-plane detection and hiatal segmentation pipeline took 35 ± 4 370 

seconds, and the manual process took Expert 1 on average 2 minutes and 35 ± 17 seconds 371 

to identify the C-plane and segment the hiatal area on GE software.  372 

 373 

 Discussion 374 

 375 

This study presents a fully automatic hiatal biomarker extraction pipeline from a TPUS 376 

volume. Previous studies showed promising results for automatic hiatal segmentation, but 377 

required manual determination of the 2D C-plane (Bonmati, et al. 2018, Li, et al. 2019) 378 

which is time-consuming and prone to error.  379 

Qualitatively in Figure 4 there was minimal difference between the automatically 380 

extracted and GS C-planes. The 100th-25th percentile results show accurate SP and LAM 381 

positioning within the TPUS volume. However, the 0th percentile shows an inaccurate SP 382 

position for the automated task. This particular case was a patient with severe hiatal 383 

ballooning. Ballooning may be that severe that the SP is not fully present within the 384 

TPUS. In those circumstances, the operator will watch the SP move during Valsalva in 385 
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real-time and estimate the position. Unfortunately, this was not exploited by the proposed 386 

method, thus it would not perform as good as an expert in these extreme cases.  387 

Table 1 shows that in Test 1 (C-plane position quality) the automated method performed 388 

as good as the GS and better than IEOD and IAOD when visually assessed for the true C-389 

plane position. The results from Turing Test 2 and 3 are based on C-plane and hiatal area 390 

segmentation quality respectively. Despite COD achieving a high-quality C-plane, on 391 

average the segmentation quality scored noticeably worse. The lower accuracy may be 392 

due to the variety of image qualities and pathologies within the testing dataset, hence 393 

including more pathological training data may improve results. Nevertheless, the average 394 

score for the proposed method was above three (average) hence still clinically acceptable. 395 

 396 

Table 2 indicates that the pipeline performed with a lower bias and variability w.r.t. expert 397 

1 than expert 2 did; and performed similar to expert 1 in the C-plane detection task. Table 398 

4 indicates that the automated C-plane detection task performed within the limits of 399 

agreement of the measured inter-observer difference, highlighting that the first part of the 400 

pipeline may reduce the observed bias and variability, below the inter-observer variability 401 

measured in this study.  This may be due to subtle difference of techniques used by the 402 

experts to identify the C-plane, although the experts were instructed to follow the IUGA 403 

clinical guidelines using GE 4D View software (GE Healthcare, Zipf, Austria) and the 404 

multi-planar technique (Williams et al., 2020).  405 

To reduce bias experts were not managed during the testing phase, in order to measure 406 

the real-world inter-observer variability of experts working in the same pelvic floor clinic 407 

at the same institute, and both with at least four years’ experience. The training data used 408 

for the C-plane detection task were generated by expert 1, who also identified the GS C-409 
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plane orientations. Thus, it may be assumed the network learnt to identify the extreme 410 

coordinates more similarly to expert 1 or as the pipeline was based on the extreme 411 

coordinate position, expert 1 followed the IUGA guidelines more closely than expert 2, 412 

and the C-plane was positioned closer to the extreme coordinates. 413 

 This is a common trait for a majority of supervised learning tasks that utilise CNNs, the 414 

network is trained on data from a specific observer and hence will learn to identify 415 

features similarly. This trait may be seen as an advantage or disadvantage based on the 416 

application. For example, it can learn the behaviour of a specific expert or in this case a 417 

clinical guideline, and can create a personalised automatic workflow that mirrors the 418 

expert with the lowest intra-observer variability and most experience, or it may mirror a 419 

standardised clinical guideline.  420 

Nevertheless, for other applications (i.e. not guideline related) if desired it can be 421 

beneficial to expand the training dataset across several experts, to learn to identify 422 

features similarly to several experts rather than one in particular, which makes the CNN 423 

more generalisable. This approach was taken for the hiatal area segmentation task of this 424 

pipeline. However, a disadvantage of this approach is that the accuracy can reduce if 425 

experts disagree, or if one expert delineates with a large error. This approach could leave 426 

to no experts being satisfied with the algorithm’s result. Therefore, quality control should 427 

be conducted to assess the training segmentation data prior to training, regarding testing 428 

this is less important and a variety of experts with adequate experience may be included, 429 

to gauge the current clinical world inter-observer variability of a specific task.  430 

 431 

The pipeline was able to extract the hiatal area to a high level of accuracy. In Table 3 the 432 

bias and variance of the COD were not statistically higher than the IEOD regarding hiatal 433 
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area error metrics (i.e. hiatal area difference and absolute hiatal area). This suggests that 434 

the proposed method extracts hiatal biomarkers as good as experts and thus is clinically 435 

acceptable. The IEOD’s bias for hiatal area difference was statistically higher than the 436 

IAOD, indicating that the proposed method may reduce the bias below the measured 437 

IEOD. The COD’s variance for the hiatal area difference was statistically higher than the 438 

IAOD’s variance, however, as it was not statistically higher than the IEOD’s variance, it 439 

is still clinically acceptable. 440 

 Literature records a hiatal area difference (bias) of 0.61cm2 (Bonmati, et al. 2018)  and 441 

0.23cm2, 1.1cm2 (for U-Net and Dense U-Net respectively) (Li, et al. 2019). This study 442 

recorded a bias of 0.91cm2. The bias will be higher in this study as the levator hiatus is a 443 

3D structure and between C-plane positions the area will differ, thus there is an 444 

accumulation of error and is not directly comparable. Nevertheless, the bias may be higher 445 

due to the 2D levator hiatus segmentation training dataset used; it consists of contrasted 446 

post-processed C-planes, whereas the testing dataset is un-post-processed. In addition, 447 

unlike literature, the training dataset was from a different data centre to the testing dataset, 448 

hence the image qualities differ. To improve results annotated un-post-processed C-449 

planes may be used in training.   450 

 451 

The method in this study was tested on a clinical dataset of patients with a range of 452 

anatomical variability and pathological conditions, such as severe hiatal ballooning, 453 

levator avulsion, and bladder neck hypermobility, as well as patients without pathology. 454 

The dataset was even more challenging as up to 81.1% of the patients had pelvic organ 455 

prolapse, hence had a wide range of extreme coordinate movement.  456 
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The approach taken in this study utilises information extracted from data, the geometry 457 

of the patient and clinical guidelines, to drive a hybrid approach to extract hiatal 458 

dimensions. The proposed method accomplished relatively low errors with a small 459 

training dataset, typically rare in deep learning applications. The proposed method 460 

performs faster than an expert, however, not in real-time. For real-time clinical 461 

implementation, the pipeline would have to be optimised. The proposed method performs 462 

within inter-observer and intra-observer error (for most evaluated metrics); thus, a high 463 

level of pelvic floor disorder analysis training may no longer be required for experts to 464 

extract high-quality hiatal biomarkers. Furthermore, the output is interpretable to 465 

clinicians as the extreme coordinates are well known and recognisable, thus if the C-plane 466 

is incorrect it is easy to identify the problem (i.e. misplacement of the SP due to 467 

shadowing).  468 

Clinically, experts commonly acquire a 4D TPUS volume, referred to as a Cine loop. 469 

Currently the volume of interest (i.e. volume of maximal contraction) is selected manually 470 

by the expert. In future work, one aims to expand this method to localise the volume of 471 

interest from the Cine loop. Finally, the proposed pipeline will be made interactive, to 472 

allow operators to adapt the C-plane position and/or the 2D hiatal segmentation.  473 

 474 

Conclusion 475 

 476 

In conclusion, our method was able to extract high-quality C-planes and hiatal area 477 

measurements from TPUS volumes without user input. The time taken for hiatal 478 

extraction decreased by 120 seconds, saving clinicians time. Furthermore, the automated 479 
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pipeline reduces error below the inter-observer variability for evaluated metrics within 480 

this study.  481 
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 584 

Legends of figures: 585 

 586 

Figure 1: The typical acquisition and evaluation screen on Voluson systems shows three orthogonal 587 

planes: A- sagittal, B- coronal and C- axial; the bottom right image (3D) is the Axial plane rendered 588 

volume. This volume has been aligned as the desired MHD position and the extreme coordinates are 589 

marked by red dots. Abbreviations: A, anal canal; B, bladder; LAM, levator ani muscle; R, rectum; SP, 590 

symphysis pubis; U, urethra; V, vagina. 591 

 592 
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Figure 2: Overall levator hiatus analysis pipeline split into two tasks by colour, the first section (pink) is 593 

the automatic detection and extraction of the C-plane; the second task (orange) being the automatic 594 

segmentation of the hiatal area within this C-plane. 595 

 596 

Figure 3: Visualisation of the steps to generate the ground-truth heatmaps used in this study. The desired 597 

heatmap of the extreme coordinates (red dots) of the SP (left) and LAM (right) are identified from 3D 598 

segmentations manually-delineated by experts. The first row shows the segmentation of the SP and LAM, 599 

the second row shows the distance heatmap (i.e., extreme coordinate = 0 and the voxel value radially 600 

increases with distance) and the third row shows the smooth inverse distance heatmap (i.e. extreme 601 

coordinate is the maximum value and the voxel value radially decreases with distance). 602 

 603 

Figure 4: The GS C-plane position is shown by a green line and the computer automated C-plane position 604 

is shown by a red line for each corresponding TPUS. The corresponding GS manual segmentation of the 605 

hiatal area is the green mask and the automated segmentation of the hiatal area is the red mask under its 606 

corresponding TPUS image. TPUS images show an increasing computer-generated hiatal outline quality 607 

that represent the 0th, 25th, 50th, 75th and 100th percentiles, respectively, of the 95th Hausdorff distance. 608 

 609 

 610 

 611 

 612 

 613 

 614 



Table 1: Turing Test score per TPUS volume, a negative result indicates the GS performed better than the other 

method in comparison. The scores can range from -5 to +5 (dependent on the GS score and evaluated method 

score). A score of 0 means that the GS performed equally to the other method evaluated. A positive score would 

mean the method outperformed the GS and a negative score implies that the GS performed better than the 

evaluated method. 

  COD IEOD IAOD 

Turing Test 1 0.00±0.77 -1.00±1.34 -0.20±0.98 

Turing Test 2 0.00±1.07 -0.20±0.77 0.30±0.92 

Turing Test 3 -1.50±1.01 -0.80±0.60 0.00±0.44 

Table 1 Click here to access/download;Table;table1_journal.docx
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Table 2: COD, IAOD, IEOD differences and standard deviations of C-plane detection metrics: angular difference 

of the C-planes and Euclidean distances of the C-plane midpoints.  

 

† Mean statistically significantly different from IEOD 

§ Mean statistically significantly different from IAOD 

 * Variance statistically significantly different from IAOD 

 

 

 

 

 COD IAOD IEOD 

Angular 

difference (°) 

5.76 ± 5.06† 4.94±4.24 9.39±6.21§* 

Euclidean 

distance (mm) 

6.46±5.18 

 

5.80±4.15 8.48±6.62§* 

Table 2 Click here to access/download;Table;25062021_table2.docx

https://www.editorialmanager.com/umb/download.aspx?id=775081&guid=336938ce-e1c1-4b90-a3aa-6e1e74225c71&scheme=1
https://www.editorialmanager.com/umb/download.aspx?id=775081&guid=336938ce-e1c1-4b90-a3aa-6e1e74225c71&scheme=1


Table 3: COD, IAOD, IEOD errors of hiatal segmentation metrics.  

 

 
 

§ Mean statistically significantly different from IAOD  

* Variance statistically significantly different from IAOD  

 

 

 

  

 

 
 
 

 COD IAOD IEOD 

95th Robust Hausdorff 

distance (mm) 

 

7.30±4.99§* 

 

5.10±3.45 

 

8.48±6.13§* 

 

Hausdorff distance (mm) 11.26±5.95§* 7.62±3.88 

 

11.52±6.60§* 

 

Hiatal area difference 

cm2 

0.98±3.74* -0.52±2.74 2.05±2.86§ 

Absolute hiatal area cm2 2.66±2.78 1.81±2.12 2.53±2.34 

 

Table 3 Click here to access/download;Table;25062021_table3.docx
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Table 4: The COD, IAOD, IEOD limits of agreement of all pipeline metrics are shown. The limits of agreement 

are presented as {lower limit, upper limit}. 

 

 

 

 COD IAOD IEOD 

Angular 

difference (°) 

{-4.15,  15.68} {-3.37, 13.25} {-2.78, 21.56} 

Euclidean 

distance (mm) 

{-3.69, 16.61} {-2.33, 13.93} {-4.50, 21.46} 

95th Robust Hausdorff 

distance (mm) 

{-2.48, 17.08} {-1.66, 11.86} {-3.53, 20.49} 

Hausdorff  

distance (mm) 

{-0.40, 22.92} {0.02, 15.22} {-1.42, 24.46} 

Hiatal area  

difference (cm2) 

{-6.35, 8.31} {-5.89, 4.85} {-2.63, 6.55} 

Absolute hiatal area 

difference (cm2) 

{2.79, 8.11} {-2.35, 5.97} {-2.06, 7.12} 

Table 4 Click here to access/download;Table;25062021_TABLE4.docx
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Table S1: Abbreviations within text and their corresponding definitions 

Abbreviation Definition 

TPUS Transperineal ultrasound 

CNN Convolutional neural network 

3D  Three-dimensional 

US Ultrasound 

PFUS Pelvic floor ultrasound examination 

LAM Levator ani muscle 

SP Symphysis pubis 

MHD Minimal hiatal dimensions 

MS Mid-sagittal  

HD Hausdorff distance 

COD Computer-observer differences 

IAOD Inter-observer differences 

IEOD Intra-observer differences 

U  Urethra 

V Vagina 

A Anal canal 

B Bladder 
R Rectum 

2D Two-dimensional 

Table s1 Click here to
access/download;Table;25062021_s1_table_abbreviation.docx
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Table S2. Characteristics of the study population. Data are presented as mean (standard deviation), as 

prevalence in % (ratio) or as median [IQR]. 

 

 

Demographic variables Values 

Age *years) 57.6 (14.3) 

BMI (kg/m2) 26.7 (3.8) 

Obstetric variables  

Vaginally parous 75.7 % (28/37) 

Only caesarian section 8.1 % (3/37) 

Nulliparous 5.4 % (2/37) 

Vaginal parity 2 [1.25] 

Max birth weight in grams 3741 (439) 

Symptoms of pelvic floor dysfunction  

Urinary incontinence  

- Stress urinary incontinence 48.7 % (18/37) 

- Urge urinary incontinence  21.6 % (8/37) 

Pelvic organ prolapse 81.1 % (30/37) 

Anal incontinence 2.7 % (1/37) 
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