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Abstract

A three-dimensional numerical wave tank (NWT) based on the in-house large eddy simulations (LES)

code Hydro3D is refined with the level-set method in order to compute the water surface and the immersed

boundary method to generate solid structures in the numerical tank. The spatially filtered Navier-Stokes

(N-S) equations are solved on a staggered Cartesian grid using the finite difference method while time

advancement is achieved using the fractional-step method coupled with a three-step Runge-Kutta scheme.

Velocities and pressure are coupled in the Poisson equation and its solution is obtained via a multi-grid

technique. The NWT is employed to simulate the progression and damping of monochromatic waves and the

interaction of non-linear waves with various submerged obstacles. The accuracy of the NWT is confirmed by

comparing numerical results with data of previously reported laboratory experiments. Results of water-level

elevations, local velocity and pressure fields and forces acting on structures under the influence of incoming

waves confirm that the LES-based NWT is is able to predict accurately three-dimensional wave-structure

interaction.

Keywords: Numerical wave tank, LES, non-linear waves, Wave-structure interaction, Turbulence, level set

method, immersed boundary method

1. Introduction

Improved coastal protection and continuously increasing exploitation of offshore energy re-sources under

the more frequently recurring extreme wave conditions in the last decades demands from researchers and en-

gineers to further study and improve the functionality and durability of coastal and offshore structures. Many

experimental studies have investigated and confirmed the existence of complex wave-structure interactions in5

a large range and variety of offshore-engineering applications [1–3]. Complementary to experimentally-based

research a large number of numerical models have been developed to investigate similar problems producing

accurate results for a wide range of applications.

Potential flow theory (PFT) has been extensively used for the development numerical wave tanks (NWTs)
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with the goal to model the progression and interaction of water waves with offshore structures. PFT-based10

models are efficient for studying coastal engineering applications and are currently widely used. For instance,

in [4] the 3D Laplace equation was solved using a harmonic polynomial cell (HPC) method whereas [5] adopt

a splitting technique to decompose the variables into an incident and scatter component. Based on Boundary

Integral Equations Methods (BIEM) [6], [7] carried out simulations of waves interacting with a square step

and the results are compared with experimental data obtained in the same study. Alternatively, [8, 9]15

calculated the forces acting on a submerged structure considering solitary and cnoidal waves based on fluid

sheets originally developed by [10] assuming an inviscid and incompressible fluid. However, the reliability of

such models to simulate complex wave-structure interaction (WSI) problems, especially when wave breaking

occurs or complex turbulent flow structures exist, are limited by the code’s primary assumptions.

Due to the increase in computational resources, models which solve the Navier-Stokes equations, known20

as Computational Fluid Dynamics (CFD), employed as a NWT have become popular recently. According

to the CFD method’s solution approach, these can be categorized in Direct Numerical Simulations (DNS),

Reynolds Averaged Navier-Stokes (RANS), Large eddy Simulations (LES), or a hybrid of the latter two,

Detached Eddy Simulations (DES). DNS produces the most accurate results however its application to

practical problems is limited due to its extremely high computational cost. In LES, large flow structures are25

simulated directly while small-, dissipative-scale structures, smaller than the grid size, are modelled based by

sub-grid scale (SGS) models to enable energy dissipation from the directly-resolved large scales. The most

common SGS models are the Smagorinsky model [11] and the Wall-Adapting Local Eddy viscosity (WALE)

SGS model [12]. In the latter one, wall effects are intrinsically considered and the resolved velocity-gradient

is adopted to calculate the eddy viscosity near the boundary. In contrast, in Smagorinsky’s model, the30

near-wall subgrid-scale eddy viscosity requires modification using a wall-damping function. A review of LES

and its applications can be found in [13]. The technique adopted to track or capture the interface between

two phases (e.g. water and air in free-surface flows) can further be used to classify CFD methods. The most

common free-surface models are the Level-Set Method (LSM) [14] and Volume of Fluid (VoF) [15]. In the

latter, a fractional volume is defined to distinguish cells between phases whereas in LSM a level set signed35

distance function is employed to define the interface between the two phases. VOF method produce better

results in terms of mass and volume conservation whereas higher order schemes such as Weighted Essentially

Non-Oscillatory (WENO) schemes [16] can be used in LSM and also produce smoother curvatures of the

interface [17, 18].

In the literature, several numerical models exist based on the above methods. For example, [19, 20]40

employed NWT toolboxes in the open-source code, OpenFOAM which solves the N-S equations based on

RANS modelling and capture the free-surface using the VOF method. In [19], waves are generated in the

numerical tank based on theoretical solutions of the free-surface and particles velocities, while an active

wave absorption method, similar to physical flumes, is employed to absorb waves at any boundary. The

same authors, recently developed a new wave generation method using moving boundaries in [21]. Based45
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on the same open-source code, [20] generate and absorb waves using the relaxation technique [22] where

computed values of the water surface and velocity components are gradually set to a desired value inside a

relaxation zone near the inlet or outlet of the domain. Alternatively, [23] developed a three-dimensional NWT

employing LES, VOF and cut-cell method [24] to simulate complex 3D WSI problems in which waves are

generated in the tank based on theoretical solutions of the wave-elevation and velocity components. RANS50

modelling was employed by [25] to develop a NWT, known as REEF3D [26], that captures the free-surface

using LSM among with a ghost cell immersed boundary method [27] to generate complex solid geometries.

Similarly, [28, 29] proposed a new NWT using Fast Direct Solvers (FDS) for the solution of the Poisson

equation and the LSM for free-surface tracking. In the same study, a modified ghost-cell BM is presented to

generate solid structures in the tank in an LES numerical framework.55

In the study reported here, the in-house code Hydro3D is further refined to develop a 3D NWT, referred

to hereafter as Hydro3D-NWT. It is based on the method of large eddy simulation and includes the level-

set and immersed boundary methods and employed for the simulation of three-dimensional wave-structure

interaction. The novelty of Hydro3D-NWT arises from the adoption of the efficient IBM proposed in [30], a

quick active wave generation and the employment of a wall-adaptive SGS model in LES to simulate three-60

dimensional two-phase simulations, which are different from previous LES studies [29, 31]. The objective of

the study is to demonstrate Hydro3D-NWT’s accuracy and efficiency in predicting complex three-dimensional

wave-structure interaction. Section 2 presents the numerical framework of the code together with two

benchmark cases of a solitary wave propagating in a tank and the generation, progression and absorption of

periodic non-linear waves. The performance of the code is further examined in Section 3 where simulations65

of previous laboratory experiments are re-constructed and hydrodynamic properties and wave-elevations

are compared with experimental measurements. Finally, main conclusion and future work are discussed in

Section 5.

2. Numerical Framework

The in-house code Hydro3D, validated recently in several engineering applications [32–34] is refined for70

a NWT [35] enabling the simulation of wave-structure interaction (WSI). The code is parallelised and the

computational domain is decomposed into multiple sub-domains and the message-passing interface (MPI)

exchanges information between different subdomains/processors [36]. In the following a detailed description

of the numerical framework of Hydro3D-NWT is provided.

2.1. Flow solver75

Hydro3D-NWT solves the unsteady, incompressible, viscous spatially-filtered Navier-Stokes equations,

written in tensor notation:

∂ūi
∂xi

= 0 (1)
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∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi
∂xj

)
−
∂τSGSij

∂xj
+ fi + gi (2)

where ūi is the instantaneous filter velocity in the xi direction and p̄ the pressure field. ρ and ν are the

fluid density and kinematic viscosity, respectively and τSGSij the sub-grid scale (SGS) stress tensor. fi is the

forcing term of the immersed boundary method acting on the fluid and gi the gravitational acceleration.80

2.1.1. SGS model

In LES a subgrid-scale (SGS) model is required to remove energy from the large scales of the flow.

The SGS model emulates the effects of the small scales on the large scales by employment of the Boussinesq

approximation, similar to the concept of RANS turbulence modeling, i.e. via an eddy viscosity νt. Hydro3D-

NWT employs the Wall-Adapting Local Eddy viscosity (WALE) model [12] which uses the information from85

the resolved velocity tensor ḡij =
∂ūi
∂xj

to calculate νt as:

νt = (Cw∆)2
(SdijS

d
ij)

3/2

(S̄ijS̄ij)5/2 + (SdijS
d
ij)

5/4
(3)

where Cw is an empirical constant set to Cw = 0.46 and the size of the filter width is calculated as ∆ =

(dx · dy · dz)1/3.

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(4)

is the deformation tensor of the resolved field and the traceless symmetric part of the velocity tensor Sdij

defined as:90

Sdij =
1

2
(ḡ2ij + ḡ2ji)−

1

3
δij ḡ

2
kk (5)

where δij is the Kronecker symbol and ḡ2ij = ḡikḡkj . The total viscosity νT is the sum of molecular and eddy

viscosity, i.e. νT = ν+νt. The main advantage of the WALE model is that the eddy viscosity is computed to

be negligibly small inside a viscous layer near walls and hence it does not require an additional wall damping

function as for example the standard Smagorinsky model [11].

2.1.2. Domain discretization95

Equations (1) and (2) are discretized with the finite difference method on a staggered uniform Cartesian

grid. In staggered grids, Fig. 1a, scalar quantities are calculated at the centre of the cell while velocities and

their derivatives are calculated at the cells’ faces. For simplicity, the following equations are expanded only

in two dimensions. Using the finite difference method, the momentum equation (Eq. (2)) is divided into

convective and diffusive terms as follows:100

Convective terms :
∂ūiūj
∂xj

(6)
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Diffusive terms :
∂

∂xj

(
νT
∂ūi
∂xj

)
(7)

where the spatial partial derivatives of the convective term are calculated using 4th order central differences

(CDS) while diffusive terms are discretized using 2nd order CDS. For example, the convective terms in

Eq. (6) are approximated in the X-direction at the east face as:

∂ūiūj
∂xj

=
∂ūū

∂x
+
∂ūw̄

∂z
=
−ūp2(i+ 2, k) + 27ūp

2(i+ 1, k)− 27ūp
2(i, k) + ūp

2(i− 1, k)

24dx

+
−ūc(i, k + 1)w̄c(i, k + 1) + 27ūc(i, k)w̄c(i, k)− 27ūc(i, k − 1)w̄c(i, k − 1) + ūc(i, k − 2)w̄c(i, k − 2)

24dz

(8)

and in Z-direction at the cell’s top face:

∂ūiūj
∂xj

=
∂w̄w̄

∂z
+
∂ūw̄

∂x
=
−w̄p2(i, k + 2) + 27w̄p

2(i, k + 1)− 27w̄p
2(i, k) + w̄p

2(i, k − 1)

24dz

+
−ūc(i+ 1, k)w̄c(i+ 1, k) + 27ūc(i, k)w̄c(i, k)− 27ūc(i− 1, k)w̄c(i− 1, k) + ūc(i− 2, k)w̄c(i− 2, k)

24dx

(9)

using the interpolated values of the velocities at the centre ũip or the corner of the cell ũic for the cross term105

uw (see Fig. 1a for the location of interpolated velocities):

ūp(i, k) =
1

16
(−ū(i− 2, k) + 9ū(i− 1, k) + 9ū(i, k)− ū(i+ 1, k))

w̄p(i, k) =
1

16
(−w̄(i, k − 2) + 9w̄(i, k − 1) + 9w̄(i, k)− w̄(i, k + 1))

ūc(i, k) =
1

16
(−ū(i, k − 1) + 9ū(i, k) + 9ū(i, k + 1)− ū(i, k + 2))

w̄c(i, k) =
1

16
(−w̄(i− 1, k) + 9ū(i, k) + 9ū(i+ 1, k)− ū(i+ 2, k))

(10)

Diffusive terms in Eq. (7) are approximated in the X-direction as::

∂

∂xj

(
νT
∂ūi
∂xj

)
= νT

(
∂2ū

∂x2
+
∂2ū

∂z2

)
= νT

(
ū(i+ 1, k)− 2ū(i, k) + ū(i− 1, k)

dx2

)
+νT

(
ū(i, k + 1)− 2ū(i, k) + ū(i, k − 1)

dz2

) (11)

and in Z-direction as:

∂

∂xj

(
νT
∂ūi
∂xj

)
= νT

(
∂2w̄

∂x2
+
∂2w̄

∂z2

)
= νT

(
w̄(i+ 1, k)− 2w̄(i, k) + w̄(i− 1, k)

dx2

)
+νT

(
w̄(i, k + 1)− 2w̄(i, k) + w̄(i, k − 1)

dz2

) (12)
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(a) Staggered grid (b) 2D grid representation

Fig. 1: (a) velocities and scalar quantities on a 3D staggered grid and (b) Representation of a 2D grid with current cell’s

velocities (red circles) and closest Lagrangian marker shown as ’x’ located on the immersed boundary (solid black line).

2.1.3. Fractional-step method

Time advancement is achieved by the fractional-step method [37] via an explicit 3rd-order Runge-Kutta110

(RK) scheme formulated as follows:

ũi − ul−1i

∆t
= αl

∂

∂xj

(
ν
∂ul−1i

∂xj

)
− αl

1

ρ

∂pl−1

∂xi
− αl

(
∂uiuj
∂xj

)l−1
− βl

(
∂uiuj
∂xj

)l−2
+ αlgi (13)

where al are the Runge-Kutta coefficients at each sub-step l and ∆t the current time-step. In Hydro3D-

NWT ∆t is either set to a fixed value or is calculated during the simulation using the Courant–Friedrichs–Lewy

criterion (CFL) and the viscous limit (VSL):

∆tCFL = min

(
dx

umax
,
dy

vmax
,
dz

wmax

)
(14)

∆tV SL =
1

|uc

dx |+ |
vc
dy |+ |

wc

dz |+ 2ν
(

1
dx2 + 1

dy2 + 1
dz2

) (15)

and ∆t = min(∆tCFL,∆tV SL) · sf , where sf is a safety factor usually set to 0.2.115

In the first Runge Kutta step (l = 1, α1 = 1/3), a non-divergence free velocity ũ is obtained from the

velocity and pressure filed calculated at the previous time-step (ut−1i , pt−1) followed by an intermediate

velocity for l = 2, al = 1/2. At the final RK step (l = 3, a3 = 1), the intermediate velocity ũi is updated to

ũi
∗ by inclusion of the immersed boundary force fi:

ũi
∗ = ũi + fi∆t (16)
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2.1.4. Poisson equation120

In Hydro3D-NWT, the updated velocity ũi
∗ is coupled with a pseudo-pressure p̃ using the Poisson

equation:

∂

∂xi

(
1

ρ

∂p̃

∂xi

)
=

1

αl∆t

∂ũi
∗

∂xi
(17)

The Poisson equation is solved using an iterative multi-grid algorithm [38] in which all sub-domain’s are

divided into smaller sized domains, at least twice, and the solution of the Poisson equation is obtained on

the smaller sub-domain. Once the intermediate velocity ũi
∗ satisfies continuity (Eq. (1)) the velocity and125

pressure of the current time step are updated in the corrector step as follows:

uti = ũi
∗ − αl∆t

1

ρ

∂p̃

∂xi
(18)

pt = pt−1 + p̃− ναl∆t

2

∂

∂xj

(
∂p̃

∂xj

)
(19)

2.2. Immersed boundary method

In Hydro3D-NWT solid structures are included in the flow domain using the diffuse direct forcing IB

method described in [30]. In the method solid boundaries are represented via Lagrangian markers, at which

an external force enforces the no-slip condition and these forces are added to the momentum equation,130

Eq. (2), in the respective fluid grid. One such Lagrangian marker is shown as ’x’ in Fig. 1b. The non-

divergence free velocity obtained from the 2nd RK step Eq. (13) is transferred to the closest Lagrangian

marker from the nearest Eulerian fluid cell as:

UiL =

ne∑
ijk=1

ũiijkδ(xiijk −XiL)∆xiijk (20)

where UiL is the interpolated velocity at the Lagrangian marker using multiple neighbouring cells ne and

the discrete delta function δ defined as follows:135

δ(xiijk −XiL) =
1

∆xiijk
φ

(
xijk −XL

dx

)
φ

(
yijk − YL

dy

)
φ

(
zijk − ZL

dz

)
(21)

where xiijk and XiL are the locations of the Eulerian fluid cell and the nearest Lagrangian marker L,

respectively. ∆iijk = dx× dy × dz is the volume of the fluid cell and φ the Kernel function from [39]. Then,

the required external force on the Lagrangian marker (FiL) needed to set a desired velocity (Ui∗) on the

structure’s boundary is evaluated as:

FiL =
Ui∗ − UiL

∆t
(22)
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and interpolated back to the fluid (Eulerian cell) as:140

fi =

ne∑
ijk=1

FiLδ(xiijk −XiL)∆VL (23)

where ∆VL is volume of the current Lagrangian marker which is of the order of the cube of the Eulerian

grid spacing. The current implementation has been validated using the in-house Hydro3D code in various

engineering applications [40, 41].

2.3. Free-surface capturing

In Hydro3d-NWT, the level-set method (LSM) presented in [14] is employed to allow two-phase simula-145

tions and capture the evolution of the water surface. The implementation of the level-set method has been

validated for open channel flows [42–44]. The LSM employs a signed distance function φ, at the cell’s centre,

as follows:

φ(x, t)


< 0, if x ∈ Ωgas

= 0, if x ∈ Γ

> 0, if x ∈ Ωliquid

(24)

where cells with positive or negative φ values are occupied by air (Ωgas) or liquid (or water) (Ωliquid),

respectively while the interface of the two (Γ) is defined by φ = 0. φ is calculated from the pure advection150

equation:

∂φ

∂t
+ ui

∂φ

∂xi
= 0 (25)

The spatial derivatives of φ are solved using a 5th-order weighted essentially non- oscillatory (WENO)

scheme [16] which offers a good compromise between stability and accuracy of the solution. The main

formulation of the WENO scheme is summarized below.

First, the velocity components (ui) are interpolated at the centre of the cell using a four point stencil as155

follows:

ui− 1
2 ,j,k

=
1

16
(−u(i− 2, j, k) + 9u(i− 1, j, k) + 9u(i, j, k)− u(i+ 1, j, k))

vi,j− 1
2 ,k

=
1

16
(−v(i, j − 2, k) + 9v(i, j − 1, k) + 9v(i, j, k)− v(i, j + 1, k))

wi,j,k− 1
2

=
1

16
(−w(i, j, k − 2) + 9w(i, j, k − 1) + 9w(i, j, k)− w(i, j, k + 1))

(26)

A linear convex combination of three third order approximations
∂φi+1/2

∂xi

(1)

,
∂φi+1/2

∂xi

(2)

and
∂φi+1/2

∂xi

(3)

is used:

∂φi+1/2

∂xi
= ω1

∂φi+1/2

∂xi

(1)

+ ω2

∂φi+1/2

∂xi

(2)

+ ω3

∂φi+1/2

∂xi

(3)

(27)
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where
∂φi+1/2

∂xi

(i)

is in the form of:

∂φi+1/2

∂xi

(i)

= γ1
∂φi+ 1

2

∂xi
+ γ2

∂φi+ 1
2

∂xi
+ γ3

∂φi+ 1
2

∂xi
(28)

where i = 1, 2, 3 and γ
(1)
1,2,3 =

1

3
,−7

6
,

11

6
, γ

(2)
1,2,3 = −1

6
,

5

6
,

1

3
and γ

(3)
1,2,3 =

1

3
,

5

6
,−1

6
. The nonlinear weights160

ωj = ω1.ω2, ω3 are evaluated in Hydro3D using equations 2.10 and 2.17 from [16]. The first estimation of
∂φi+1/2

∂xi
is obtained using a 2nd order CDS before applying Eqs. (27) and (28) and time advancement is

achieved using a 3rd order Runge-Kutta scheme. The new free-surface location is then evaluated as:

φt = φt−1 −∆t

(
u
∂φt−1

∂x
+ v

∂φt−1

∂y
+ w

∂φt−1

∂z

)
(29)

where t denotes current time-step’s properties whereas t−1 are the values in an intermediate sub-step in the

RK scheme.165

To avoid discontinuities in fluid properties, especially near the interface, a Heaviside function H(φ)

is employed to smoothly exchange properties between phases inside a transition zone of width 2ε where

ε = 2max(dx, dy, dz), as follows:

H(φ)


= 0, if φ < −ε

= 1
2

(
1 + φ

ε + 1
π sin πφ

ε

)
, if |φ| ≤ ε

= 1, if φ > ε

(30)

and

ρ(φ) = ρg + (ρl − ρg)H(φ)

µ(φ) = µg + (µl − µg)H(φ)
(31)

where notations g and l represent gas and fluid variables. Finally, to secure that φ maintains its property the170

condition |∇φ| = 1 is met using the re-initialization technique proposed by [45] applied inside the transition

zone as:

∂φ

∂ta
+ s(φ0)(|∇φ| − 1) = 0 (32)

where s(φ0) is the smoothed signed function defined as:

s(φ0) =
φ0√

φ20 + (|∇φ0|εr)2
(33)

ta is an artificial time calculated based on the grid size multiplied by a factor of less than one. φ0(x, 0) =

φ(x, t) and εr represents one grid size. In the following sub-section, a solitary wave propagating in a tank is175

simulated to validate the current implementation.
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2.3.1. Run-up of a solitary wave

The propagation and run-up of a solitary wave in a tank is a classic benchmark case for testing two-phase

flow models. The problem presented in Yue et al. [46] is considered to test the adequacy of the level-set

method for the accurate prediction of the run-up of a solitary wave on a vertical wall.180

(a) 3D view

(b) Side view

Fig. 2: A schematic diagram of a three-dimensional solitary wave of height Ac propagating in a numerical tank from an initial

height A0 at x = 0, (a) 3D view and (b) side view.

Figure 2 (a) shows a wave, initially at rest, the crest of which is A0 above still water-level (d = 1m),

before it is set free to propagate in a 20d × d × 2d (x × y × z) numerical tank, as sketched in Figure 2 (b).

The theoretical wave celerity is C =
√
gd = 1.0m/s, the Reynolds number is Re = Cd/ν2 = 5× 104 and the

viscosity and density ratios are set to ν1/ν2 = 15 and ρ1/ρ2 = 1.2× 10−3 (subscripts 1 and 2 denote air and

water properties, respectively). The domain is discretised with 640× 32× 128 (Nx×Ny ×Nz) uniform cells185
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and a fixed time-step of dt = 0.001 sec is adopted. A no-slip boundary condition is applied at the west, east

and bottom walls, while free to slip condition is employed at the top and side-walls. In the simulations, the

wave is generated by initializing the free-surface based on Boussinesq profile with zero initial velocity:

A(x, 0) = A0/cosh
2

(√
3A0

2
x

)
(34)

Fig. 3: Position of the solitary wave in the numerical tank at various time instances, A0/d = 0.4

(a) Maximum run-up elevation. (b) Viscous damping.

Fig. 4: Comparisons between (a) simulations of the maximum run-up elevation (solid lines, open circles) with experimental

data [47] (open squares) and other numerical results [46] (dashed lines, open deltas) and (b) Hydro3D-NWT’s viscous damping

(solid lines) and analytical solution [48] (dashed lines).

Figure 3 sketches the progression and run-up of the solitary wave in the numerical tank driven by

gravitational and viscous forces. At t = 0) the west boundary (x/d=0) has no effect on the wave’s motion190

and the wave behaves as a solitary wave. In the case of A0/d = 0.4 this corresponds to t = 6 sec. Figure 4a

plots the simulated run-up distance Arun−up (solid line, open circles) together with experimental data from

Chan et al. [47] (open squares) and simulation data from Yue et al. of [46] (dashed lines, open deltas).
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Various initial conditions with different wave amplitudes are considered and the corresponding run-ups on

the east wall (x/d=20) are obtained. The results compare well with the experiments and other the data of195

[46] especially for smaller waves. However, minor deviations from the experimental data are observed for

large wave amplitudes (Ac/d ≥ 0.3), where the wave amplitude Ac is defined as the wave height at the centre

of the numerical flume (see Fig. 2b).

The computed viscous damping is plotted in Figure 4b together with the analytical solution of [48]:

A−1/4max = A
−1/4
0max + 0.08356

( ν2
C1/2d3/2

) Ct
d

(35)

where Amax is the amplitude of the solitary wave and A0max is the maximum initial amplitude at the west200

boundary. The viscous damping from Hydro3D-NWT agrees quite well with the analytical solution for

Amax/d ≤ 0.1 while discrepancies are observed for larger waves, which are in part due to limitations of the

analytical solution and in part due to the numerical scheme. The results presented suggest that the LSM is

able to provide accurate surface elevations and predicts well viscous damping.

2.4. Numerical wave tank205

In order to produce accurate results from Hydro3D-NWT, it is important to compute consistent and

accurate wave-elevations, according to the desired wave-theory, and effectively absorb incident waves to

avoid interactions between incident and reflected waves.

2.4.1. Wave generation

In Hydro3D-NWT, waves are generated in the numerical flume using analytical solutions of the free-210

surface elevation and particles velocities, at the (inlet) west boundary (at x = 0). This is an efficient and

quick method to generate most wave conditions of engineering interest. If uni-directional, 2nd-order Stokes

waves are to be simulated in the NWT, the following equations are applied at the west boundary:

n =
H

2
cos
(
ωt− π

2

)
+
H2k

16

(
3 coth3(kd)− coth(kd)

)
cos
(

2(ωt− π

2
)
)

+ d (36)

u =
H

2
ω

(
cosh(kz)

sinh(kd)

)
cos
(
ωt− π

2

)
+

3

16
ω(kH)2

(
cosh(2kz)

sinh4(kd)

)
cos
(

2(ωt− π

2
)
)

(37)

w = −H
2
ω

(
sinh(kz)

sinh(kd)

)
sin
(
ωt− π

2

)
− 3

16
ω(kH)2

(
sinh(2kz)

sinh4(kd)

)
sin
(

2(ωt− π

2
)
)

(38)

where H is the wave height and wave-number k related to wavelength L, is k = 2π
L . Angular frequency ω is

defined by the dispersion relation:215

ω2 = gk tanh(kd) (39)
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These equations are modified to account for the origin of the coordinate system (z=0 at floor bed) and

that at t = 0 sec the water surface is at still water-level from which it moves upwards. The spanwise velocity,

v, is set to zero to ensure that no secondary spanwise flow is generated at the inlet boundary. Pressure is

not prescribed at the inlet boundary and is initialised as hydrostatic when the water surface is at still water

level at t = 0 sec. The values of the signed distance function φ is prescribed at the west boundary at each220

time-step as follows:

φ


= |zc − n|, if zc < n

= −|zc − n| if zc > n

= 0, if zc = n

(40)

where zc is the vertical coordinate of the centre of each cell and n the position of the water surface at

each time step.

2.4.2. Wave damping

At the domain’s outlet, waves are absorbed using the artificial damping method based on Choi and Yoon225

[49] or the relaxation method described in [20, 22], respectively. Herein, only the relaxation method is used

for all simulations presented in the following. A detailed implementation of the artificial damping method

can be found in [35, 49].

In the relaxation method, a relaxation function Γ(X) is introduced to gradually reduce velocities and the

signed distance function φ to zero, i.e. still water-level inside a zone near the outlet of the domain. Figure 5230

shows different relaxation functions one may use, with R = 3.5 (solid line) or R = 2 (dashed-dot line) in

Eq. (41) or a third degree polynomial (dashed line). In Hydro3D-NWT a relaxation function is employed as

follows:

Γ(X) = 1− eX
R − 1

e1 − 1
, X =

x− xs
xe − xs

= [0, 1] (41)

where R is set to R = 3.5 and the length of the absorbing layer (xe − xs) set to two wavelengths (2L).

Once the new location of the free-surface is obtained, Eq. (42) is applied inside the absorbing zone to retain235

still water-level. Velocities are updated based on Eq. (43) at every sub-step of the Range-Kutta scheme to

achieve still water conditions. In the following equations, notation ’target’ stands for the targeted value (i.e

zero for the velocity components and still water-level for φ) and ’computed’ is the simulated one.

φ = (1− Γ(X))φtarget + Γ(X)φcomputed (42)

ui = (1− Γ(X))uitarget + Γ(X)uicomputed
(43)
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Fig. 5: Different relaxation functions. R = 3.5 (solid line) and R = 2 (dashed-dot line) in Eq. (41) or a third order polynomial

(dashed line).

2.4.3. Periodic waves propagating in a numerical tank

In this section, simulations of nonlinear waves propagating along the computational domain are performed240

for various grid and time-step resolutions, with the goal to examine the reliability and accuracy of Hydro3D-

NWT to generate, progress and absorb periodic waves. In the absence of a structure, wave theory can be

used to validate Hydro3d-NWT’s simulated wave-elevations and velocity profiles.

Figure 6 sketches a 38.4d long, 0.8d wide and 2d tall 3D numerical wave tank inside which nonlinear

Stokes waves are generated at the west boundary and are absorbed near the opposite end (east boundary)245

inside a two wavelength-long (2L) relaxation zone. Analytical solutions are used to prescribe the water

surface and velocities at the west boundary based on 2nd-order Stokes theory for a wave height of H/d =

0.15 and a wavelength of L/d = 4 in a d = 0.5m-deep NWT. Based on Eq. (36) the corresponding wave

period is T = 1.18 sec. Dirichlet and Neumann boundary conditions are applied at the west and east

boundaries, respectively while sidewalls and the top boundary are set to free slip walls. At the bottom a250

no-slip wall boundary condition is used to resolve the boundary layer and near-wall viscous damping. Waves

are generated in the NWT for 70T to examine the performance of the model over a long simulation time.

Table 1 lists the various grid resolutions for a grid convergence study with dx/d = (0.05, 0.025, 0.0125) and

dz/d = (0.025, 0.0125). In all cases, the spanwise and streamwise grid spacings are equal (dy = dx). Finally,

four different time step sizes are adopted to examine the effect of time discretisation featuring maximum255

Courant–Friedrichs–Lewy numbers of CFL = (0.4, 0.2, 0.1, 0.05), respectively.
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(a) 3D view

(b) Side view

Fig. 6: A schematic diagram of 2nd order Stokes waves propagating in the NWT along with the representation of the absorbing

layer (top-right block) and wave-gauge’s location.

Table 1: Spatial resolution parameters of the non-dimensional grid size followed by the number of cells in each direction (Ni)

dx/d dy/d dz/d Nx Ny Nz

Case 1 0.05 0.05 0.025 768 16 80

Case 2 0.025 0.025 0.025 1536 32 80

Case 3 0.025 0.025 0.0125 1536 32 160

Case 4 0.0125 0.0125 0.0125 3072 64 160
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(a) dx/d = 0.05, dz/d = 0.025(AR = 2) (b) dx/d = 0.025, dz/d = 0.025(AR = 1)

(c) dx/d = 0.025, dz/d = 0.0125(AR = 2) (d) dx/d = 0.0125, dz/d = 0.0125(AR = 1)

Fig. 7: Comparisons of the free-surface elevation after 70T for different grid resolutions with a fixed time-step of dt = 0.001 sec

between Hydro3D-NWT (solid blue lines) and analytical solution (dashed black lines).

Figure 7 plots calculated non-dimensional wave elevations n/H (solid lines) as a function of distance

from the upstream boundary together with 2nd order Stokes theory (dashed lines), at the center-line of the

domain, for various grid resolutions and for a fixed time-step of dt = 0.001 sec. Wave elevation n measures

the distance of the water surface from still water level with n = 0 at z = d (z = 0 at the bottom of the tank).260

The accuracy and convergence of the simulations are examined in terms of the error between computed and

analytically obtained wave crests εc and troughs ετ as well as the dispersion error εd. These are calculated

at the final time-step and averaged in the stream-wise direction and are provided in Table 2. Hydro3D-

NWT predicts well the wave elevation with a maximum error of 0.36% in the vertical location of crests and

troughs and a maximum dispersion error of 0.51% for the coarsest grid in Fig. 7a, whereas results improve265

with finer grid resolutions. In Fig. 7b and Fig. 7c the simulations accurately predict the troughs and crests

locations along the full domain and results compare well with the corresponding wave theory. In Case 3

(dx/d = 0.025 and dz/d = 0.0125) the wave amplitude is improved, though a slightly higher dispersion error

is observed in comparison with case 2 (dx/d = 0.025 and dz/d = 0.025). Minor underestimation of the crests

in the finest case, Fig. 7d is observed towards the end of the domain, due to higher dissipation inside the270

transition area between the two phases. Due to limitations in the level-set method and the relatively steep
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waves, the number of cells across the transition zone has to be chosen such to ensure the stability of the

free-surface capturing model which appears to be to the detriment of its accuracy. For the finest grid, this

is 4 cells on either side of the interface (compared to 2 cells for all other simulations) and this increases the

damping near the interface. In terms of dispersion error, all simulations produce accurate results in terms275

of wavelength matching the theoretical value throughout the numerical domain with the coarsest resolution

slightly overestimating the wavelength towards the end of the domain. Overall, wave elevations compare well

with 2nd order Stokes theory while vertical grid refinement improves the elevations of crests and troughs (εc

and ετ ) and the dispersion error is reduced with finer horizontal grid resolution.

Table 2: Stream-wise average errors of the vertical location of crest and troughs, εc and ετ and average dispersion error εd.

dx/d dy/d dz/d εc ετ εd

Case 1 0.05 0.05 0.025 0.36% 0.11% 0.51%

Case 2 0.025 0.025 0.025 0.007% −0.18% 0.045%

Case 3 0.025 0.025 0.0125 0.15% 0.04% 0.42%

Case 4 0.0125 0.0125 0.0125 −0.23% −0.11% −0.05%

Figure 8 presents a convergence study investigating the effect of temporal resolution using the spatial280

resolution of case 3, shown in Table 1. Four additional simulations are performed with different CFL criteria

and the results of the simulations (solid lines) are compared with 2nd order Stokes theory (dashed lines).

The coarsest time-step is based on CFL=0.4 in Fig. 8a which results in relatively large underpredictions

of crests and troughs vertical locations, whereas the wavelength is mostly underestimated. Both errors in

wave amplitude and wavelength are more significant near the relaxation zone. For finer time steps, the285

wavelength is well predicted however minor underestimation of the crests is observed near the end of the

domain in Fig. 8b. Beyond that, crests and troughs are accurately predicted by Hydro3D-NWT and results

improve with finer temporal discretisation and wave elevation presented in Figs. 8c and 8d match well with

the theoretical solution.

Overall, the results suggest that grid and temporal convergence is achieved for dx/d = dy/d = 0.025,290

dz/d = 0.0125 and for CFL = 0.1 and finer simulations do not improve the predictions of Hydro3D-

NWT for this particular problem. Consequently, a grid resolution similar to case 3 and a variable time

step based on CFLmax = 0.1 is adopted to further verify Hydro3d-NWT for flow velocities and mass

conservation properties. The latter is important in multi-phase simulations in particular when water levels

vary significantly, as is the case in waves.295

Figure 9 plots the relative volume Vtot/Vinit as a function of time in the numerical wave tank, where Vtot

is the total volume of water at each time step and Vinit is the initial volume of water at t = 0 sec. An initial

increase in the water volume is observed until about 10 sec at which the fist wave reaches the opposite end

of the tank. Beyond that point, the volume drops and remains at a constant level above the initial value for
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(a) cfl = 0.4 (b) cfl = 0.2

(c) cfl = 0.1 (d) cfl = 0.05

Fig. 8: Comparisons of the free-surface elevation after 70T for different temporal resolutions between Hydro3D-NWT (solid

blue lines) and analytical solution (dashed black lines).

the rest of the simulation.300

Figure 10a plots the wave elevation during the last wave-period at WG1, i.e. at the centre of the effective

domain (x/d = 15.2) and Figs. 10b and 10c plots simulated horizontal and vertical velocity profiles (solid

lines) together with theoretical values (dashed lines, open squares) for various time steps at WG1. The

velocities shown here represent the spanwise average of the horizontal and vertical velocity components

plotted as a function of normalized vertical distance z/(d + n) every T/4 starting at t′/T = 0.25 where305

t′ = tfinal − T and tfinal is the final simulated time. Both velocity components are well captured by

Hydro3D-NWT and the results match well with the profiles obtained from 2nd order Stokes theory. Minor

deviations between the simulated and theoretical horizontal velocity profile are observed near the bottom of

the domain. This is expected, since the theoretical solution is based on inviscid and irrotational flow whereas

the simulations account for viscous effects with the bottom of the tank being treated as a no-slip wall. This310

results in a boundary layer near the wall which is visible from the horizontal velocity profiles. This wall has

no effect on the wall-normal velocity, hence both simulated and theoretical profiles agree well throughout the

depth. The interaction of the two phases and the non-sharp transition of fluid properties at the air-water

interface, create some small disturbances in the velocity field near the water surface, mostly observed in the
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Fig. 9: Calculated relative volume of water over time in the numerical wave tank for dx/d = 0.025, dz/d = 0.0125, cfl = 0.1

horizontal component at t/T = 0.25, which could be reduced by local mesh refinement around the interface.315

In general, Hydro3D-NWT is able to generate, progress and absorb non-linear waves in a tank. The grid

resolution and time step convergence study suggests that Hydro3D-NWT predicts accurately water-level

elevations along the tank and calculations of the water velocities below the water surface agree very well

with the theoretical solutions.
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(a) Wave elevation

(b) Horizontal particles velocity

(c) Vertical particles velocity

Fig. 10: Comparisons of the horizontal and vertical velocity profiles between Hydro3D-NWT (solid blue lines) and 2nd order

Stokes theory (dashed red line, open squares) at various time-steps over a wave-period at WG1 location. The top panel

represents the final wave elevation at the same location as recorded by WG1 and the interval between markers 1-4 is 0.25T .
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3. 3D wave-structure interaction320

Large-eddy simulations of non-linear waves interacting with complex solid structures are conducted to

examine the performance and accuracy of Hydro3D-NWT when applied to realistic WSI problems. Stokes or

cnoidal waves interacting with submerged obstacles as well as a solitary wave propagating over a flat plate,

for which data of previous laboratory experiments are available, are considered. Hydrodynamic properties

such as dynamic forces and pressures, water velocities and water levels are presented and compared with the325

data.

3.1. Monochromatic waves over a submerged trapezoidal bar

(a) 3D view

(b) Side view

Fig. 11: Schematic diagram of monochromatic waves traveling over a trapezoidal bar (a) in a 3D view and (b) from a side-view

among with wave-gauges locations.
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Waves interacting with submerged structures are challenging benchmark cases for NWTs. First of all,

monochromatic waves propagating over a submerged trapezoidal bar, is simulated by Hydro3D-NWT. This

WSI problem was studied via a laboratory experiment[50], data of which is being used to validate the330

simulation’s accuracy.

Figure 11 sketches the submerged trapezoidal bar inside a 75d × d × 2d (Lx × Ly × Lz) and d = 0.4m

deep, NWT. The bar is located 15d from the wave-maker and anchored to the bottom and side-walls of the

tank. The structure’s height extends to 0.25d below still water-level and a 1 : 20 and 1 : 10 upstream and

downstream slopes form the trapezoidal geometry of the bar. Seven wave-gauges along the centre-line of335

the flume, record the wave elevation in the thank. Incident waves of wave-height H/d = 0.05, wavelength

L/d = 9.325 and wave-period T = 2.0 sec are generated using 2nd order Stokes theory at the west boundary.

A uniform grid resolution of dx/d = 0.025, dy/d = 0.025 and dz/d = 0.0125 is used to discretise the numerical

domain whereas a variable time-step, based on a maximum CFL number of CFL = 0.1 is adopted. Dirichlet

and Neumann conditions are applied to the west and east boundaries, respectively. Sidewalls and the top340

boundary are treated as free-slip walls whereas a no-slip wall condition is employed at the bottom of the

tank. Waves are absorbed near the east boundary, over a two wavelength (2L) relaxation zone to avoid

reflections and simulations are run for eight wave-periods with the first three transient waves being ignored

from the following calculations.

Figure 12 presents the calculated wave profiles (solid lines) together with experimental data (open squares)345

demonstrating that Hydro3d-NWT reproduces accurately the waves of this particular case.

Fig. 12: Simulated (solid lines) and measured [51] (open squares) incident waves as recorded by WG1.

I DON’T UNDERSTAND THE CHOICE OF t/T=0

In Fig. 13, simulated wave elevations (solid lines), phase-averaged using the last five wave-periods, are

plotted together with the experimental data (filled circles). At all wave gauge locations, Hydro3D-NWT

produces accurate wave elevations matching very well those recorded in the laboratory experiment. At350

WG2 (Fig. 13a), steeper waves and elongated asymmetrical troughs are formed owing to non-linear effects

due to the sudden change in water depth as waves propagate over the upstream slope (1 : 20). The wave

crests and troughs are well captured by Hydro3D-NWT. The waves continue to grow while propagating

further downstream and over the top-flat surface of the structure, at WG3 (Fig. 13b) and WG4 (Fig. 13c).
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(a) WG2 (b) WG3

(c) WG4 (d) WG5

(e) WG6 (f) WG7

Fig. 13: Comparisons of the simulated phase averaged wave elevations (solid lines) with laboratory experiments [51] (filled

circles) as recorded by (a)WG2-(f)WG7.
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The progression of the waves is well simulated at these locations however, at WG3, the simulated crest355

occurs a fraction earlier than in the experiment and the following trough is slightly underestimated. Wave-

gauges WG5-WG7 (Figs. 13d to 13f), record a drop in wave-height due to energy dissipation and higher

harmonic secondary waves are observed, following the experimental measurements, as a non-linear effect of

the interaction of the waves with the submerged bar. Overall, the water-level fluctuations and progression

of the waves over the are well captured by Hydro3D-NWT and results suggest that the level-set method360

coupled with the current immersed boundary method can efficiently describe such WSI problems.

3.2. Cnoidal waves over a submerged step

(a) Top view

(b) Side view

Fig. 14: (a) A top view and (b) side view of cnoidal waves propagating in a 3D NWT over a submerged step.

Simulations of cnoidal waves propagating over a submerged step are performed in an attempt to reproduce

accurately the laboratory experiment conducted by [52]. This WSI problem features dominant periodic flow

separation at the step’s leading and trailing edges and subsequent roll-up of large eddies. Figure 14 sketches a365

d = 0.24m deep water-tank inside which cnoidal waves propagate over a submerged step of length A = 0.4m

and height D/d = 0.5. The step spans the full width of the tank and is located 32.5A away from the

wave-maker. The NWT measures 64A × B × 2d (Lx × Ly × Lz) where B = 0.6m is the width of the step.
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In [52], three wave-heights were tested, however simulations are carried out for the case with wave-height

H/d = 0.15, wavelength L/d = 12.375 and wave-period T = 2.0 sec. These conditions correspond to a370

relatively high Reynolds number of Re =
umd

ν
= 1.18×105, that is based on maximum particle velocity um,

water-depth d and viscosity ν. Waves are generated at the west boundary based on analytical solutions of

the free-surface elevation and particle velocities as proposed by [53].

A relatively fine uniform grid resolution of dx/d = dy/d = 0.0125 and dz/d = 0.00625 is adopted to make

sure that flow separation and subsequent vortex shedding are captured properly. A variable time step, based375

on a maximum CFL number of CFL = 0.1 is applied and similar boundary conditions to the simulation of

Section 3.1 are adopted. A simulation time of 18 sec is computed whereas the first three wave-periods are

ignored to make sure that waves and turbulence are fully developed. Three wave-gauges, WG1-WG3 are

placed inside the flume to capture wave elevations, both upstream and downstream of the submerged step,

and plots of the local velocity vector field and velocity profiles near the step’s leading and trailing edges are380

presented.

Figure 15 plots the simulated wave elevations of the last six waves as recorded at WG1-WG3 (solid lines)

together with the experimental data (open squares). A good agreement is achieved at all locations. At

WG1, the water elevations remain almost unchanged compared to the incident wave whereas at WG2 and

WG3, both located downstream of the submerged obstacle, wave steepening and higher crests are observed,385

as well as weak secondary harmonics at WG3 as a result of the wave-structure interaction. At WG2, the

simulated waves agree with those measured in the laboratory and similar to WG1, the water level in the

troughs is slightly underestimated. This might be due to the cnoidal wave-theory adopted here to generate

waves at the upstream end of the tank and might be improved with the adoption of higher order theories.

The calculated water elevations at WG3, are in a good agreement with the experiments and the waves’ shape390

is well captured. In the following figures, plots of the local velocity field, at various locations and instants,

are presented to quantify the flow structure near the step and highlight the unsteady formation of local

eddies due to flow separation.

Figure 16 plots the water level of the wave that propagates over the trailing edge, as if it was recorded by

a wave gauge. This follows the approach of [52] whereby the wave as recorded at WG2 is transferred to the395

trailing edge’s location (x = 0m), using the wave celerity and assuming that waves remain unchanged over a

short distance. This could be done by adding an additional wave gauge in the NWT but the above method

was adopted in order to be consistent with the laboratory study. Two instants in time are considered, marked

as (1) and (2) in Fig. 16 at which the velocity field near the step’s trailing edge is visualised.
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Fig. 15: Simulated wave elevations (solid lines) and experimental data [52] (open squares) at (a) WG1, (b)WG2 and (c)WG3.

Fig. 16: Wave above the trailing edge of the step. Markers (1) and (2) represents instants in time at which velocity vectors and

local velocity profiles are plotted in Fig. 17 and Fig. 18, respectively.
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(a) Velocity vectors

(b) Velocity profiles of the horizontal and vertical velocity

Fig. 17: Simulated (right) and PIV-measured (left) instantaneous velocity vectors (a) and LES-predicted (solid lines) and

measured (open squares) profiles of the the horizontal (upper row) and vertical (lower row) velocities (b) at t=0.4s.
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(a) Velocity vectors

(b) Velocity profiles of the horizontal and vertical velocity components

Fig. 18: Simulated (right) and PIV-measured (left) instantaneous velocity vectors (a) and LES-predicted (solid lines) and

measured (open squares) profiles of the the horizontal (upper row) and vertical (lower row) velocities (b) at t=0.8s.

Figure 17a plots the simulated (right panel) and the PIV-measured (left panel) velocity vector field near400

the trailing edge of the step at t = 0 sec. At this instance, the wave trough located above the trailing edge
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generates a backflow (from right to left) due to the low hydrostatic pressure below the water surface. This

backflow separates from the leading edge of the step and forms a strong eddy with counterclockwise rotation.

At about 3cm above the step’s trailing edge, which is where the eddy is less effective, the back flow is almost

uniform over the step. The predictions match well with the laboratory measurements. The shape and405

intensity of the calculated eddy is very similar to the one observed in the experiments however, its location is

slightly shifted towards the trailing edge. A more quantitative assessment of the LES’ performance is possible

with the help of Figure 17b plotting simulated (solid lines) and measured (open squares) profiles of the

horizontal and vertical velocity components at various locations and experiments. Simulated velocity profiles

agree reasonably well with the data obtained from [52]. Better agreement is observed in the horizontal velocity410

component but vertical velocities also follow the laboratory results with a sufficient degree of accuracy. At

x = −3.7cm the maximum magnitude of the horizontal velocity is calculated at a higher vertical location

than what was measured in the experiments and the vertical velocity is slightly underestimated in the

simulations at x = −1.2cm and x = −0.2cm. Nevertheless, simulations are in a good agreement with the

PIV measurements.415

Similarly, Fig. 18 presents LES-predicted and measured velocity vectors at t = 0.8sec. At this instance,

the progression of the wave crest, high hydrostatic pressure, over the step’s trailing edge develops a positive

flow (from left to right), which separates at the leading edge of the step thereby forming a clockwise-

rotating vortex just above the edge. The simulated velocity vectors (right panel) match well the laboratory

measurements (left panel) and the location of the eddy is predicted accurately. An almost uniform flow over420

the step is observed. In Fig. 18b, simulated velocity profiles upstream and downstream of the trailing edge

are in a very good agreement with the laboratory measurements. The boundary layers in the horizontal

velocity component, at x = −1.3cm and x = 0.059cm are well captured by Hydro3D-NWT, a key-factor

for properly reproducing flow separation around the trailing edge. Moreover, the vertical and horizontal

velocity profiles follow the experimental measurements with only minor discrepancies at the eddy’s location425

at 2.8cm ≤ x ≤ 4.2cm.

In Figs. 19 to 21 the flow field over the leading edge of the submerged step is presented via vectors

and examined in more detailed via velocity profiles. The vector field is plotted in Fig. 20 and Fig. 21 at

t = 0.4 sec and t = 0.8 sec , respectively, for both the simulation and the experiment. At t = 0.4 sec,

Fig. 20a shows a negative flow near the leading edge and the presence of a dominant counter-clockwise-430

rotating vortex upstream of the structure. The simulated velocity vectors (right panel) are in a very good

agreement with the experimental measurements (left panel) and the overall flow and location of the vortex

are well captured. In Fig. 20b velocity profiles downstream and upstream of the leading edge follow the

data of the PIV measurements and the simulated velocities compare well with [52]. Furthermore, both the

velocity magnitude and change in flow direction at the location of the vortex, are well captured. Figure 21435

prsents velocity vectors at t = 0.8 sec at which the crest of the wave approaches the leading edge. In Fig. 21a

a positive flow develops, separating at the leading edge of the step and a small clockwise-rotating vortex is
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formed just above the step corner. Simulated velocity vectors (right panel) show that the location of the

eddy is in agreement with experiments (left panel) however the height of the eddy is slightly overestimated by

Hydro3D-NWT. Due to this, the simulated velocity profiles in Fig. 21b are inconsistent with the experiments,440

mostly near the step’s top boundary (at z ≤ 0.14) where the vortex is located whereas further downstream,

simulations well capture the velocity field.

Figure 22 visualises the formation of eddies near the submerged step using iso-surfaces of Q-criterion at

Q = 60 coloured with the Y-vorticity. In Fig. 22a, the formation of eddies near the trailing edge of the

step is presented at t = 0.8 sec (corresponding to (2) in Fig. 16). An energetic vortex extending in the445

spanwise direction almost over the entire trailing edge is observed. Most interesting is the slight meandering

of the eddy, i.e. not perfectly two dimensional, suggesting the presence of minor 3D instabilities. These

are noticed as smaller billows (with zero y-vorticity) in the vicinity of the main vortex. Also at various

locations along the spanwise direction secondary spanwise vortices, contoured in red, are observed, which

are counter-rotating to the main separated vortex, coloured mainly in blue. The leading edge vortex at450

t = 0.4 sec is visualised in Fig. 22b provide further evidence of the slight three-dimensionality of this flow.

The spanwise vortex is broken up at various locations near the leading edge, and minor secondary counter-

rotating vortices are observed. Obviously, the relatively narrow tank, the quasi-two-dimensional waves and

the step geometry promote 2-dimensional flow structures, however it won’t take a lot of variation in either of

these parameters before significant 3D-wave-structure-interaction takes place, which Hydro3D-NWT is able455

to resolve accurately. The results suggest that large eddy simulations executed on a relatively fine mesh are

capable of predicting complex WSI.

Fig. 19: Wave above the leading edge of the step. Markers (1) and (2) represents the time steps at which velocity vectors and

local velocity profiles are plotted in Fig. 20 and Fig. 21, respectively.
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(a) Velocity vectors

(b) Velocity profiles of the horizontal and vertical velocity components

Fig. 20: Simulated (right) and PIV-measured (left) instantaneous velocity vectors near the leading edge (a) and LES-predicted

(solid lines) and measured (open squares) profiles of the the horizontal (upper row) and vertical (lower row) velocities (b) at

t=0.4s.
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(a) Velocity vectors

(b) Velocity profiles of the horizontal and vertical velocity components

Fig. 21: Simulated (right) and PIV-measured (left) instantaneous velocity vectors near the leading edge (a) and LES-predicted

(solid lines) and measured (open squares) profiles of the the horizontal (upper row) and vertical (lower row) velocities (b) at

t=0.8s.
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(a) Y-vorticity near trailing edge

(b) Y-vorticity near leading edge

Fig. 22: Plots of the iso-surface of φ = 0 and Q-criterion= 60 coloured by Y-vorticity, (a) near the trailing at t = 1.2 sec (marker

2 in Fig. 16) and (b) at leading edge at t = 0.4 sec (marker 1 in Fig. 19).
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3.3. Wave-plate interaction

(a) top view

(b) Side view

Fig. 23: Schematic diagram of a submerged plate under the action of a solitary wave. (a) top view, (b) side view.

In this section, a laboratory experiment previously conducted by [1] of a solitary wave propagating over

a flat plate is reproduced by Hydro3D-NWT. Figure 23 sketches a L = 1.156m long plate of thickness460

δ = 0.01m, submerged halfway through the tank at still water depth of d′/d = 0.5 where d′ is the plate’s

submergence (measured from still water level to the plate’s upper surface) and d = 0.2m is the still water

depth. The structure is located 23d from the wave maker and extends in spanwise throughout the numerical

tank. The NWT is 64d long, 2d wide and 1.5d tall and discretised with 2560 × 80 × 120 (Nx × Ny × Nz)

equally sized cells which gives mesh spacings of dx/d = dy/d = 0.025, dz/d = 0.0125. A fixed time step of465

dt = 0.001 sec is adopted throughout the simulation. Four wave gauges are distributed over the centreline of

the tank to capture the wave’s propagation through the tank and ten pressure sensors are fixed around the

structure (cross symbols in Fig. 23) to record the pressure acting on the plate. The exact location of pressure

sensors and wave gauges are shown in Table 3 and Table 4, respectively. In [1] various submergence depths

and wave heights were tested, in the simulations a wave height of H0/d = 0.1, a wavelength of λ/d = 22.945470

and an effective wave period of T = 3.123 sec are adopted and prescribed using analytical solutions of wave

elevation and water velocities based on Boussinesq theory [54].
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Table 3: Pressure sensors locations.

Sensor Location (m)

P1, P6 0.1

P2, P7 0.35

P3, P8 L/2

P4, P9 L− 0.35

P5, P10 L− 0.1

Table 4: Location of Wave gauges.

Gauge Location (m)

WG1 −λ/4

WG2 0.1

WG3 L/2

WG4 L+ λ/4

Dirichlet boundary conditions for the water surface and velocity components are applied at the inlet of

the NWT, whereas periodic boundary conditions are set at the south and north boundaries. A Neumann

boundary condition for the pressure at all boundaries and a no-slip condition for the bottom of the tank475

and the plate’s surfaces are employed. The top boundary of the tank is treated as a free-slip boundary.

In the following figures, water levels, force and moments acting on the plate as well as a time series of the

non-hydrostatic pressure are presented and comparisons are made with the experimental data of [1]. It is

noted here that in all calculations, hydrostatic pressure due to the still water level (ρg(d− z)) is ignored in

order to be consistent with the experimental data.480

Figure 24 plots computed wave elevations (solid lines) as recorded at WG1-WG4 together with exper-

imental data (open squares). The computed water levels agree well with the laboratory measurements at

all wave-gauges. At WG1, the initial wave height is properly captured and subsequent wave reflections

or harmonics due to the impact of the wave with the submerged plate are well predicted. The simulated

wave elevations captured by WG2 and WG3 follow the experiments and a slight increase in wave height485

is observed due to shallowness of the water above the structure and the developing boundary layer above

the plate, which leads to wave steepening. At WG4, a drop in wave height is found, the result of energy

dissipation due to friction of the the plate, however the result is slightly overestimated in the simulations

compared to the experiment.

Figure 25 presents the vertical force (Fz) and the corresponding moment (Mc) measured about the center490

of the plate to further examine the performance of Hydro3D-NWT. The predicted pressure is integrated over

the top and bottom surfaces of the plate to obtained the force and the moment, which are normalized with

F0 = ρgH0L and M0 = F0L/2, respectively. In Fig. 25a, the predicted vertical force (solid lines) and the

experimental data (open squares) are plotted. The simulated vertical force is in good agreement with the

experimental data and the vertical force acting on the plate as a function of time is captured well. When495

the wave is closed to the plate’s leading edge, a uniform flow below the structure is observed, compared to

an almost stationary flow above, that generates a higher pressure and thus a positive, upward force acting

on the plate (at t′/T = −0.1). Once the wave is over the plate (at t′/T = 0.15), a downward force due to the

weight of the wave is recorded followed by a secondary positive force. The calculated moment on the plate
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(a) WG1 (b) WG2

(c) WG3 (d) WG4

Fig. 24: Simulated water surface elevations (solid lines) and experimental data of [1] (open squares) at (a) WG1 (b) WG2 (c)

WG3 and (d) WG4.

as plotted in Fig. 25b does not agree very well with the experimental measurement. This was also found by500

[55] and [1] and this might be the result of the relatively coarse spatial resolution of the pressure sensors in

the laboratory study.

Figure 26 describes the time history of the local pressure over the plate as the wave propagates through

the tank. P1 − P5 are located under the plate while P6 − P10 are on the top of the plate. The simulated

normalised pressure (solid lines) is plotted together with experimental data (open squares) and very good505

agreement is achieved. Overall, the simulations follow the laboratory measurements in all locations however,

some slight overpredictions of the peaks of the non-hydrostatic pressure are observed. These are mainly on

the underside of the plate and towards the trailing edge (P4 and P5) whereas for the locations on the top

of the structure Hydro3D-NWT returns very good results. This might be due to the complex flow near the

plate’s edges, i.e. the interaction of trailing edge vortices with the plate, which would probably a higher510

spatial resolution in this area. However it may also be experimental uncertainty.
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(a) Vertical force (Fz) (b) Moment (Mc)

Fig. 25: Simulated (solid lines) and measured [1] (a) vertical force (Fz/F0) on the plate and (b) moment about the centre of

the plate (Mc/M0).

37



Fig. 26: Predicted (solid lines) non-hydrostatic pressure P
ρgH0

together with experimental data [1] (open squares) at (a) P1 -

(j) P10 locations.

4. Conclusions

A large-eddy simulation based numerical wave tank, Hydro3D-NWT, has been introduced and described

in detail. The code solves the filtered Navier-Stokes equations and features a novel combination of immersed

boundary and level set methods which allows investigating realistic wave-offshore-structure-interaction. The515
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results of several simulations have been presented with the goal to showcase the validity, credibility and

accuracy of Hydro3D-NWT. First, the run-up of a solitary wave on a vertical wall is simulated with the

goal to verify the free-surface capturing technique and the results suggest that Hydro3D-NWT captures

the propagation and run-up precisely. Then two types of wave propagation through a tank, without any

structure, are simulated and results of wave elevations, viscous damping and local velocity field are convinc-520

ingly accurate. After that, Hydro3D-NWT has been applied to rather complex WSI problems of coastal

and offshore engineering interest. Simulations of 2nd order Stokes, cnoidal and solitary waves interacting

with submerged structures, including a rectangular step, a trapezoidal bar and a thin, submerged plate, have

been performed. The results have been compared with experimental measurements of free-surface elevations,

water velocities as well as hydrodynamic forces, pressure on the structures and moments. Comparisons of525

HYdro3D-NWT-predicted results with experimental data evidence that Hydro3D-NWT is able to return

convincing agreement, in particular for WSI problems in which three-dimensional and viscous effects, albeit

small for the three cases shown here, play a role. The current study suggest that Hydro3D-NWT can be a

reliable tool for simulating complex 3D WSI problems thus and additional simulations are to be conducted

in the near future to investigate WSI problems with dominant three-dimensional effects for fixed and floating530

structures.
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