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Abstract 

Music is ubiquitous across human cultures—as a source of affective and pleasurable experience, moving us both 

physically and emotionally—and learning to play music shapes both brain structure and function. Music processing 

in the brain—namely, perception of melody, harmony, and rhythm—has traditionally been studied as an auditory 

phenomenon using passive listening paradigms. However, when listening to music, we actively generate predictions 

about what is likely to happen next. This enactive aspect has led to a more complete understanding of music 

processing involving brain structures implicated in action, emotion, and learning. Here, we review the cognitive 

neuroscience literature of music perception. We show that music perception, action, emotion, and learning all rest on 

the human brain’s fundamental capacity for prediction—as formulated by the predictive coding of music model. 

This review elucidates how this formulation of music perception and expertise in individuals can be extended to 

account for the dynamics and underlying brain mechanisms of collective music making. This in turn has important 

implications for human creativity as evinced by music improvisation. These recent advances shed new light on what 

makes music meaningful from a neuroscientific perspective. 

Introduction 

“Listening is the key to everything great in music.” 

(Pat Metheny) 

Even though music is often described as no more than sounds—or soundscapes—organized intentionally by a 

composer or performer, it feels meaningful and emotional to most people. From the point of view of music theory, 

music can be broken down into three fundamental constituents—melody, harmony, and rhythm (Figure 1), each of 

which is subserved by overlapping but distinct neural networks. These fundamental ingredients may, in rare 

instances, be experienced in isolation, such as when listening to the single melodic lines in Gregorian chant or the 

genuine effect of surprise created by the epic drum fill in Phil Collins’ In the Air Tonight—introduced unpredictably 

after 3 minutes of vocals and keyboard. Mostly, though, these constituents interact in creating unified musical 

experiences of a unique cognitive and emotional quality. In recent years, it has become increasingly clear that to 

understand why people are so engaged by music, we need to understand the neuronal underpinnings of music 

perception, which in turn are closely linked to action in the form of overt or covert movements1,2 and emotion3. 

Accordingly, music perception engages brain networks related to action, emotion and learning in addition to the 

auditory system (Figure 1 D). 

A particularly important feature of music is that its structure often involves patterns that allow listeners to form 

expectations, based on statistical learning, which may subsequently be fulfilled or betrayed. The experience of music 

is therefore intimately linked to brain-bound predictive models: e.g., tonality (the experience of a hierarchy of 

relations pointing towards a tonal center in melody and harmony); and meter, the experience of regularly recurring 

rhythmic patterns and accents, that underwrites the way we move regularly to sometimes highly irregular musical 



rhythms. In this review, we describe the process of listening to music, where we continuously construct predictions 

of what happens next in a musical piece, and how this process gives rise to perception, action, emotion, and—over 

time—learning as formulated in the predictive coding of music (PCM) model4. In brief, the PCM model states that 

when we listen to music with melody, harmony, and rhythm, the brain deploys a predictive model—based on prior 

experience—which guides our perception. Take the example of a repeated syncopated rhythm (Figure 2), a rhythm 

wherein one beat feels displaced by a fraction. Here, we experience an error at the unexpected, syncopated note. 

This may drive an impulse for action in the form of enforcing the beat by tapping the foot. This active listening 

process forms the basis of musical emotion and learning which updates our underlying predictive model over time. 

Music is thus a powerful tool for studying the predictive brain, due to the way its structure licenses anticipation. 

In the following, we provide an overview of music perception in the brain. We first introduce PCM. We then discuss 

the fundamental constituents of music in relation to PCM before turning to more complex music processing that 

entails action, emotion, and learning. Rather than focusing on the link to language – and clinical applications – we 

focus on the basic neuroscience of music processing in the brain and requisite prediction-based brain mechanisms. 

Finally, we consider generalizations of PCM to encompass musical interaction and communication in interpersonal 

relationships and hierarchical organization in groups. 

The predictive coding of music (PCM) model - an enactive perspective on music perception 

Prediction is increasingly considered a fundamental principle of brain processing. Theories of predictive processing 

offer explanations for how specialized brain networks can identify and recognize the causes of its sensory inputs, 

integrate information with other networks, and adapt to new stimuli. Recently, active inference, an influential theory 

of predictive processing5 has proposed that perception, action and learning constitute a recursive Bayesian process 

by which the brain attempts to minimize the prediction error between sensory input and top-down predictions of that 

input (Box 1).  

For many years it has been clear that music can only fully be understood in the light of prediction6-8. Music-related 

predictions are linked to various emotions, and the relationship between musical anticipation and emotion has been 

proposed to be associated with survival-related anticipatory brain mechanisms9. Musical expectations are evoked by 

auditory (bottom-up) sensations on one hand and depend on the brain’s (top-down) predictions on the other. 

Predictive brain mechanisms depend on long-term plasticity and learning10 (forming e.g. schematic expectations), 

familiarity with a particular piece or genre of music11 (veridical expectations), short-term memory for the immediate 

musical past (forming dynamic expectations), and on deliberate listening strategies12. The neuronal mechanisms and 

functional architectures underlying musical expectation are thus shaped by culture, personal listening history, 

musical training, and biology13.  

Recently, the research into music perception has turned towards experiments modelling musical structure, which 

evinces anticipation 14 and predictive mechanisms. To integrate these approaches in neuromusic research, we have 

developed the predictive coding of music (PCM) model in several recent papers (Figure 2). This model is a special 

case of the predictive processing (Box 1) theory of brain function for music, with an explicit focus on the influence 

of biological, cultural, and contextual factors. 

PCM proposes that music perception, action, emotion, and learning are recursive Bayesian processes, by which the 

brain attempts to minimize prediction error15 as formalized in enactive versions of predictive processing (a.k.a., 

active inference). Accordingly, the processes underlying music perception and action are coupled, such that 

perception minimizes prediction error by updating the predictions, whilst action reduces prediction error by 

generating predicted sensory signals. Emotion, attention, and motivation act as Bayes optimal biases to contextualize 

prediction, thereby guiding behavior, action, and learning.  



The notion of the brain as a hierarchical prediction machine—where sensory input is constantly held up against the 

brain’s beliefs about the causes of this input—is consistent with music processing, which is not just passive and 

bottom-up but rests on top-down predictive processes as demonstrated for melody, harmony, and rhythm below. In 

the case of ambiguous musical stimuli, the listener may—depending on musical training—make the active decision 

to listen attentively to the same piece of music with different meters or tonalities (Figure 3). Hence, a Bayesian 

formulation of predictive coding, applies naturally to processes that involve the inference of hidden or latent causes 

—such as meter and tonality—from the musical surface.  

As we shall see below for melody, harmony, and rhythm, certain event-related potentials (ERPs) recorded with 

electro- or magnetoencephalography (EEG or MEG) are clear experimental markers of prediction error: for melody 

and rhythm we have the mismatch negativity (MMN), for harmony we have the early right anterior negativity 

(ERAN). 

In particular, attentional selection—of which prediction errors to resolve—rests on predicting not just the content of 

sensory streams but their predictability or precision. Put simply, prediction errors are only useful when things are 

predictable. The Bayesian belief updating inherent in PCM is literally precision engineered, in the sense that it rests 

upon predictions of predictability.  

  

A crucial concept in predictive coding is the notion that prediction errors are weighted by their expected precision or 

predictability. In short, the brain has to select the prediction errors that drive Bayesian belief updating and ensuing 

top-down predictions. This selection can be regarded as a kind of mental or covert action that equips standard 

predictive coding schemes with an enactive and attentional aspect. The requisite synaptic mechanisms are thought to 

depend on neuromodulatory synaptic gain control that underwrites sensory attention and attenuation. The 

importance of precision for predictive processing has been shown in studies of auditory perception, where the MMN 

to an oddball is modulated by its predictability16. In music perception, the findings that MMN amplitude is reduced 

(to rhythmic deviations and mistuned pitches) in less predictable contexts offer clear examples of so-called 

precision-weighted prediction errors17,18. These studies demonstrate the scope of PCM for explaining the 

fundamental aspects of music processing.  

Learning can be cast as minimizing precision-weighted (i.e., predictable) prediction errors over time, via experience-

dependent plasticity. This is equally true for implicit and explicit learning. An example of implicit learning is how 

melodic singing ability or tonality perception schema are learned during repeated exposure—as evinced by ERAN 

responses to harmonic expectation violation in non-musicians and musicians alike19,20. Learning to play an 

instrument involves implicit learning but introduces additional top-down effects on perception and action. Hence, 

explicit learning often implies altered processing of musical structure violations—compared to non-musicians—as 

reflected in enhanced ERAN or MMN responses that could be regarded as reporting precision-weighted prediction 

errors for melody, harmony, and rhythm (please see below). 

Importantly, experiments have shown that the brain architecture subserving precision-weighted prediction errors 

differs depending on which musical phenomenon e.g., melody, harmony or rhythm that are studied. For example, a 

predictive coding-based analysis of the effective connectivity in a melodic oddball functional MR imaging (fMRI) 

paradigm revealed that mismatch responses are best explained by a fully connected bilateral auditory network 

comprising the primary auditory cortices (A1) and the planum temporale (PT)21. Here, the observed increase in 

excitatory connectivity from left A1 to PT, has been interpreted as the passing of precise prediction error from lower 

to higher areas of the hierarchical processing network22,23, and the decrease in inhibitory connectivity within the left 

A1 as precision-related increase in the gain of the superficial pyramidal cells encoding prediction error24,25. In 

contrast, as discussed later, studies of the pleasurable experience of musical harmony reveals predictive coding 



mechanisms including precision-weighted prediction errors26 related to emotion and reward brain networks26, 

whereas studies of musical groove implicate additional motor related areas.  

In the following, we review music perception, action emotion and learning in the light of PCM. We begin by 

summarizing the significant progress in our understanding of music perception of melody, harmony, and rhythm.  

  



Perception of music 

Melody 

In most musical styles, melody, i.e., patterns of pitched sounds unfolding over time, is an important part of what 

defines and distinguishes one piece from another. Sing the first eight notes with any rhythm and you will 

immediately identify Beethoven’s fifth symphony. 

When you press a key on a piano keyboard, the resulting note comprises a fundamental frequency defining its 

pitch27 and a series of overtones that contributes to its tone quality (timbre) which distinguishes it from other 

instruments28,29. A large corpus of research has been devoted to the study of musical pitch, and it is now widely 

accepted that the brain can extract a single pitch percept from complex tones, even in the absence of the 

fundamental30,31. Pitch perception can be separated into pitch height and pitch chroma. Two different piano notes 

may have different pitch heights but still be perceived as having the same chroma (e.g., the note C in different 

octaves). The auditory cortices are central to pitch processing, where fMRI suggests that pitch height is processed in 

PT posterior to A1, and chroma change in the planum polare, anterior to A132. In general, the recognition of pitch 

from spectrally complex sounds is thought to be handled by a ventral stream, projecting from primary auditory areas 

along middle and anterior regions to the inferior frontal gyrus (IFG, Figure 1 D). A dorsal stream, projecting from 

primary areas via the PT over the parietal cortex to the dorsolateral prefrontal cortex (dlPFC)33, is supposed to 

support sensory-motor integration, articulation, and memory functions34 linking neural apparatus for melody 

perception and action35. 

Once musical pitches are combined into melodies, global properties emerge, such as melodic contour36, melodic 

expectations, and tonality37. Most melodies point to a certain tonality, even though twelve-tone composers such as 

Arnold Schoenberg often try to avoid it. In its simplest form, a melody such as ‘Frère Jacques” is confined to a 

subset of pitches—a scale—with a tonal center, such as a C-major scale which corresponds to the seven white keys 

on a piano keyboard, excluding the black keys. The tonality is not necessarily expressed directly in the auditory 

input to the ears4 but an endogenously generated hierarchical predictive framework which underwrites perception of 

melody and harmony (Figure 3). Listeners, even without explicit musical training, have implicit knowledge of the 

statistical regularities of melodies of their own culture. This knowledge38 is constantly applied to form musical 

expectations by comparing a given note to the given statistical distribution39,40. The tonality is an example of one 

predictive model, which underlies melodic expectations. 

Importantly, it is possible to model melodic expectation and uncertainty mathematically. Several models exist, e.g., 

the Information Dynamics Of Music (IDyOM) model which assigns measures of information content (contextual 

unexpectedness: c.f., prediction error) and entropy (uncertainty: c.f., negative precision) to each note of a scale using 

short-term and long-term statistical regularities. Mathematical modelling has the advantage that it allows the study 

of perception of “real” music and obviates the need for tailored musical excerpts, as traditionally used in many 

experiments. Recently, such models have been used to study the neural processing of melodic expectations41 in 

particular using a marker of pre-attentive auditory expectancy violation, the MMN42,43 (Figure 1). Importantly, 

MMN amplitude and behavioral deviant detection is reduced to mistuned pitches in high-entropy (unpredictable) 

compared to predictable melodic stimuli as modelled by IDyOM18. In other words, the more precise our melodic 

predictions—according to culture dependent statistical learning—the larger the MMNs to surprising notes. 

Individual differences play an important role for the predictive processing of melody. In general, musicians score 

consistently higher on tests that involve distinguishing between different melodies44, which correlates with higher 

amplitude and shorter latency of the pre-attentive the pre-attentive auditory response such as the MMN to 

expectancy violations11,45, indicating a more precise predictive model in these individuals presumably as a result of 

explicit learning. 



Melody perception recruits parts of the brain that are specialized for other purposes than audition such as motor, 

emotion, and cognitive evaluation. as shown e.g., in the so-called free listening paradigms46-48, which combine 

music information retrieval (MIR) of real music recordings with fMRI or MEG47,48. Moreover, action and perception 

can be engaged even without stimuli, as demonstrated by ERP, positron emission tomography (PET), and fMRI 

studies showing that the formation of musical mental images engages auditory sensory and premotor areas34,49,50. In 

sum, the study of melody processing has moved towards using naturalistic melodies, emphasizing the coupling of 

perception and action related brain mechanisms, where prediction plays a key role. 

Harmony 

Melodies, especially in Western music, are typically accompanied by harmony created by chord progressions played 

on instruments such as a piano or a guitar or by many instruments playing different notes at the same time. An 

example of a single chord is a C major triad, which is the combined sound of the three notes C, E and G.  

Chords may in themselves give rise to musical emotions, such as the sound of a C major triad which by Western 

listeners is perceived as happier than a C minor triad (C, Eb and G)51. Since the ancient Greeks it has been known 

that the physical properties, such as the “roughness” of musical harmonies—two or more notes together—are 

uniquely determined by the integer relationships between the fundamental frequencies of these notes, leading to a 

differentiation in Western harmony between consonant and dissonant intervals and chords. The smaller this integer 

relationship is, the more likely the notes are to be misperceived as one single sound, and this trend has been 

observed also in musically distant cultures52. This is tied to the experience of sound roughness53 which is thought to 

be related to the bandwidths of critical auditory bands linked to the inability of the basilar membrane in the cochlea 

to separate  notes which are very close54,55. Importantly, however, roughness may be perceived differently according 

to musical style and culture. 

Chord progressions (different chords played successively) establish musical expectations and typically a sense of 

tonality. Whereas tonality is known in music from all studied cultures56, neuroscientific studies have mainly 

concentrated on Western harmony57-59, which follows a set of rules, e.g., in different types of harmonic cadences. 

Breaking these rules, elicits a specific marker of harmony expectancy violation, the ERAN (Figure 1), discovered 

by Koelsch and colleagues using EEG/MEG60,61. The ERAN peaks at 150-200 ms after deviant onset, its latency and 

amplitude are modulated by attention or knowledge of impending outcomes62, and musical training20. Its sources 

have been linked to the IFG using MEG as well as fMRI in non-musicians63,64. It is most often studied in semi-

attended paradigms, where the task requires participants to attend to the musical stimulus but not to the deviating 

chords. In contrast to the MMN—which can be evoked by a local mistuning of a specific chord— the ERAN 

amplitude and latency depend strongly on the deviant’s position within the chord progression—how well it fits with 

the rules of harmony65-67. The rules of harmony have often been termed musical syntax or grammar and are thought 

to be encoded through statistical learning. The development of a neural architecture for melody and harmony has 

been studied in adult non-musicians using artificial experimenter generated musical grammars68,69 where recognition 

and liking ratings indicate a generalized probability-based perceptual learning mechanism as the basis for 

remembering and appreciating music. The precise function of the IFG is still unresolved but is likely related to 

higher level processing of the temporal order of sequences70. 

With musical training, perception and action networks in the brain become more tightly coupled, which facilitates 

more precise active inference. Studies have shown motor-related cortical activity in professional pianists listening to 

piano music71-73, and activity in a frontoparietal motor-related network in non-musicians listening to a learned 

melody after practice playing74. For trained pianists, internalized harmonic expectations in auditory and motor 

networks may furnish modality specific networks for harmony prediction that interact with the IFG to optimize 

action and perception75. It is thus likely that musical expertise affects harmony processing by engaging motor 

mechanisms because of the active experience in auditory-motor association. 



Like melody processing, a recent trend has been to model both music and expected brain responses mathematically, 

enabling more ecologically valid approaches to the study of harmony. This allows for a better understanding of the 

often-reported link between musical harmony, emotions, and pleasure. Modelling harmony regularities in a corpus 

of harmonic sequences from the Billboard “Hot 100” pop songs, Cheung and colleagues26 showed maximal pleasure 

ratings to expected chords in unpredictable chord sequences and conversely to unexpected chords in predictable 

chord sequences, and linked this to activity in key limbic and reward related brain structures: the amygdala, 

hippocampus, and the nucleus accumbens (NAcc). 

The above studies highlight the ability of harmony to engage motor, emotion and learning related mechanisms. 

Cognitive studies of harmony, however, mainly use Western harmony as the source of auditory stimulation which 

reduces the generalizability of the results. At the level of a single interval native Amazonians with limited exposure 

to Western music do not exhibit Western-like preference for consonant compared to dissonant intervals76, indicating 

that aesthetic preference for certain intervals may be culture-dependent. Importantly, the statistical regularities or the 

harmonic syntax (captured by ERAN)—which undergird many predictive processes related to harmony—differs 

between cultures and styles of music, leading to quite different expectations when e.g., listening to blues compared 

to Beethoven. The well-known associations between major/minor and happy/sad emotions in Western harmony are 

prime examples of the complexity in determining the influence and interaction between universal and cultural 

factors in the perception of harmony. This association is not found in all musical cultures78, which speaks against a 

universal relationship. However, it has been proposed that the lower pitch intervals, and slightly lower average pitch 

in the minor mode simulate speech when we are sad79-81. It is still unclear if this is a universal principle expressed 

differentially in different cultures. Nevertheless, basic emotions may still be recognized in realistically sounding 

music material across cultures77. However, this is an ongoing field of study.      

In sum, predictive structures in musical harmony (often referred to as syntax) have proven an invaluable domain for 

studying prediction error and its relationship to musical emotion and its relation to musical learning and culture. For 

harmony and melody, tonality offers a predictive context in the PCM model and this profoundly affects brain 

processing since both operate and interact in a shared pitch-based domain. The PCM model may explain why a 

melodic line without harmonies still suggests an underlying harmonic scheme—through the way the brain generates 

implicit predictions based on harmonic priors.          

Rhythm 

Perception of musical rhythm is a burgeoning topic in cognitive neuroscience partly because of its ability to link the 

body and the mind, perception, and action. When we listen to “Blame it on the Boogie” by The Jacksons (Figure 4), 

it is difficult to refrain from tapping a foot or bobbing the head to the beat. Rhythm can be produced by the onset of 

the notes in a melody or without a melody when played on designated percussion instruments, where pitch may be 

less clear82. Its perception usually involves simultaneous perception of an evenly spaced pulse83, and a meter, which 

structures this pulse and its subdivisions into patterns of differentially accented beats. Listening to pulse trains 

involves prediction of following events84 as indicated in studies showing brain responses to omission of a beat or 

after the end of rhythmic sequences85-88.  

Brochard and colleagues89 provide strong evidence for meter perception in the simplest possible experimental 

setting, when they showed that listening to an entirely regular and unaccented metronome causes the brain to 

automatically register some beats as more salient than others, even in the absence of any such structure in the 

stimulus. Hence, the pulse and the meter are not necessarily expressed directly in the auditory input to the ears4 but 

emerge under hierarchal predictive processing which underlies the recognition of successive musical events over 

time90-92. Perception of a clear musical meter facilitates rhythm memory93,94, learning95, and perceptual sensibility 

even at a young age96. 



Despite the possibly innate human ability to synchronize to the musical meter, this ability is not easy to model 

computationally. Recently, Large and colleagues created a neuronal network model with two hierarchical levels; one 

corresponding to the sensory system modelled with a simple Hopf bifurcation, the other corresponding to the motor 

system tuned to operate near a double limit cycle bifurcation97. This model was able to explain participants’ ability 

to synchronize with increasingly syncopated rhythms. Accordingly, frequency tagging (Figure 1) in 

electrophysiological recordings show that even for such rhythms in which the meter is not acoustically accented, the 

fundamental frequencies of the meter still dominate the signal98,99. Yet, the neural entrainment to rhythm and the 

different contributions of auditory and motor cortical and subcortical structures in establishing the meter percept are 

still far from well understood100, and it is essential to acknowledge a substantial top-down influence on meter 

perception15,101 which may be nuanced by cultural 102-104, and biological factors (Figure 2).  

As with melody and harmony, musicians score consistently higher on rhythmic ability tests 44, and have higher 

amplitude and shorter latency of the MMN to violations105, suggesting that musicians deploy more precise predictive 

models.  

The literature on rhythm perception discloses the involvement of the auditory pathway in detecting structural 

deviations from the meter105, marked by the MMN, which again depends on the complexity of the metric context17 

and the involvement of large parts of the motor system, the premotor (PMC), supplementary motor (SMA), basal 

ganglia, and cerebellum106,107 for mere listening to auditory rhythms108. This motor system activity can—to some 

extent—be attributed to the establishment and maintenance of the musical pulse/meter109. This process, which 

underlies our ability to dance to music, is measurable already in newborns110, yet influenced by training, where 

infants can be trained to either a duple (2/4) or a triple meter (3/4) of the same ambiguous rhythm111. Furthermore, 

synchronizing to the same meter may lead to prosocial behaviour112. 

The complexity of the brain circuits underlying meter perception may explain why meter perception is so rarely 

observed in non-human animals and never with the same accuracy and flexibility as in humans. Humans have the 

ability to synchronize to a simple metronome at different tempi between approximately 40 and 400 BPM depending 

on musical expertise, and do so by predicting the subsequent beats—and may perform the task across 

modalities113,114: In contrast rhesus monkeys can only with great difficulty be trained to follow the beat at different 

tempi and then tap some hundreds of milliseconds after the beat instead of predicting it115. MMN recordings to 

onbeat and offbeat deviants show that monkeys are sensitive to the isochrony of the stimulus, but only humans to its 

metrical structure116. Studies in chimpanzees show equally poor results in beat synchronizing to metronomes117. 

Even though they may possess the ability to predict the upcoming beats, they lack tempo flexibility. Hence, 

rhythmic ability for music clearly depends on the expressivity or depth of predictive coding of the human brain.  

In sum, the study of musical rhythm demonstrates how sensory input provided by auditory rhythms (bottom-up) are 

met by predictive models such as the meter (top-down), and how this process gives rise to auditory-motor coupling 

in the human brain. The involvement of the motor system entails higher precision of the auditory predictions as 

hypothesized by prediction-based models. In the following we consider more complex musical phenomena, which 

integrate melody, harmony and rhythm and exemplify the crucial role of precision-weighted prediction error. 

Action 

A prime example of how PCM—and the concept of precision-weighted prediction error—can inform our 

understanding of music processing is the study of groove. Groove is defined as the pleasurable sensation of wanting 

to move to music118. Why do people rush to the dance floor when listening to the funky grooves on James Brown’s 

records and move to the music with such apparent pleasure119-121? Groove research primarily relates to music 

originating in the African diaspora, such as soul, funk, disco, Latin, jazz, hip hop, and other dance-related genres122. 



Typically, these styles are characterized by the presence of a rhythm section comprising percussion, bass, and chord 

instruments. This rhythm section is supposed to keep a constant beat—often taking the form of a constant 

syncopated rhythmic pattern repeating after one, two or more bars throughout longer parts of the musical form. 

Groove is a seemingly unique and ubiquitous trait of humans, which emphasizes the link between perception and 

action formulated in active inference123. In this regard, the brain’s constant evaluation of prediction error arising 

from syncopations—defined as the appearance of a beat on a metrically weak accent preceding a rest on a metrically 

strong accent124—has been proposed as one of the underlying mechanism of groove125 and as one of the reasons why 

we move to music. 

The influence of syncopations on the experience of groove can formally be operationalized through the PCRI 

(predictive coding of rhythmic incongruity) model126 where brain and behavioral responses are modelled in terms of 

the precision-weighted prediction error, i.e. the product of the metrical predictability (precision) and the stimulus 

deviations from the meter (Figure 4). Importantly, this model explains the observed inverted U-shaped relationship 

between degree of syncopation in and the experience of groove127,128, where rhythm excerpts with medium levels of 

syncopations are rated as more pleasurable—and movement inducing—than low and high levels of syncopations. 

According to PCRI, these medium syncopated rhythms optimize what the system treats as precision-weighted 

prediction error, in that both the prediction error and the precision of the prediction are at intermediate levels in 

processing hierarchy. In intermediate syncopated rhythms the brain may, according to active inference, resolve 

prediction error by either revising predictions or through action—e.g., by moving the body. Actively resolving 

prediction errors may explain our drive to reinforce the meter—by moving in time with the beat—while attenuating 

the precision of proprioceptive and auditory prediction errors. In contrast, rhythms with lower levels of syncopation 

evince little prediction error and less incentive to move. Conversely, for the highest levels of syncopations our 

mental model of the meter is less precise than the sensory evidence, precluding sensory attenuation and movement. 

The U-shaped relationship between syncopation and groove experience has been replicated independently of culture 

and rhythmic proficiency129 and using physiological measurements such as pupillometry130. It has been tested for 

rhythm and groove in a within- and between-culture approach122,127,131 and is influenced by musical expertise131.  

Optimal levels of the pleasurable sensation of wanting to move have been linked recently to neural activity in the 

brain’s motor and pleasure networks132 (Figure 4), and can thus be seen as a result of precision-weighted prediction 

error arising from a discrepancy between the syncopation in the auditory input and the motor system’s propensity 

towards isochronism97,126. Importantly, optimal groove experience was linked to activity in NAcc and the orbito-

frontal cortex (OFC) which are key regions of the reward network that is particularly sensitive to the predictability 

of the consequences of action.  

It is important to note that the relationship between the rhythmic sensory input and the schematic expectations of the 

meter is only one of several interacting predictive processes taking place contemporaneously. When rhythm section 

patterns are repeated over and over again, the brain forms short-term rhythmic expectations that—after repeated 

listening—may turn into veridical expectations about the time course of a specific piece of music49,133,134. It is 

equally important to note that the repeated patterns in many non-Western grooves, such as the Afro-Cuban tumbao, 

still supports a stable meter sensation in experienced listeners, even though they contain few onsets on the most 

salient metrical positions. It is therefore an ongoing debate to which extent the meter—which arguably is a construct 

based on a Western musical tradition, where there is a strong correlation between note frequency and metrical 

accentuation—can be considered the most important predictive reference structure in other styles of music135. 

In sum, PCM proposes that the pleasurable wanting to move is mediated by prediction-based brain mechanisms 

which optimize the syncopation related precision-weighted prediction error, thereby engaging the brain’s motor and 



reward systems. The right level of syncopation offers the opportunity to actively resolve uncertainty by moving—

which can lead to the experience of ‘pleasure’. 

Emotion & Pleasure 

A defining feature of music, closely related to theories of its evolutionary origin136, is its ability to evoke a range of 

feelings and emotions, which may be similar to everyday emotions, such as happiness, sadness, surprise, and 

nostalgia, or provide music specific experiences, such as the sensation of groove described above. Even though 

music is clearly able to express everyday emotions137,138, and adults listen to music partly to regulate their affective 

state139, it is not possible to equate valence and liking. A negatively valenced emotion such as sadness is the eighth 

most commonly reported emotion induced by music140,141. Furthermore, there is a dissociation of valence and 

pleasure ratings78 as well as a dissociation of the brain networks underlying the experienced valence and pleasure in 

sad and happy music. Liked music elicits more activity in the cortico-thalamo-striatal reward circuits than disliked 

music, regardless of whether the music is sad or happy142. Because of this apparent paradox, musical sadness is the 

subject of several recent studies143,144, and multiple theories try to explain its existence, often pointing to societal and 

individual benefits145. As an example, the catharsis process by which sad music is seen to provide relief for negative 

emotions that we all experience in a safe context is thought to promote social cohesion instead of, for instance, 

aggression. 

The different ways in which the human brain might carry out the translational process from music to emotion can be 

explained by several psychological mechanisms146 which typically fall into three categories (1) Hardwired 

responses; evoking universal survival-related responses such as for example when brainstem responses to loud 

sounds trigger fear responses; (2) Extramusical associations; where music links to some extra-musical space that 

carries the particular emotion such as evaluative conditioning, emotional contagion, visual imagery, and episodic 

memory; and (3) Anticipation; where musical structure establishes, fulfils or disappoints expectations which are set 

up within the music itself. Whereas hardwired responses and extra-musical mechanisms in principle can be elicited 

by sounds alone, anticipation depends on the organization of sounds into a meaningful succession of events—a 

defining characteristic of music that is closely connected to predictive coding. Since Leonard B. Meyer’s book7 it 

has become increasingly clear that music anticipation may induce a variety of complex emotional responses such as 

awe, surprise and discomfort, evoke laughter, foot tapping, humming, tears, and a lump in the throat9. It can give 

rise to psychogenic responses such as “shivers down the spine”, increased heart rate, and increased perspiration147. 

Functional neuroimaging studies of music and emotion show that music perception engages emotion-related brain 

networks and that music can modulate activity in limbic and paralimbic brain structures such as the amygdala, 

NAcc, hypothalamus, hippocampus, insula, cingulate cortex as well as the OFC3. An outstanding question is to what 

extent the emotion related networks involved in processing of music are mediated by universal, cultural, or 

individual mechanisms: i.e., which aspects of music perception are developed only after exposure to a specific 

musical culture. One pioneering study77 pointed towards the above chance level recognition of basic emotions—

such as happy, sad, and scared/fearful emotions in Western music—in listeners from the African Mafa tribe who 

were culturally isolated from Western music. Importantly, though, the Mafas showed much lower emotion 

recognition performance compared to Western listeners. Furthermore, in a recent large scale internet study US and 

Chinese listeners identified 13 distinct types of subjective experience associated with music in both cultures148. It is, 

however, unclear, to which extent music emotions can be universally recognized149, or how much they are a result of 

statistical learning caused by increasingly globalized music listening behaviors150. Speaking to the latter, recent 

modelling approaches highlight the importance of aligned musical priors to the cross-cultural experience of music 

emotion151,152. Predictive coding has therefore become a hot topic in the study of musical emotions. 



Musical pleasure: A particularly interesting example of predictive processing of music is the link between musical 

anticipation and pleasure, similar to the well-established difference between wanting and liking153. Music pleasure 

was originally proposed to be linked to positive reward prediction errors, which arise when what is heard proves to 

be better than expected. This was first studied through the experience of musical chills that were correlated to 

activity in the reward system154. Recently, these intense experiences have been shown to lead to dopamine release in 

the striatal system155,156 with distinct roles for the caudate (anticipation) and the NAcc (reward experience)157 and 

related to degree of emotional arousal158. The critical role of the interaction between the auditory cortex and the 

subcortical reward network for the enjoyment of music is further supported by studies on the very few people for 

whom music holds no reward value—despite normal perceptual ability and normal auditory and musical perceptual 

abilities—as well as reward-related responses in other domains159. These individuals show reduced NAcc responses 

and decreased functional connectivity between the right auditory cortex and ventral striatum—including the NAcc 

—compared to their responses on a monetary gambling task and compared to other participants with normal or 

greater than average pleasure responses to music160. 

Based on active inference formulations of predictive coding models, Gebauer et al.161 hypothesized that both 

confirmation and violations of musical expectations are associated with the hedonic response to music via 

recruitment of the mesolimbic system and its connections with the auditory cortex. This was recently supported by a 

demonstration of associations between music-induced pleasantness and musical surprises in the activity and 

connectivity patterns involving the NAcc—a central component of the mesolimbic system162. Furthermore, this 

study found surprise-related activation in the NAcc that was more pronounced among individuals who experienced 

greater music-induced pleasantness. 

A significant contribution to the understanding of the predictive coding mechanisms of musical pleasure was the 

aforementioned study by Cheung and colleagues26 who combined computational modelling of expectation in 

naturalistic chord sequences in songs from the “Billboard Hot 100” with fMRI. They found optimal pleasure to be 

associated with surprising chords in predictable sequences (high precision, high surprise) and predictable chords in 

unpredictable sequences (low precision, low surprise) and that this interaction corresponded to activity in the 

amygdala and hippocampus, whereas the NAcc only reflected precision. This is consistent with optimal zones of 

predictability and uncertainty in musical pleasure found in modelling studies163. 

Closely related to the subject of musical pleasure is the study of musical taste. Why do people with very similar 

cultural exposure to music often differ greatly in musical preferences? This is a complex question which includes 

psychological explanations164, such as the well-known mere exposure effect showing increased liking with repeated 

listening to musical pieces165. Other important determinants of musical taste are contextual factors such as 

importantly sociological reasons where music can be seen as a means to express group affiliation166,167. In addition, 

as illustrated by the studies on music anhedonia, individual factors play an important role in music perception and 

thereby musical taste. Personality as rated e.g., by the ‘Big Five’ or the Zuckermann sensation seeking score has 

therefore consistently been related to differences in musical taste168,169. Since musical pleasure depends on whether 

culturally learned musical expectancies are fulfilled or violated170, listeners often exhibit biases favoring music of 

their native culture, making yet another case for predictive coding as an underlying mechanism of musical taste164. 

In sum, predictive mechanisms in music and the brain are key to understanding complex questions related to musical 

emotion. A full description of the precision-weighted prediction errors involved in music emotions still eludes us, 

but the contribution of predictive coding is becoming clearer.  

Learning 

One of the best-studied individual factors influencing music perception is musical training and learning, which is 

integral to PCM. Playing music is a highly specialized skill that places immense demands on the underlying neural 



resources. Accordingly, several cross-sectional studies of music perception and performance have indicated training-

related changes in networks for auditory processing, motor representations, and for emotion, visual perception, and 

mental imagery, hence the study of how musicians’ brains evolve through daily training is an effective way of 

gaining insight into the brain’s remarkable potential for change during development and training171. The differences 

in musical cognitive skills between musicians and non-musicians can be correlated to differences in both brain 

structure and function. Classic studies have shown morphological differences in the fiber bundle in the corpus 

callosum172,173, increases of cerebellar volume174, grey matter volume increases in primary motor and somatosensory 

areas in the left precentral gyrus, premotor areas, and left cerebellum175,176, in areas involved in temporal structuring 

of language and music177,178 and in areas involved in auditory perception179, as well as specific effects of musical 

training on white matter development180,181. These studies are coupled with functional differences between 

musicians and non-musicians related to auditory and motor areas1,182 dependent on musical instrument183,184, practice 

habits185, level of expertise186, and the style of music they play187,188. 

These functional and structural differences which are correlated with differential music training have been taken as 

evidence for long-term influence on the brain due to active inference and learning. It is, however, not possible to 

draw conclusions about causality from cross-sectional approaches. Recently, there has been a growing amount of 

causal evidence from longitudinal approaches highlighting the influence of long- and short-term training on brain 

anatomy and function and in particular the development of auditory and motor processing, and the auditory-motor 

coupling. In a pioneering study, using direct current EEG analyses, Bangert & Altenmüller189 showed auditory-

motor coupling changes in the cortex of beginners after as little as 20 min of musical piano training. The enhanced 

coupling of brain resources for perception and action has recently been related to increased functional connectivity 

within the sensorimotor network and increased functional and structural connectivity of the auditory-motor network 

after 24 weeks of musical training190. In addition, a recent study showed increased activity in fronto-parietal and 

cerebellar areas related to storage of newly learned auditory-motor associations following 6 weeks of piano training 

when participants were merely listening to the melodies191. 

Viewed in the light of PCM, the above studies indicate that auditory-motor learning leads to increased recruitment 

and adaptation of higher-order action-related resources (top-down) related to mere listening to music (bottom-up). 

Targeting the development of auditory predictive coding longitudinally in children, Putkinen and colleagues 

followed preschool children over several years obtaining measures at ages 2–3, 4–5 and 6–7 years from children 

who attended a musical play school throughout the follow-up period and children with shorter attendance to the 

same play school192. Their results showed that the musical group activities enhanced the development of the MMN 

to timbre, melody, mistuning, and rhythm. This was taken as evidence for a facilitation of predictive coding of 

neural sound discrimination of musical training during early childhood. In later childhood between the ages of 7 and 

13 years193, the MMNs related to deviants in harmony increased more in the music group than in the control group 

despite lack of evidence for pre-training neural differences between the groups in sound discrimination. These 

results are consistent with earlier findings from cross-sectional studies of training-related enhanced precision in 

melody, harmony, and rhythm perception in children (see e.g. 194).   (se     

Several cross sectional and longitudinal neuroscientific studies point to a putative transfer effect of musical training 

to cognitive abilities and brain processing related to reading and language skills195-198, cognitive inhibition tasks172, 

and to music training as a possible supplementary tool for helping children with developmental disorders199 such as 

dyslexia200,201. While the causal relationship between musical training and music-related brain processing seems well 

established, it is still controversial to claim that music training has a positive effect on other cognitive abilities202,203. 

In sum, cross-sectional and longitudinal studies of musicians and musical learning, elucidates how predictive 

mechanisms for music are shaped by learning204-206.  It appears that the heightened demands on audio-motor 

coupling in music performance shapes brain structure, and the ability to form music-related predictions with high 

precision. The studies shed light on how the complex relationship between factors such as musical training, culture, 



listening history, music-stylistic preferences, context, personality, and genotype significantly influences the 

precision and ensuing amplitude of the explainable prediction error, as well as how the brain infers a predictive 

model from the musical context (Figure 2). These factors are also crucial for how we understand the music of 

others. In the following we propose how music and PCM can be extended to encompass the role of communication 

in dyadic interactions and hierarchical organization in groups. 

Musical communication 

Even though most of the literature reviewed in this article treats music perception in the individual brain, music is 

fundamentally a social phenomenon, in that we make, listen, and dance to music together. This makes it a fine-tuned 

instance of coordinated human interaction that involves interpersonal synchronization, social entrainment, learning, 

improvisation, and communication (see Box 2 for an example of this in other animals). Recently, the development 

of adequate research methods such as dual EEG has prompted a line of neuroscientific and behavioral research into 

musical interaction207,208. It shows how competence, social context, and mind set, such as empathy perspective 

taking, may promote interpersonal coordination209 (Figure 5). 

Musical interactions rely heavily on prediction. While playing we continuously make predictions about the sensory 

consequences of our own actions which we generally use to attenuate predicted sensations and amplify those caused 

by others 210. This this selective attention and attenuation is found throughout the animal kingdom (Box 2) but the 

more advanced ability for shared predictive processing—needed for the full experience of music—has only so far 

been found in humans. Joint action may thus be best understood within a predictive coding framework211,212, where 

the emphasis is on establishing a shared narrative and mutual predictability. Recent studies have leveraged this 

perspective looking at musical interactions when two individuals tap together. 

These paradigms typically involve two individuals who are placed in separate rooms with headphones and EEG 

equipment, finger tapping from the perspective of sensorimotor synchronization114 looking at isochronous self-paced 

tapping213, synchronization with a computer-generated metronome214,215 or with piano recordings of self and 

other216,217. Typically, dyads contain leaders and/or followers who differ in terms of the degree to which they adapt 

to or rely on the actions of their partner to perform a shared task. Behaviorally, by studying the correlation between 

the participants’ tap sequences, these studies have demonstrated that the interaction is guided by mutual efforts to 

reduce prediction error at the millisecond level, resulting in at least three different relationships between 

participants: leader-follower relations218, mutual adaptation where both participants constantly adapt their taps to 

their partner’s last tap219, and leader-leader relations which may occur if tappers are highly rhythmically skilled 

musicians and both follow their own pulse without taking the auditory input from their tapping partner into 

account220. Importantly, participants adapt differently to each other depending on their underlying internal predictive 

model. When musicians tap together with different underlying musical meters, e.g. 4/4 and 3/4, they initially 

synchronize poorly compared to when they hold identical musical meters in their minds, even though this condition 

may be the more difficult220. The brain’s predictive model directly influences the interaction dynamics. 

Differences in dyad tapping behavior—e.g. exhibiting a leader-follower, mutual adaptation, or leader-leader tapping 

pattern—may be modelled using a coupled oscillator model, which contains one internal and one external Kuramoto 

oscillator per person, consistent with how the PCM model describes bottom-up and top-down influences on neural 

processing221. This is supported by EEG data showing that dyad members exhibiting mutual adaptation behavior 

evince intra-brain neural synchronization in an action-perception related brain network to a higher degree than 

leader-leader dyads222 (Figure 5). These studies shed light on the predictive brain mechanisms underlying human 

social cognition in general—with specific implications for individuals with impaired or atypical social abilities and 

may be used for understanding musical interaction in differently organized musical ensembles in particular. 



In sum, the dyadic tapping studies illuminate how musical interaction is guided by mutual reduction of prediction 

errors; in effect rendering themselves mutually predictable. They may serve as a model for how competence, social 

context, and dyadic interactions rest on predictive brain processing in general and serve as an example of how the 

PCM model may be extended to communication of musical meaning between individuals. This neuroscience 

research opens up a window to perhaps the most challenging question about music: how music becomes 

meaningful223,224. Accordingly, we speculate that what makes music meaningful from a neuroscientific perspective is 

when musical interaction over time shapes each of the participating individuals’ attentional selection, engendering 

shared predictions of precision—and the synchronization of joint attention. This gives rise to shared musical 

expectancies which undergirds music perception, action, emotion, and learning. 

Musical improvisation: Collective musical improvisation is a particularly demanding example of musical 

communication, where musicians' predictive models need to be aligned to a large degree. This is found in many 

styles of music e.g., in jazz, in which improvisation is the central, defining element, and where one of the most 

important purposes of compositions, is to serve as a framework for soloists to improvise on. In general, musical 

improvisation is seen by many researchers as a prime example of human creativity involving moment-to-moment 

interaction between perception and action225-228. The studies on jazz improvisation have consistently implicated 

several brain regions related to movements, motor sequence generation, attention and executive control, voluntary 

selection, sensorimotor integration, multimodal sensation, emotional processing, and interpersonal 

communication229-231. These include prefrontal brain regions, such as the pre-SMA, medial prefrontal cortex 

(mPFC), IFG, dlPFC, the dorsal PMC, and the auditory cortices232,233. This is not surprising since improvisation 

involves several processes simultaneously. A jazz musician has to play, listen to what the other musicians are 

playing, evaluate how the music sounds as a whole, while at the same time choose which direction to take and 

generate new phrases to play next234. Therefore, the neuronal processes underlying musical improvisation must 

necessarily be predictive in nature as well as dynamically shifting between different networks and states. 

Recent cutting-edge neuroimaging connectivity measures—built on whole-brain computational modelling235—has 

made it possible to understand the changing predictive brain states which underlie communicative creativity in real 

time. The few studies of musical improvisation from a whole-brain connectivity perspective point to a large 

repertoire of brain states involving functional brain connectivity among frontal and parietal regions within default, 

salience, and executive brain systems225,232,236,237. Interestingly, this is similar to networks found in more general 

creativity tasks such as when participants perform the classic divergent thinking tasks—pointing towards musical 

improvisation as a model for understanding human creativity238,239. This is usually understood as carefully creating a 

sensorium in which the opportunity to resolve (i.e., explain away) prediction error is itself predictable—much like 

knowing the punchline of a joke resolves uncertainty in an entirely predictable fashion. 

Even though musical improvisation involves predictive brain processes240, there is an apparent paradox; although the 

primary purpose of the brain is to minimize prediction error, the primary purpose of improvisation is to create 

something new but aesthetically and emotionally appealing, which will then necessarily create prediction error. The 

improviser’s difficult task is therefore to balance novelty and predictability in a way that generates pleasure 

responses in listeners6 or stimulates their cognitive curiosity, in the same way that the dance music producer tries to 

hit the sweet spot of groove. 

Because of the array of skills that are necessary to improvise at a high level, jazz musicians have been shown to 

outperform other types of musicians in domain specific tasks such as ear training task performance and in 

quantitative brain measurements to melodic expectancy violation11. This is coupled with findings of more 

distributed, globally-connected cortical networks in improvising musicians compared to higher within-network 

connectivity in classical musicians in resting state fMRI241 as well as structural differences between these different 

groups of musicians242,243. In a recent study, the amplitudes of ERPs to chords that varied in expectancy were 

significantly correlated with behavioral measures of fluency and originality on a divergent thinking task, indicating a 



putative transfer effect of music skills in music to more domain-general processes244. It remains an open question 

whether increased creative skills in general can be gained through musical improvisation training, and how this 

training may alter predictive mechanisms in the brain. 

Conclusions and future avenues 

The last twenty years of research into music in the brain has created a foundational understanding of how the 

individual brain processes music through predictive coding. The coming years could be dedicated to understanding 

the way music shapes interactions, how brains predict and synchronize through music, giving rise to shared meaning 

and perhaps even states of eudaimonia. As part of this journey there are many unresolved questions. In this vein, we 

note recent development towards cross-modal paradigms and the need for cross-cultural brain experiments to 

supplement our current knowledge about music and the brain, which is almost exclusively based on studies of 

Western music and participants. Another interesting—but so far unanswered—question is whether it is possible to 

self-generate an MMN during mental imagery of music? Would it be possible to have a pleasurable groove 

experience by imagining a funky rhythm without moving? Since there would be no sensory information to compare 

the internal meter model with, PCM would hypothesize that it would be difficult to generate precise prediction 

errors at least for lower-level predictions, but this is an empirical question that could be tested. Furthermore, only a 

few studies have considered the influence of different predictive frameworks in which musical events are embedded. 

It remains to future studies to clarify the interaction between melody, harmony, and rhythm e.g., the influence of 

shifting tonalities or metric displacement of a given melody, as well as the interaction between or lyrics and melody. 

Whereas this paper has mainly focused on predictive coding related to expectations in melody, rhythm and harmony, 

there are presumably also predictive mechanisms at work associated with voice leading, instrumentation, timbre, 

soundscapes, or musical events such as when there is the so-called “drop” in electronic dance music. These may be 

related to more abstract and maybe messier auditory prediction processes in the brain. 

PCM offers a compelling but not exclusive framework for these endeavors. An alternative to PCM’s probabilistic 

approach— to modelling hidden reference structures—is an oscillator-based approach simulating perception of 

meter and tonality in terms of the resonance of coupled non-linear oscillators92,97,245,246. The oscillator approach 

gives greater weight to stimulus properties than to the top-down effects of learned musical experience but as a result 

will have difficulties in accounting for the full range of musical phenomena as PCM or other prediction based 

approaches such as the “action simulation for auditory prediction” (ASAP) hypothesis, which proposes that the 

motor system contributes to the accuracy of auditory predictions by providing a periodic temporal framework 

through these connections247,248. However, the two accounts could usefully be combined given their different levels 

of processing, with the oscillator-based approach providing the basis for internal or generative models the brain uses 

to elaborate probabilistic predictions (see Box 2 for an example). 

Overall, we believe that understanding the neuroscience of music can provide a scientific foundation for clinical 

applications of music perception and training to help shape more meaningful lives. 

  



Boxes and figure captions 

Box 1 - Predictive processing and coding 

Predictive processing (a.k.a. active inference) is a general theory of neural processing inspired by research in 

artificial intelligence, statistical physics, and systems neuroscience5,249,250. The basic idea can be traced back to the 

students of Plato, through Kant to Helmholtz251, and to theories of perception as hypothesis testing252. Enactive 

versions offer integrative accounts of action and perception253-257 by formalizing how specialized brain networks 

identify and categorize causes of sensory inputs, integrate information with other networks, and actively sample new 

stimuli250. Briefly, active inference proposes that perception, action, and learning are Bayesian processes by which 

the brain attempts to minimize hierarchical prediction errors. The figure is a schematic illustration of the 

computational architecture of neuronal message passing that underlies predictive coding in the brain. Since 

predictive processing is a generic theory of brain function, the precise architecture will vary depending on the 

functional anatomy in question. Part A of the figure shows the basic motif of connections, via which prediction 

errors are formed by comparing bottom-up input with top-down predictions. Crucially, these predictions can either 

be of the input or the precision (i.e., predictability) of that input. These are designated first and second order 

predictions, respectively. Part B of the figure describes the resulting hierarchical message passing implicit in 

predictive coding, in which forward or ascending connections convey prediction errors to higher levels, while 

backward or descending connections supply the predictions that enable the computation of prediction errors in the 

lower level. Red arrows indicate forward connections and black arrows indicate backward connections. In this 

example, unpredicted auditory input is passed forward to the auditory cortex in the form of ascending prediction 

errors (e.g., from the medial geniculate body). These prediction errors (red arrows) drive posterior expectations (e.g., 

encoded by deep pyramidal neurons) that return descending predictions (black arrows) to resolve—or explain 

away—lower-level prediction errors. At the same time, high-level expectations about the context generate 

predictions of precision (blue arrows) that modulate the gain of cells encoding prediction errors at the lower level 

(e.g., superficial pyramidal cells). This enables high levels to select the prediction errors that convey the most 

precise or predictable information (c.f., attentional selection). In short, there are two kinds of descending predictions 

in predictive coding: first-order prediction of content (black arrows) and second-order predictions of context (blue 

arrows). Here, context is simply the precision or predictability of prediction errors. The resulting precision-weighted 

prediction errors therefore mediate the selection the certain lower-level features that are consistent with higher-level 

constructs. This allows the PCM model to explain figure-ground phenomena in music such as for example selecting 

between different metrical interpretations of 3 against 4 (see main text). 

Box 2 - Hermeneutics, communication, and music 

Here, we argue that musical communication is a special case of fundamental communication between conspecifics; 

ranging from identifying a conspecific258 through to sharing conceptual narratives212,259. The predictive processing 

gloss here takes a central role in the following sense: if I assume that you are like me, and you assume I am like you, 

then there is the mutual predictability for free. In music, this corresponds to sharing tonality or meter; technically, 

this mutual predictability can be formalized as predictive coding—or more generally Bayesian belief updating based 

upon shared (exchanged) sensory signals. If we share the same generative model, our neuronal dynamics can 

harmonize and evince a form of generalized synchrony260. From a cognitive perspective, this means we are “singing 

from the same hymn sheet”. This enables an elemental theory of mind; enabling me to infer what you are ‘singing’. 

An example of communication using birdsong is shown in the figure (adapted with permission from212 (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

It shows a simulation of neuronal hermeneutics; namely, what does this song mean to a bird. Here, two birds with 

the same generative models—but different initial conditions—sing for two seconds and then listen for a response. 

The shaded areas indicate which bird is currently singing: red for the first bird and blue for the second bird. When 



singing, sensory prediction errors are attenuated so that predictions are realized through action. Conversely, when 

listening, sensory prediction errors are attended by assigning them high precision. The upper panels show the 

sonogram heard by the first bird (red lines in the lower panels, note that the timescales differ between the upper and 

the middle/lower graphs). In the left panel the birds cannot hear each other, while in the right panel they can. The 

posterior expectations for the first (red) bird are shown in red as a function of time—and the equivalent expectations 

for the second (blue) bird are shown in blue. Left panel: Because this bird can only hear itself, the sonogram reflects 

descending proprioceptive predictions based upon expectations in the higher vocal venter (HVC a premotor region, 

middle panel) and area X (a higher order area, lower panel), which projects to the auditory thalamus. The blue and 

red lines reporting expectations about underlying causes (i.e., fluctuations in amplitude and frequency) generating 

the birdsong are shown for the HVC and area X, in the middle and lower panels, respectively. Note that when the 

birds are listening, their expectations at the first level fall to zero—because they do not hear anything. However, the 

slower dynamics in area X can generate the song again after the end of each listening period. Right panel: here, the 

two birds can hear each other. In this instance, the expectations show synchrony at both the sensory and 

extrasensory hierarchical levels. Note that the sonogram is continuous over successive two second epochs—

generated alternately by the first and second bird. The key role of precision emerges again; here, in selectively 

attending to sensory streams—generated by the birds—in a coordinated way that enables turn taking and 

communication261,262. This predictive coding framework provides a powerful model for describing musical 

communication (Figure 4).  

Figure 1 - Music: from music structural constituents to perception, action, and emotion in the brain 

The figure shows the constituent parts of music and their underlying brain bases as measured with established 

electrophysiological and neuroimaging techniques. A) This panel shows the melody, harmony, and rhythm elements 

in an excerpt from The Reprise of Sgt. Pepper’s Lonely Hearts Club Band by the Beatles. B) Brain responses to 

music can be measured with neuroimaging methods, typically EEG/MEG and fMRI, which have different temporal 

resolution. The sampling for EEG/MEG is typically on the scale of 1-10 ms and for fMRI between 0.72-3 seconds. 

C) Neural markers obtained with two analysis methods for EEG/MEG data: event-related potentials (ERPs) and 

frequency tagging. . The perhaps most used ERPs are MMN and ERAN, which are markers of auditory expectancy 

violation. The MMN waveform (top panel) typically occurs around 110-250ms (here adapted from a study on 

melody perception11), while the ERAN waveform (middle panel) typically occurs around 150-200ms. The panel 

shows how the sources of these signals have been localized in slightly different regions of the brain (top and middle 

panels to the right of the waveforms, from a study on musical harmony65). Finally, another prominent method, the 

frequency tagging shows how the beat (here, an unaccented repeated pulse) and an imagined 3/4 meter are 

represented as peaks in the amplitude spectrum of the EEG (adapted from a study on musical rhythm98). D) The 

evidence for brain networks involved in music is shown with the key brain structures related to music perception, 

action, and emotion. Learning is here illustrated as the continuous update of real-time predictive brain models 

through Bayesian inference. 

Figure 2 - Predictive Coding of Music 

A) Music perception is guided by the brain’s real time predictive (a.k.a., generative) model—marked with (!)—

which is based on prior experience. The predictive model relies on cultural background, musical competence, the 

current context, and brain state including attentional and emotional state, individual traits, and innate biological 

factors. The brain constantly attempts to minimize prediction error at all levels of the brain hierarchy through the 

process of Bayesian inference. B) The music example shows a syncopated rhythm to which the brain may apply a 

4/4-meter model. The syncopated (unexpected) note provokes a prediction error between the sensory input and the 

top-down predictions. This process may lead to an impulse for action, in the form of rhythmic movement, such as 

tapping the foot, to produce proprioceptive sensations that conform to the predictive model—and attenuate 



(auditory) prediction errors that do not. The recursive arrows indicate that this process is iterated every time the 

rhythm repeats. Over time, this forms the basis of learning and evolving musical emotions, which in return modify 

action and perception. 

Figure 3 - How we may experience the same musical material with different real time predictive brain models 

A) There can be different interpretations of a simple ambiguous melody according to different tonalities, e.g., here C 

major versus A minor. The melody is compatible with both C major and A minor, and an individual’s perception of 

harmonic context relies on top-down processes that depend on prior experience, culture, competence, context, the 

current state, personal traits, or an active decision to listen from a certain viewpoint e.g., major, or minor. This may 

lead to quite different experiences of this melody e.g., rendering the melody happy (major) or sad (minor). B) 

Similarly, a polyrhythm may equally well be heard from the point of view of a 3/4 or 4/4 as the metric predictive 

model. The temporal predictions in these two cases will be very different, and the rhythm can thus be experienced as 

a waltz (3/4) or a march (4/4) even by the same individual. 

Figure 4 - Groove: the pleasurable sensation of wanting to move to music 

A) The figure shows how the inverted U-shaped relationship between rhythmic predictability and the experience of 

groove observed in groove ratings can be modelled as the product of stimulus syncopation and the precision of the 

predictions relative to prediction error, i.e., the precision of our metrical expectations126. The U-shape implies that 

there is a sweet spot at which we experience the pleasurable experience of wanting to move. Hence, the experience 

of groove is a tradeoff between stimulus complexity (amount of syncopation) and the ability to maintain a 

sufficiently stable meter for moving in time with music. B) In The Jackson’s song Blame it on the Boogie the rhythm 

of the melody quickly reaches and remains at a medium level of syncopation corresponding to the groove sweet 

spot. C) Activity in motor-, reward-, and timing-related brain structures when contrasting medium and high 

syncopation rhythms132. SMA=supplementary motor area; dPMC=dorsal premotor cortex; mOFC=medial 

orbitofrontal cortex; PFC=prefrontal cortex. 

Figure 5 – Musical interaction. 

The figure presents a model of musical communication inspired by predictive coding showing the continuous and 

reciprocal process of harmonizing expectations. A) Two improvisers (red and blue brain) may initially (marked with 

a yellow square) have different schematic expectations— i.e., they could experience different meters (a 3/4 and 4/4 

meter) and tonalities (C-major and A-minor) while playing together. B) Over the course of the interaction these 

models may become harmonized into a shared experience (marked with a green square) of a 4/4 meter and C-major 

through reciprocal predictive coding mechanisms263. C) The panel shows how a simulated interaction between two 

improvisers may evolve over time with three different types of simultaneously occurring and interacting musical 

expectations: schematic, veridical, and dynamic expectations. Initially (marked with yellow, corresponding to 5A), 

the schematic expectations (based on experience of meter and tonality) are quite different as illustrated in the music 

examples. After a while (marked with green, corresponding to 5B), when a shared predictive meter and tonality 

model has been established, the schematic expectations of the two improvisers converge. The middle and bottom 

panels illustrate that veridical expectations (of familiar musical material) and dynamic (short term) expectations will 

be more but not fully harmonized after the shared schematic expectations are established. D) A data-based example 

of synchronization of dynamic metric expectations, when two individuals from the same musical background tap a 

simple rhythm together. The connectivity-based EEG data (recurrent phase-locking patterns (PL states))222 

highlights how the information flows differently (as indicated by the arrows) in a non-adaptive as compared to an 

adaptive musician differ within a right-lateralized temporoparietal brain network consisting of the right 



somatosensory cortex, right precuneus, right supramarginal gyrus and right middle temporal cortex. Negative values 

are in blue and positive values in red. 

 

Glossary 

Pitch 

Pitch is the perceptual correlate of periodicity in sounds that allows their ordering on a frequency related musical 

scale. 

Chroma 

The pitch class containing all pitches separated by an integer number of octaves. Humans perceive a similarity 

between notes having the same chroma.  

Timbre 

Timbre, also known as “tone color” or “tone quality”, is the perceived sound quality of a sound, including its 

spectral composition and its additional noise characteristics. 

Melody 

Patterns of pitched sounds unfolding over time, in accordance with cultural conventions and constraints. 

Harmony 

The combination of multiple simultaneous pitched sounds to form a chord, and subsequent chord progressions, a 

fundamental building block of Western music. The rules of harmony are the hierarchically organized expectations 

for chord progressions. 

Consonant/dissonant intervals 

Psychologically, a harmonious sounding together of two or more notes, that is with an ‘absence of roughness’, 

‘relief of tonal tension’ or the like are considered consonant by Western listeners. Dissonance is the antonym to 

consonance. Consonant intervals are produced by frequency ratios like 1: 2 (octave) 3:2, (fifth) or 4:3 (fourth) 

respectively Dissonances are intervals produced by frequency ratios formed from numbers greater than 4.  

Harmonic cadence 

A harmonic cadence is a stereotypical pattern consisting of two or more chords that concludes a phrase, section, or a 

piece of music. It is often used to establish a sense of tonality. 

Rhythm 

Here defined as the structured arrangement of successive sound events over time, a primary parameter of musical 

structure. Rhythm perception is based on perception of duration and grouping of these events and can be achieved 

even if sounds are not discrete, such as amplitude-modulated sounds. 



Meter 

A predictive framework governing the interpretation of regularly recurring patterns and accents in rhythm. 

Tonality/Tonal Centre 

In Western music, the organization of melody and harmony in a hierarchy of relations, often pointing towards a 

referential pitch (the tonal center/the tonic).  

Atonal music  

Music that lacks a tonal center 

Schematic expectations 

Expectations of musical events based on prior knowledge of regularities and patterns in musical sequences, such as 

melodies and chords. 

Veridical expectations 

Expectations of specific events or patterns in a familiar musical sequence—such as familiarity with a particular 

musical work. 

Dynamic expectations 

Short-lived expectations which dynamically shifts due to the ongoing musical context such as when a repeated 

musical phrase causes the listener to expect similar phrases as the work continues. 

Statistical learning 

The ability to extract statistical regularities from the world to learn about the environment. 

Prediction error 

A quantity used in predictive coding to denote the difference between an observation or point estimate and its 

predicted value. Predictive coding uses precision-weighted prediction errors to update expectations that generate 

predictions. 

Information content 

The contextual unexpectedness or surprisal associated with an event. 

Entropy 

In the Shannon sense, entropy is defined as the expected surprise or information content (a.k.a., self-information). In 

other words, it is the uncertainty or unpredictability of a random variable (e.g., an event in the future). 



Precision 

The inverse variance or negative entropy of a random variable. It corresponds to a second-order statistic (e.g., 

second order moment) of the variable’s probability distribution or density. This can be contrasted with the mean or 

expectation that constitutes a first-order statistic (e.g., first-order moment). 

Active Inference 

An enactive generalization of predictive coding that casts both action and perception as minimizing surprise or 

prediction error (active inference is considered a corollary of the free energy principle). 

Frequency tagging 

A method of analyzing steady-state evoked potentials arising from stimulation or aspects of stimulation repeated at a 

fixed rate. An example of frequency tagging analysis is shown in Figure 1, panel C. 

Syncopation 

A shift of rhythmic emphasis from metrically strong accents to weak accents, a characteristic of multiple musical 

genres such as funk, jazz, and hiphop. 

Anticipation 

The subjective experience accompanying a strong expectation that a particular event will occur. 

Expectation 

Mathematically, an expectation is the expected value or mean of a random variable. 

Prediction 

The output of a model generating outcomes from their causes. In predictive coding, the prediction is generated from 

expected states of the world and compared with observed outcomes to form a prediction error. 

MEG 

Magnetoencephalography (MEG) is a neuroimaging technique that measures the magnetic fields produced by 

naturally occurring electrical activity in the brain. 

EEG 

Electroencephalography (EEG) is an electrophysiological method that measures electrical activity of the brain. 

ERP 

Event-related potentials (ERPs) are very small electrical voltages generated in the brain structures in response to 

specific events or stimuli. 



MMN 

The mismatch negativity (MMN) is a component of the auditory ERP recorded with EEG or MEG related to change 

in different sound features such as pitch, timbre, location of sound source, intensity, and rhythm. It peaks 

approximately 110-250 ms after change onset and is typically recorded while participants’ attention is distracted 

from stimulus, usually by watching a silent movie or reading a book. The amplitude and latency of the MMN 

depends on deviation magnitude such that larger deviations in the same context yield larger and faster MMNs. 

fMRI 

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that images rapid changes in blood 

oxygenation (BOLD) levels in the brain. 

Eudaimonia 

In Aristotelian ethics, a life well lived or human flourishing, in affective neuroscience often described as meaningful 

pleasure. 
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