

Safety of Empagliflozin in Patients with Type 2 Diabetes and CKD: Pooled Analysis of Placebo-Controlled Clinical Trials

Journal:	Diabetes Care
Manuscript ID	DC21-2034.R1
Manuscript Type:	Original Article: Cardiovascular and Metabolic Risk
Date Submitted by the Author:	10/3
Complete List of Authors:	Tuttle, Katherine; University of Washington Levin, Adeera; University of British Columbia Nangaku, Masaomi; The University of Tokyo Kadowaki, Takashi; The University of Tokyo; Toranomon Hospital Agarwal, Rajiv; Indiana University Hauske, Sibylle J; Ingelheim; University of Heidelberg, Vth Department of Medicine Elsäßer, Amelie; Ingelheim Ritter, Ivana; Ingelheim Steubl, Dominik; Ingelheim; Technical University Munich, Department of Nephrology Wanner, Christoph; Würzburg University Clinic Wheeler, David C.; University College London

SCHOLARONE[™] Manuscripts

Safety of Empagliflozin in Patients with Type 2 Diabetes and CKD: Pooled Analysis of Placebo-Controlled Clinical Trials

Running Title: Empagliflozin Safety in Chronic Kidney Disease

Katherine R. Tuttle, MD,¹ Adeera Levin, MD,² Masaomi Nangaku, MD,³ Takashi Kadowaki, MD,^{3,4} Rajiv Agarwal, MD,⁵ Sibylle J Hauske, MD,^{6,7} Amelie Elsäßer, PhD,⁶ Ivana Ritter, MD,⁶ Dominik Steubl, MD,^{6,8} Christoph Wanner, MD,⁹ and David C. Wheeler, MD¹⁰

¹Providence Health Care, University of Washington, Spokane, WA
²University of British Columbia, Vancouver, BC, Canada
³Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
⁴Toranomon Hospital, President, Tokyo, Japan
⁵Indiana University, Indianapolis, IN
⁶Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
⁷Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
⁸Department of Nephrology, Faculty of Medicine, Technical University Munich, Munich, Germany
⁹Würzburg University Clinic, Würzburg, Germany
¹⁰University College London, London, UK

Corresponding author

Katherine R. Tuttle, Providence Health Care, 105 W. 8th Avenue, Suite 6050W, Spokane, WA 99204, USA. T: +1 (509) 474-4345; F: +1 (509) 474-4325; E: katherine.tuttle@providence.org

Author Contributions. K.R.T. and D.C.W. reviewed/edited the initial research proposal, reviewed the data and analysis, and reviewed/edited the manuscript. A.L., M.N., R.A., S.J.H., I.R., and C.W. reviewed/edited the initial research proposal and the manuscript. A.E. conducted the statistical analysis and reviewed/edited the manuscript. D.S. reviewed the data and analysis, and reviewed/edited the manuscript.

Clinical Trial Registry.

ClinicalTrials.gov identifiers for the clinical trials included in the pooled analysis are: NCT00885118, NCT00789035, NCT00558571, NCT00749190, NCT01011868, NCT01193218, NCT01210001, NCT01177813, NCT01159600, NCT01289990, NCT01131676, NCT01164501, NCT01370005, NCT01306214, NCT01649297, NCT01947855, and NCT02589639.

Word count: 2513/4000 words (excluding tables, figures, title page, acknowledgements, and references).

Figures/Tables: 3 of max 4 tables and/or figures combined.

Abstract

OBJECTIVE

To assess safety of empagliflozin in patients with type 2 diabetes and moderate-tosevere chronic kidney disease ([CKD] category G3–4) enrolled in clinical trials.

RESEARCH DESIGN AND METHODS

This analysis pooled data from 19 randomized, placebo-controlled, phase 1–4 clinical trials and one randomized, placebo-controlled extension study in which patients received empagliflozin 10 mg or 25 mg daily. Time to first occurrence of adverse events (AEs) was evaluated using Kaplan-Meier analysis and multivariable Cox regression models.

RESULTS

Among a total of 15,081 patients who received at least one study drug dose,1522, 722, and 123 individuals were classified as CKD categories G3A, G3B, and G4, respectively, at baseline. Demographics and clinical characteristics were similar between treatment groups across categories of CKD. Rates of serious AEs, AEs leading to discontinuation, and events of special interest (including lower limb amputations and acute renal failure [ARF]) were also similar between empagliflozin and placebo across CKD subgroups. In adjusted Cox regression analyses, risks for volume depletion and ARF were similar for empagliflozin and placebo in the combined group with (CKD categoriesy G3B— and +G4) groups compared with_ and the G3A groups, __but withNotably lower observed risks (HR [95% CI]) were observed in both groups in the G3B+G4 group_for hyperkalemia (0.59 [0.37–0.96], P = 0.0323; and 0.48 [0.26–0.91], P = 0.0243,

respectively) and edema (0.47 [0.33–0.68], P < 0.0001; and 0.44 [0.28–0.68], P =

0.0002, respectively).

CONCLUSIONS

Use of empagliflozin in patients with type 2 diabetes and advanced CKD raised no new safety concerns and may have beneficial effects on development of hyperkalemia and edema.

INTRODUCTION

Type 2 diabetes is the leading cause of chronic kidney disease (CKD) worldwide (1). CKD, characterized by the presence of albuminuria and/or a decline in glomerular filtration rate (GFR), develops in approximately 40% of patients with type 2 diabetes (2; 3). During the course of CKD in diabetes, the annual decline in estimated GFR (eGFR) varies greatly depending on the severity of CKD and risk factors such as hyperglycemia, hypertension, obesity, and smoking (4). CKD attributed to diabetes is the leading global cause of kidney failure requiring dialysis treatment or a kidney transplant (5). Both eGFR <60 mL/min/1.73 m² and albuminuria are independent predictors of cardiovascular events and mortality (6; 7), meaning that patients with diabetes and concomitant CKD are a particularly high-risk population.

Interventions to prevent or slow CKD progression are essential to reduce risks for serious complications (8). Empagliflozin, a selective sodium–glucose cotransporter 2 (SGLT2) inhibitor, has been shown to reduce onset and progression of CKD in patients with type 2 diabetes (8). Current US Food and Drug Administration prescribing information allows for empagliflozin to be used in patients with eGFR \geq 30 mL/min/1.73 m² (9) (but labeling may vary from country to country). However, both kidney and cardiovascular benefits have been observed with empagliflozin in patients with heart failure and an eGFR as low as 20 mL/min/1.73 m²; irrespective of diabetes statusthese patients had heart failure and reduced ejection fraction with or without type 2 diabetes (10).

In the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME), a cardiovascular outcome trial that included patients

with type 2 diabetes and established cardiovascular disease with eGFR \geq 30 mL/min/1.73 m², empagliflozin added to the standard of care reduced cardiovascular death by 38%, hospitalization for heart failure by 35%, and all-cause mortality by 32%, compared with placebo (11); there was also a 39% reduction in incident or worsening nephropathy (12). Notably, the safety profile of empagliflozin in patients with CKD category G3 CKD (eGFR 30 to <60 mL/min/1.73 m²) was consistent with that of the overall trial population (12), and observed rates of adverse events (AEs) of particular concern in this population, such as rates of urinary tract and genital infections, volume depletion, acute renal failure (ARF), hyperkalemia, hypoglycemia, bone fracture, and lower limb amputations, were not different from rates seen in patients receiving placebo (13).

A large pooled analysis of data from the empagliflozin clinical trial program has previously reported safety analyses (14). The present analysis reports safety data <u>for</u> <u>AEs that are particularly relevant in this population in patients</u> with type 2 diabetes and moderate-to-severe CKD (CKD categor<u>iesy</u> G3–4) who were enrolled in <u>these</u> clinical trials; it includes patients with AEs that are of clinical importance in this population.

RESEARCH DESIGN AND METHODS

The pooled analysis included data from 19 randomized, placebo-controlled, phase 1–4 clinical trials (including EMPA-REG OUTCOME) and one extension study that enrolled <u>included patientsparticipants</u> from three of the 19 included trials (Supplementary Table 1). All trials enrolled patients with type 2 diabetes. The data pool comprised placebo-controlled trials in which <u>patients-participants</u> received empagliflozin 10 mg or 25 mg

daily, including some that involved dose-escalation or up_titration from the 10 mg to the 25 mg dose. No studies of open-label treatment or active comparators were included.

Safety Assessment

Safety was assessed based on investigator-reported AEs that were coded according to preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) version 21.0. Serious AEs (SAEs) were defined as any AE that resulted in death, was immediately life-threatening, resulted in persistent or marked disability/incapacity, required or prolonged inpatient hospitalization, was a congenital anomaly/birth defect, or was deemed serious for any other reason. Hypoglycemia, including all confirmed hypoglycemic events (with a glucose value ≤70 mg/dL or where assistance was required), and other defined events of special interest were identified by a search of MedDRA preferred terms. As lower limb amputations were not usually captured in AE reports, the frequency of lower limb amputations was assessed based on a medical review of the pooled safety data and AE narratives (15).

Data Analyses

The eGFR was calculated from the serum creatinine (Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI] equation 2009). AEs were assessed in all patients participants who received at least one study drug dose. Exposure-adjusted incidence rates were calculated per 100 patient-years as $100 \times n/T$, where *n* was the number of subjects participants with the event and T was the total patient-years at risk of the event. Patient-years at risk were defined as the time from the first dose of study treatment received to the onset of the first event (for patients those with an event) or to the last dose +plus 7 days (for patients those without an event). Time to first occurrence

of events consistent with edema, hyperkalemia, bone fracture, volume depletion, and ARF was evaluated by Kaplan-Meier analysis (a list of MedDRA terms, included for each outcome is shown in Supplementary Table 2). Cox regression analyses were performed for hyperkalemia, edema, volume depletion, and ARF. The Cox regression models for time to first event included the following covariables: age, baseline body mass index, baseline HbA_{1c}, treatment, sex, baseline eGFR, and a treatment-by-baseline eGFR interaction term. To check for heterogeneity, the Cox regression models were repeated with EMPA-REG OUTCOME versus other trials as a categorical class variable in the model, and with the individual study as a random effect, both in addition to the standard parameterization used in the analysis.

Data and Resource Availability

The sponsor of the EMPA-REG OUTCOME trial (Boehringer Ingelheim) is committed to responsible sharing of clinical trial reports, related clinical documents, and patient-level clinical data. Researchers are invited to submit inquiries via the Vivli Center for Global Clinical Research website (https://vivli.org).

RESULTS

Analysis Population

In total, 15,081 patients were included in the pooled analysis population. Baseline eGFR was <60 mL/min/1.73 m² in 2,367 patients (1,519 who received empagliflozin 10/25 mg; 848 who received placebo). A total of 1,522, 722, and 123 individuals were classified as having CKD categories G3A (eGFR 45 to <60 mL/min/1.73 m²), G3B (eGFR 30 to

<45 mL/min/1.73 m²), and G4 (eGFR <30 mL/min/1.73 m²), respectively, based on their baseline eGFR level... Total exposure in patient-years for the placebo and empagliflozin groups, respectively, was: CKD category G3A (eGFR 45 to <60 mL/min/1.73 m²), 1,014 and 2,021; CKD category G3B (eGFR 30 to <45 mL/min/1.73 m²), 503 and 850; CKD category G4 (eGFR <30 mL/min/1.73 m²), 50 and 89. The proportion of patients with normoalbuminuria, microalbuminuria, or macroalbuminuria was similar across the empagliflozin (66.3%, 24.8%, and 7.7%, respectively) and placebo (64.5%, 25.6%, and 8.9%, respectively) treatment groups. Demographics and baseline characteristics were similar between patients with eGFR <60 mL/min/1.73 m² in the empagliflozin and placebo groups, across these CKD categories (Table 1).

Adverse Events

Rates of SAEs, AEs leading to discontinuation, and AEs of special interest (including lower limb amputations and ARF) were_generally-similar between empagliflozin and placebo across CKD subgroups (Table 2 and Supplementary Fig. 1). However, the overall frequency of genital infections was higher among those receiving empagliflozin compared with placebo. Notably, the (but incidence rates of genital infections were progressively lower across CKD categories 3A, 3B, and 4). Unadjusted time to first occurrence of hyperkalemia, ARF, volume depletion, and bone fracture revealed no significant differences between treatment groups, while edema was less common in patients receiving empagliflozin than placebo (Fig. 1 and Supplementary Fig. 2). Forlan adjusted Cox regression modelsanalyses, the G4 group was too small for statistical analyses and was therefore combinedpooled with the G3B group (CKD categories)

<u>G3B–G4</u>). <u>S</u>eimilar risks for volume depletion and ARF persisted for empagliflozin and placebo in the groups with eGFR <45 mL/min/1.73 m² (CKD categoriesy G3B–G4CKD categories G3B and+G4) and 45 to <60 mL/min/1.73 m² (CKD category G3A), but lower risks (hazard ratio [95% CI]), were observed with empagliflozin for hyperkalemia (0.59 [0.37–0.96], P = 0.0323; and 0.48 [0.26–0.91], P = 0.0243, respectively) and edema (0.47 [0.33–0.68], P < 0.0001; and 0.44 [0.28–0.68], P = 0.0002, respectively) compared with placebo (Supplementary Table 3). The G4 group was too small for statistical analysis and was therefore pooled with the G3B group for the adjusted analyses. Testing for heterogeneity across trials in these models showed only marginal differences with regard to the hazard ratios and their 95% CIs for the risks of volume depletion, ARF, hyperkalemia, and edema (Supplementary Tables 4 and 5).

CONCLUSIONS

This comprehensive safety analysis of a large pool of patients with advanced CKD who received empagliflozin in clinical trials found no overall differences in rates of SAEs, AEs leading to discontinuation, or events of special interest with empagliflozin treatment versus placebo, irrespective of baseline eGFR. An exception was genital infections, a well-recognized side effect of the SGLT2 inhibitor class (16-18), which- occurred more frequently in the empagliflozin than in the placebo group, but with lower incidence rates in advanced CKD categories. This is could be due at least in part to lesser urinary glucose excretion at lower levels of eGFR (19). Indeed, poorly controlled diabetes, typically accompanied by higher urinary glucose excretion, independently increases risk of genital infections in patients with T2D (20). Current prescribing information for

empagliflozin notes that a higher incidence of adverse reactions related to reduced renal function may be seen in patients with impaired renal function<u>CKD</u> (9). However, while the risk of ARF was seen to increase with decreasing kidney function in both treatment groups, observed <u>ARF</u> rates were similar overall between empagliflozin and placebo across CKD subgroups. Notably, a meta-analysis of SGLT2 inhibitor studies, which included cardiovascular outcome trials and the Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial that was conducted in patients with type 2 diabetes and CKD, demonstrated a 25% reduction in the risk of acute kidney injury (21).

The safety findings with empagliflozin in this pooled analysis may support the use of SGLT2 inhibitors in patients with type 2 diabetes and advanced CKD. In CREDENCE (22), canagliflozin showed consistent benefit across CKD subgroups. The Effect of Dapagliflozin on Renal Outcomes and Cardiovascular Mortality in Patients with Chronic Kidney Disease (DAPA-CKD) trial (23) further demonstrated that dapagliflozin reduced risks of CKD outcomes, as well as heart failure events, cardiovascular death, and all-cause mortality, in a trial population of patients with CKD, a third of whom did not have type 2 diabetes. The American Diabetes Association (24) currently recommends that for patients with type 2 diabetes, CKD, and albuminuria, SGLT2 inhibitor therapy is preferred, but that either an SGLT2 inhibitor or a GLP-1 receptor agonist is suitable for patients with type 2 diabetes and CKD in the absence of albuminuria. The Kidney Disease: Improving Global Outcomes guidelines for diabetes and CKD (25) also recommend an SGLT2 inhibitor as first-line treatment in patients with CKD and type 2 diabetes ×30 mL/min/1.73 m², regardless of the presence or absence

Page 12 of 77

of albuminuria. However, the current label recommendations for eGFR levels at which SGLT2 inhibitors can be initiated or should be discontinued differ between different agents, and the labeling for each agent may differ between countries and regions. Of note, no new safety concerns were seen in the small group of patients with eGFR <30 mL/min/1.73m² included in this analysis, supporting the safety of SGLT2 inhibitors in advanced CKD. This aligns with findings from the Empagliflozin Outcome Trial in Patients with Chronic Heart Failure with Reduced Ejection Fraction (EMPEROR-Reduced) that included patients with heart failure and eGFR level as low as 20 mL/min/1.73m² (10). CKD was present in 53% of this trial population.

Patients with advanced CKD, especially those receiving renin-angiotensin system blockers, are prone to hyperkalemia. Notably, a lower risk for hyperkalemia was observed in patients receiving empagliflozin versus placebo in the present analysis. Dapagliflozin has also shown no signal for higher risk of hyperkalemia (26; 27). Moreover, hyperkalemia risk was mitigated by canagliflozin in the CREDENCE trial, and there were no meaningful effects of canagliflozin on serum potassium or related AEs across the Canagliflozin Cardiovascular Assessment Study (CANVAS) program (28; 29). This favorable effect of- SGLT2 inhibitors on serum potassium in patients with type 2 diabetes and CKD might permit the broader use of drugs associated with hyperkalemia, such as mineralocorticoid-receptor antagonists (30; 31).

In the pooled data set analyzed for the current study, there was no association between empagliflozin and increased risk of bone fracture or lower limb amputations. The pattern for these events with empagliflozin was similar to that seen with placebo. Indeed, a similar risk of volume depletion and ARF was seen in the empagliflozin and

placebo groups in this analysis, but a reduction in the occurrence of edema was reported in patients receiving empagliflozin versus those in the placebo group. Like empagliflozin, no causal association between dapagliflozin and risk of fractures or LLA has been confirmed (26; 27). However, the CANVAS Program reported a two-fold increased risk of lower limb amputation and a 26% increased risk of bone fractures associated with canagliflozin (32). While this initially resulted in a black box warning to highlight the potentially increased risk of lower limb amputation for canagliflozin (18), these findings were not reproduced in the subsequent CREDENCE trial, and the black box warning has since been removed (33).

In this pooled safety analysis, we did not assess diabetic ketoacidosis by CKD subgroup as the incidence of this AE was too low. However, in a previous pooled analysis, overall observed rates of diabetic ketoacidosis were comparable across empagliflozin and placebo treatment groups (14). A similar result was seen in the DAPA-CKD trial, where diabetic ketoacidosis was not seen in any participant receiving dapagliflozin and was reported in only two receiving placebo (23).

Strengths of this analysis include the large sample size and inclusion only of patients randomized to double-blind treatment. The dataset was derived from placebo-controlled clinical trials at different stages of development, and it included patients in each of the low eGFR categories for analysis. Baseline characteristics were balanced between the different treatment groups and time on treatment was similar. Limitations of this pooled analysis arise from the varying durations, designs, and populations of the included studies. Additionally, by merging the patients treated with empagliflozin 10 mg or 25 mg into a single group, this analysis cannot elaborate on potential dose effects for AEs or

SAEs. In other studies, however, the safety profile was similar for both doses (14). There were two studies (contributing a total of 432 participants) in which the dose of empagliflozin was escalated from 10 to 25 mg daily (N=157 participants), or up-titrated from 10 to 25 mg -in patients with insufficient glycaemic control only (N=275 participants). Data from these participants are included in the EMPA 10/25 mg results. Renal impairment as exclusion criteria at baseline in both of these trials was defined as eGFR <45 ml/min/1.73m², compared to <30 ml/min/1.73m² in EMPA-REG OUTCOME. Findings regarding patients with CKD category G4 should be interpreted with caution owing to the small sample size. Finally, statistical analyses were not adjusted for multiple comparisons.

In conclusion, use of empagliflozin in patients with type 2 diabetes and advanced CKD raised no new safety concerns, and may have beneficial effects on development of hyperkalemia and edema. Dedicated SGLT2i trials investigating treatment effects in CKD populations may provide further data to confirm these observations, particularly in patients with CKD category 4 where limited data are currently available. Nevertheless, careful consideration of the current prescribing information for empagliflozin is recommended in this population. To build on the promising findings to date, a dedicated kidney disease outcome trial of empagliflozin versus placebo, enrolling over 6600 patients with and without diabetes, including those with low levels of kidney function with and without albuminuria, is under way (EMPA-KIDNEY; NCT03594110) (7).

Acknowledgments. The authors thank Audrey Koitka-Weber, an employee of Boehringer Ingelheim at the time of the research, for her contributions to the analysis.

All authors were involved in the writing of this manuscript and reviewed and approved the final draft. DS is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Andy Shepherd of Envision Scientific Solutions.

Duality of Interest. This pooled analysis was funded by the Boehringer Ingelheim & Eli Lilly and Company Diabetes Alliance. **K.R.T.** is supported by research grants from NIH/NCATS 4UL1TR00426-10 and NIH/NIDDK 1U2CDK114886-01, 5UM1DK100846-03, 2U01DK10086-07, 1U54DK083912, 2UC4DK101108-02, and CDC grant 75D301-19-Q-69877 and has served as a consultant or advisor for Eli Lilly and Company, Boehringer Ingelheim, AstraZeneca, Gilead, Goldfinch Bio, Novo Nordisk, Bayer, and Janssen. A.L. has received research support from Amgen, Astra Zeneca, Janssen, Merck, Otsuka, Canadian Institute for Health Research, Kidney Foundation of Canada, Heart and Stroke Foundation of Canada, and the Michael Smith Health Research Foundation. M.N. has received lecture fees from Kyowa Kirin, Astellas, GSK K.K., Daiichi Sankyo, Mitsubishi Tanebe, Chugai, Torii, JT, Alexion, Akebia, MSD K.K. and Boehringer Ingelheim; and research support from JT, Kyowa Kirin, Astellas, Ono, Takeda, Daiichi Sankyo, Mitsubishi Tanabe, Chugai, Torii, Kissei and Boehringer Ingelheim. T.K. reports consulting/lecture fees from Abbott, Asahi Mutual Life Insurance, Astellas Pharma Inc., AstraZeneca K.K., Bayer, Boehringer Ingelheim, Cosmic, Daiichi Sankyo Company, Limited, Eli Lilly and Company, Fujifilm, Fujirebio, Johnson & Johnson Co., Ltd., Kissei Pharmaceutical Co., Ltd., Kowa Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Medical Review, Medscape Education, Medtronic Sofamor

Danek, Mitsubishi Tanabe Pharma Corporation, MSD, Musashino Foods, Nipro, Novartis International AG, Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd., Sanofi S.A., Sanwa Kagaku Kenkyusho Co., Ltd., Sumitomo Dainippon, Taisho Pharmaceutical Co., Ltd., Takeda Pharmaceutical Company Limited and Terumo, grants from Astellas Pharma Inc., Daiichi Sankyo Company, Limited, Eli Lilly and Company, Kissei Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Corporation, MSD, Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd., Sanofi S.A., Sumitomo Dainippon, Taisho Pharmaceutical Co., Ltd. and Takeda Pharmaceutical Company Limited, contracted research from AstraZeneca K.K. and Takeda Pharmaceutical Company Limited, joint research from Daiichi Sankyo Company, Limited, and endowed chair from Asahi Mutual Life Insurance, Boehringer Ingelheim, Kowa Co., Ltd., Mitsubishi Tanabe Pharma Corporation, MSD, Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd and Takeda Pharmaceutical Company Limited. R.A. is supported by research grants from NIH 5R01HL126903 and VA 5I01 CX001753 and has served as a consultant for Boehringer Ingelheim, Bayer, Akebia, AstraZeneca, Reata, Relypsa, Chinook, and Janssen. S.J.H., A.E., I.R., and D.S. are employees of Boehringer Ingelheim. C.W. has received honoraria for consultancy and lecturing from AstraZeneca, Bayer, Boehringer Ingelheim, GlaxoSmithKline, Eli Lilly and Company, Merck Sharp & Dome, Mundipharma, Sanofi Genzyme, and Takeda. D.W. has received honoraria and consultancy fees from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, GlaxoSmithKline, Janssen, Napp, Mundipharma, Mitsubishi, Ono, Pharmacosmos Reata and Vifor Fresenius.

Prior Presentation. An earlier version of this analysis was presented, in part, at the77th Scientific Sessions of the American Diabetes Association, San Diego, CA, June 9–13, 2017.

References

1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017;12:2032-2045

2. Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes 2014;7:415

3. De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S, Russo G, Rossi MC, Nicolucci A, Guida P, Pontremoli R, Group AM-AS. Predictors of chronic kidney disease in type 2 diabetes: a longitudinal study from the AMD Annals initiative. Medicine (Baltimore) 2016;95:e4007

4. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1-150

5. 2019 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. [article online], 2019. Available from

https://www.usrds.org/2019/view/USRDS_2019_ES_final.pdf. Accessed 03/12/2020

6. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:2073-2081

7. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-1305

8. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, Broedl UC. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebocontrolled trial. The lancet Diabetes & endocrinology 2014;2:369-384

9. Boehringer Ingelheim (Canada) Ltd. Prescribing information: JARDIANCE[®] (empagliflozin) tablets, for oral use. Revised April 2020., 2020

10. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Bohm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F, Investigators EM-RT. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020;383:1413-1424

11. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, Investigators E-RO. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117-2128

12. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323-334

13. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, Woerle HJ, Broedl UC, von Eynatten M, Zinman B, Investigators E-RO. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 2018;137:119-129

14. Kohler S, Zeller C, Iliev H, Kaspers S. Safety and tolerability of empagliflozin in patients with type 2 diabetes: pooled analysis of phase I-III clinical trials. Advances in therapy 2017;34:1707-1726

15. Inzucchi SE, Iliev H, Pfarr E, Zinman B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 2018;41:e4-e5

16. Johnsson KM, Ptaszynska A, Schmitz B, Sugg J, Parikh SJ, List JF. Vulvovaginitis and balanitis in patients with diabetes treated with dapagliflozin. J Diabetes Complications 2013;27:479-484

17. Rosiak M, Grzeszczak S, Kosior DA, Postula M. Emerging treatments in type 2 diabetes: focus on canagliflozin. Ther Clin Risk Manag 2014;10:683-689

18. Schernthaner G, Drexel H, Moshkovich E, Zilaitiene B, Martinka E, Czupryniak L, Varkonyi T, Janez A, Ducena K, Lalic K, Tankova T, Prazny M, Smircic Duvnjak L, Sukhareva O, Sourij H. SGLT2 inhibitors in T2D and associated comorbidities differentiating within the class. BMC Endocr Disord 2019;19:64

19. Macha S, Mattheus M, Halabi A, Pinnetti S, Woerle HJ, Broedl UC. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab 2014;16:215-222

20. Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S. Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 2014;103:373-381

21. Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott C, Bompoint S, Levin A, Jardine MJ. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. The lancet Diabetes & endocrinology 2019;7:845-854

22. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW, Investigators CT. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295-2306

23. Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjostrom CD, Toto RD, Langkilde AM, Wheeler DC, Committees D-CT, Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383:1436-1446

24. American Diabetes Association. 11. Microvascular complications and foot care: *Standards of Medical Care in Diabetes-2021*. Diabetes Care 2021;44:S151-S167

25. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int Suppl 2020;98:S1-S115

26. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS, Investigators D-T. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347-357

27. Yavin Y, Mansfield TA, Ptaszynska A, Johnsson K, Parikh S, Johnsson E. Effect of the SGLT2 inhibitor dapagliflozin on potassium levels in patients with type 2 diabetes mellitus: a pooled analysis. Diabetes Ther 2016;7:125-137

28. Oshima M, Jardine MJ, Agarwal R, Bakris G, Cannon CP, Charytan DM, de Zeeuw D, Edwards R, Greene T, Levin A, Lim SK, Mahaffey KW, Neal B, Pollock C, Rosenthal N, Wheeler DC, Zhang H, Zinman B, Perkovic V, Heerspink HJL. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int 2021;99:999-1009

29. Weir MR, Slee A, Sun T, Balis D, Oh R, de Zeeuw D, Perkovic V. Effects of canagliflozin on serum potassium in the CANagliflozin cardioVascular Assessment Study (CANVAS) Program. Clin Kidney J 2020;14:1396-1402

30. Agarwal R, Joseph A, Anker SD, Filippatos G, Rossing P, Ruilope LM, Pitt B,
Kolkhof P, Scott C, Lawatscheck R, Wilson DJ, Bakris GL, Investigators F-D.
Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J Am Soc
Nephrol 2022;33:225-237

31. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G, Investigators F-D. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 2020;383:2219-2229

32. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, Group CPC. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644-657

33. Jardine MJ, Zhou Z, Mahaffey KW, Oshima M, Agarwal R, Bakris G, Bajaj HS, Bull S, Cannon CP, Charytan DM, de Zeeuw D, Di Tanna GL, Greene T, Heerspink HJL, Levin A, Neal B, Pollock C, Qiu R, Sun T, Wheeler DC, Zhang H, Zinman B, Rosenthal N, Perkovic V, Investigators CS. Renal, cardiovascular, and safety outcomes of canagliflozin by baseline kidney function: a secondary analysis of the CREDENCE randomized trial. J Am Soc Nephrol 2020;31:1128-1139

	CKD Category						
Characteristic	G3A (eGFF	R 45 to <60)	G3B (eGFF	R 30 to <45)	G4 (eGFF	R 15 to <30)	
	PBO	EMPA 10/25 mg	PBO	EMPA 10/25 mg	PBO	EMPA 10/25 mg	
N	519	1,003	277	445	52	71	
Male, <i>n</i> (%)	358 (69.0)	653 (65.1)	167 (60.3)	277 (62.2)	30 (57.7)	41 (57.7)	
Age, years, mean ± SD	67.1 ± 8.1	67.1 ± 7.5	67.9 ± 8.2	67.7 ± 8.7	63.7 ± 10.7	68.8 ± 9.1	
Race, <i>n</i> (%)*							
White	369 (71.1)	730 (72.8)	195 (70.4)	308 (69.2)	24 (46.2)	47 (66.2)	
Asian	118 (22.7)	210 (20.9)	70 (25.3)	109 (24.5)	28 (53.8)	22 (31.0)	
Black/African American	29 (5.6)	52 (5.2)	8 (2.9)	24 (5.4)	θ	1 (1.4)	
Ethnicity, n (%)							
Not Hispanic/Latino	4 50 (86.7)	864 (86.1)	245 (88.4)	384 (86.3)	50 (96.2)	65 (91.5)	
Hispanic/Latino	68 (13.1)	138 (13.8)	33 (11.6)	61 (13.7)	2 (3.8)	6 (8.5)	
HbA ₁₆ , % (mmol/mol), mean ± SD	8.0 ± 0.8	8.01 ± 0.8	8.1 ± 0.9	8.1 ± 0.9	8.1 ± 0.9	7.95 ± 0.91	
	(64 ± 9)	(64 ± 9)	(65 ± 10)	(65 ± 10)	(65 ± 10)	(63 ± 10)	
Body mass index, kg/m ² , mean ± SD	30.6 ± 5.2	31.0 ± 5.5	31.1 ± 5.8	31.3 ± 5.6	-30.9 ± 5.7	29.5 ± 4.9	
Blood pressure, mmHg, mean ± SD [‡]							
Systolic	136.7 ± 18.7	135.9 ± 17.1	135.0 ± 17.7	137.4 ± 18.0	143.0 ± 23.9	137.5 ± 21.0	
Diastolic	75.4 ± 10.2	75.5 ± 10.1	73.6 ± 10.2	74.0 ± 9.9	75.2 ± 12.4	72.6 ± 10.8	
Heart failure, <i>n</i> (%) [≢]	51 (9.8)	114 (11.4)	31 (11.2)	53 (11.9)	8 (15.4)	7 (9.9)	
Hypertension, <i>n</i> (%)	4 86 (93.6)	950 (94.7)	270 (97.5)	4 26 (95.7)	51 (98.1)	68 (95.8)	
Concomitant medications, n (%)							
Metformin	352 (67.8)	662 (66.0)	118 (42.6)	198 (44.5)	9 (17.3)	35 (49.3)	
Insulin	268 (51.6)	502 (50.0)	172 (62.1)	276 (62.0)	38 (73.1)	53 (74.6)	
ACE inhibitors/ARBs	424 (81.7)	843 (84.0)	224 (80.9)	361 (81.1)	36 (69.2)	51 (71.8)	
Loop diuretics	109 (21)	195 (19.4)	91 (32.9)	151 (33.9)	24 (46.2)	35 (49.3)	
Statins	370 (71.3)	752 (75.0)	198 (71.5)	315 (70.8)	4 0 (76.9)	52 (73.2)	
Aspirin	387 (74.6)	739 (73.7)	209 (75.5)	333 (74.8)	34 (65.4)	51 (71.8)	

Table 1—Demographics and baseline characteristics of the pooled analysis population with eGFR <60 mL/min/1.73 m² (N = 2367)

*Race identified as other (American Indian/Alaska Native/Hawaiian/Pacific Islander), or race information not recorded, for seven patients in the CKD category G3A group.

[†]Baseline systolic BP/diastolic BP readings were missing for one patient in the empagliflozin 10 mg group. [‡]A history of heart failure at baseline was identified by narrow SMQ 20000004.

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate (given in mL/min/1.73m²); HbA_{1c}, glycated hemoglobin; PBO, placebo; SD, standard deviation.

Category	Place	ebo	Empagliflozin 10/25 mg		
	n/N (%)	Rate/100 p-y (95% CI)	n/N (%)	Rate/100 p-y (95% Cl)	
Serious AEs					
Overall	1,204/4,904 (24.6)	18.61 (17.57–19.69)	2,161/10,177 (21.2)	15.52 (14.88–16.19)	
G3A	209/519 (40.3)	27.18 (23.62–31.12)	354/1,003 (35.3)	22.46 (20.19–24.93)	
G3B	113/277 (40.8)	31.16 (25.69–37.46)	177/445 (39.8)	26.81 (23.00–31.06)	
G4	1 3/52 (25.0)	` <u>29.93</u> (15.94–51.17)	28/71 (39.4)	` 41.31 (27.46–59.69)	
AEs leading to trea	atment discontinuation				
Overall	565/4,904 (11.5)	7.40 (6.80–8.04)	1,033/10,177 (10.2)	6.43 (6.05–6.84)	
G3A	100/519 (19.3)	10.37 (8.44–12.61)	179/1,003 (17.8)	9.26 (7.95–10.72)	
G3B	62/277 (22.4)	13.10 (10.05–16.79)	113/445 (25.4)	14.17 (11.68–17.03)	
G4	10/52 (19.2)	21.47 (10.30–39.47)	14/71 (19.7)	15.70 (8.59–26.35)	
Hypoglycemia					
Overall	1,045//4,904 (21.3)	16.32 (15.35–17.34)	2,067/10,177 (20.3)	15.69 (15.02–16.38)	
G3 A	177/519 (34.1)	24.02 (20.62–27.83)	268/1,003 (26.7)	17.20 (15.21–19.39)	
G3B	91/277 (32.9)	24.23 (19.51–29.75)	141/445 (31.7)	22.85 (19.24–26.95)	
G4	23/52 (44.2)	67.50 (42.80–101.23)	24/71 (33.8)	39.34 (25.21–58.52)	
Urinary tract infection	on				
Overall	691/4,904 (14.1)	9.70 (8.99–10.46)	1,382/10,177 (13.6)	9.27 - (8.79-9.77)	
G3A	84/519 (16.2)	9.18 (7.32–11.37)	200/1,003 (19.9)	11.36 (9.84–13.05)	
G3B	62/277 (22.4)	13.69 (10.49–17.54)	101/445 (22.7)	13.98 (11.39–16.99)	
G4	5/52 (9.6)	10.24 (3.32–23.89)	18/71 (25.4)	25.19 (14.93–39.81)	
Genital infection				· · · · ·	
Overall	75/4,904 (1.5)	0.85 (0.75–1.20)	565/10,177 (5.6)	3.54 (3.25–3.84)	
G3A	8/519 (1.5)	0.79 (0.34–1.56)	54/1,003 (5.4)	2.75 (2.06–3.58)	
G3B	2/277 (0.7)	0.39 (0.05–1.43)	15/445 (3.4)	1.78 (1.00–2.94)	
G4	0/52 (0)	θ	1/71 (1.4)	1.13 (0.03–6.28)	

Volume depletion				
Overall	147/4,904 (3.0)	1.89 (1.60–2.23)	320/10,177 (3.1)	1.97 (1.76–2.20)
G3A	33/519 (6.4)	3.38 (2.32–4.74)	63/1,003 (6.2)	3.22 (2.48–4.12)
G3B	19/277 (6.9)	3.95 (2.38–6.17)	28/445 (6.3)	3.43 (2.28–4.95)
G4	6/52 (11.5)	12.04 (4.42–26.19)	7/71 (9.8)	8.22 (3.30–16.93)
Edema				
Overall	278/4,904 (5.7)	3.67 (3.25–4.12)	269/10,177 (2.6)	1.65 (1.46–1.86)
G3A	51/519 (9.8)	5.37 (4.00–7.06)	4 9/1003 (4.9)	2.48 (1.84–3.28)
G3B	38/277 (13.7)	8.12 (5.75–11.15)	36/445 (8.1)	4.4 2 (3.10–6.12)
G4	5/52 (9.6)	11.77 (3.82–27.47)	1/71 (1.4)	1.11 (0.03–6.18)
Bone fracture		4 = 0		
Overall	134/4,904 (2.7)	1.72 (1.44–2.04)	233/10,177 (2.3)	1.42 (1.25–1.62)
G3A	26/519 (5.0)	2.60 (1.79–3.81) 2.40	37/1,003 (3.7)	1.86 (1.31–2.56) 2.40
G3B	12/277 (4.3) 1/52 (1.9)	2.40 (1.24–4.19) 2.06	20/445 (4.5) 0/71 (0)	2.40 (1.46–3.70) 0
G4	102 (1.0)	2.00 (0.05–11.49)	0111(0)	♥
<u>Falls</u>				
Overall	87/4,904 (1.8)	1.11 (0.89–1.37)	197/10,177 (1.9)	1.20 (1.04–1.38)
G3 A	17/519 (3.3)	1.70 (0.99–2.72)	30/1,003 (3.0)	1.50 (1.01–2.15)
G3B	10/277 (3.6)	2.01 (0.97–3.70)	11/445 (2.5)	1.30 (0.65–2.33)
G4	1/52 (1.9)	2.06 (0.05–11.49)	1/71 (1.4)	1.11 (0.03–6.18)
Hyperkalemia				
Overall	90/4,904 (1.8)	1.15 (0.92–1.41)	119/10,177 (1.2)	0.72 (0.60–0.86)
G3A	23/519 (4.4)	2.31 (1.47–3.47)	37/1,003 (3.7)	1.86 (1.31–2.56)
G3B	18/277 (7.6)	3.73 (2.21–5.89)	15/445 (3.4)	1.78 (1.00–2.93)
G4	3/52 (0)	6.16 (1.27–17.99)	1/71 (1.4)	1.11 (0.03–6.21)
Acute renal failure		. /		. ,
Overall	169/4,904 (3.4)	2.18	291/10,177 (1.2)	1.78

G3A	4 8/519 (9.2)	4 .92 (3.63–6.53)	86/1,003 (8.6)	4.44 (3.55–5.48)
G3B	37/277 (13.3)	7.85 (5.53–10.83)	57/445 (12.8)	7.22 (5.47–9.35)
G 4	6/52 (11.5)	13.87 (5.09–30.19)	9/71 (12.7)	10.85 (4.96–20.59)
Lower limb amputation	<u>)n</u>			
Overall	4 6/4,904 (0.9)	0.52 (0.38–0.69)	95/10,177 (0.1)	0.52 (0.42–0.63)
G3A	11/519 (2.1)	0.92 (0.46–1.65)	17/1,003 (1.7)	0.74 (0.43–1.18)
G3B	7/277 (2.5)	1.22 (0.49–2.51)	10/445 (2.2)	0.95 (0.46–1.75)
G4	0/52 (0)	θ	4/71 (5.6)	3.59 (0.98–9.20)

Table 2—Patients with at least one adverse event by CKD category at baseline

Exposure-adjusted incidence rates were calculated per 100 patient-years as $100 \times n/T$, where *n* was the number of participants with the event and T was the total patient-years at risk of the event. Patient-years at risk were defined as the time from the first dose of study treatment to the onset of the first event (for patients with an event) or to the last dose +7 days (for those without an event). eGFR (mL/min/1.73 m²) calculated using the CKD-EPI equation. CKD categories by eGFR (mL/min/1.73 m²): G3A, 45 to <60; G3B, 30 to <45; G4, 15 to <30. Frequencies n/N = patients with ≥1 event/all patients who received ≥1 dose of study drug.

*Data from the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME) trial only. No amputations were reported for the four patients with missing baseline eGFR values.

AE, adverse event; CKD, chronic kidney disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; eGFR, estimated glomerular filtration rate; p-y, patient-years.

CKD category	<u>G3A</u>	<u>G3A</u>	<u>G3B</u>	<u>G3B</u>	<u>G4</u>	<u>G4</u>
<u>eGFR (mL/min/1.73m²)</u>	<u>45 to <60</u>	<u>45 to <60</u>	<u>30 to <45</u>	<u>30 to <45</u>	<u>15 to <30</u>	<u>15 to <30</u>
Study treatment	<u>PBO</u>	<u>EMPA</u> <u>10/25 mg</u>	<u>PBO</u>	<u>EMPA</u> 10/25 mg	<u>PBO</u>	<u>EMPA</u> 10/25 mg
<u>N</u>	<u>519</u>	<u>1,003</u>	<u>277</u>	<u>445</u>	<u>52</u>	<u>71</u>
<u>Male, <i>n</i> (%)</u>	<u>358 (69.0)</u>	<u>653 (65.1)</u>	<u>167 (60.3)</u>	<u>277 (62.2)</u>	<u>30 (57.7)</u>	<u>41 (57.7)</u>
<u>Age, years, mean ±SD</u>	<u>67.1 ±8.1</u>	<u>67.1 ±7.5</u>	<u>67.9 ±8.2</u>	<u>67.7 ±8.7</u>	<u>63.7 ±10.7</u>	<u>68.8 ±9.1</u>
<u>Race, <i>n</i> (%)*</u>						

White	369 (71.1)	730 (72.8)	195 (70.4)	308 (69.2)	24 (46.2)	47 (66.2)
Asian	<u>118 (22.7)</u>	<u>210 (20.9)</u>	<u>70 (25.3)</u>	<u>109 (24.5)</u>	<u>28 (53.8)</u>	<u>22 (31.0)</u>
Black/African American	<u>29 (5.6)</u>	<u>52 (5.2)</u>	<u>8 (2.9)</u>	<u>24 (5.4)</u>	<u>0</u>	<u>1 (1.4)</u>
Ethnicity, <i>n</i> (%)						
Not Hispanic/Latino	<u>450 (86.7)</u>	<u>864 (86.1)</u>	<u>245 (88.4)</u>	<u>384 (86.3)</u>	<u>50 (96.2)</u>	<u>65 (91.5)</u>
Hispanic/Latino	<u>68 (13.1)</u>	<u>138 (13.8)</u>	<u>33 (11.6)</u>	<u>61 (13.7)</u>	<u>2 (3.8)</u>	<u>6 (8.5)</u>
<u>HbA_{1c}, % (mmol/mol), mean ±SD</u>	<u>8.0 ±0.8</u>	<u>8.01 ±0.8</u>	<u>8.1 ±0.9</u>	<u>8.1 ±0.9</u>	<u>8.1 ±0.9</u>	<u>7.95 ±0.91</u>
	<u>(64 ±9)</u>	<u>(64 ±9)</u>	<u>(65 ±10)</u>	<u>(65 ±10)</u>	<u>(65 ±10)</u>	<u>(63 ±10)</u>
Body mass index, kg/m², mean ±SD	<u>30.6 ±5.2</u>	<u>31.0 ±5.5</u>	<u>31.1 ±5.8</u>	<u>31.3 ±5.6</u>	<u>30.9 ±5.7</u>	<u>29.5 ±4.9</u>
Blood pressure, mmHg, mean ±SD [†]						
Svetelie	<u>136.7</u>	<u>135.9</u>	<u>135.0</u>	<u>137.4</u>	<u>143.0</u>	<u>137.5</u>
Systolic	<u>±18.7</u>	<u>±17.1</u>	<u>±17.7</u>	<u>±18.0</u>	<u>±23.9</u>	<u>±21.0</u>
<u>Diastolic</u>	<u>75.4 ±10.2</u>	<u>75.5 ±10.1</u>	<u>73.6 ±10.2</u>	<u>74.0 ±9.9</u>	<u>75.2 ±12.4</u>	<u>72.6 ±10.8</u>
<u>Heart failure, <i>n</i> (%)[‡]</u>	<u>51 (9.8)</u>	<u>114 (11.4)</u>	<u>31 (11.2)</u>	<u>53 (11.9)</u>	<u>8 (15.4)</u>	<u>7 (9.9)</u>
<u>Hypertension, <i>n</i> (%)</u>	<u>486 (93.6)</u>	<u>950 (94.7)</u>	<u>270 (97.5)</u>	<u>426 (95.7)</u>	<u>51 (98.1)</u>	<u>68 (95.8)</u>
Concomitant medications, n (%)						
Metformin	<u>352 (67.8)</u>	<u>662 (66.0)</u>	<u>118 (42.6)</u>	<u>198 (44.5)</u>	<u>9 (17.3)</u>	<u>35 (49.3)</u>
<u>Insulin</u>	<u>268 (51.6)</u>	<u>502 (50.0)</u>	<u>172 (62.1)</u>	<u>276 (62.0)</u>	<u>38 (73.1)</u>	<u>53 (74.6)</u>
ACE inhibitors/ARBs	<u>424 (81.7)</u>	<u>843 (84.0)</u>	<u>224 (80.9)</u>	<u>361 (81.1)</u>	<u>36 (69.2)</u>	<u>51 (71.8)</u>
Loop diuretics	<u>109 (21)</u>	<u>195 (19.4)</u>	<u>91 (32.9)</u>	<u>151 (33.9)</u>	<u>24 (46.2)</u>	<u>35 (49.3)</u>
<u>Statins</u>	<u>370 (71.3)</u>	<u>752 (75.0)</u>	<u>198 (71.5)</u>	<u>315 (70.8)</u>	<u>40 (76.9)</u>	<u>52 (73.2)</u>
Aspirin	<u>387 (74.6)</u>	739 (73.7)	209 (75.5)	<u>333 (74.8)</u>	<u>34 (65.4)</u>	<u>51 (71.8)</u>

<u>Table 1—Demographics and baseline characteristics of the pooled analysis population</u> with eGFR <60 mL/min/1.73 m² (N = 2367)

*Race identified as other (American Indian/Alaska Native/Hawaiian/Pacific Islander), or race information not recorded, for seven patients in the CKD category G3A group.

[†]Baseline systolic BP/diastolic BP readings were missing for one patient in the empagliflozin 10 mg group. [‡]A history of heart failure at baseline was identified by narrow SMQ 20000004.

<u>ACE</u>, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate (given in mL/min/1.73m²); HbA_{1c}, glycated hemoglobin; PBO, placebo; SD, standard deviation.

Category	Placebo	<u>Placebo</u>	EMPA 10/25 mg	EMPA 10/25 mg
	<u>n/N (%)</u>	<u>Rate/100 p-y</u> (95% CI)	<u>n/N (%)</u>	<u>Rate/100 p-y</u> (95% CI)
Serious AEs				
<u>Overall</u>	<u>1,204/4,904 (24.6)</u>	<u>18.61</u> (17.57–19.69)	<u>2,161/10,177</u> (21.2)	<u>15.52</u> (14.88–16.19)
<u>G3A</u>	<u>209/519 (40.3)</u>	<u>27.18</u> (23.62–31.12)	<u>354/1,003 (35.3)</u>	<u>22.46</u> (20.19–24.93)
<u>G3B</u>	<u>113/277 (40.8)</u>	<u>31.16</u> (25.69–37.46)	<u>177/445 (39.8)</u>	<u>26.81</u> (23.00–31.06)
<u>G4</u>	<u>13/52 (25.0)</u>	<u>29.93</u> (15.94–51.17)	<u>28/71 (39.4)</u>	<u>41.31</u> (27.46–59.69)
AEs leading to treatment discontinuation				
Overall	<u>565/4,904 (11.5)</u>	<u>7.40</u> (6.80–8.04)	<u>1,033/10,177</u> (10.2)	<u>6.43</u> (6.05–6.84)
<u>G3A</u>	<u>100/519 (19.3)</u>	<u>10.37</u> (8.44–12.61)	<u>179/1,003 (17.8)</u>	<u>9.26</u> (7.95–10.72)
<u>G3B</u>	<u>62/277 (22.4)</u>	<u>13.10</u> (10.05–16.79)	<u>113/445 (25.4)</u>	<u>14.17</u> (11.68–17.03)
<u>G4</u>	<u>10/52 (19.2)</u>	<u>21.47</u> (10.30–39.47)	<u>14/71 (19.7)</u>	<u>15.70</u> (8.59–26.35)
<u>Hypoglycemia</u>				
<u>Overall</u>	<u>1,045//4,904</u> (21.3)	<u>16.32</u> (15.35–17.34)	<u>2,067/10,177</u> (20.3)	<u>15.69</u> (15.02–16.38)
<u>G3A</u>	177/519(34.1)	<u>24.02</u> (20.62–27.83)	268/1,003 (26.7)	<u>17.20</u> (15.21–19.39)
<u>G3B</u>	<u>91/277 (32.9)</u>	<u>24.23</u> (19.51–29.75)	<u>141/445 (31.7)</u>	<u>22.85</u> (19.24–26.95)
<u>G4</u>	<u>23/52 (44.2)</u>	<u>67.50</u> (42.80–101.23)	<u>24/71 (33.8)</u>	<u>39.34</u> (25.21–58.52)
Urinary tract infection				
Overall	<u>691/4,904 (14.1)</u>	<u>9.70</u> (8.99–10.46)	<u>1,382/10,177</u> (13.6)	<u>9.27</u> (8.79–9.77)
<u>G3A</u>	<u>84/519 (16.2)</u>	<u>9.18</u> (7.32–11.37)	<u>200/1,003 (19.9)</u>	<u>11.36</u> (9.84–13.05)
<u>G3B</u>	<u>62/277 (22.4)</u>	<u>13.69</u> (10.49–17.54)	<u>101/445 (22.7)</u>	<u>13.98</u> (11.39–16.99)
<u>G4</u>	<u>5/52 (9.6)</u>	<u>10.24</u> (3.32–23.89)	<u>18/71 (25.4)</u>	<u>25.19</u> (14.93–39.81)
Genital infection				
Overall	<u>75/4,904 (1.5)</u>	<u>0.85</u> (0.75–1.20)	<u>565/10,177 (5.6)</u>	<u>3.54</u> (3.25–3.84)
<u>G3A</u>	<u>8/519 (1.5)</u>	<u>0.79</u> (0.34–1.56)	<u>54/1,003 (5.4)</u>	<u>2.75</u> (2.06–3.58)

<u>G3B</u>	<u>2/277 (0.7)</u>	<u>0.39</u> (0.05–1.43)	<u>15/445 (3.4)</u>	<u>1.78</u> (1.00–2.94)
<u>G4</u>	<u>0/52 (0)</u>	<u>0</u>	<u>1/71 (1.4)</u>	<u>1.13</u> (0.03–6.28)
Volume depletion				
<u>Overall</u>	<u>147/4,904 (3.0)</u>	<u>1.89</u> (1.60–2.23)	<u>320/10,177 (3.1)</u>	<u>1.97</u> (1.76–2.20)
<u>G3A</u>	<u>33/519 (6.4)</u>	<u>3.38</u> (2.32–4.74)	<u>63/1,003 (6.2)</u>	<u>3.22</u> (2.48–4.12)
<u>G3B</u>	<u>19/277 (6.9)</u>	<u>3.95</u> (2.38–6.17)	<u>28/445 (6.3)</u>	<u>3.43</u> (2.28–4.95)
<u>G4</u>	<u>6/52 (11.5)</u>	<u>12.04</u> (4.42–26.19)	<u>7/71 (9.8)</u>	<u>8.22</u> (3.30–16.93)
<u>Edema</u>				
Overall	<u>278/4,904 (5.7)</u>	<u>3.67</u> (3.25–4.12)	<u>269/10,177 (2.6)</u>	<u>1.65</u> <u>(1.46–1.86)</u>
<u>G3A</u>	<u>51/519 (9.8)</u>	<u>5.37</u> (4.00–7.06)	<u>49/1003 (4.9)</u>	<u>2.48</u> (1.84–3.28)
<u>G3B</u>	<u>38/277 (13.7)</u>	<u>8.12</u> (5.75–11.15)	<u>36/445 (8.1)</u>	<u>4.42</u> (3.10–6.12)
<u>G4</u>	<u>5/52 (9.6)</u>	<u>11.77</u> (3.82–27.47)	<u>1/71 (1.4)</u>	<u>1.11</u> (0.03–6.18)
Bone fracture				
<u>Overall</u>	<u>134/4,904 (2.7)</u>	<u>1.72</u> (1.44–2.04)	<u>233/10,177 (2.3)</u>	<u>1.42</u> (1.25–1.62)
<u>G3A</u>	<u>26/519 (5.0)</u>	<u>2.60</u> (1.79–3.81)	<u>37/1,003 (3.7)</u>	<u>1.86</u> (1.31–2.56)
<u>G3B</u>	<u>12/277 (4.3)</u>	<u>2.40</u> (1.24–4.19)	<u>20/445 (4.5)</u>	<u>2.40</u> (1.46–3.70)
<u>G4</u>	<u>1/52 (1.9)</u>	<u>2.06</u> (0.05–11.49)	<u>0/71 (0)</u>	<u>0</u>
<u>Falls</u>				
Overall	<u>87/4,904 (1.8)</u>	<u>1.11</u> (0.89–1.37)	<u>197/10,177 (1.9)</u>	<u>1.20</u> (1.04–1.38)
<u>G3A</u>	<u>17/519 (3.3)</u>	<u>1.70</u> (0.99–2.72)	<u>30/1,003 (3.0)</u>	<u>1.50</u> (1.01–2.15)
<u>G3B</u>	<u>10/277 (3.6)</u>	<u>2.01</u> (0.97–3.70)	<u>11/445 (2.5)</u>	<u>1.30</u> (0.65–2.33)
<u>G4</u>	<u>1/52 (1.9)</u>	<u>2.06</u> (0.05–11.49)	<u>1/71 (1.4)</u>	<u>1.11</u> (0.03–6.18)
Hyperkalemia		E.		<u> </u>
Overall	<u>90/4,904 (1.8)</u>	<u>1.15</u> (0.92–1.41)	<u>119/10,177 (1.2)</u>	<u>0.72</u> (0.60–0.86)
<u>G3A</u>	<u>23/519 (4.4)</u>	<u>2.31</u> (1.47–3.47)	<u>37/1,003 (3.7)</u>	<u>1.86</u> (1.31–2.56)
<u>G3B</u>	<u>18/277 (7.6)</u>	<u>3.73</u> (2.21–5.89)	<u>15/445 (3.4)</u>	<u>1.78</u> (1.00–2.93)

<u>G4</u>	<u>3/52 (0)</u>	<u>6.16</u> (1.27–17.99)	<u>1/71 (1.4)</u>	<u>1.11</u> (0.03–6.21)
Acute renal failure				
<u>Overall</u>	<u>169/4,904 (3.4)</u>	<u>2.18</u> (1.86–2.53)	<u>291/10,177 (1.2)</u>	<u>1.78</u> (1.58–2.00)
<u>G3A</u>	<u>48/519 (9.2)</u>	<u>4.92</u> (3.63–6.53)	<u>86/1,003 (8.6)</u>	<u>4.44</u> (3.55–5.48)
<u>G3B</u>	<u>37/277 (13.3)</u>	<u>7.85</u> (5.53–10.83)	<u>57/445 (12.8)</u>	<u>7.22</u> (5.47–9.35)
<u>G4</u>	<u>6/52 (11.5)</u>	<u>13.87</u> (5.09–30.19)	<u>9/71 (12.7)</u>	<u>10.85</u> (4.96–20.59)
Lower limb amputation				
<u>Overall</u>	<u>46/4,904 (0.9)</u>	<u>0.52</u> (0.38–0.69)	<u>95/10,177 (0.1)</u>	<u>0.52</u> (0.42–0.63)
<u>G3A</u>	<u>11/519 (2.1)</u>	<u>0.92</u> (0.46–1.65)	<u>17/1,003 (1.7)</u>	<u>0.74</u> (0.43–1.18)
<u>G3B</u>	<u>7/277 (2.5)</u>	<u>1.22</u> (0.49–2.51)	<u>10/445 (2.2)</u>	<u>0.95</u> (0.46–1.75)
<u>G4</u>	<u>0/52 (0)</u>	<u>0</u>	<u>4/71 (5.6)</u>	<u>3.59</u> (0.98–9.20)

Table 2—Patients with at least one adverse event by CKD category at baseline

Exposure-adjusted incidence rates were calculated per 100 patient-years as $100 \times n/T$, where *n* was the number of participants with the event and T was the total patient-years at risk of the event. Patient-years at risk were defined as the time from the first dose of study treatment to the onset of the first event (for patients with an event) or to the last dose +7 days (for those without an event). eGFR (mL/min/1.73 m²) calculated using the CKD-EPI equation. CKD categories by eGFR (mL/min/1.73 m²): G3A, 45 to <60; G3B, 30 to <45; G4, 15 to <30. Frequencies n/N = patients with ≥1 event/all patients who received ≥1 dose of study drug.

*Data from the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME) trial only. No amputations were reported for the four patients with missing baseline eGFR values.

<u>AE, adverse event; CKD, chronic kidney disease; CKD-EPI, Chronic Kidney Disease Epidemiology</u> <u>Collaboration; eGFR, estimated glomerular filtration rate; p-y, patient-years.</u>

[Figure legend]

Figure 1—Kaplan-Meier estimates of time to first event of (*A*) hyperkalemia, (*B*) volume depletion, (*C*) edema, and (*D*) ARF in patients with eGFR <45 mL/min/1.73 m² (left-hand side) and 45 to <60 mL/min/1.73 m² (right-hand side).

eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration

(CKD-EPI) equation. ARF, acute renal failure; eGFR, estimated glomerular filtration

rate.

Safety of Empagliflozin in Patients with Type 2 Diabetes and CKD: Pooled Analysis of Placebo-Controlled Clinical Trials

Running Title: Empagliflozin Safety in Chronic Kidney Disease

Katherine R. Tuttle, MD,¹ Adeera Levin, MD,² Masaomi Nangaku, MD,³ Takashi Kadowaki, MD,^{3,4} Rajiv Agarwal, MD,⁵ Sibylle J Hauske, MD,^{6,7} Amelie Elsäßer, PhD,⁶ Ivana Ritter, MD,⁶ Dominik Steubl, MD,^{6,8} Christoph Wanner, MD,⁹ and David C. Wheeler, MD¹⁰

¹Providence Health Care, University of Washington, Spokane, WA
²University of British Columbia, Vancouver, BC, Canada
³Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
⁴Toranomon Hospital, President, Tokyo, Japan
⁵Indiana University, Indianapolis, IN
⁶Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
⁷Vth Department of Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
⁸Department of Nephrology, Faculty of Medicine, Technical University Munich, Munich, Germany
⁹Würzburg University Clinic, Würzburg, Germany
¹⁰University College London, London, UK

Corresponding author

Katherine R. Tuttle, Providence Health Care, 105 W. 8th Avenue, Suite 6050W, Spokane, WA 99204, USA. T: +1 (509) 474-4345; F: +1 (509) 474-4325; E: katherine.tuttle@providence.org

Author Contributions. K.R.T. and D.C.W. reviewed/edited the initial research proposal, reviewed the data and analysis, and reviewed/edited the manuscript. A.L., M.N., R.A., S.J.H., I.R., and C.W. reviewed/edited the initial research proposal and the manuscript. A.E. conducted the statistical analysis and reviewed/edited the manuscript. D.S. reviewed the data and analysis, and reviewed/edited the manuscript.

Clinical Trial Registry.

ClinicalTrials.gov identifiers for the clinical trials included in the pooled analysis are: NCT00885118, NCT00789035, NCT00558571, NCT00749190, NCT01011868, NCT01193218, NCT01210001, NCT01177813, NCT01159600, NCT01289990, NCT01131676, NCT01164501, NCT01370005, NCT01306214, NCT01649297, NCT01947855, and NCT02589639.

Word count: 2513/4000 words (excluding tables, figures, title page, acknowledgements, and references).

Figures/Tables: 3 of max 4 tables and/or figures combined.

Abstract

OBJECTIVE

To assess safety of empagliflozin in patients with type 2 diabetes and moderate-tosevere chronic kidney disease ([CKD] category G3–4) enrolled in clinical trials.

RESEARCH DESIGN AND METHODS

This analysis pooled data from 19 randomized, placebo-controlled, phase 1–4 clinical trials and one randomized, placebo-controlled extension study in which patients received empagliflozin 10 mg or 25 mg daily. Time to first occurrence of adverse events (AEs) was evaluated using Kaplan-Meier analysis and multivariable Cox regression models.

RESULTS

Among a total of 15,081 patients who received at least one study drug dose,1522, 722, and 123 individuals were classified as CKD categories G3A, G3B, and G4, respectively, at baseline. Demographics and clinical characteristics were similar between treatment groups across categories of CKD. Rates of serious AEs, AEs leading to discontinuation, and events of special interest (including lower limb amputations and acute renal failure [ARF]) were also similar between empagliflozin and placebo across CKD subgroups. In adjusted Cox regression analyses, risks for volume depletion and ARF were similar for empagliflozin and placebo in the combined group with CKD categories G3B–G4 and the G3A group. Notably lower risks (HR [95% CI]) were observed in both groups for hyperkalemia (0.59 [0.37–0.96], P = 0.0323; and 0.48 [0.26–0.91], P = 0.0243, respectively) and edema (0.47 [0.33–0.68], P < 0.0001; and 0.44 [0.28–0.68], P = 0.0002, respectively).

CONCLUSIONS

Use of empagliflozin in patients with type 2 diabetes and advanced CKD raised no new safety concerns and may have beneficial effects on development of hyperkalemia and edema.

INTRODUCTION

Type 2 diabetes is the leading cause of chronic kidney disease (CKD) worldwide (1). CKD, characterized by the presence of albuminuria and/or a decline in glomerular filtration rate (GFR), develops in approximately 40% of patients with type 2 diabetes (2; 3). During the course of CKD in diabetes, the annual decline in estimated GFR (eGFR) varies greatly depending on the severity of CKD and risk factors such as hyperglycemia, hypertension, obesity, and smoking (4). CKD attributed to diabetes is the leading global cause of kidney failure requiring dialysis treatment or a kidney transplant (5). Both eGFR <60 mL/min/1.73 m² and albuminuria are independent predictors of cardiovascular events and mortality (6; 7), meaning that patients with diabetes and concomitant CKD are a particularly high-risk population.

Interventions to prevent or slow CKD progression are essential to reduce risks for serious complications (8). Empagliflozin, a selective sodium–glucose cotransporter 2 (SGLT2) inhibitor, has been shown to reduce onset and progression of CKD in patients with type 2 diabetes (8). Current US Food and Drug Administration prescribing information allows for empagliflozin to be used in patients with eGFR ≥30 mL/min/1.73 m² (9) (but labeling may vary from country to country). However, both kidney and cardiovascular benefits have been observed with empagliflozin in patients with heart failure and an eGFR as low as 20 mL/min/1.73 m², irrespective of diabetes status (10).

In the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME), a cardiovascular outcome trial that included patients with type 2 diabetes and established cardiovascular disease with eGFR

Page 38 of 77

≥30 mL/min/1.73 m², empagliflozin added to the standard of care reduced cardiovascular death by 38%, hospitalization for heart failure by 35%, and all-cause mortality by 32%, compared with placebo (11); there was also a 39% reduction in incident or worsening nephropathy (12). Notably, the safety profile of empagliflozin in patients with CKD category G3 (eGFR 30 to <60 mL/min/1.73 m²) was consistent with that of the overall trial population (12), and observed rates of adverse events (AEs) of particular concern in this population, such as rates of urinary tract and genital infections, volume depletion, acute renal failure (ARF), hyperkalemia, hypoglycemia, bone fracture, and lower limb amputations, were not different from rates seen in patients receiving placebo (13).

A large pooled analysis of data from the empagliflozin clinical trial program has previously reported safety analyses (14). The present analysis reports safety data for AEs that are particularly relevant in this population with type 2 diabetes and moderateto-severe CKD (CKD categories G3–4) who were enrolled in these clinical trials.

RESEARCH DESIGN AND METHODS

The pooled analysis included data from 19 randomized, placebo-controlled, phase 1–4 clinical trials (including EMPA-REG OUTCOME) and one extension study that included participants from three of the 19 included trials (Supplementary Table 1). All trials enrolled patients with type 2 diabetes. The data pool comprised placebo-controlled trials in which participants received empagliflozin 10 mg or 25 mg daily, including some that involved dose-escalation or up-titration from the 10 mg to the 25 mg dose. No studies of open-label treatment or active comparators were included.

Safety Assessment

Safety was assessed based on investigator-reported AEs that were coded according to preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) version 21.0. Serious AEs (SAEs) were defined as any AE that resulted in death, was immediately life-threatening, resulted in persistent or marked disability/incapacity, required or prolonged inpatient hospitalization, was a congenital anomaly/birth defect, or was deemed serious for any other reason. Hypoglycemia, including all confirmed hypoglycemic events (with a glucose value ≤70 mg/dL or where assistance was required), and other defined events of special interest were identified by a search of MedDRA preferred terms. As lower limb amputations were not usually captured in AE reports, the frequency of lower limb amputations was assessed based on a medical review of the pooled safety data and AE narratives (15).

Data Analyses

The eGFR was calculated from the serum creatinine (Chronic Kidney Disease Epidemiology Collaboration [CKD-EPI] equation 2009). AEs were assessed in all participants who received at least one study drug dose. Exposure-adjusted incidence rates were calculated per 100 patient-years as $100 \times n/T$, where *n* was the number of participants with the event and T was the total patient-years at risk of the event. Patientyears at risk were defined as the time from the first dose of study treatment received to the onset of the first event (for those with an event) or to the last dose plus 7 days (for those without an event). Time to first occurrence of events consistent with edema, hyperkalemia, bone fracture, volume depletion, and ARF was evaluated by Kaplan-Meier analysis (MedDRA terms, Supplementary Table 2). Cox regression analyses were performed for hyperkalemia, edema, volume depletion, and ARF. The Cox

regression models for time to first event included the following covariables: age, baseline body mass index, baseline HbA_{1c}, treatment, sex, baseline eGFR, and a treatment-by-baseline eGFR interaction term. To check for heterogeneity, the Cox regression models were repeated with EMPA-REG OUTCOME versus other trials as a categorical class variable in the model, and with the individual study as a random effect, both in addition to the standard parameterization used in the analysis.

Data and Resource Availability

The sponsor of the EMPA-REG OUTCOME trial (Boehringer Ingelheim) is committed to responsible sharing of clinical trial reports, related clinical documents, and patient-level clinical data. Researchers are invited to submit inquiries via the Vivli Center for Global Clinical Research website (https://vivli.org).

RESULTS

Analysis Population

In total, 15,081 patients were included in the pooled analysis population. Baseline eGFR was <60 mL/min/1.73 m² in 2,367 patients (1,519 who received empagliflozin 10/25 mg; 848 who received placebo). A total of 1,522, 722, and 123 individuals were classified as having CKD categories G3A (eGFR 45 to <60 mL/min/1.73 m²), G3B (eGFR 30 to <45 mL/min/1.73 m²), and G4 (eGFR <30 mL/min/1.73 m²), respectively. Total exposure in patient-years for the placebo and empagliflozin groups, respectively, was: CKD category G3A, 1,014 and 2,021; CKD category G3B, 503 and 850; CKD category G4, 50 and 89. The proportion of patients with normoalbuminuria, microalbuminuria, or

macroalbuminuria was similar across the empagliflozin (66.3%, 24.8%, and 7.7%, respectively) and placebo (64.5%, 25.6%, and 8.9%, respectively) treatment groups. Demographics and baseline characteristics were similar between patients with eGFR <60 mL/min/1.73 m² in the empagliflozin and placebo groups, across these CKD categories (Table 1).

Adverse Events

Rates of SAEs, AEs leading to discontinuation, and AEs of special interest (including lower limb amputations and ARF) were similar between empagliflozin and placebo across CKD subgroups (Table 2 and Supplementary Fig. 1). However, the overall frequency of genital infections was higher among those receiving empagliflozin compared with placebo. Notably, the incidence rates of genital infections were progressively lower across CKD categories 3A, 3B, and 4. Unadjusted time to first occurrence of hyperkalemia, ARF, volume depletion, and bone fracture revealed no significant differences between treatment groups, while edema was less common in patients receiving empagliflozin than placebo (Fig. 1 and Supplementary Fig. 2). For adjusted Cox regression models, the G4 group was too small for statistical analyses and was therefore combined with the G3B group (CKD categories G3B–G4). Similar risks for volume depletion and ARF persisted for empagliflozin and placebo in the groups with eGFR <45 mL/min/1.73 m² (CKD categories G3B–G4) and 45 to <60 mL/min/1.73 m² (CKD category G3A), but lower risks (hazard ratio [95% CI]), were observed with empagliflozin for hyperkalemia (0.59 [0.37–0.96], P = 0.0323; and 0.48 [0.26-0.91], P = 0.0243, respectively) and edema (0.47 [0.33-0.68], P < 0.0001; and

0.44 [0.28–0.68], P = 0.0002, respectively) compared with placebo (Supplementary Table 3). Testing for heterogeneity across trials in these models showed only marginal differences with regard to the hazard ratios and their 95% CIs for the risks of volume depletion, ARF, hyperkalemia, and edema (Supplementary Tables 4 and 5).

CONCLUSIONS

This comprehensive safety analysis of a large pool of patients with advanced CKD who received empagliflozin in clinical trials found no overall differences in rates of SAEs, AEs leading to discontinuation, or events of special interest with empagliflozin treatment versus placebo, irrespective of baseline eGFR. An exception was genital infections, a well-recognized side effect of the SGLT2 inhibitor class (16-18), which occurred more frequently in the empagliflozin than in the placebo group, but with lower incidence rates in advanced CKD categories. This could be due at least in part to lesser urinary glucose excretion at lower levels of eGFR (19). Indeed, poorly controlled diabetes, typically accompanied by higher urinary glucose excretion, independently increases risk of genital infections in patients with T2D (20). Current prescribing information for empagliflozin notes that a higher incidence of adverse reactions related to reduced renal function may be seen in patients with CKD (9). However, while the risk of ARF was seen to increase with decreasing kidney function in both treatment groups, ARF rates were similar between empagliflozin and placebo across CKD subgroups. Notably, a meta-analysis of SGLT2 inhibitor studies, which included cardiovascular outcome trials and the Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial that was conducted in patients with

type 2 diabetes and CKD, demonstrated a 25% reduction in the risk of acute kidney injury (21).

The safety findings with empagliflozin in this pooled analysis may support the use of SGLT2 inhibitors in patients with type 2 diabetes and advanced CKD. In CREDENCE (22), canagliflozin showed consistent benefit across CKD subgroups. The Effect of Dapagliflozin on Renal Outcomes and Cardiovascular Mortality in Patients with Chronic Kidney Disease (DAPA-CKD) trial (23) further demonstrated that dapagliflozin reduced risks of CKD outcomes, as well as heart failure events, cardiovascular death, and allcause mortality, in a trial population of patients with CKD, a third of whom did not have type 2 diabetes. The American Diabetes Association (24) currently recommends that for patients with type 2 diabetes, CKD, and albuminuria, SGLT2 inhibitor therapy is preferred, but that either an SGLT2 inhibitor or a GLP-1 receptor agonist is suitable for patients with type 2 diabetes and CKD in the absence of albuminuria. The Kidney Disease: Improving Global Outcomes guidelines for diabetes and CKD (25) also recommend an SGLT2 inhibitor as first-line treatment in patients with CKD and type 2 diabetes who have eGFR \geq 30 mL/min/1.73 m², regardless of the presence or absence of albuminuria. However, the current label recommendations for eGFR levels at which SGLT2 inhibitors can be initiated or should be discontinued differ between different agents, and the labeling for each agent may differ between countries and regions. Of note, no new safety concerns were seen in the small group of patients with eGFR <30 mL/min/1.73m² included in this analysis, supporting the safety of SGLT2 inhibitors in advanced CKD. This aligns with findings from the Empagliflozin Outcome Trial in Patients with Chronic Heart Failure with Reduced Ejection Fraction (EMPEROR-

Reduced) that included patients with heart failure and eGFR level as low as 20 mL/min/1.73m² (10). CKD was present in 53% of this trial population.

Patients with advanced CKD, especially those receiving renin-angiotensin system blockers, are prone to hyperkalemia. Notably, a lower risk for hyperkalemia was observed in patients receiving empagliflozin versus placebo in the present analysis. Dapagliflozin has also shown no signal for higher risk of hyperkalemia (26; 27). Moreover, hyperkalemia risk was mitigated by canagliflozin in the CREDENCE trial, and there were no meaningful effects of canagliflozin on serum potassium or related AEs across the Canagliflozin Cardiovascular Assessment Study (CANVAS) program (28; 29). This favorable effect of SGLT2 inhibitors on serum potassium in patients with type 2 diabetes and CKD might permit the broader use of drugs associated with hyperkalemia, such as mineralocorticoid-receptor antagonists (30; 31).

In the pooled data set analyzed for the current study, there was no association between empagliflozin and increased risk of bone fracture or lower limb amputations. The pattern for these events with empagliflozin was similar to that seen with placebo. Indeed, a similar risk of volume depletion and ARF was seen in the empagliflozin and placebo groups in this analysis, but a reduction in the occurrence of edema was reported in patients receiving empagliflozin versus those in the placebo group. Like empagliflozin, no causal association between dapagliflozin and risk of fractures or LLA has been confirmed (26; 27). However, the CANVAS Program reported a two-fold increased risk of lower limb amputation and a 26% increased risk of bone fractures associated with canagliflozin (32). While this initially resulted in a black box warning to highlight the potentially increased risk of lower limb amputation for canagliflozin (18),

these findings were not reproduced in the subsequent CREDENCE trial, and the black box warning has since been removed (33).

In this pooled safety analysis, we did not assess diabetic ketoacidosis by CKD subgroup as the incidence of this AE was too low. However, in a previous pooled analysis, overall observed rates of diabetic ketoacidosis were comparable across empagliflozin and placebo treatment groups (14). A similar result was seen in the DAPA-CKD trial, where diabetic ketoacidosis was not seen in any participant receiving dapagliflozin and was reported in only two receiving placebo (23).

Strengths of this analysis include the large sample size and inclusion only of patients randomized to double-blind treatment. The dataset was derived from placebo-controlled clinical trials at different stages of development, and it included patients in each of the low eGFR categories for analysis. Baseline characteristics were balanced between the different treatment groups and time on treatment was similar. Limitations of this pooled analysis arise from the varying durations, designs, and populations of the included studies. Additionally, by merging the patients treated with empagliflozin 10 mg or 25 mg into a single group, this analysis cannot elaborate on potential dose effects for AEs or SAEs. In other studies, however, the safety profile was similar for both doses (14). There were two studies (contributing a total of 432 participants) in which the dose of empagliflozin was escalated from 10 to 25 mg daily (N=157 participants), or up-titrated from 10 to 25 mg in patients with insufficient glycaemic control only (N=275 participants). Data from these participants are included in the EMPA 10/25 mg results. Renal impairment as exclusion criteria at baseline in both of these trials was defined as eGFR <45 ml/min/1.73m², compared to <30 ml/min/1.73m² in EMPA-REG OUTCOME.

Findings regarding patients with CKD category G4 should be interpreted with caution owing to the small sample size. Finally, statistical analyses were not adjusted for multiple comparisons.

In conclusion, use of empagliflozin in patients with type 2 diabetes and advanced CKD raised no new safety concerns, and may have beneficial effects on development of hyperkalemia and edema. Dedicated SGLT2i trials investigating treatment effects in CKD populations may provide further data to confirm these observations, particularly in patients with CKD category 4 where limited data are currently available. Nevertheless, careful consideration of the current prescribing information for empagliflozin is recommended in this population. To build on the promising findings to date, a dedicated kidney disease outcome trial of empagliflozin versus placebo, enrolling over 6600 patients with and without diabetes, including those with low levels of kidney function with and without albuminuria, is under way (EMPA-KIDNEY; NCT03594110) (7).

Acknowledgments. The authors thank Audrey Koitka-Weber, an employee of Boehringer Ingelheim at the time of the research, for her contributions to the analysis. All authors were involved in the writing of this manuscript and reviewed and approved the final draft. DS is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Medical writing assistance, supported financially by Boehringer Ingelheim, was provided by Andy Shepherd of Envision Scientific Solutions. **Duality of Interest.** This pooled analysis was funded by the Boehringer Ingelheim & Eli Lilly and Company Diabetes Alliance. **K.R.T.** is supported by research grants from

NIH/NCATS 4UL1TR00426-10 and NIH/NIDDK 1U2CDK114886-01. 5UM1DK100846-03, 2U01DK10086-07, 1U54DK083912, 2UC4DK101108-02, and CDC grant 75D301-19-Q-69877 and has served as a consultant or advisor for Eli Lilly and Company. Boehringer Ingelheim, AstraZeneca, Gilead, Goldfinch Bio, Novo Nordisk, Bayer, and Janssen. A.L. has received research support from Amgen, Astra Zeneca, Janssen, Merck, Otsuka, Canadian Institute for Health Research, Kidney Foundation of Canada, Heart and Stroke Foundation of Canada, and the Michael Smith Health Research Foundation. M.N. has received lecture fees from Kyowa Kirin, Astellas, GSK K.K., Daiichi Sankyo, Mitsubishi Tanebe, Chugai, Torii, JT, Alexion, Akebia, MSD K.K. and Boehringer Ingelheim; and research support from JT, Kyowa Kirin, Astellas, Ono, Takeda, Daiichi Sankyo, Mitsubishi Tanabe, Chugai, Torii, Kissei and Boehringer Ingelheim. T.K. reports consulting/lecture fees from Abbott, Asahi Mutual Life Insurance, Astellas Pharma Inc., AstraZeneca K.K., Bayer, Boehringer Ingelheim, Cosmic, Daiichi Sankyo Company, Limited, Eli Lilly and Company, Fujifilm, Fujirebio, Johnson & Johnson Co., Ltd., Kissei Pharmaceutical Co., Ltd., Kowa Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Medical Review, Medscape Education, Medtronic Sofamor Danek, Mitsubishi Tanabe Pharma Corporation, MSD, Musashino Foods, Nipro, Novartis International AG, Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd., Sanofi S.A., Sanwa Kagaku Kenkyusho Co., Ltd., Sumitomo Dainippon, Taisho Pharmaceutical Co., Ltd., Takeda Pharmaceutical Company Limited and Terumo, grants from Astellas Pharma Inc., Daiichi Sankyo Company, Limited, Eli Lilly and Company, Kissei Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Corporation, MSD, Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd., Sanofi S.A., Sumitomo

Dainippon, Taisho Pharmaceutical Co., Ltd. and Takeda Pharmaceutical Company Limited, contracted research from AstraZeneca K.K. and Takeda Pharmaceutical Company Limited, joint research from Daiichi Sankyo Company, Limited, and endowed chair from Asahi Mutual Life Insurance, Boehringer Ingelheim, Kowa Co., Ltd., Mitsubishi Tanabe Pharma Corporation, MSD, Novo Nordisk Pharma Ltd., Ono Pharmaceutical Co., Ltd and Takeda Pharmaceutical Company Limited. **R.A.** is supported by research grants from NIH 5R01HL126903 and VA 5I01 CX001753 and has served as a consultant for Boehringer Ingelheim, Bayer, Akebia, AstraZeneca, Reata, Relypsa, Chinook, and Janssen. S.J.H., A.E., I.R., and D.S. are employees of Boehringer Ingelheim. C.W. has received honoraria for consultancy and lecturing from AstraZeneca, Bayer, Boehringer Ingelheim, GlaxoSmithKline, Eli Lilly and Company, Merck Sharp & Dome, Mundipharma, Sanofi Genzyme, and Takeda. **D.W.** has received honoraria and consultancy fees from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, GlaxoSmithKline, Janssen, Napp, Mundipharma, Mitsubishi, Ono, Pharmacosmos Reata and Vifor Fresenius.

Prior Presentation. An earlier version of this analysis was presented, in part, at the 77th Scientific Sessions of the American Diabetes Association, San Diego, CA, June 9–13, 2017.

References

1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017;12:2032-2045

2. Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes 2014;7:415

3. De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S, Russo G, Rossi MC, Nicolucci A, Guida P, Pontremoli R, Group AM-AS. Predictors of chronic kidney disease in type 2 diabetes: a longitudinal study from the AMD Annals initiative. Medicine (Baltimore) 2016;95:e4007

4. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1-150

5. 2019 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. [article online], 2019. Available from

https://www.usrds.org/2019/view/USRDS_2019_ES_final.pdf. Accessed 03/12/2020

6. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:2073-2081

7. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-1305

8. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, Broedl UC. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebocontrolled trial. The lancet Diabetes & endocrinology 2014;2:369-384

9. Boehringer Ingelheim (Canada) Ltd. Prescribing information: JARDIANCE[®] (empagliflozin) tablets, for oral use. Revised April 2020., 2020

10. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Bohm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F, Investigators EM-RT. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020;383:1413-1424

11. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, Investigators E-RO. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117-2128

12. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323-334

13. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, Woerle HJ, Broedl UC, von Eynatten M, Zinman B, Investigators E-RO. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 2018;137:119-129

14. Kohler S, Zeller C, Iliev H, Kaspers S. Safety and tolerability of empagliflozin in patients with type 2 diabetes: pooled analysis of phase I-III clinical trials. Advances in therapy 2017;34:1707-1726

15. Inzucchi SE, Iliev H, Pfarr E, Zinman B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 2018;41:e4-e5

16. Johnsson KM, Ptaszynska A, Schmitz B, Sugg J, Parikh SJ, List JF. Vulvovaginitis and balanitis in patients with diabetes treated with dapagliflozin. J Diabetes Complications 2013;27:479-484

17. Rosiak M, Grzeszczak S, Kosior DA, Postula M. Emerging treatments in type 2 diabetes: focus on canagliflozin. Ther Clin Risk Manag 2014;10:683-689

18. Schernthaner G, Drexel H, Moshkovich E, Zilaitiene B, Martinka E, Czupryniak L, Varkonyi T, Janez A, Ducena K, Lalic K, Tankova T, Prazny M, Smircic Duvnjak L, Sukhareva O, Sourij H. SGLT2 inhibitors in T2D and associated comorbidities differentiating within the class. BMC Endocr Disord 2019;19:64

19. Macha S, Mattheus M, Halabi A, Pinnetti S, Woerle HJ, Broedl UC. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab 2014;16:215-222

20. Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S. Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 2014;103:373-381

21. Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott C, Bompoint S, Levin A, Jardine MJ. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. The lancet Diabetes & endocrinology 2019;7:845-854

22. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW, Investigators CT. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295-2306

23. Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjostrom CD, Toto RD, Langkilde AM, Wheeler DC, Committees D-CT, Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383:1436-1446

24. American Diabetes Association. 11. Microvascular complications and foot care: *Standards of Medical Care in Diabetes-2021*. Diabetes Care 2021;44:S151-S167

25. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int Suppl 2020;98:S1-S115

26. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS, Investigators D-T. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347-357

27. Yavin Y, Mansfield TA, Ptaszynska A, Johnsson K, Parikh S, Johnsson E. Effect of the SGLT2 inhibitor dapagliflozin on potassium levels in patients with type 2 diabetes mellitus: a pooled analysis. Diabetes Ther 2016;7:125-137

28. Oshima M, Jardine MJ, Agarwal R, Bakris G, Cannon CP, Charytan DM, de Zeeuw D, Edwards R, Greene T, Levin A, Lim SK, Mahaffey KW, Neal B, Pollock C, Rosenthal N, Wheeler DC, Zhang H, Zinman B, Perkovic V, Heerspink HJL. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int 2021;99:999-1009

29. Weir MR, Slee A, Sun T, Balis D, Oh R, de Zeeuw D, Perkovic V. Effects of canagliflozin on serum potassium in the CANagliflozin cardioVascular Assessment Study (CANVAS) Program. Clin Kidney J 2020;14:1396-1402

30. Agarwal R, Joseph A, Anker SD, Filippatos G, Rossing P, Ruilope LM, Pitt B,
Kolkhof P, Scott C, Lawatscheck R, Wilson DJ, Bakris GL, Investigators F-D.
Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J Am Soc
Nephrol 2022;33:225-237

31. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G, Investigators F-D. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 2020;383:2219-2229

32. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, Group CPC. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644-657

33. Jardine MJ, Zhou Z, Mahaffey KW, Oshima M, Agarwal R, Bakris G, Bajaj HS, Bull S, Cannon CP, Charytan DM, de Zeeuw D, Di Tanna GL, Greene T, Heerspink HJL, Levin A, Neal B, Pollock C, Qiu R, Sun T, Wheeler DC, Zhang H, Zinman B, Rosenthal N, Perkovic V, Investigators CS. Renal, cardiovascular, and safety outcomes of canagliflozin by baseline kidney function: a secondary analysis of the CREDENCE randomized trial. J Am Soc Nephrol 2020;31:1128-1139

CKD category	G3A	G3A	G3B	G3B	G4	G4
eGFR (mL/min/1.73m²)	45 to <60	45 to <60	30 to <45	30 to <45	15 to <30	15 to <30
Study treatment	PBO	EMPA 10/25 mg	PBO	EMPA 10/25 mg	РВО	EMPA 10/25 mg
Ν	519	1,003	277	445	52	71
Male, <i>n</i> (%)	358 (69.0)	653 (65.1)	167 (60.3)	277 (62.2)	30 (57.7)	41 (57.7)
Age, years, mean ±SD	67.1 ±8.1	67.1 ±7.5	67.9 ±8.2	67.7 ±8.7	63.7 ±10.7	68.8 ±9.1
Race, <i>n</i> (%)*						
White	369 (71.1)	730 (72.8)	195 (70.4)	308 (69.2)	24 (46.2)	47 (66.2)
Asian	118 (22.7)	210 (20.9)	70 (25.3)	109 (24.5)	28 (53.8)	22 (31.0)
Black/African American	29 (5.6)	52 (5.2)	8 (2.9)	24 (5.4)	0	1 (1.4)
Ethnicity, <i>n</i> (%)						
Not Hispanic/Latino	450 (86.7)	864 (86.1)	245 (88.4)	384 (86.3)	50 (96.2)	65 (91.5)
Hispanic/Latino	68 (13.1)	138 (13.8)	33 (11.6)	61 (13.7)	2 (3.8)	6 (8.5)
HbA _{1c} , % (mmol/mol), mean ±SD	8.0 ±0.8	8.01 ±0.8	8.1 ±0.9	8.1 ±0.9	8.1 ±0.9	7.95 ±0.91
	(64 ±9)	(64 ±9)	(65 ±10)	(65 ±10)	(65 ±10)	(63 ±10)
Body mass index, kg/m², mean ±SD	30.6 ±5.2	31.0 ±5.5	31.1 ±5.8	31.3 ±5.6	30.9 ±5.7	29.5 ±4.9
Blood pressure, mmHg, mean ±SD [†]						
Systolic	136.7 ±18.7	135.9 ±17.1	135.0 ±17.7	137.4 ±18.0	143.0 ±23.9	137.5 ±21.0
Diastolic	75.4 ±10.2	75.5 ±10.1	73.6 ±10.2	74.0 ±9.9	75.2 ±12.4	72.6 ±10.8
Heart failure, <i>n</i> (%) [‡]	51 (9.8)	114 (11.4)	31 (11.2)	53 (11.9)	8 (15.4)	7 (9.9)
Hypertension, <i>n</i> (%)	486 (93.6)	950 (94.7)	270 (97.5)	426 (95.7)	51 (98.1)	68 (95.8)
Concomitant medications, <i>n</i> (%)						
Metformin	352 (67.8)	662 (66.0)	118 (42.6)	198 (44.5)	9 (17.3)	35 (49.3)
Insulin	268 (51.6)	502 (50.0)	172 (62.1)	276 (62.0)	38 (73.1)	53 (74.6)
ACE inhibitors/ARBs	424 (81.7)	843 (84.0)	224 (80.9)	361 (81.1)	36 (69.2)	51 (71.8)
Loop diuretics	109 (21)	195 (19.4)	91 (32.9)	151 (33.9)	24 (46.2)	35 (49.3)
Statins	370 (71.3)	752 (75.0)	198 (71.5)	315 (70.8)	40 (76.9)	52 (73.2)
Aspirin	387 (74.6)	739 (73.7)	209 (75.5)	333 (74.8)	34 (65.4)	51 (71.8)

Table 1—Demographics and baseline characteristics of the pooled analysis population with eGFR <60 mL/min/1.73 m² (N = 2367)

*Race identified as other (American Indian/Alaska Native/Hawaiian/Pacific Islander), or race information not recorded, for seven patients in the CKD category G3A group.

[†]Baseline systolic BP/diastolic BP readings were missing for one patient in the empagliflozin 10 mg group. [‡]A history of heart failure at baseline was identified by narrow SMQ 20000004.

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate (given in mL/min/1.73m²); HbA_{1c}, glycated hemoglobin; PBO, placebo; SD, standard deviation.

Category	Placebo	Placebo	EMPA 10/25 mg	EMPA 10/25 mg
	n/N (%)	Rate/100 p-y (95% CI)	n/N (%)	Rate/100 p-y (95% CI)
Serious AEs				
Overall	1,204/4,904 (24.6)	18.61 (17.57–19.69)	2,161/10,177 (21.2)	15.52 (14.88–16.19)
G3A	209/519 (40.3)	27.18 (23.62–31.12)	354/1,003 (35.3)	22.46 (20.19–24.93)
G3B	113/277 (40.8)	31.16 (25.69–37.46)	177/445 (39.8)	26.81 (23.00–31.06)
G4	13/52 (25.0)	29.93 (15.94–51.17)	28/71 (39.4)	41.31 (27.46–59.69)
AEs leading to treatment discontinuation				
Overall	565/4,904 (11.5)	7.40 (6.80–8.04)	1,033/10,177 (10.2)	6.43 (6.05–6.84)
G3A	100/519 (19.3)	10.37 (8.44–12.61)	179/1,003 (17.8)	9.26 (7.95–10.72)
G3B	62/277 (22.4)	13.10 (10.05–16.79)	113/445 (25.4)	14.17 (11.68–17.03)
G4	10/52 (19.2)	21.47 (10.30–39.47)	14/71 (19.7)	15.70 (8.59–26.35)
Hypoglycemia				
Overall	1,045//4,904 (21.3)	16.32 (15.35–17.34)	2,067/10,177 (20.3)	15.69 (15.02–16.38)
G3A	177/519(34.1)	24.02 (20.62–27.83)	268/1,003 (26.7)	17.20 (15.21–19.39)
G3B	91/277 (32.9)	24.23 (19.51–29.75)	141/445 (31.7)	22.85 (19.24–26.95)
G4	23/52 (44.2)	67.50 (42.80–101.23)	24/71 (33.8)	39.34 (25.21–58.52)
Urinary tract infection				
Overall	691/4,904 (14.1)	9.70 (8.99–10.46)	1,382/10,177 (13.6)	9.27 (8.79–9.77)
G3A	84/519 (16.2)	9.18 (7.32–11.37)	200/1,003 (19.9)	11.36 (9.84–13.05)
G3B	62/277 (22.4)	13.69 (10.49–17.54)	101/445 (22.7)	13.98 (11.39–16.99)
G4	5/52 (9.6)	10.24 (3.32–23.89)	18/71 (25.4)	25.19 (14.93–39.81)
Genital infection				
Overall	75/4,904 (1.5)	0.85 (0.75–1.20)	565/10,177 (5.6)	3.54 (3.25–3.84)
G3A	8/519 (1.5)	0.79 (0.34–1.56)	54/1,003 (5.4)	2.75 (2.06–3.58)

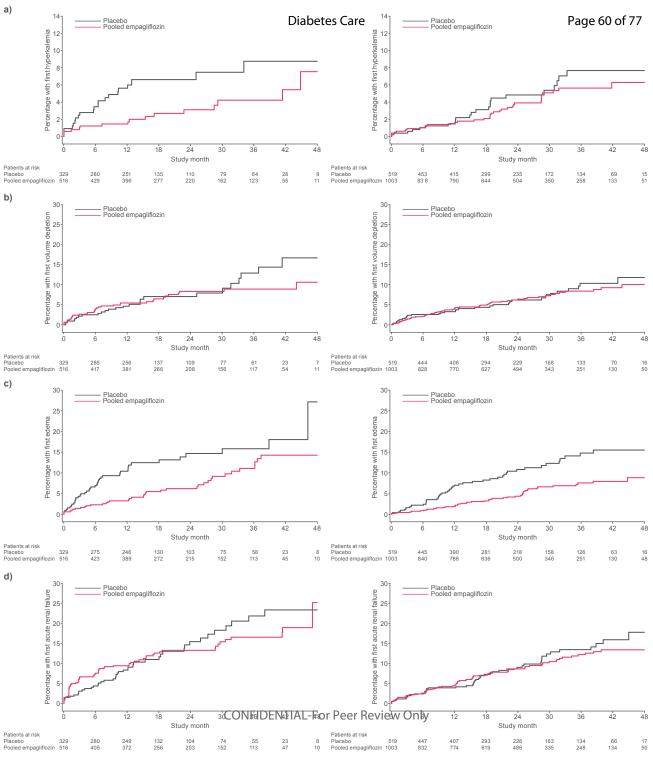
G3B	2/277 (0.7)	0.39 (0.05–1.43)	15/445 (3.4)	1.78 (1.00–2.94)
G4	0/52 (0)	0	1/71 (1.4)	1.13 (0.03–6.28)
Volume depletion				
Overall	147/4,904 (3.0)	1.89 (1.60–2.23)	320/10,177 (3.1)	1.97 (1.76–2.20)
G3A	33/519 (6.4)	3.38 (2.32–4.74)	63/1,003 (6.2)	3.22 (2.48–4.12)
G3B	19/277 (6.9)	3.95 (2.38–6.17)	28/445 (6.3)	3.43 (2.28–4.95)
G4	6/52 (11.5)	12.04 (4.42–26.19)	7/71 (9.8)	8.22 (3.30–16.93)
Edema				
Overall	278/4,904 (5.7)	3.67 (3.25–4.12)	269/10,177 (2.6)	1.65 (1.46–1.86)
G3A	51/519 (9.8)	5.37 (4.00–7.06)	49/1003 (4.9)	2.48 (1.84–3.28)
G3B	38/277 (13.7)	8.12 (5.75–11.15) 11.77	36/445 (8.1)	4.42 (3.10–6.12) 1.11
G4	5/52 (9.6)	11.77 (3.82–27.47)	1/71 (1.4)	1.11 (0.03–6.18)
Bone fracture				
Overall	134/4,904 (2.7)	1.72 (1.44–2.04)	233/10,177 (2.3)	1.42 (1.25–1.62)
G3A	26/519 (5.0)	2.60 (1.79–3.81)	37/1,003 (3.7)	1.86 (1.31–2.56)
G3B	12/277 (4.3)	2.40 (1.24–4.19)	20/445 (4.5)	2.40 (1.46–3.70)
G4	1/52 (1.9)	2.06 (0.05–11.49)	0/71 (0)	0
Falls				
Overall	87/4,904 (1.8)	1.11 (0.89–1.37)	197/10,177 (1.9)	1.20 (1.04–1.38)
G3A	17/519 (3.3)	1.70 (0.99–2.72)	30/1,003 (3.0)	1.50 (1.01–2.15)
G3B	10/277 (3.6)	2.01 (0.97–3.70)	11/445 (2.5)	1.30 (0.65–2.33)
G4	1/52 (1.9)	2.06 (0.05–11.49)	1/71 (1.4)	1.11 (0.03–6.18)
Hyperkalemia				
Overall	90/4,904 (1.8)	1.15 (0.92–1.41)	119/10,177 (1.2)	0.72 (0.60–0.86)
G3A	23/519 (4.4)	2.31 (1.47–3.47)	37/1,003 (3.7)	1.86 (1.31–2.56)
	18/277 (7.6)	3.73	15/445 (3.4)	1.78

G4	3/52 (0)	6.16 (1.27–17.99)	1/71 (1.4)	1.11 (0.03–6.21)
Acute renal failure				
Overall	169/4,904 (3.4)	2.18 (1.86–2.53)	291/10,177 (1.2)	1.78 (1.58–2.00)
G3A	48/519 (9.2)	4.92 (3.63–6.53)	86/1,003 (8.6)	4.44 (3.55–5.48)
G3B	37/277 (13.3)	7.85 (5.53–10.83)	57/445 (12.8)	7.22 (5.47–9.35)
G4	6/52 (11.5)	13.87 (5.09–30.19)	9/71 (12.7)	10.85 (4.96–20.59)
Lower limb amputation				
Overall	46/4,904 (0.9)	0.52 (0.38–0.69)	95/10,177 (0.1)	0.52 (0.42–0.63)
G3A	11/519 (2.1)	0.92 (0.46–1.65)	17/1,003 (1.7)	0.74 (0.43–1.18)
G3B	7/277 (2.5)	1.22 (0.49–2.51)	10/445 (2.2)	0.95 (0.46–1.75)
G4	0/52 (0)	0	4/71 (5.6)	3.59 (0.98–9.20)

Table 2—Patients with at least one adverse event by CKD category at baseline

Exposure-adjusted incidence rates were calculated per 100 patient-years as $100 \times n/T$, where *n* was the number of participants with the event and T was the total patient-years at risk of the event. Patient-years at risk were defined as the time from the first dose of study treatment to the onset of the first event (for patients with an event) or to the last dose +7 days (for those without an event). eGFR (mL/min/1.73 m²) calculated using the CKD-EPI equation. CKD categories by eGFR (mL/min/1.73 m²): G3A, 45 to <60; G3B, 30 to <45; G4, 15 to <30. Frequencies n/N = patients with ≥1 event/all patients who received ≥1 dose of study drug.

*Data from the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME) trial only. No amputations were reported for the four patients with missing baseline eGFR values.


AE, adverse event; CKD, chronic kidney disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; eGFR, estimated glomerular filtration rate; p-y, patient-years.

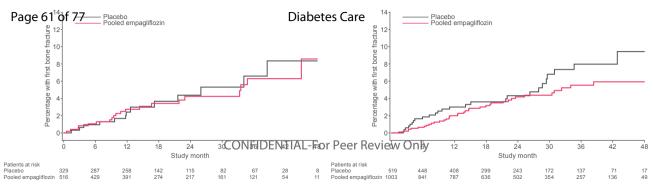
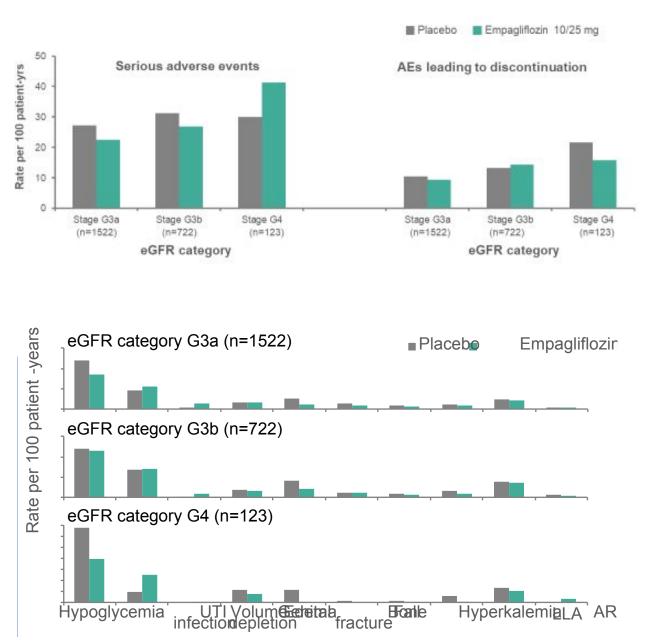
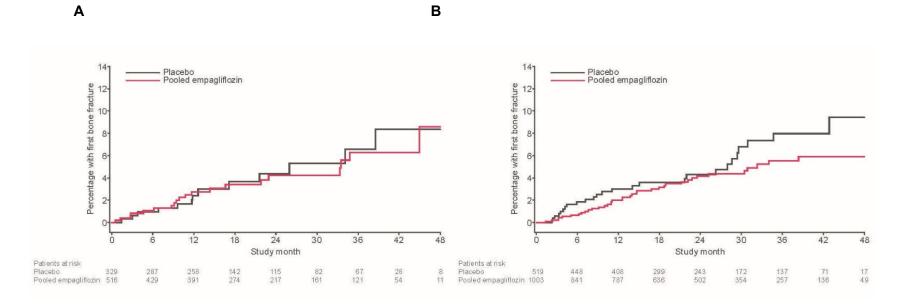

[Figure legend]

Figure 1—Kaplan-Meier estimates of time to first event of (*A*) hyperkalemia, (*B*) volume depletion, (*C*) edema, and (*D*) ARF in patients with eGFR <45 mL/min/1.73 m² (left-hand side) and 45 to <60 mL/min/1.73 m² (right-hand side).


eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. ARF, acute renal failure; eGFR, estimated glomerular filtration

rate.

Supplemental Material


Supplementary Figure 1—Rate of adverse events.

Exposure-adjusted incidence rates were calculated per 100 patient-years as $100 \times n/T$, where *n* was the number of subjects with the event and T was the total patient-years at risk of the event. Patient-years at risk were defined as the time from the first dose of study treatment to the onset of the first event (for patients with an event) or to the last dose +7 days (for those without an event). eGFR (mL/min/1.73m²) calculated using the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation. eGFR categories (mL/min/1.73 m²): G3A, 45 to <60; G3B, 30 to <45; G4, 15 to <30.

AE, adverse event; ARF, acute renal failure; LLA, lower limb amputation; UTI, urinary tract infection.

Supplementary Figure 2—Kaplan-Meier estimates of time to first event of bone fracture in patients with (*A*) eGFR <45 and (*B*) 45 to <60 mL/min/1.73 m².

eGFR (mL/min/1.73 m²) calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. eGFR, estimated glomerular filtration rate.

CONFIDENTIAL-For Peer Review Only

								Number of	patients (% of ove	rall pool)
Study	Reference	Population	Interventio n	Comparator	Clinical phase	Duration	Primary endpoint	Placebo	Empagliflozin 10/25 mg	Total patients
1245.4	Heise et al. 2013 (31)	Patients with type 2 diabetes	EMPA 10, 25, or 100 mg qd	PBO	1	4 weeks	Safety	16 (0.3)	32 (0.3)	48 (0.3)
1245.9	Ferrannini et al. 2013 (32)	Patients with type 2 diabetes	EMPA 5, 10, or 25 mg qd Met	РВО	2b	12 weeks	Change in HbA _{1c}	82 (1.7)	163 (1.6)	245 (1.6
1245.10	Rosenstock et al. 2013 (33)	Patients with type 2 diabetes not controlled on Met	Met plus EMPA 1, 5, 10, 25, or 50 mg qd	Met plus PBO Met plus sitagliptin 100 mg qd	2b	78 weeks	Change in HbA _{1c}	71 (1.4)	141 (1.4)	212 (1.4
1245.15	Kanada et al. 2013 (34)	Japanese patients with type 2 diabetes	EMPA 1, 5, 10, or 25 mg qd	РВО	2	4 weeks	Change in UGE, FPG, and 8-point glucose profile	21 (0.4)	39 (0.4)	60 (0.4)
EMPA-REG PIO, EMPA-REG EXTEND PIO 1245.19 (plus extn)	Kovacs et al. 2014, 2015 (35,36)	Patients with type 2 diabetes	Pioglitazo ne with or without Met plus EMPA 10 or 25 mg qd PBO	Pioglitazone with or without Met plus PBO	3	76 weeks (24-week study and 52-week extn)	Change in HbA _{1c}	165 (3.4)	333 (3.3)	498 (3.3
EMPA-REG MONO, EMPA- REG EXTEND MONO 1245.20 (plus extn)	Roden et al. 2013, 2015 (37,38)	Drug-naïve patients with type 2 diabetes	EMPA 10 or 25 mg qd	Sitagliptin 100 mg qd PBO	3	76 weeks (24-week study and 52-week extn)	Change in HbA _{1c}	229 (4.7)	447 (4.4)	676 (4.2

Supplementary Table 1—Randomized, placebo-controlled trials included in the pooled analysis

EMPA-REG MET, EMPA-REG EXTEND MET 1245.23 (Met only) (plus extn)	Häring et al. 2014, Merker et al. 2015 (39,40)	Patients with type 2 diabetes not controlled on Met	Met plus EMPA 10 or 25 mg qd	Met plus PBO	3	76 weeks (24-week study and 52-week extn)	Change in HbA _{1c}	206 (4.2)	431 (4.2)	637 (4.2)
EMPA-REG METSU, EMPA- REG EXTEND METSU 1245.23 (Met+SU) (plus extn)	Häring et al. 2013 (41,42)	Patients with type 2 diabetes not controlled on Met plus SU	Met plus SU plus EMPA 10 or 25 mg qd	Met plus SU plus PBO	3	76 weeks (24-week study and 52-week extn)	Change in HbA _{1c}	225 (4.6)	441 (43)	666 (4.4)
EMPA-REG OUTCOME 1245.25	Zinman et al. 2015 (11)	Patients with type 2 diabetes at high cardiovascular risk	EMPA 10 or 25 mg qd	PBO	3	Event- driven	3P-MACE	2,333 (47.6)	4,687 (46.1)	7,020 (46.5)
1245.29	Ferdinand et al. 2019 (43)							77 (1.6)	80 (0.8)	157 (1.0)
EMPA-REG BASAL 1245.33	Rosenstock et al. 2015 (44)	Patients with type 2 diabetes not controlled on basal insulin	Basal insulin plus EMPA 10 or 25 mg qd	Basal insulin plus PBO	2b	78 weeks	Change in HbA _{1c}	170 (3.5)	324 (3.2)	494 (3.3)
1245.35	Nishimura et al. 2015 (45)	Japanese patients with type 2 diabetes (either drug- naïve or treated with 1 oral antidiabetic agent)	EMPA 10 or 25 mg qd	PBO	3	28 days	Change in AUC _{1–4h} for PPG	21 (0.4)	39 (0.4)	60 (0.4)
EMPA-REG RENAL 1245.36	Barnett et al. 2014 (8)	Patients with type 2 diabetes and CKD category 2-4 not controlled on	Backgroun d antidiabeti c agent plus	Background antidiabetic agent plus PBO	3	52 weeks	Change in HbA _{1c}	319 (6.5)	419 (4.1)	738 (4.9)

		existing antidiabetic medication	EMPA 10 or 25 mg qd							
1245.38	Kadowaki et al. 2015 (46)	Japanese patients with type 2 diabetes	EMPA 5, 10, 25, or 50 mg qd	PBO	2	52 weeks	Change in HbA _{1c}	109 (2.2)	218 (2.1)	327 (2.2)
EMPA-REG BP 1245.48	Tikkanen et al. 2015 (47)	Patients with type 2 diabetes and hypertension	EMPA 10 or 25 mg qd	PBO	3	12 weeks	Change in HbA _{1c} , change in SBP	272 (5.5)	552 (5.4)	824 (5.5)
EMPA-REG MDI 1245.49	Rosenstock et al. 2014 (48)	Obese patients with type 2 diabetes not controlled on MDI of insulin plus Met	MDI of insulin plus Met plus EMPA 10 or 25 mg qd	MDI of insulin plus Met plus PBO	3	52 weeks	Change in HbA _{1c}	188 (3.8)	375 (3.7)	563 (3.7)
1245.107	NCT02589639	Japanese patients with type 2 diabetes with insufficient glycemic control	EMPA 10 or 25 mg qd	PBO	4	52 weeks	Change in HbA _{1c}	90 (1.8)	176 (1.7)	266 (1.8)
1275.9	Søfteland et al. 2017 (49)	Patients with type 2 diabetes and insufficient glycemic control with linagliptin 5 mg qd on Met background therapy	EMPA 10 or 25 mg qd and linagliptin high dose or linagliptin low dose	Linagliptin 5 mg qd	3	24 weeks	Change in HbA _{1c}	110 (2.2)	222 (2.2)	332 (2.2)
1275.19	Kawamori et al. 2018 (50)	Japanese patients with type 2 diabetes	Linagliptin 5 mg + EMPA 10 mg or 25 mg bid	Linagliptin 5 mg qd	3	52 weeks	Change in HbA _{1c}	93 (1.9)	182 (1.8)	275 (1.8)

1276.10	NCT01649297	Patients with type 2 diabetes and insufficient glycemic control	Met + EMPA qd or bid	Met + PBO	3	24 weeks	Change in HbA _{1c}	107 (2.2)	876 (8.6)	983 (6.5)
Total								4,904 (100.0)	15,081 (100.0)	15,081 (100.0)

3P-MACE, 3-point major cardiovascular adverse events; AUC_{1-4h} for PPG, area under the glucose concentration-time curve 3 h after breakfast; bid, twice daily; CKD, chronic kidney disease; EMPA, empagliflozin; extn, extension; FPG, fasting plasma glucose; HbA_{1c}, glycated hemoglobin; MDI, multiple daily injections Met, metformin; PBO, placebo; PPG, post-prandial glucose; qd, once daily; SBP, systolic blood pressure; SU, sulfonylurea; UGE, urinary glucose excretion.

Supplementary Table 2—MedDRA preferred terms

ARF	Acute renal failure (narrow SMQ) -> see table below for
	preferred term listing

ARF	A outo kidnov injuny	10060220
ARF	Acute kidney injury	10069339
	Acute phosphate nephropathy	10069688
	Anuria	10002847
	Azotemia	10003885
	Continuous hemodiafiltration	10066338
	Dialysis	10061105
	Fetal renal impairment	10078987
	Hemodialysis	10018875
	Hemofiltration	10053090
	Hyponatriuria	10077515
	Neonatal anuria	10049778
	Nephropathy toxic	10029155
	Oliguria	10030302
	Peritoneal dialysis	10034660
	Prerenal failure	10072370
	Renal failure	10038435
	Renal failure neonatal	10038447
	Renal impairment	10062237
	Renal impairment neonatal	10049776

Bone fracture	Acetabulum fracture	10000397
	Ankle fracture	10002544
	Atypical femur fracture	10070884
	Atypical fracture	10072395
	Avulsion fracture	10066184
	Bone fissure	10064210
	Bone fragmentation	10064211
	Cervical vertebral fracture	10049946
	Chance fracture	10073162
	Clavicle fracture	10009245
	Closed fracture manipulation	10009506
	Comminuted fracture	10052614
	Complicated fracture	10010149
	Compression fracture	10010214
	Craniofacial fracture	10077603
	Elevation skull fracture	10014487
	Epiphyseal fracture	10053962
	External fixation of fracture	10015741
	Facial bones fracture	10016042
	Femoral neck fracture	10016450
	Femur fracture	10016454
	Fibula fracture	10016667
	Flail chest	10016747
	Foot fracture	10016970
	Forearm fracture	10016997
	Fracture	10017076
	Fracture debridement	10057147
	Fracture displacement	10053206
	Fracture infection	10079813
	Fracture of clavicle due to birth trauma	10017107
	Fracture pain	10072132
	Fracture reduction	10057609
	Fracture treatment	10061959
	Fractured coccyx	10049164
	Fractured ischium	10017290
	Fractured maxilla elevation	10017296
	Fractured sacrum	10017308
	Fractured skull depressed	10017310
	Fractured zygomatic arch elevation	10059362
	Greenstick fracture	10018720
	Hand fracture	10019114
	Hip fracture	10020100
	Humerus fracture	10020462
	llium fracture	10021343

Impacted fracture	10066386
Internal fixation of fracture	10022576
Intramedullary rod insertion	10069066
Jaw fracture	10023149
Limb fracture	10074551
Lisfranc fracture	10078749
Lower limb fracture	10061599
Lumbar vertebral fracture	10049947
Metaphyseal corner fracture	10079667
Multiple fractures	10028200
Open fracture	10030527
Open reduction of fracture	10030682
Osteochondral fracture	10073853
Osteophyte fracture	10080550
Osteoporotic fracture	10031290
Patella fracture	10034122
Pathological fracture	10034156
Pelvic fracture	10061161
Periprosthetic fracture	10069135
Pubis fracture	10070286
Radius fracture	10037802
Rib fracture	10039117
Sacroiliac fracture	10074362
Scapula fracture	10039579
Skull fracture	10061365
Skull fractured base	10040960
Spinal compression fracture	10041541
Spinal fracture	10041569
Spinal fusion fracture	10074807
Sternal fracture	10042015
Stress fracture	10042212
Subchondral insufficiency fracture	10079864
Surgical fixation of rib fracture	10077270
Thoracic vertebral fracture	10049948
Tibia fracture	10043827
Torus fracture	10066094
Traumatic fracture	10049514
Ulna fracture	10045375
Upper limb fracture	10061394
Wrist fracture	10048049
Skeletal traction	10040782

Edema	Edema defined by preferred terms Fluid overload, Fluid
	retention, Generalized edema, Edema, Edema
	peripheral, and Peripheral swelling

Hyperkalemia	Hyperkalemia defined by preferred terms Hyperkalemia and Blood potassium increased
--------------	--

Volume decreased	Blood pressure ambulatory decreased	10005731
	Blood pressure decreased	10005734
	Blood pressure diastolic decreased	10005737
	Blood pressure orthostatic decreased	10053356
	Blood pressure systolic decreased	10005758
	Circulatory collapse	10009192
	Dehydration	10012174
	Diastolic hypotension	10066077
	Hypotension	10021097
	Hypovolemia	10021137
	Hypovolemic shock	10021138
	Mean arterial pressure decreased	10026983
	Orthostatic hypotension	10031127
	Presyncope	10036653
	Syncope	10042772

ARF, acute renal failure; MedDRA, Medical Dictionary for Regulatory Activities.

Supplementary Table 3—Multivariable Cox regression for time to first key safety endpoint events by

baseline eGFR group

	eGFR <45 mL/min/1.73 m ²	eGFR 45 to <60 mL/min/1.73 m ²
	<i>n</i> = 349, PBO;	<i>n</i> = 618, PBO;
	<i>n</i> = 554, EMPA 10/25 mg	<i>n</i> = 1207, EMPA 10/25 mg
Hyperkalemia	0.48 (0.26–0.91)	0.59 (0.37–0.96)
Volume depletion	0.83 (0.50–1.39)	0.91 (0.61–1.35)
ARF	0.75 (0.35–1.64)	0.61 (0.31–1.20)
Edema	0.44 (0.28–0.69)	0.47 (0.33–0.68)

All values are hazard ratio (95% CI). Cox regression models include age, baseline BMI, baseline HbA_{1c}, sex, baseline eGFR, and treatment-by-baseline eGFR interaction term.

AKI, acute kidney injury; BMI, body mass index; eGFR, estimated glomerular filtration rate; EMPA, empagliflozin; HbA_{1c}, glycated hemoglobin; PBO, placebo.

Supplementary Table 4—Patients in the pooled by contributing study

and eGFR (CKD-EPI):

Study	Group	Placebo N (%)	EMPA 10mg N (%)	EMPA 25mg N (%)	EMPA 10/25 mg N (%)	Total N (%)
1245.4		0	0	0	0	0
1245.9		2 (0.3)	0	3 (0.5)	3 (0.2)	5 (0.3)
1245.10		4 (0.6)	1 (0.2)	5 (0.8)	6 (0.5)	10 (0.5)
1245.15		0	0	0	0	0
1245.19		17 (2.8)	18 (3.2)	14 (2.2)	32 (2.7)	49 (2.7)
1245.20		12 (1.9)	12 (2.1)	10 (1.6)	22 (1.8)	34 (1.9)
1245.23	(Met only)	10 (1.6)	8 (1.4)	11 (1.7)	19 (1.6)	29 (1.6)
1245.23	(Met+SU)	20 (3.2)	13 (2.3)	15 (2.4)	28 (2.3)	48 (2.6)
1245.25		418 (67.6)	420 (74.2)	411 (64.5)	831 (68.8)	1249 (68.4)
1245.29		1 (0.2)	0	0	1 (0.1)	2 (0.1)
1245.33		16 (2.6)	19 (3.4)	24 (3.8)	43 (3.6)	59 (3.2)
1245.35		0	1 (0.2)	0	1 (0.1)	1 (0.1)
1245.36		78 (12.6)	8 (1.4)	87 (13.7)	95 (7.9)	173 (9.5)
1245.38		2 (0.3)	4 (0.7)	1 (0.2)	5 (0.4)	7 (0.4)
1245.48		11 (1.8)	13 (2.3)	20 (3.1)	33 (2.7)	44 (2.4)
1245.49		8 (1.3)	13 (2.3)	7 (1.1)	20 (1.7)	28 (1.5)
1245.107		10 (1.6)	5 (0.9)	9 (1.4)	14 (1.2)	24 (1.3)
1275.9		2 (0.3)	2 (0.4)	1 (0.2)	3 (0.2)	5 (0.3)
1275.19		4 (0.6)	0	0	3 (0.2)	7 (0.4)
1276.10		3 (0.5)	29 (5.1)	19 (3.0)	48 (4.0)	51 (2.8)
Total		618 (100.0)	566 (100.0)	637 (100.0)	1207 (100.0)	1825 (100.0)

A) eGFR 45 to <60 ml/min/1.73m² (Cat 3A)

B) eGFR 30 to <45 ml/min/1.73m² (Cat 3B)

Study	Group	Placebo	EMPA 10mg	EMPA 25mg	EMPA 10/25 mg	Total
		N (%)	N (%)	N (%)	N (%)	N (%)
1245.4		0	0	0	0	0
1245.9		0	0	0	0	0
1245.10		0	0	1 (0.3)	1 (0.2)	1 (0.1)
1245.15		0	0	0	0	0
1245.19		1 (0.3)	2 (1.0)	2 (0.7)	4 (0.8)	5 (0.6)
1245.20		1 (0.3)	1 (0.5)	0	1 (0.2)	2 (0.3)
1245.23	(Met only)	2 (0.7)	1 (0.5)	3 (1.0)	4 (0.8)	6 (0.8)
1245.23 1245.25	(Met+SU)	2 (0.7) 183 (61.8)	6 (3.1) 178 (91.8)	2 (0.7) 182	8 (1.6) 360 (73.9)	10 (1.3) 543 (69.3)
		()	()	(62.3)	ζ, γ	()

	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)
Total	296	194	292	487	783
1276.10	0	2 (1.0)	4 (1.4)	6 (1.2)	6 (0.8)
1275.19	0	0	0	0	0
1275.9	0	0	0	0	0
1245.107	1 (0.3)	0	1 (0.3)	1 (0.2)	2 (0.3)
1245.49	0	0	0	0	0
1245.48	0	0	1 (0.3)	1 (0.2)	1 (0.1)
1245.38	0	0	0	0	0
1245.36	96 (32.4)	0	90 (30.8)	90 (18.5)	186 (23.8)
1245.35	0	0	0	0	0
1245.33	8 (2.7)	4 (2.1)	6 (2.1)	10 (2.1)	18 (2.3)
1245.29	2 (0.7)	0	0	1 (0.2)	3 (0.4)

C) eGFR <30 ml/min/1.73m² (Cat 4)

Study	Group	Placebo N (%)	EMPA 10mg N (%)	EMPA 25mg N (%)	EMPA 10/25 mg N (%)	Total N (%)
1245.4		0	0	0	0	0
1245.9		0	0	0	0	0
1245.10		0	0	0	0	0
1245.15		0	0	0	0	0
1245.19		0	0	0	0	0
1245.20		0	0	0	0	0
1245.23	(Met only)	0	0	0	0	0
1245.23	(Met+SU)	0	0	0	0	0
1245.25	. ,	6 (11.3)	7 (77.8)	14 (24.1)	21 (31.3)	27 (22.5)
1245.29		0	0	Û	Û	0
1245.33		1 (1.9)	2 (22.2)	1 (1.7)	3 (4.5)	4 (3.3)
1245.35		0	0	0	0	0
1245.36		46 (86.8)	0	42 (72.4)	42 (62.7)	88 (73.3)
1245.38		0	0	0	0	0
1245.48		0	0	1 (1.7)	1 (1.5)	1 (0.8)
1245.49		0	0	0	0	0
1245.107		0	0	0	0	0
1275.9		0	0	0	0	0
1275.19		0	0	0	0	0
1276.10		0	0	0	0	0
Total		53 (100.0)	9 (100.0)	58 (100.0)	67 (100.0)	120 (100.0)

eGFR, estimated glomerular filtration rate; EMPA, empagliflozin; Met, metformin; SU, sulfonylurea.

Supplementary Table 5a—Cox regression for time to first outcome by eGFR category: EMPA-REG OUTCOME (study 1245.25) vs. Other and eGFR*treatment interaction term

	eGFR Cat 3A	eGFR Cat3B +
	HR (95%CI), p-value	Cat4
		HR (95%CI), p-value
Hyperkalemia	0.59 (0.37, 0.95),	0.48 (0.25, 0.90),
	p=0.0306	p=0.0217
Based on a Cox regression model with terms for age (p $(p=0.4184)$, sex $(p=0.6583)$, 1245.25 vs other SAF-43 t $(p=0.4341)$, treatment $(p=0.0007)$, baseline eGFR $(p<0.6583)$	trial (p=0.1404) and treatment by b	
Volume depletion	0.90 (0.61, 1.34),	0.79 (0.48, 1.32),
	p=0.6166	p=0.3742
Based on a Cox regression model with terms for age (p ($p=0.1080$), sox ($p=0.7494$) 1245 25 vs other SAE-43 to	<0.0001), baseline BMI (p=0.0213)), baseline HbA1c
(p=0.1080), sex (p=0.7494),1245.25 vs other SAF-43 tr (p<0.0001) and treatment by baseline eGFR interaction	<0.0001), baseline BMI (p=0.0213) rial (p<0.0001), treatment (p=0.704 (p=0.2183).), baseline HbA1c 8), baseline eGFR
(p=0.1080), sex (p=0.7494),1245.25 vs other SAF-43 tr (p<0.0001) and treatment by baseline eGFR interaction	<0.0001), baseline BMI (p=0.0213) rial (p<0.0001), treatment (p=0.704 (p=0.2183). 0.61 (0.31, 1.19),), baseline HbA1c 8), baseline eGFR 0.74, (0.34, 1.61),
(p=0.1080), sex (p=0.7494),1245.25 vs other SAF-43 tr (p<0.0001) and treatment by baseline eGFR interaction AKI Based on a Cox regression model with terms for age (p (p=0.3657), sex (p=0.5883), 1245.25 vs other SAF-43 t	<0.0001), baseline BMI (p=0.0213) rial (p<0.0001), treatment (p=0.704 (p=0.2183). 0.61 (0.31, 1.19), p=0.1482 =0.0731), baseline BMI (p=0.0203) trial (p=0.2354), treatment (p=0.032), baseline HbA1c 8), baseline eGFR 0.74, (0.34, 1.61), p=0.4435), baseline HbA1c
(p=0.1080), sex (p=0.7494),1245.25 vs other SAF-43 tr (p<0.0001) and treatment by baseline eGFR interaction AKI Based on a Cox regression model with terms for age (p (p=0.3657), sex (p=0.5883), 1245.25 vs other SAF-43 tr (p<0.0001) and treatment by baseline eGFR interaction	<0.0001), baseline BMI (p=0.0213) rial (p<0.0001), treatment (p=0.704 (p=0.2183). 0.61 (0.31, 1.19), p=0.1482 =0.0731), baseline BMI (p=0.0203) trial (p=0.2354), treatment (p=0.032), baseline HbA1c 8), baseline eGFR 0.74, (0.34, 1.61), p=0.4435), baseline HbA1c
Based on a Cox regression model with terms for age (p (p=0.1080), sex (p=0.7494),1245.25 vs other SAF-43 tr (p<0.0001) and treatment by baseline eGFR interaction AKI Based on a Cox regression model with terms for age (p (p=0.3657), sex (p=0.5883), 1245.25 vs other SAF-43 tr (p<0.0001) and treatment by baseline eGFR interaction Edema	<0.0001), baseline BMI (p=0.0213) rial (p<0.0001), treatment (p=0.704 (p=0.2183). 0.61 (0.31, 1.19), p=0.1482 =0.0731), baseline BMI (p=0.0203) trial (p=0.2354), treatment (p=0.032 (p=0.9086).), baseline HbA1c 8), baseline eGFR 0.74, (0.34, 1.61), p=0.4435), baseline HbA1c 20), baseline eGFR

Note: 4 patients were excluded from all outcomes as the subgroup variable was missing.

Supplementary Table 5b—Frailty model for time to first outcome by eGFR category including study as random effect and eGFR*treatment interaction term

	eGFR Cat 3A	eGFR Cat3B + Cat4
	HR (95%CI), P-value	Cal4
		HR (95%CI), P-value
Hyperkalemia	0.59 (0.37, 0.96),	0.48 (0.26, 0.91),
	P=0.0318	P=0.0244
Comparison with placebo based on a Cox regression (p=0.1222), baseline HbA1c (p=0.4051), sex (p=0.72 treatment by baseline eGFR interaction (p=0.4585) a	238), treatment (p=0.0008), baseline e	GFR (p<0.0001),
	0.01 (0.61 1.25)	0.82 (0.49, 1.36),
Volume depletion	0.91(0.01, 1.35),	0.02(0.10, 1.00),
Volume depletion Based on a Cox regression model with terms for age (p=0.0812), sex (p=0.7463), treatment (p=0.7815), b	aseline eGFR (p<0.0001), treatment b	p=0.4362 , baseline HbA1c
Based on a Cox regression model with terms for age	p=0.6268 e (p<0.0001), baseline BMI (p=0.0301) baseline eGFR (p<0.0001), treatment b ect) (p<0.0001). 0.61 (0.31, 1.20),	p=0.4362 b, baseline HbA1c by baseline eGFR 0.75 (0.35, 1.64),
Based on a Cox regression model with terms for age (p=0.0812), sex (p=0.7463), treatment (p=0.7815), b interaction (p=0.2391) and trial number (random effe	p=0.6268 e (p<0.0001), baseline BMI (p=0.0301) baseline eGFR (p<0.0001), treatment b ect) (p<0.0001). 0.61 (0.31, 1.20), p=0.1496 e (p=0.0557), baseline BMI (p=0.0191) baseline eGFR (p<0.0001), treatment b	p=0.4362 b, baseline HbA1c by baseline eGFR 0.75 (0.35, 1.64), p=0.4747 b, baseline HbA1c
Based on a Cox regression model with terms for age (p=0.0812), sex (p=0.7463), treatment (p=0.7815), b interaction (p=0.2391) and trial number (random effe AKI Based on a Cox regression model with terms for age (p=0.3751), sex (p=0.6495), treatment (p=0.0346), b	p=0.6268 e (p<0.0001), baseline BMI (p=0.0301) baseline eGFR (p<0.0001), treatment b ect) (p<0.0001). 0.61 (0.31, 1.20), p=0.1496 e (p=0.0557), baseline BMI (p=0.0191) baseline eGFR (p<0.0001), treatment b	p=0.4362 b, baseline HbA1c by baseline eGFR 0.75 (0.35, 1.64), p=0.4747 b, baseline HbA1c

Note: 4 patients were excluded from all outcomes as the subgroup variable was missing.