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Abstract
Purpose Surgical workflow estimation techniques aim to divide a surgical video into temporal segments based on predefined
surgical actions or objectives, which can be of different granularity such as steps or phases. Potential applications range from
real-time intra-operative feedback to automatic post-operative reports and analysis. A common approach in the literature
for performing automatic surgical phase estimation is to decouple the problem into two stages: feature extraction from a
single frame and temporal feature fusion. This approach is performed in two stages due to computational restrictions when
processing large spatio-temporal sequences.
Methods The majority of existing works focus on pushing the performance solely through temporal model development.
Differently, we follow a data-centric approach and propose a training pipeline that enables models to maximise the usage of
existing datasets, which are generally used in isolation. Specifically, we use dense phase annotations available in Cholec80,
and sparse scene (i.e., instrument and anatomy) segmentation annotation available in CholecSeg8k in less than 5% of the
overlapping frames. We propose a simple multi-task encoder that effectively fuses both streams, when available, based on
their importance and jointly optimise them for performing accurate phase prediction.
Results and conclusion We show that with a small fraction of scene segmentation annotations, a relatively simple model can
obtain comparable results than previous state-of-the-art and more complex architectures when evaluated in similar settings.
We hope that this data-centric approach can encourage new research directions where data, and how to use it, plays an
important role along with model development.

Keywords Surgical phases · Scene segmentation · Surgical data science · Multi-task

Introduction

Surgical workflow describes surgical interventions by divid-
ing the surgery into temporal segments such as phases, steps,
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or actions [1,2]. An accurate phase estimation algorithm has
the potential of assisting surgeons intra-operatively, generat-
ing post-operative statistics, and improving the quality and
outcomes of minimally invasive surgery [1,2]. Causal algo-
rithms, that do not require information from the future, can
provide feedback to surgeons while performing surgery, can
help staff in the operation room to detect anomalous events,
and help to coordinate the surgical team [1–3]. In addition,
offline phase analysis can be used for surgical deviation iden-
tification or automatic report generation [3,4]. In this work,
we focus on causal algorithms as they can provide both post-
operative but also real-time intra-operatively analytics. The
design of robust and accurate causal surgical phase algo-
rithms is particularly challenging, due to the variability of
the patient anatomy, surgeon’s operating style, and the lim-
ited availability of high-quality datasets for training advanced
computer vision algorithms [3]. Due to computational limi-
tations, training these algorithms is often performed in two
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stages: extracting features from a single frame, and tempo-
ral feature fusion across video sequences. The training of
the encoder is a very challenging task due to the lack of
temporal context, which is often required (even by expert
surgeons) to be able to identify the correct surgical phase.
Recent state-of-the-art models have only focused on building
more complex, and often computationally expensive archi-
tectures to improve the performance for the task of surgical
phase estimation [5].

Following recent trends in data-centric artificial intelli-
gence and machine learning [6], we hypothesise that better
use of existing data and annotations, even if very sparse,
can be used together with simple models to compete, and
even outperform, more complex models by focusing the
efforts on further exploiting the capabilities of the available
data. Specifically for surgical phase estimation, we propose
to supervise our model with phase annotations and sparse
scene segmentation annotations of surgical instruments and
anatomy.As it is well known, generating phase annotations is
much simpler and cost efficient than generating segmentation
masks. We, therefore, propose a new pipeline to maximise
the usage of the available data, even when the expensive seg-
mentation annotations are available in very sparse frames. To
evaluate our hypothesis, we propose amulti-task training for-
mulation to learn semantically richer feature representations
that temporal models can leverage to obtain higher overall
performance. The contributions of this work are:

• a first multi-task learning model that can fuse very sparse
information from scene (i.e., instrument and anatomy)
segmentation annotations to boost phase prediction per-
formance;

• showing that using a data-centric approach and incor-
porating other sources of (limited) data can boost the
performance of simple models for phase estimation;

• benchmark different fusion strategies to maximise learn-
ing capabilities for simple models; and

• a simple and lightweight multi-task formulation that
achieves a comparable performance to state-of-the-art
models without the requirement for frame-by-frame
annotation of the presence of surgical instruments [5].

Related work

Table 1 shows a summary of the most advanced surgical
phase estimation algorithms and compares the encoder and
temporal model architectures, as well as the annotations used
during the training of the encoder. Common model architec-
ture choices for modelling the temporal relationships include
hidden Markov models (HMM), long short-term memory
(LSTM) [7], temporal convolutional networks (TCN) [8],
and transformers [9].

EndoNet [10] uses aCNNto extract features for estimating
the surgical phase and the surgical instrument presence and
an LSTM for performing temporal refinement. MTRCNet-
CL [11] proposes to train an end-to-end model composed of
a CNN backbone and LSTM units, where predictions over
short temporal sequences are refined by explicitly modelling
the correlations between phases and surgical instruments.
TeCNO [12] combines a ResNet50 for feature extraction
with a Multi-Stage TCN for temporal fusion. Their pipeline
allows for fast processing of whole-video sequences during
training and inference due to the use of TCNs and the intro-
duction of dilated convolutions. Similarly, OperA [5] relies
on ResNet50 as the encoder, trained on phase and surgical
instrument annotations. However, they propose for the first
time the use of transformers [9] for modelling the temporal
feature relationships for surgical phase estimation.

Existing models focused mainly on neural network archi-
tecture development to push the accuracy of surgical phase
estimation. Such direction might ultimately lead to adopting
complex and, often, computationally expensive approaches,
which are often prone to overfitting when the datasets are not
very diverse. Instead, we follow a data-centric approach and
demonstrate that a relatively simple deep learning pipeline
(i.e., a multi-task encoder based on ResNet50 and an MS-
TCN) can surpass the current state-of-the-art models by
leveraging as much information as possible from the data
available.

Recent work proposed a multi-task algorithm to model
how the interaction between instrument-instrument and
instrument-anatomy can help to anticipate surgical phases
[13]. Their approach focuses on how different signal sources
(instrument detection, scene segmentation, instrument pres-
ence annotation, and phase annotation) can be fused to
predict the next surgical phase. Promising results showed
the importance of merging complementary data sources to
improve surgical phase understanding. We show that train-
ing on surgical phase annotations and a small fraction of
scene segmentation annotations (< 5% of the overlapping
frames) and fusing the information appropriately can help
obtain more robust, generalisable features for phase estima-
tion.

Proposedmodel

Following the pipeline of existing works [5,12], we follow
a two-stage training approach for the surgical phase estima-
tion task: a multi-task encoder to generate rich features by
using information frommultiple tasks, and a temporal model
that learns the temporal relationships within the features for
finally estimating the surgical phase. Next, we describe each
stage in detail.
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Table 1 Comparison of existing literature for surgical phase estimation regarding the proposed encoder and temporal model architecture, and the
type of annotations used during the training of the encoder

Model Encoder Temporal model

Backbone Phase Instrument presence Scene segmentation

[10] EndoNet AlexNet � � HMM

[11] MTRCNet-CL Residual CNN � � LSTM

[12] TeCNO ResNet50 � � MS-TCN

[5] OperA ResNet50 � � Transformers

Proposed ResNet50 � � MS-TCN

Scene refers to segmentation of both instrument and anatomy. KEY: HMM, hidden Markov models; LSTM: long short-term memory; MS-TCN:
multi-stage temporal convolutional network

Fig. 1 Proposed multi-task encoder. KEY: GAP, global average pooling; FC, fully connected layer; BN, batch-norm layer; xi ↑ upscaling feature
map i times. The numbers on the arrows indicate the dimensionality of the feature maps for a sample input image

Multi-task encoder

Let x ∈ {0, 255}W ,H ,3 be an RGB image with width
W , height H and 3 colour channels. Let E(·) : x →
(ŜS,W ,H , P̂P ) be the proposed multi-task encoder composed
of two branches that jointly estimates the scene segmentation
of surgical instruments and anatomy ŜS,W ,H , and the surgi-
cal phase P̂P where S, and P are, respectively, the number
of scene, and phase classes.

A simplified diagram of the proposed multi-task encoder
architecture is depicted in Fig. 1. The proposed encoder is
composed of a shared backbone (i.e., ResNet50 without the
last residual block), B(·) : x → fB , that given an image
x generates task-agnostic high-level features fB . The fea-
tures generated by the backbone, fB , are then fed to the two
branches, namely: scene segmentation and phase branches.

Scene segmentation branch. The scene segmentation
branch is composed of the last residual block of the encoder,
namely scene head S(·) : fB → fS that generates scene-
specific features fS ; and a segmentation module,T(·) : fS →
ŜS,W ,H that estimates the pixel-wise semantic segmenta-
tion of the frame. The segmentation module first performs a
bilinear interpolation of the features that upscales their spa-
tial dimension four times, U1(·)); and then applies a 3-by-3
convolution, C3×3(·), and batch-norm layer, BN (·), while
reducing by four the number of channels from 2048 to 512.

After that, a rectified linear unit, ReLU (·), is applied, and a
final 1-by-1 convolution,C1×1(·),with S scene classes output
channels, and a bilinear interpolation to upscale the estimated
segmentation mask to the original frame resolution, U2(·).
We formulate the learning of this branch as a multi-class
problem, which is trained with a cross-entropy loss after a
Softmax activation function, Sof tmax(·). In summary, the
estimated segmentation is computed as

ŜS,W ,H = Sof tmax (U2 (C1×1 ( ReLU ( BN (C3×3

(U1 (S ( fB ) ) ) ) ) ) ) ), (1)

and learnt using the following loss function LS =
CE(SS,W ,H , ŜS,W ,H ), where CE is the cross-entropy loss
and SS,W ,H is the scene segmentation annotation. As it is
known, segmentation annotations are expensive to gener-
ate; therefore, we consider the scenario where only a small
amount of frames have such annotations. While we compute
the scene branch for all the frames, as the scene features are
used by the phase branch; we only perform backpropagation
for the frames where the scene annotation is available by
using the previous loss function. Non-annotated frames do
not contribute to the scene loss.

Phase branch. The phase branch is composed of the
last residual block of the encoder, namely phase head
P(·) : fB → fP , that generates phase-specific features, fP , a
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fusion module, F(·), that combines all the task-specific fea-
tures generated by all the branches, a global average pooling,
GAP and a fully connected layer, F. We use a Fast nor-
malised fusion module [14] that is a simple and lightweight
module that effectively fuses features, and it provides good
performance, fast and stable learning stability. The fusion
module, F(·) : (fS, fP ) → f , learns to combine the task-
specific scene and phase features into a fused feature, f , as:

f = ReLU (αS)
∑

∀i ReLU (αi ) + ε
fS + ReLU (αP )

∑
∀i ReLU (αi ) + ε

fP , (2)

where αS and αP are learnable weights, and ε = 0.0001
is a small scalar for numerical stability. We formulate the
learning of this branch as a multi-class problem, which is
trained with a cross-entropy loss after a Softmax activation
function. In summary, the estimated phase is computed as:

P̂P = Sof tmax (F (GAP ( f ) ) ), (3)

and learnt using the following loss function LP =
CE(PP , P̂P ), where PP is the phase annotation.

In summary, the multi-task encoder is trained as L =
LS + LP . Once the multi-task encoder is trained, we freeze
its weights, and extract features for every frame from Eq. (3),
after discarding the fully connected layer, and activation
function.

Multi-stage temporal convolutional network

The majority of the literature relies on recurrent neural net-
works, which are inefficient and slow at capturing very
long-term temporal patterns as they often are trained using
a sliding window approach. Instead, we use dilated causal
Multi-Stage TCN [15] as a temporal model as they have
shown accurate, lightweight, and fast surgical phase estima-
tion [12]. Their large temporal receptive field captures the full
temporal resolution with a reduced number of parameters,
allowing for faster training and inference time and leveraging
untrimmed surgical videos. Specifically, we use a two-stage
causal TCN, TCN (·) : f → P̂P

T , that learns to leverage
the temporal relationships of the multi-task fused features
generated by the encoder, f , to estimate the final phase pre-
dictions, P̂P

T . The TCN is solely constructed with causal
temporal convolutional layers, avoiding the use of pooling or
fully connected layers to maintain the feature maps at a fixed
dimension. Unlike [5], we propose to train the TCN using a
cross-entropy loss and a truncated mean squared error in the
temporal domain [15] as:

LT = CE (PP
T , P̂P ) + Cc

0(P
P
T − P̂P )2, (4)

where Cc
0(·) is the clamp operator, c the maximum clamping

value, and PP is the phase annotation. The mean squared

error term helps the temporal model to obtain smoother pre-
dictions in the time domain.

Experimental validation

Experimental setup

Dataset We validate our model on Cholec80 [16], the most
commonly used surgical phase dataset of laparoscopic chole-
cystectomy surgeries for the resection of the gallbladder,
which is performed by 13 surgeons. Cholec80 is composed
of 80 videos with resolutions 1920×1080 or 854×480 pixels
recorded at 25 frames per second (fps).

Annotations Cholec80 provides the annotations for sur-
gical phase at 25 fps. For all our experiments, we subsample
the dataset to 1 fps. The seven annotated surgical phases are
enumerated in the caption of Fig. 2. For enabling the learn-
ing of scene segmentation, we use the annotation provided by
CholecSeg8k [17]. The annotations are composed of 8,080
frames annotated as pixel-wise semantic segmentation from
17 video clips from Cholec80. The CholecSeg8k includes
13 classes: background; ten anatomical structures: abdomi-
nal wall, liver, gastrointestinal tract, fat, connective tissue,
blood, cystic duct, gallbladder, hepatic vein, liver ligament;
and two surgical instruments: grasper, and hook.

Data split For the validation of our model, we follow the
split recommended in [5,12] and perform a cross-validation
technique. To ensure enough segmentation annotations for
training, we use 14 out of 17 videos with scene segmentation
annotation always in the training set. We perform a fivefold
cross-validation where each fold is composed of 48 videos
for training and 20 for testing. For hyperparameter selection,
we use an additional random fold.

Performance metrics Similarly to [5,10–12], we evalu-
ate the performance of the algorithms for the task of surgical
phase estimation with Accuracy Acc = T P+T N

T P+FP+FN+T N ,

and F1-Score F1 = T P
T P + 0.5 (FP+FN )

; where T P , FP ,
FN , and T N are the number of true positive, false pos-
itive, false negatives, and true negatives. We evaluate the
scene segmentation performance with mean Pixel Accu-
racy (mPA), where pixel accuracy is computed as the phase
accuracy; mean Intersection Over Union (mIOU) where
I OU = T P

T P+FP+FN , and mean DICE score (mDICE)

where DICE = 2 T P
2 T P+FP+FN . The segmentation scores

are aggregated as the mean across images and classes.
Implementationdetails Input images are resized to 400×

300 pixels, and data augmentations are applied including
geometrical and colour transformations. We use a balanced
sampler that samples 2000 images per phase class (i.e.,
14,000 images) in each epoch. We use ResNet50 without the
last block pre-trained on ImageNet as our backbone. SGD
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Fig. 2 Surgical phase visualisation. First bar indicates the annotation, and the second one the prediction of the proposedmodel. KEY: preparation,
calot triangle dissection, clipping cutting , gallbladder dissection, gallbladder packaging, cleaning coagulation, and gallbladder

retraction

Table 2 Comparison of the
results of the proposed model
against the state-of-the-art
models for surgical phase
estimation in Cholec80 dataset

Split Model Phase metric

Accuracy F1-Score

40:40 [10] EndoNet 0.8190 ± 0.0440 –

[11] MTRCNet-CL 0.8920 0.8740

[12] TeCNO 0.8856 ± 0.0027 –

48:20 ResNet50* 0.8121 ± 0.0116 0.7298 ± 0.0117

ResNet+LSTM* 0.8794 ± 0.0080 0.8229 ± 0.0078

[11] MTRCNet-CL* 0.8564 ± 0.0021 0.8094 ± 0.0095

[12] TeCNO* 0.8905 ± 0.0079 0.8404 ± 0.0064

[5] OperA 0.9126 ± 0.0064 0.8449 ± 0.0064

Proposed 0.8951 ± 0.0270 0.8578 ± 0.0162

Bold indicates the highest score in each metric and each split
*Results reported in [5]

optimiser with momentum (0.9), weight decay (0.001), and
1Cycle learning scheduler with cosine decay and a maxi-
mum learning rate of 0.05·B

256 is used. We use a batch size, B,
of 128 images. For all experiments, we train the encoder
for 40 epochs. To perform a fair evaluation, we use the
encoder weights at the last epoch for extracting the fea-
tures to train the temporal model, regardless of the validation
loss/accuracy. For the TCN, we follow the parameters pro-
posed by TeCNO [12] and use a two-stage causal TCN. We
use a maximum clamping value, c = 4 (Eq. 4).

Experimental results and discussion

Comparative against state-of-the-art models Table 2
shows the results of the proposed method against state-of-
the-art models. The proposed model obtains comparable
accuracy and F1-Score to OperA. When comparing against
TeCNO, which uses the same backbone (i.e., ResNet50)
and temporal model (i.e., Multi-Stage TCN), the proposed
multi-task model shows an increase of 2.0% in F1-Score.
The proposed model surpasses the rest of the models
under comparison. We also report the results of EndoNet,
MTRCNet-CL and TeCNO in the original split where they
were published, where the first 40 videos are used for training
and the last 40 videos for testing. Note that we do not eval-

uate on these settings as having only 40 videos for training
would have considerably reduced the availability of scene
segmentation annotations for training.

Qualitative resultsWeshowa visual representation of the
estimations of the proposed model in test videos in compari-
son with the annotation in Fig. 2. In general, we can observe
a consistent correct recognition of the surgical phases with
some small mistakes occurring occasionally.

Ablation study

Comparative of different set of annotations We perform
an experiment to further understand the effect of each set of
annotations in the proposed model. Specifically, we train the
proposed multi-task encoder with only phase annotations;
and phase and scene segmentation annotations. Experiments
in this section are performed with a threefold validation and
with a 60:20 split. Note that as we select the model weights
at the end of the training, we do not use a validation set and,
therefore, we use the 12 validation videos also for training.
In addition to phase and scene segmentation annotations, we
consider also using instrument presence (i.e., without locali-
sation information) which is a common practice in the recent
literature [5,12]. To do so, we add a third branch to our
multi-task encoder and supervise it with instrument pres-
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Table 3 Phase estimation performance of the proposed model when using different backbones and annotations during the training of the encoder

Backbone Annotations Phase metric

Phase Scene segment Instrument presence Accuracy F1-Score

ResNet50 � 0.8991 ± 0.0146 0.8382 ± 0.0252

� � 0.9148 ± 0.0064 0.8753 ± 0.0029

� � � 0.9143 ± 0.0174 0.8704 ± 0.0138

ResNet18 � � � 0.9089 ± 0.0036 0.8639 ± 0.0073

ResNet152 � � � 0.9119 ± 0.0027 0.8739 ± 0.0079

Bold indicates the highest score

(a)

(b)

(c)

Fig. 3 Multi-task fusion modules under comparison: a fusion via
concatenation and convolution; b fusion via convolution prior to con-
catenation; c proposed multi-task fusion with linear combination and
learnable weights. Numbers in the figure indicate the dimensionality

of the feature map for reference. KEY: ×, multiplication operator; ωi ,
learnable scalar value; +, addition operator; Cat, concatenation oper-
ator; 1 × 1 conv 1 by 1 convolution; BN, batch normalisation layer

ence annotations that are available in Cholec80 dataset. The
results, reported in the upper part of Table 3, show that the
addition of scene segmentation improves the results for phase
estimation with an improvement of more than a 4% in F1-
Score. In addition, the addition of instrument presence does
not help to further improve the results in these settings. A
possible reason for this is that the scene segmentation anno-
tations already consider a set of surgical instruments (i.e.,
grasper, and hook).

Comparative of different backbones We analyse how
different backbones affect the results of the proposed model.

Specifically, we replace the ResNet50 backbone with a
smaller ResNet18, and by a larger ResNet152. Results
reported in the lower part of Table 3 indicate that all the
considered backbones consistently obtain higher results than
previous state-of-the-art algorithms in terms of F1-Score.
Specifically, a smaller backbone (i.e., ResNet18) obtains
0.8639 F1-Score, and a larger one (i.e., ResNet152) obtains
0.8739 F1-Score; meanwhile, the previous state of the arts,
TeCNO and OperA that use ResNet50 as their backbone,
only obtain 0.8404 and 0.8449 F1-Score, respectively.
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Table 4 Multi-task fusion
comparison when using phase,
instrument presence, and scene
segmentation as described in the
text and in Fig. 3

Fusion Skip connection Phase metric

Accuracy F1-Score

(a) Concat., and convolution 0.9141 0.8509

� 0.9126 0.8407

(b) Convolution, concat., and convolution 0.9159 0.8583

� 0.9130 0.8450

(c) Proposed (linear combination) 0.9244 0.8637

� 0.9216 0.8609

Bold indicates the highest score

Comparative of multi-task fusion modulesWe perform
an experiment to compare the proposed fusion mechanism
with other alternatives. We compare in total three fusion
mechanisms, with and without skip connection, whose dia-
grams are in Fig. 3. This experiment is performed using
phase, instrument presence, and scene segmentation annota-
tions. As previously described, we add an additional branch
to the multi-task encoder for the instrument presence. The
first fusion module (Fig. 3a) directly concatenates the task-
specific feature maps and then applies a 1 × 1 convolution,
batch-norm layer. The second fusion module (Fig. 3b) builds
on top of the previous one but prior to feature concatenation
modifies the task-specific feature maps with 1 × 1 convolu-
tion, batch-norm layer, and ReLU to enable the learning of
specific features that are not only useful for the task (e.g.,
scene segmentation) but also to the main phase task. The
third fusion module (Fig. 3c), as further described in Sect. 3,
fuses the phase, instrument, and scene segmentation features
by a simple linear combinationwith learnable scalar weights.
Note that we evaluate whether a skip connection in the phase
features from prior to the fusion to after the fusion can be
beneficial. Table 4 shows the results comparing the six differ-
ent fusion mechanisms. Results indicate that the third fusion
without the skip connectionworks better for the task of surgi-
cal phase estimation. Skip connection seems to not improve
the results.

Scene segmentation Scene segmentation results are in
Table 5 in terms of mPA, mIOU, and mDICE. The per-
class DICE scores are: background (0.9637), liver (0.7963),
gallbladder (0.7410), hook (0.6534), gastrointestinal tract
(0.5925), abdominal wall (0.5737) grasper (0.5358), fat
(0.5342), and connective tissue (0.3395). We do not report
the results on liver ligament, blood, cystic duct, and hepatic
vein due to the lack of enough annotated data.

Conclusion

We proposed a data-centric training and fusion strategy that
enables the use of multiple sources of data, and some of them
very sparse in comparison with the dataset size. Specifically,

Table 5 Results of the proposed model for the task of scene segmen-
tation in Cholec80 dataset

mPA mIOU mDICE

0.7267 ± 0.0495 0.3840 ± 0.0622 0.4933 ± 0.0670

KEY: mPA, mean Pixel Accuracy; mIOU, mean Intersection Over
Union; mDICE, mean DICE

we presented a simplemulti-taskmodel that jointly leverages
surgical phase annotations from Cholec80 and a very limited
number of scene segmentation annotations of surgical instru-
ments and anatomy from CholecSeg8k. The proposed model
obtained state-of-the-art results and outperformedmore com-
plex models for the task of causal phase estimation.

Further investigation is required to understand what
sources of information must be used, and how, to effectively
improve a specific task. In addition, we observed that phase
estimation encoders are prone to overfitting, which prelimi-
nary internal experiments showed that prevent the temporal
models from obtaining optimal results. Further investigation
for better understanding this behaviour and how to alleviate
it is required.
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