
1. Introduction
Monitoring active volcanoes plays an essential role in volcanology and hazard mitigation. The informa-
tion underpinned by ground deformation, volcano seismic signals, volcano degassing, infrasound, and other 
multidisciplinary observations forms the basis of volcano monitoring (e.g., Fee & Matoza,  2013; Pallister & 
McNutt, 2015; Pritchard et al., 2019; Sparks et al., 2012) which helps understand the dynamics of the transcrus-
tal magmatic system (e.g., Cashman et al., 2017; Sparks et al., 2019) and ultimately mitigate volcanic hazard 
(e.g., Bell et al., 2016; Pallister & McNutt, 2015; Tilling, 2008). Volcanoseismic signals, such as volcanotec-
tonic earthquakes, long-period signals, very-long-period signals, continuous tremors, and explosion earthquakes 
provide invaluable insights to underlying processes governing the fluid transport inside the magmatic-plumbing 
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system and impending eruptions (e.g., Chouet & Matoza, 2013; Kawakatsu & Yamamoto, 2007; Nishimura & 
Iguchi, 2011).

Seismic signals excited by volcanic eruptions can be recorded at large epicentral distances. For example, seismic 
body/surface waves excited by the 1980 Mount St. Helens eruption have been well captured by the Global Digital 
Seismographic Network locating up to ∼15,000 km away from the volcano (Kanamori et al., 1984; Kanamori 
& Given, 1982). Syneruptive seismic signals recorded by distant stations have been interrogated to understand 
the eruption mechanisms associated with subaerial volcanoes (e.g., Burger & Langston,  1985; Cruz-Atienza 
et al., 2001; Duputel & Rivera, 2019; Kanamori & Mori, 1992; Minson et al., 2007; Prejean & Brodsky, 2011; 
Ruppert et  al., 2011; Takeo et  al., 1990) and a few submarine volcanoes (e.g., Cesca et  al., 2020; Kanamori 
et al., 1993; Shuler et al., 2013; Tepp et al., 2020; Ye et al., 2020). Large volcanic eruptions can also induce 
ground resonances at normal-mode frequencies and they are analyzed to explore the coupling between the solid 
earth and the atmosphere (e.g., Kanamori et al., 1994; Nishida et al., 2000; Watada & Kanamori, 2010; Widmer 
& Zürn, 1992). More recently, the detection and characterization of seismic-acoustic and broadband infrasound 
signals also provide additional constraints on the process of explosive volcanic activities (e.g., Fee et al., 2017; 
Matoza et al., 2018, 2019).

Volcanoseismic signals inside a magmatic or hydrothermal system, including very-long-period signals (VLP, 
2–100 s), long-period signal (LP, 0.2–2 s), or episodic deformation events, can potentially provide invaluable 
constraints on the transport processes of fluids (magma or/and gas) leading to the eruption (e.g., Bell et al., 2018; 
Chouet, 1996; Chouet et al., 1994; Chouet & Matoza, 2013; Crozier & Karlstrom, 2021; Cruz & Chouet, 1997; 
Cusano et al., 2015; Dawson & Chouet, 2014; Frank et al., 2018; Jolly et al., 2017; Lokmer et al., 2008; Lyons 
& Waite, 2011; Matoza & Chouet, 2010; Miller et al., 1998; Niu & Song, 2020, 2021; Ohminato et al., 1998; 
Rowe et al., 1998; Varley et al., 2010; Waite et al., 2013; Woods et al., 2018; Yamamoto et al., 2002). Typically, 
they are monitored and characterized by in situ stations near the edifice (i.e., <10 km). While such repetitive 
volcanoseismic signals are typically small and rarely detected with distant stations (e.g., >10–100 km, Kawano 
et al., 2020), the use of distant stations in characterizing their source properties and inferring magmatic/hydro-
thermal processes should not be overlooked in remote, uninstrumented volcanoes that are lack of dedicated local 
instrumentation and monitoring. The obvious issue is whether it is feasible to observe such weak but repetitive 
signals and examine their source properties (e.g., location, mechanism).

Unlike crustal earthquakes, where double-couple moment tensor source mechanisms are used to character-
ize shear faulting (Aki & Richards,  2002), volcanic eruptions and volcanoseismic signals such as explosion 
earthquakes, VLP and LP often involve volumetric moment tensor component or/and single-force component 
(e.g., Chouet & Matoza, 2013; Kanamori et al., 1984; Kanamori & Given, 1982; Nishimura & Iguchi, 2011). 
These source components are often associated with the volumetric change of magma reservoirs and the reaction 
force responding to the migration of magma or/and magmatic-hydrothermal fluids, respectively (e.g., Chouet & 
Matoza, 2013; Nishimura & Iguchi, 2011).

However, it is not trivial to constrain the single-force component in the source of volcanoseismic signals with 
in situ data alone. In particular, when the force/moment ratio is much less than 10 −3 m −1, the response from 
a single-force source is much weaker than that from an isotropic source (e.g., Chouet et  al.,  2003; Uhira & 
Takeo, 1994). Furthermore, when the seismic wavelength is long compared with the source depth, it has been 
argued that the source equivalence between a vertical single-force and horizontal tensile crack (e.g., Day & 
McLaughlin, 1991) could make it difficult to resolve the single-force source component in volcanic settings (e.g., 
Dawson & Chouet, 2019).

The main aim of this paper is to analyze data at distant stations and validate the source properties of repeti-
tive VLP and synchronous deformation events previously determined by in situ data near the active crater (i.e., 
<10 km) (e.g., Legrand et al., 2000; Niu & Song, 2021). Specifically, we analyze data recorded by the F-net 
of Japan up to ∼100–1,000 km away from these sources. We elaborate several steps to evaluate the prospect of 
source detection and source mechanism appraisal. After accounting for previous observations of volcanoseismic 
signals at Aso volcano in Section 2, as detailed in Sections 3 and 4, we first use the event catalog readily avail-
able from Niu and Song (2020, 2021) to tease out observations of VLP and deformation events at the distant 
stations (i.e., >30 km). In Section 5, observations at the distant stations away from the crater help appraise source 
locations/mechanisms previously determined by in situ data near the crater. In particular, distant stations can be 
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advantageous in constraining single-force component of the source, leading to the identification of single-force 
component associated with repetitive VLPs at Aso volcano. Finally, in Section 6, we briefly discuss the potentials 
of remote monitoring and source characterization of volcanoseismic signals in less-instrumented and uninstru-
mented volcanoes.

2. Repetitive VLP and Deformation Event Beneath Aso Volcano
2.1. Repetitive VLP in Aso Volcano

Since the first discovery by Sassa (1935), persistent VLP in Aso has been reported for almost a century (Kane-
shima et al., 1996; Kawakatsu et al., 2000; Kubotera, 1974; Niu & Song, 2020; Sakaguchi et al., 2008; Sassa, 1936; 
Yamamoto et al., 1999). Modern broadband seismometers near the active Naka-dake First crater help characterize 
VLP as an event-like signal with a dominant period of ∼15 s and a duration of ∼60 s (Kaneshima et al., 1996; 
Kawakatsu et al., 2000). The source of VLP is dominated by a volumetric source located at ∼200 m southwest of 
the Naka-dake First crater in a shallow crack-like conduit (SC) near the sea level (Legrand et al., 2000; Yamamoto 
et al., 1999, Figure 1), corresponding to a region of low seismic velocity (Huang et al., 2018) and modestly high 
conductivity (Hase et al., 2005; Hata et al., 2016, 2018; Kanda et al., 2019), most likely a hydrothermal reservoir.

Several VLP families have also been detected with diverse initial polarity and resonance period in the same 
proximity and their activities appear to vary systematically with surface volcanic activities (Niu & Song, 2020). 
Typical VLP waveform starts with a negative polarity and it is interpreted as a result of a rapid release of the 
fluid-gas mixture through fracture (depressurization VLP, Figure 1) (Kawakatsu et al., 2000; Niu & Song, 2020). 
During the phreatic eruption in 1993–1994, VLPs with a positive initial polarity were occasionally recognized 
and they are regarded as a result of rapid pressurization due to vaporization induced by magmatic heat and supply 
of hot liquid/gas from below (pressurization VLP, Figure 1) (Kaneshima et al., 1996; Kawakatsu et al., 2000). A 
substantial number of these pressurization VLPs were later identified before the 2014 Strombolian eruption and 
the 2015/2016 phreatomagmatic eruption (Niu & Song, 2020).

Figure 1. An east-west cross section displaying the magma plumbing system beneath Aso volcano, Japan. The shallow crack-
like conduit (SC) marks the source region of pressurization (depressurization) very-long-period signals (VLP). The shallow 
magma storage zone (SMSZ) indicates the source location of the deformation (inflation or deflation) event. The lower inset 
shows the representative broadband waveform stacks of inflation and deflation events, whereas the upper inset zooms in the 
stacked waveforms to display pressurization (depressurization) VLP synchronized with the inflation (deflation) event.
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2.2. Repetitive Deformation Events in Aso Volcano

Most recently, deformation events synchronous with VLP have been documented by Niu and Song (2021) using 
data from the fundamental volcano observation network (Tanada et al., 2017), or the V-net. Observations from in 
situ V-net stations show that these events typically precede VLP by ∼50 s and conclude seconds after. Displace-
ment and tilt amplitude ratios among different stations or different components show considerable coherency 
among events at an ultralong period of 50–250 s, suggesting a relatively stationary source. High-quality broad-
band waveform stacks reveal clear static offset in the V-net stations, where a positive (negative) displacement 
and eastward (westward) tilt observed at the station ASHV corresponds to inflation (deflation) events (Figure 1). 
These inflation or deflation events are located ∼2 km southwest of the Naka-dake First crater and ∼3 km below 
sea level and they are characterized by a major volumetric component (∼80%) and a minor normal-fault compo-
nent (∼20%) (Niu & Song, 2021) (Figure 1). Together with petrological evidence, Niu and Song (2021) suggested 
that these inflation/deflation events likely represent episodic transport of discrete magma batches from the vola-
tile-poor silicic magma chamber toward a shallow magma storage zone (SMSZ), a preeruptive pool with mixed 
magma. In the following sections, the sources of VLP and synchronous deformation events are referred as SC 
and SMSZ, respectively, hereafter.

3. Data
In this study, we include 47 broadband seismic stations operated by National Research Institute for Earth Science 
and Disaster Resilience (NIED) F-net (Okada et al., 2004) and six broadband seismic stations operated by NIED 
V-net (Tanada et al., 2017, Figure 2). The distances between the F-net stations and the Naka-dake First crater 
range from ∼30 to ∼1,000 km. Four V-net stations are located with a distance of <10 km to the crater (Figure 2, 
inset) and they were previously used to identify the diversity of the VLP (Niu & Song, 2020) and the presence 

Figure 2. Maps of in situ and distant broadband seismic stations around Aso volcano. The map of broadband seismic stations 
operated by the F-net (open square) and V-net (green diamond). The in situ V-net stations near the Naka-data First crater 
of Aso volcano are highlighted in the inset. The locations of the magma chamber inferred from geodetic data are shown by 
the purple cross and green circle (Sudo et al., 2006) and blue circle (Ohkura et al., 2009). The low seismic velocity zone is 
indicated by the dashed circle (Sudo & Kong, 2001). Shallow crack-like conduit (SC) is marked by the blue bar.
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of the deformation events (Niu & Song, 2021). Two additional V-net stations are in Unzen volcano, and they are 
∼70 km from the Naka-dake First crater. We consider stations located within the edifice, less than 10 km from 
the Naka-dake First crater, as the in situ stations (Figure 2, inset), whereas stations located outside the edifice, 
more  than 10 km away from the Naka-dake First crater, are regarded as the distant stations.

The F-net stations are equipped with Streckeisen STS-2 broadband sensor with a nominal natural period of 
∼120 s (Okada et al., 2004; see also https://www.fnet.bosai.go.jp/st_info/response.php?LANG=en) and the V-net 
stations are equipped with Nanometrics Trillium 240 broadband sensor with a nominal natural period of ∼250 s 
(Tanada et al., 2017). The gain of the V-net and F-net stations is calibrated within ∼3% and the sensor misorien-
tation in the horizontal components is also minimum and corrected (Niu & Song, 2020).

The VLP catalog in 2011–2016 was constructed by Niu and Song (2020) using two three-component broadband 
(ASHV and ASIV, a natural period of ∼250 s, ∼3 km apart from the VLP source) from V-net and a three-compo-
nent borehole short-period seismometers (a natural period of 1 s, ∼0.5 km apart from the VLP source) from Japan 
Meteorological Agency. The pressurization and depressurization VLP families were identified by a continuous 
wavelet transform technique (Niu & Song, 2020). The matched-filter technique was then applied to construct the 
VLP catalog with a nominal false-pick rate below 0.1%, which includes ∼0.2 million events in 2011–2016 (Niu 
& Song, 2020).

We collect seismic data at the F-net and V-net stations against all detected VLP events in 2011–2016 (Niu & 
Song, 2020) and each seismogram includes a duration of 20 min, starting at ∼280 s before the onset time of 
VLP. After removing the background trend and the mean, we remove the instrumental response in the frequency 
band of 0.001–10 Hz and obtain velocity waveforms. As noted earlier, VLP has a dominant period of ∼15 s, 
whereas the deformation event can be recognized at the period of 50–250 s. Therefore, in the subsequent analysis, 
we filter the velocity data in the frequency bands of 0.03–0.07 Hz and 0.01–0.02 Hz and seek the energy associ-
ated with the VLP and the deformation event, respectively. Hereafter, we refer to the signals at 0.03–0.07 Hz as 
the high VLP band signal and those at 0.01–0.02 Hz as the low VLP band signal, respectively. Following obser-
vations in earlier studies, we first focus the analysis on the vertical component.

4. Observations of VLPs and Synchronous Deformation Events at the V-Net and 
F-Net
Here we systematically highlight observations of VLP and synchronous deformation events against single-event 
data (Section 4.1), multimonth global waveform stacks (Sections 4.2 and 4.3), and monthly waveform stacks 
(Section 4.3). In Sections 4.2 and 4.3, we examine systematics during the periods of volcanic unrest in November 
2011 to August 2014 and Strombolian eruption in October 2014 to May 2015. These examples aim to demon-
strate that the diverse nature of VLP and synchronous deformation events observed in situ (e.g., V-net) can be 
readily validated by observations at distant stations (e.g., F-net).

4.1. High/Low VLP Band Record Sections From the Two Largest VLPs and Synchronous Deformation 
Events

Figure 3 displays high-quality record sections in the high and low VLP bands from the two largest events in the 
catalog and these record sections are organized against the locations of the SC and the SMSZ, respectively. The 
record section in the high VLP band demonstrates that the vertical, radial, and transverse energy from the two 
VLPs can be observed up to ∼1,000 km or more with an apparent velocity of ∼3.2 km/s (Figures 3a–3c) and 
it does not show significant change against the epicentral distance. Similarly, we can also identify consistent 
energy in the low VLP band up to ∼1,000 km in the vertical component (Figure 3d), admittedly with a lower 
signal-to-noise ratio beyond ∼500 km. This observation in the high VLP band is consistent with earlier studies by 
Hashida (1990) and Kawakastu et al. (1994, 2000).

In general, the energy in the low VLP band is a factor of ∼20 smaller the one in the high VLP band. As indicated 
in Figure 3a, the amplitude of high VLP band energy drops from the four V-net stations at ∼5 km distance (blue 
traces in Figure 3a) to the nearest F-net stations at ∼25 km distance (i.e., TKD, TMC) by about a factor of 10. 
In contrast, the amplitude of low VLP band energy drops from the four V-net stations (blue traces in Figure 3d) 

https://www.fnet.bosai.go.jp/st_info/response.php?LANG=en
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to the nearest F-net stations (i.e., TKD, TMC) by about a factor of 100. As detailed in Section 5, such a large 
difference is unlikely a result of attenuation, but due to differences in the source property (i.e., source depth) 
between the SC and the SMSZ.

4.2. Global Waveform Stacks During Volcanic Unrest and the Strombolian Eruption

Since VLPs and synchronous deformation events are repetitive, one should demonstrate that the energy observed 
from single-event record sections in Section 4.1 can be duplicated. As detailed in Niu and Song (2021), the pres-
surization VLP and the inflation events are prominent during the volcanic unrest between November 2011 and 
August 2014, whereas the depressurization VLP and the deflation events are dominant during the Strombolian 
eruption between October 2014 and May 2015. By utilizing the timing of VLP detected from in situ data (Niu & 
Song, 2020), we construct global waveform stacks from inflation events in the period of the volcanic unrest and 
deflation events during Strombolian eruption, respectively. We note that events during the malfunction of F-net 
stations (https://www.fnet.bosai.go.jp/st_info/station_dat.php?LANG=en) are excluded and, as a result, 665 of 
671 inflation events and 714 of 957 deflation events are used to construct the global inflation and deflation wave-
form stacks, respectively.

To construct the waveform stacks at each station, high/low VLP band waveforms are normalized against their 
peak velocities before stacking and the median of the peak velocities is multiplied against the waveform stacks 

Figure 3. Waveform record sections in the high/low very-long-period signals (VLP) bands from two large events before the 8 October 2016, phreatomagmatic eruption. 
(a–c) The record sections of high VLP band velocity seismograms (0.03–0.07 Hz) in the vertical (Z), radial (R), and transverse (T) components, including waveforms 
recorded at the V-net (blue and yellow traces) and F-net (black traces) stations, respectively. The seismograms with a low signal-to-noise ratio are excluded. The starting 
time of the seismograms is 2016-10-08T01:36:26 (JST). The seismograms recorded at the four in situ V-net stations (blue) are downscaled by a factor of 10 for the 
presentation. The seismograms recorded around the Unzen volcano are in yellow. The red dashed lines mark the apparent velocity of 3.2 km/s. The first and second 
events are marked as Event 1 and Event 2, respectively. (d) Same as (a), except showing the vertical-component record section of low VLP band velocity seismograms 
(0.01–0.02 Hz). The in situ recordings at V-net (blue traces) are downscaled by a factor of 100 for the presentation.

https://www.fnet.bosai.go.jp/st_info/station_dat.php?LANG=en
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to recover their amplitudes. Figures 4a and 4b display the high/low VLP band record sections from global infla-
tion waveform stacks. While the energy associated with pressurization VLPs can be easily identified in the 
high VLP band up to 1,000 km, the energy associated with inflation events in the low VLP band is weak with a 
lower signal-to-noise ratio. This is not surprising since the amplitude of the deformation events is generally two 
orders of magnitude smaller than the two largest events discussed in Section 4.1 (see also Niu & Song, 2021). 
As the amplitudes of low VLP band waveform stacks are ∼100 times smaller than that of high VLP band wave-
form stacks, their signal-to-noise ratios remain relatively poor beyond ∼200–300 km (Figures S1a and S1b in 
Supporting Information  S1). Similarly, when examining the record sections from global deflation waveform 
stacks (Figures 4c and 4d; Figures S1c and S1d in Supporting Information S1), we can also identify the energy 
associated with VLPs in the high VLP band record section (Figure 4c and Figure S1c in Supporting Informa-
tion S1) and observe weak, but consistent energy associated with deflation events in the low VLP band record 
section (Figure 4d and Figure S1d in Supporting Information S1).

Figure 4. Record sections of global inflation/deflation event waveform stacks. (a) and (b) display high very-long-period 
signals (VLP) band (0.03–0.07 Hz) and low VLP band (0.01–0.02 Hz) record sections of the global inflation event waveform 
stacks (November 2011-August 2014) at the F-net stations, respectively. (c) and (d), same as (a) and (b), except displaying 
the record sections of the global deflation events waveform stacks (October 2014-May 2015). The red dashed lines mark 
the apparent velocity of 3.2 km/s. The complete record sections up to 1,000 km distance can be referred to Figure S1 in 
Supporting Information S1.
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4.3. Diverse VLPs and Synchronous Deformation Events During Volcanic Unrest and Strombolian 
Eruption

In Sections 4.1 and 4.2, we have shown that the energy associated with repetitive VLPs and synchronous defor-
mation events can be robustly detected at distant stations up to ∼200–1,000 km. While changes in the polarities 
and amplitudes of VLPs and synchronous deformation events against surface volcanic activities can be identified 
at in situ stations, here we demonstrate that these systematic differences can be readily observed at the distant 
stations (Figure 5). Figures 5a–5c show the unfiltered displacement, high VLP band velocity, and low VLP band 
velocity global waveform stacks at the in situ station ASHV. The unfiltered displacement stacks are obtained by 
integrating unfiltered velocity waveform stacks and the removal of nonlinear drift by a fourth-order polynomial 
function (Niu & Song, 2021; Zhu, 2003) (Figure S2 in Supporting Information S1).

As shown in Figures 5a and 5b, the amplitude of VLPs in the deflation stacks is ∼3 times higher than that in the 
inflation stacks. On the other hand, the amplitudes of static offset and low VLP band energy in the inflation and 
deflation waveform stacks are very similar (Figures 5a and 5c). One can easily recognize that the polarities of 
VLP and synchronous deformation events are opposite between the inflation waveform stacks and the deflation 
waveform stacks (Figures 5a–5c). Furthermore, we can identify a phase delay between the global inflation and 
deflation stacks in the low VLP band (Figure 5c). As illustrated in Figures 5d and 5e, observations made at the in 
situ station ASHV can be readily confirmed by the high/low VLP band waveform stacks at the F-net station TKD 

Figure 5. Polarity, phase, and amplitude of short/long-period waveform stacks at the in situ and distant stations. (a–c) Broadband displacement, high very-long-period 
signals (VLP) band (0.03–0.07 Hz) and low VLP band (0.01–0.02 Hz) velocity seismograms of the global inflation/deflation waveform stacks at the in situ station 
ASHV, respectively. (d, e), same as (b, c), except displaying high VLP band (0.03–0.07 Hz) and low VLP band (0.01–0.02 Hz) waveform stacks at the distant F-net 
station TKD, respectively. (f–j), Same as (a–e), except displaying the monthly inflation (July 2014) and deflation (November 2014) waveform stacks. (a–e) and (f–j) 
Demonstrate the consistency between observations at in situ and distant stations.
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(i.e., ∼30 km from the sources). Finally, we examine high-quality monthly inflation waveform stacks of July 2014 
and monthly deflation waveform stacks of November 2014 (Figures 5f–5j). It is evident that observations made 
previously against global waveform stacks can be replicated by high-quality monthly waveform stacks.

5. Validating Source Properties of VLP and Synchronous Deformation Events in Aso 
With Data at Distant Stations
We have shown that the persistence and diversity of VLPs and synchronous deformation events can be validated 
by recordings at the distant stations. As noted by Niu and Song (2021) and discussed earlier, the source of VLPs 
(i.e., SC) and synchronous deformation events (i.e., SMSZ) are spatially separated by about 3 km. While the depth 
of the SC is close to sea level, or 1.5 km below the crater bottom (Kawakatsu et al., 2000; Legrand et al., 2000; 
Niu & Song, 2020; Yamamoto et al., 1999), the depth of the SMSZ is ∼3 km below sea level and ∼2 km west 
of the Naka-dake First crater (Niu & Song, 2021, see also Figure 1). In this instance, one would expect that the 
amplitude decay pattern against the epicentral distance, dictated by the source depth (Aki & Richards, 2002; 
Legrand et al., 2000; Niu & Song, 2021), would differ substantially among high VLP band velocity, low VLP 
band velocity, and static displacement. On the other hand, both VLPs and synchronous deformation events are 
dominated by a volumetric component (Legrand et al., 2000; Niu & Song, 2021; Yamamoto et al., 1999). Here 
we also explore how the data at distant station can facilitate validation of these source mechanisms previously 
derived from in situ data.

5.1. Validating Source Depths of VLP and Deformation Event

To cross-validate their source depths, we measure the amplitudes of the high/low VLP band velocity and static 
displacement offset and compare them against synthetics. To calibrate the receiver effect on the velocity ampli-
tude at each station, we compare the peak velocities of high/low VLP band Rayleigh waves from distant great 
earthquakes against those recorded at the reference station (i.e., ASHV). Specifically, we obtain the averaged 
amplitude of high VLP band (or low VLP band) Rayleigh waves from selected teleseismic events in 2011–2016, 
including 24 earthquakes with Mw 𝐴𝐴 ≥ 7, the source depth of 𝐴𝐴 ≤ 50 km, and the epicentral distance of 𝐴𝐴 ≥ 30°. The 
averaged amplitude is corrected for the geometric spreading and normalized against the averaged Rayleigh wave 
amplitude at the reference station ASHV to obtain the station specific amplitude correction factor (Figure S3 in 
Supporting Information S1).

Synthetic seismograms are calculated by the F-K package (Zhu & Rivera, 2002) against the 1D global refer-
ence velocity model IASP91 (Kennett et al., 1995) with attenuation structure adapted from Preliminary Refer-
ence Earth Model (PREM, Dziewonski & Anderson, 1981). Static displacement offset is calculated for a point 
source embedded in a homogeneous half-space (Okada,  1992), where 𝐴𝐴 𝐴𝐴𝑃𝑃 = 1, 500m/s , 𝐴𝐴 𝐴𝐴𝑆𝑆 = 800 m/s , and 

𝐴𝐴 𝐴𝐴 = 1, 700 kg/m3 (Legrand et al., 2000; Niu & Song, 2021). The moment tensors of the SC (Legrand et al., 2000) 
and a triangle source-time function of 8 s are used to compute synthetics against high VLP band observations 
(Table 1). On the other hand, the moment tensor of the SMSZ (Niu & Song, 2021) and a triangle source-time 
function of 60 s are used to compute synthetics against long-period observations. Note that the durations of these 
source-time functions are consistent with the dominant period of VLP and the rise time of inflation/deflation 
events, respectively. However, these specific choices do not noticeably change the rate of amplitude decay against 
epicentral distance.

We note that, in these calculations, the SC and SMSZ are fixed at the geographical locations derived previously 
from Legrand et al. (2000) and Niu and Song (2021), respectively. However, to test the validity of the source 

Source Latitude (°) Longitude (°) Depth (km) Mxx Myy Mzz Mxy Mxz Myz Reference

SC 32.8832 131.0830 (0.2), 1–8 0.690 1.000 0.763 0.090 0.056 −0.040 Legrand et al. (2000)

SMSZ 32.8758 131.0642 0.2, 1–8, (3) 0.863 1.000 0.625 0.077 0.066 0.102 Niu and Song (2021)

Note. The moment tensor is normalized and defined in x=North, y=East and z=Down. The depth in the parentheses indicates the source depth previously derived from 
the in-situ data (see reference).

Table 1 
Locations and Source Mechanisms of the SC and SMSZ Used in the Synthetic Calculation
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depths of the SC (i.e., ∼0.2 km below sea level) and the SMSZ (i.e., ∼3 km below sea level) obtained in previous 
studies (Legrand et al., 2000; Niu & Song, 2021; Yamamoto et al., 1999), we compute synthetics against the 
source depths from 0.2 to 8 km below sea level. Considering the effect of topography on surface displacement 
(Williams & Wadge, 1998), the effective source depth in the calculation is measured against the reference free 
surface defined by the station elevation, ranging from ∼50 to ∼900 m above sea level. Table 1 lists the relevant 
source parameters used in the calculation.

5.1.1. Modeling Amplitude Decay Against Single-Event Waveform Data

Figures 6a–6c compare the observed amplitude decay of the two largest events (crosses) against synthetics (color 
dots), where all the measurements are normalized against the amplitude at the reference station ASHV. Within 
∼30 km, the amplitude decay in the low VLP band (Figure 6b) and in the static offset (Figure 6c) is more than 
∼10 times faster than that in the high VLP band (Figure 6a), consistent with the observations in Figure 3. Nota-
bly, the low VLP band amplitude follows more closely to the 𝐴𝐴 1∕𝑟𝑟2 to 𝐴𝐴 1∕𝑟𝑟 decay trend, where 𝐴𝐴 𝐴𝐴 is the hypocentral 

Figure 6. Forward modeling the amplitude versus distance decay trend against the high/low very-long-period signals (VLP) band waveforms and static displacements 
at Event 1 and Event 2. (a) Comparing peak-to-peak velocity between observations (crosses) and synthetics (solid circles) in the high VLP band (0.03–0.07 Hz). 
Synthetics are color-coded against the source depths. The observed amplitudes are the average of Event 1 and Event 2, whereas the observed and synthetic amplitudes 
are normalized by the amplitude at the station ASHV. The epicentral distance is computed against the location of the shallow crack-like conduit (SC). (b) and (c), same 
as (a), except for the low VLP band velocity (0.01–0.02 Hz) and static displacement, respectively, and the epicentral distance is computed against the shallow magma 
storage zone (SMSZ). In (c), robust observations of static displacement can be obtained at the two in situ stations (ASHV, ASNV) and the distant stations TKD, TMC, 
and INN. The amplitude-distance decay trends following 𝐴𝐴 1∕

√

𝑟𝑟 , 𝐴𝐴 1∕𝑟𝑟 , and 𝐴𝐴 1∕𝑟𝑟2 are marked by dashed lines, where 𝐴𝐴 𝐴𝐴 is the hypocentral distance for a surface source. (d–f) 
The misfits between the normalized synthetic and observed amplitudes against the source depths in the high VLP band velocity (0.03–0.07 Hz), the low VLP band 
velocity (0.01–0.02 Hz), and static displacement, respectively.



Journal of Geophysical Research: Solid Earth

NIU AND SONG

10.1029/2021JB023400

11 of 28

distance. In contrast, the high VLP band amplitude follows more closely to the 𝐴𝐴 1∕𝑟𝑟 to 𝐴𝐴 1∕
√

𝑟𝑟 decay trend. This is 
not surprising as the amplitude in the near-field and far-field respectively follows the 𝐴𝐴 1∕𝑟𝑟2 and 𝐴𝐴 1∕𝑟𝑟 decay trends 
(Aki & Richards, 2002), and the transition between the near-field and far-field depends on the dominant wave-
length. Beyond ∼30–100 km, the amplitude decay is generally close to 𝐴𝐴 1∕

√

𝑟𝑟 , as expected for surface waves (Aki 
& Richards, 2002).

Synthetics illustrate a strong dependence of amplitude decay rate against the source depth (Figures 6a–6c), that is, 
the amplitude decays at a faster rate against distance when the source is located at a shallower depth. This system-
atic trend allows us to validate the source depths of SC and SMSZ. We compute the misfit between observed 
and synthetic amplitudes against quality measurements at distant stations between 10 and 200 km. The misfit is 
defined by 𝐴𝐴 1∕𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1 (𝑠𝑠𝑖𝑖 − 𝑜𝑜𝑖𝑖)
2∕𝑜𝑜2

𝑖𝑖
 , where 𝐴𝐴 𝐴𝐴 is the number of observations, 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 the normalized synthetic and 

observed amplitudes at ith station, respectively. Comparisons between observed and synthetic amplitude against 
in situ data are included for completeness. As shown in Figure 6d, the amplitude decay in the high VLP band is 
best explained by a source depth of ∼0.2 km below sea level, whereas the amplitude decay in the low VLP band 
(Figure 6e) and static offset (Figure 6f) is best explained by a source depth of ∼3–4 km below sea level. Collec-
tively, these results validate the source locations and mechanisms of the SC and the SMSZ derived from in situ 
stations near the edifices (Legrand et al., 2000; Niu & Song, 2021; Yamamoto et al., 1999).

5.1.2. Modeling Amplitude Decay Against the Global and Monthly Waveform Stacks

Following the approach in Section 5.1.1, we illustrate the amplitude decay trends observed from the global and 
monthly waveforms stacks and compare them against synthetics (Figures 7a and 7b). In general, the amplitudes 
decay trends from the inflation (black symbols) and deflation (gray symbols) waveform stacks are very similar 
and there is no apparent difference between the global stacks (crosses) and monthly stacks (open circles). As 
shown in Figures 7c and 7d, the high VLP band amplitude decay is best explained by a source depth of ∼0.2 km 
below sea level (Figure 7c), whereas the decay in the low VLP band amplitude (Figure 7d) is best explained by 
a source depth of ∼3–4 km below sea level. These results again validate the source locations and mechanisms of 
the SC and the SMSZ derived from stations near the edifices (Legrand et al., 2000; Niu & Song, 2021; Yamamoto 
et al., 1999), reaffirming the stationary properties of the SC and SMSZ during the 2011–2016 eruption cycle.

5.2. Validating Source Mechanisms of VLP and Deformation Event: The Constraint Against Single-
Force Component by Distant Stations

In Section 5.1, we have shown that the source depths of VLP and deformation event previously determined by in 
situ data are well supported by the data at distant stations. Here we examine the source mechanism of the VLP 
and deformation events against the single-event data previously discussed in Section 5.1.1 (see also Table 1). 
Figure 8 compares the observed and synthetic particle motions in the vertical-radial and radial-transverse planes 
against the in situ station ASHV and several quality distant stations such as TKD, TMC, INN, and STM. Since 
the transverse component is very noisy in the low VLP band, we only examine the low VLP band particle motion 
in the vertical-radial plane. As shown in Figure 8a, the low VLP band particle motion associated with the defor-
mation event can be explained reasonably well by the synthetics, suggesting that the source mechanism by Niu 
and Song (2021) can also reconcile the data in these distant stations.

However, there are some inconsistencies in the high VLP band between the observed and synthetic particle 
motions associated with the VLP (Figures 8b and 8c). In particular, at the distant stations TMC and TKD (i.e., 
∼30 km from the source), the major axes of the observed and synthetic particle motions in the vertical-radial 
plane tilt in the opposite directions (Figure 8b). At the station TMC, the major axes of the observed and synthetic 
particle motions in the radial-transverse plane also tilt in the opposite directions (Figure 8c). Previously, Legrand 
et  al.  (2000) showed that the source of VLP is predominantly with an isotropic component. They noted that 
the single-force component was difficult to resolve and perhaps not relevant during phreatic eruptions. As the 
earlier studies are limited to in situ stations, here we first discuss the advantage offered by the inclusion of distant 
stations in the source analysis (Section 5.2.1). After elaborating the potential tradeoff between the vertical single-
force source and horizontal tensile crack source in Section 5.2.2, we systematically explore if the addition of the 
single-force component helps reconcile the discrepancy between the data and synthetics in the high VLP band 
(Section 5.2.3).
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5.2.1. Amplitude Ratios Between Isotropic and Single-Force Component at In Situ and Distant Stations

Here we explore the effect of single-force component against data at the in situ and distant stations. Figure 9a 
shows the peak-to-peak velocity amplitude ratio between a vertical single-force source (i.e., VSF) and an isotropic 
source (i.e., VISO) at a fixed force/moment ratio of 10 −4 m −1 against the epicentral distance. Notably, at small 
epicentral distance where in situ stations are deployed (i.e., <2 km), the amplitude ratio VSF/VISO is relatively 
small (i.e., 0.1–0.4). However, as shown in Figure 9a, the amplitude ratio VSF/VISO increases rapidly with distance 
and it reaches about ∼2–4 beyond 5 (30) km in the vertical (radial) component, suggesting that the velocity 
from the single-force component is comparably much more prominent than that from the isotropic component at 
mid-to-large distances (i.e., >∼5 km).

This result indicates that the response from a single-force source is comparably much more prominent than that 
from an isotropic source at distant stations. Early detection of single-force source mechanism in Izu-Oshima with 

Figure 7. Forward modeling the amplitude versus distance decay trend against the high/low very-long-period signals (VLP) 
band global and monthly inflation and deflation waveform stacks. (a) Comparing peak-to-peak velocity between global stacks 
(crosses), monthly stacks (circles), and synthetics (solid circles) in the high VLP band (0.03–0.07 Hz). Synthetics are color-
coded against the source depths. The observed and synthetic amplitudes are normalized by the amplitude at the station ASHV. 
The epicentral distance is computed against the location of the shallow crack-like conduit (SC). (b) Same as (a), except for 
the low VLP band velocity (0.01–0.02 Hz) and the epicentral distance is computed against the shallow magma storage zone 
(SMSZ). The amplitude-distance decay trends following 𝐴𝐴 1∕

√

𝑟𝑟𝑟 1∕𝑟𝑟𝑟 and 1∕𝑟𝑟2 are marked by the dashed lines, where 𝐴𝐴 𝐴𝐴 is the 
hypocentral distance for a surface source. (c) The misfits between the normalized synthetic and observed amplitudes against 
the source depths in the high VLP band (0.03–0.07 Hz). (d) Same as (c), except in the low VLP band (0.01–0.02 Hz).
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data beyond 30 km (i.e., Ukawa & Ohtake, 1987) perhaps also reflects this important property. This is not surpris-
ing since the single-force component decays at a slower rate than the force dipole or force couple component in 
the near-field (Aki & Richards, 2002; Kanamori & Given, 1982; Ohminato et al., 1998). These results are readily 
manifested in the particle motions (Figures 9b–9d). As shown in Figures 9b and 9c, the particle motions from 
a single-force source and an isotropic source differ substantially at the distance of less than 30 km. For a joint 
source with a force/moment ratio of 10 −4 m −1, Figure 9d shows that the single-force component alters the particle 
motion from the isotropic component more substantially at ∼5–30 km than that at 1 km.

5.2.2. The Ambiguity Between a Vertical Single-Force Source and a Horizontal Tensile Crack Source?

The result in Section 5.2.1 strongly suggests that data at distant stations can be included to minimize the tradeoff 
between the isotropic component and the single-force component and improve constraints on the presence/
absence of single-force component in the source. However, as noted by Day and McLaughlin  (1991), when 
the seismic wavelength is longer than the source depth, the responses from a vertical single-force and a hori-
zontal tensile crack are equivalent. On the other hand, Fukao (1995, p. 247) pointed out that “….the resultant 
static displacement is zero according to their single-force model, but non zero according to their fault model, an 
obvious contradiction to their proposed equivalence between two models…” The discrepancy pointed out by 
Fukao (1995) suggests that the assertion by Day & McLaughlin (1991) may not be valid in the near-field.

To test this hypothesis, we first compute synthetics from a vertical single-force and a horizontal crack for the 
source depth of high VLP band signal at 500 m in a homogeneous half-space. Following Equation 16 of Day 
and McLaughlin (1991), the calculated response from the horizontal tensile crack includes a triangle source-time 
function of 8 s equivalent to the double-integrated source-time function of the vertical single-force multiplied by 
the scaling factor 𝐴𝐴 𝐴𝐴

2
𝑝𝑝∕ℎ , where 𝐴𝐴 𝐴𝐴𝑝𝑝 is P wave velocity and 𝐴𝐴 𝐴 is source depth. Figure 10 displays the velocity ampli-

tude ratio between the horizontal tensile crack source (HC) and the single-force source (SF). If the assertion of 
source equivalence by Day and McLaughlin (1991) were valid, one would expect that the velocity amplitude ratio 
remains constant against the epicentral distance.

However, as shown in Figure 10a, we find that the velocity amplitude ratios in the high VLP band vary signif-
icantly within the range of about 100 km, a distance comparable to signal wavelength in the high VLP band. 
The amplitude ratios measured in the low VLP band also varies significantly within the range of about 150 km 
(Figure  10b). These observations support the hypothesis that the source equivalence asserted by Day and 

Figure 8. Forward modeling high/low very-long-period signals (VLP) band particle motions. (a) Comparisons of observed 
low VLP band (0.01–0.02 Hz) particle motions of Event 1 (black) and synthetics (red) in the vertical-radial plane. (b) 
Comparisons of observed high VLP band (0.03–0.07 Hz) particle motions of Event 1 (black) and synthetics (red) in the 
vertical-radial plane. (c) Same as (b), except in the radial-transverse plane.
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McLaughlin  (1991) is not strictly valid in the near-field. To test the hypothesis further, Figure  10c displays 
the velocity amplitude ratios measured in the typical LP band of 1–2 Hz. As expected, the amplitude ratios are 
essentially constant beyond 10 km. Since the distance range of the near-field for high frequency waves is rather 
limited, the source equivalence of Day and McLaughlin (1991) is generally valid in the far-field (i.e., >10 km).

In short, the limitation of Day and McLaughlin (1991)'s assertion, previously pointed out by Fukao (1995), is 
validated by our synthetic experiment. As illustrated in Figure 10, the inclusion of distant stations in the near-field 
against the source modeling of single-force component shall provide a more robust constraint with a minimal 
tradeoff with a horizontal-crack source. Synthetic tests done by Ohminato et al.  (1998) also showed that, the 
single-force and vertical dipole component (Mzz) can be resolved with near-field data and the tradeoff between 
single-force and horizontal crack is also relatively minimal (i.e., force/moment ratio of ∼10 −6 m −1). Since the 
near-field term of the single-force component decays at a slower rate than that generated from the moment tensor 
component (i.e., 𝐴𝐴 1∕𝑟𝑟3 versus 𝐴𝐴 1∕𝑟𝑟4 , Aki & Richards, 2002), it is not unexpected that near-field data can help distin-
guish a single-force source from a horizontal-crack source (i.e., moment tensor components).

5.2.3. Single-Force Component in the VLP Source Beneath Aso Volcano?

Here we systematically explore if the addition of single-force component may reconcile the discrepancies in 
the high VLP band particle motions shown in Figures 8b and 8c, we examine the sensitivity of high VLP band 
particle motions at ASHV (i.e., ∼3.5 km from the SC) and TMC (i.e., ∼34.5 km from the SC) against the force 

Figure 9. Contrasting waveform amplitude and particle motion between an isotropic source (ISO) and a single-force source 
(SF) against the epicentral distance. High very-long-period signals (VLP) band velocity amplitude ratios between the 
isotropic source and single-force source in the vertical (open circle) and radial (cross) components. The force is set vertical, 
and the force/moment ratio is fixed at 10 −4 m −1. Synthetics are calculated against a source depth of 0.5 km. (b) Example of 
high VLP band particle motions from an isotropic source in the vertical-radial plane. (c) Same as (a), except from a vertical 
single-force (SF) source. (d) Same as (a), except from an ISO + SF source with a force/moment ratio of 10 −4 m −1.
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dip angle θ and force/moment ratio, assuming a constant force strike of 90°. As shown in Figure 11, the particle 
motions from isotropic or single-force component are generally quite different and each component alone does 
not explain the data, regardless the force direction. However, we find that an upward, subvertical force (i.e., ∼85° 
from horizontal) and a force/moment ratio of ∼10 −4 m −1 appear to reconcile the observations quite satisfactory.

Motivated by this finding, we conduct a grid-search scheme to explore the optimal source parameters for a joint 
source (SF + ISO), including the force/moment ratio between the single-force component and isotropic compo-
nent and the force direction, that best explain the high VLP band data of Event 1 and Event 2 at the in situ and 
distant stations. Except one station (STM), all stations are well within the range of near-field in the high VLP 
band. Following the approach by Maeda et al. (2011), we have also included the contributions from translation and 
tilt in the horizontal synthetic seismograms. Similar to the approach by Legrand et al. (2000), we use the filtered 
waveform at ASHV as the source-time function and only the amplitude at each component is used to invert for the 

source parameters. The misfit Δ between the data and the synthetics is defined by 𝐴𝐴 Δ =
∑𝑁𝑁

𝑖𝑖=1

∑3
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 , where 

𝐴𝐴 𝒅𝒅
𝑘𝑘

𝑖𝑖
 is the filtered observed velocity waveforms in the kth component of the ith station; 𝐴𝐴 𝒔𝒔

𝑘𝑘

𝑖𝑖
 is the filtered synthetic 

Figure 10. Contrasting velocity amplitude from a vertical single-force source and an equivalent horizontal tensile crack 
source against epicentral distance. (a) Peak-to-peak velocity amplitude ratio between the horizontal tensile crack (VHC) and 
the vertical single force (VSF) against epicentral distance in the high very-long-period signals (VLP) band (0.03–0.07 Hz). 
Open circles and crosses mark the amplitude ratio measured in the vertical and radial components, respectively. (b) and (c) 
Same as (a), except in the low VLP band (0.01–0.02 Hz) and long-period (LP) band (1–2 Hz), respectively. The inset in 
(c) zooms in the graph in the distance range of 0–10 km. The magnitude of vertical single force is 1 𝐴𝐴 ×  10 17 N𝐴𝐴 ⋅ ℎ∕𝑣𝑣2𝑝𝑝 and the 
moment of the equivalent horizontal tensile crack is 1 𝐴𝐴 ×  10 17 N·m, where 𝐴𝐴 𝐴𝐴𝑝𝑝 is P wave velocity and 𝐴𝐴 𝐴 is source depth.
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velocity waveforms in the kth component of the ith station, N is the station number and ||*|| indicates two-norm; 
𝐴𝐴 𝐴𝐴𝑘𝑘 is the weighting factor of the velocity waveforms in the kth component.

We note that the amplitudes of the observed waveforms in the transverse components are nearly 1/3 of the ampli-
tudes in the radial and vertical component across all the stations. To balance the misfit calculation across all three 
components, we assign 𝐴𝐴 𝐴𝐴𝑘𝑘 = 1 for the radial and vertical components and 𝐴𝐴 𝐴𝐴𝑘𝑘 = 3 for the transverse component, 
respectively. As the number of source parameters in Legrand et al. (2000) (6 parameters) and our SF + ISO model 
(4 parameters) is different, we compute their AICs (Akaike Information Criterion, Akaike, 1974) to facilitate 
model selection. The AIC can be defined as 𝐴𝐴 𝐴𝐴𝑐𝑐 ×𝐴𝐴𝑠𝑠 × ln(Δ) + 2 × 𝑚𝑚 (i.e., Ohminato et al., 1998), where 𝐴𝐴 𝐴𝐴 is 
the number of the independent free parameters, 𝐴𝐴 𝐴𝐴𝑐𝑐 is the number of channels and 𝐴𝐴 𝐴𝐴𝑠𝑠 is the number of samples 
in each trace.

The preferred SF + ISO source for Event 1 (Event 2) includes an isotropic component (i.e., volume increase) of 
4.18 × 10 14 (4.65 × 10 14) N ⋅ m and a single-force component of 6.62 × 10 10 (7.37 × 10 10) N (see also Table 2). 
The moment of the isotropic component in the preferred SF  +  ISO source is similar to that estimated from 
Legrand et al. (2000)'s moment tensor solution. As shown in Figure 12a (see also Figure S4a in Supporting Infor-
mation S1), the SF + ISO source prefers a single-force orienting approximately toward the East and ∼75° from 
horizontal and the preferred force/moment ratio is ∼10 −4 m −1 (Figure 12b, see also Figure S4b in Supporting 

Figure 11. Forward modeling high very-long-period signals (VLP) band particle motions against isotropic and single-force sources. (a) Comparing high VLP band 
particle motions of Event 1 (black) against synthetics (red) in the vertical-radial plane. Top to bottom panels: synthetics are calculated from an isotropic source (ISO), 
a single-force (SF) source, an ISO + SF source with a force/moment ratio of 10 −3 m −1, and an ISO + SF source with a force/moment ratio of 10 −4 m −1, respectively. 
The SF strike is set at 90° and the dip angle θ varies from −85° to −45°. Note the negative dip angle indicates an upward force. (b) Same as (a) except in the radial-
transverse plane.

  Scheme
Force/Moment 

(m −1)
Strike angle 

(°) Dip angle Force (N) Moment (N m) △ AIC

Event 1 ISO + SF 1.58E−04 79 −72 6.62E+10 4.18E+14 0.239 −34,402

L2000 – – – – 3.87E+14 1.500 9,756

Event 2  ISO + SF 1.58E−04 73 −72 7.37E+10 4.65E+14 0.230 −35,298

L2000 – – – – 4.31E+14 1.535 10,302

Note. The absolute magnitude of single-force and moment of ISO is scaled from the estimated force/moment ratio by fitting 
the amplitude of the filtered vertical velocity at N.ASHV. The moments and AICs of L2000 are calculated against the 
previous moment tensor solution by Legrand et al. (2000).

Table 2 
Preferred Force and Moment Parameters for Event 1 and Event 2 From the Grid-Search Scheme
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Information S1). Such a SF + ISO source explains the data more satisfactory with a much lower misfit than the 
moment tensor solution of Legrand et al. (2000) (Figures 13 and 14; Figures S5 and S6 in Supporting Informa-
tion S1). The AIC for such a SF + ISO source (∼−34,000) is also much lower than that for the moment tensor 
solution of Legrand et al. (2000) (∼10,000) (Table 2). In short, this result indicates that the two large VLPs before 
the 2016 phreatomagmatic eruptions likely involve a subvertical single-force component with a force/moment 
ratio of ∼10 −4 m −1. The force dip is apparently subparallel to the crack-like conduit previously established by 
Yamamoto et al. (1999), whereas the force strike is approximately normal to the strike of the crack-like conduit 
(Figure 15).

If we consider the crack width of 1,000 m and crack aperture of 25 m (Yamamoto, 2005; Yamamoto et al., 1999), 
or a cross section area A of about 25,000 m 2, the single-force magnitude F of ∼6.62 × 10 10 N (∼7.37 × 10 10 N) 
for Event 1 (Event 2) corresponds to an excess overpressure ΔP of ∼2.6 MPa (∼2.9 MPa) in the crack-like conduit 

Figure 12. Grid-search result for an isotropic source + single-force source (ISO + SF) source against the single-force orientation and the force/moment ratio. (a) 
Misfit contours against the strike and dip angle of the single force at the preferred force/moment ratio. (b) Misfit against the force/moment ratio at the preferred force 
orientation.

Figure 13. Observed and synthetic particle motions with the preferred single-force source + isotropic source (SF + ISO) source. (a) Comparisons of observed high 
VLP band particle motions of Event 1 (black) against synthetics from the preferred ISO + SF source (red) in the vertical-radial plane. Synthetics from the previous 
moment tensor source (Legrand et al., 2000) are shown in green. (b) Same as (a), except in the radial-transverse plane.
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Figure 14.
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before the 2016 eruption. On the other hand, the two VLPs are exceptionally 
large, and whether the same source property (i.e., force/moment ratio) applies 
to VLPs during the period of quiescence, or phreatic eruptions remains to be 
elaborated. While Legrand et al. (2000) explored the single-force component 
against VLPs during the period of phreatic eruption in 1994, the data were 
mostly limited at stations very close to the source (i.e., 1–2 km). There were 
a few stations slightly further away, but the data appear too noisy to help 
conclude the significance of the single-force component.

The mixed source mechanism associated with the two large pressurization 
VLPs (i.e., Event 1 and Event 2) includes a transient, volume increase compo-
nent and an upward, subvertical force component. As a result of the exchange 
of momentum between the source volume and the Earth (Kawakatsu, 1989; 
Takei & Kumazawa, 1994, 1995), we suggest that the upward, subvertical 
force component is consistent with the reaction force against the deceleration 
of upward fluid transport. On the other hand, as noted earlier, depressuriza-
tion VLP possesses very similar waveforms and particle motions to pressur-
ization VLP, but with an opposite polarity. In this instance, depressurization 
VLP shall include a transient, volume decrease component and a downward, 
subvertical force component. The downward, subvertical force component 
is consistent with the reaction force against the acceleration of upward fluid 

transport. These inferences are generally compatible with the dominance of pressurization VLP and synchronous 
inflation event during volcanic unrest and depressurizaton VLP and synchronous deflation event during the 
Strombolian eruption, respectively.

As shown in Figure 9a, the addition of V-net (i.e., 3.5–7 km from SC) and F-net (i.e., >∼30 km from SC) provides 
ideal station coverage to tease out the presence of single-force component and to help elucidate if the single-
force component may vary against VLPs in the 2011–2016 eruption cycle (Niu & Song, 2020). Finally, we do 
not rule out that strong lateral variations in velocity structures and unmodeled topography near Aso caldera may 
contribute to the discrepancies in the high VLP band waveforms and particle motions. While not presented in 
this report, our synthetic test suggests that these unmodeled effects could slightly modulate the direction of the 
single-force component, but the estimate of the force/moment ratio remains robust. Future work will involve 3D 
waveform modeling to further explore the robustness of the single-force component associated with repetitive 
VLPs in Aso volcano.

6. Discussions and Perspectives
In this study, we demonstrate that repetitive VLPs and synchronous deformation events beneath Aso volcano can 
be observed at stations even 30–1,000 km away from their sources. High-quality waveform stacks make it feasible 
to recognize diverse VLP and deformation events and characterize their source locations and mechanisms in high 
and low VLP bands, respectively. While repetitive VLP signals such as those observed in Aso may not necessarily 
occur in other stratovolcanoes or/and in different volcanic settings, as detailed in the following discussions, we 
highlight the potential of data at distant stations in source characterization and monitoring of repetitive volcan-
ic-seismic signals in well-instrumented volcanoes such as Aso and otherwise uninstrumented volcanoes. While 
most efforts in the past decades have been put to address the use of in situ stations near the edifice, the use of the 
term “remote” in the following discussions is meant to emphasize the usage and advantage of stations that are  not 
necessarily in close proximity to the edifice, regardless whether the stations are in the near-field and far-field.

Figure 14. Comparison of the high VLP band observations and synthetics from the preferred mixed source. (a) Comparisons of observed high VLP band vertical-
component waveforms of Event 1 (black) against synthetics from the preferred isotropic source + single-force source (ISO + SF) source (red). Synthetics from the 
previous moment tensor source (L2000, Legrand et al., 2000) are shown in green. Synthetics are normalized against the amplitude in the vertical component at ASHV 
and they are aligned against the observed waveform in the vertical component at each station. (b) Same as (a), except in the radial component. (c) Same as (a), except in 
the transverse component. 𝐴𝐴 Δ (ISO + SF) and 𝐴𝐴 Δ (L2000) indicate the waveform misfit for the ISO + SF source and the moment tensor of (L2000, Legrand et al., 2000), 
respectively. The result for Event 2 can be referred to Figure S6 in Supporting Information S1.

Figure 15. A diagram of the single-force component against the geometry 
of the crack-like conduit. (a) The orientation of the preferred single-force of 
Event 1 (red arrow) and Event 2 (open arrow) against the crack-like conduit 
(SC) (blue) (Yamamoto et al., 1999) in a vertical cross section (view toward 
the north). (b) Same as (a), except in a map view.
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6.1. Remote Monitoring and Source Characterization of Repetitive Volcanoseismic Signals in Aso and 
Other Well-Instrumented Volcanoes

As discussed Section  1, repetitive VLPs and synchronous deformation events potentially resemble differ-
ent volcanic processes in different parts of the magmatic-plumbing system beneath Aso volcano (Kaneshima 
et al., 1996; Kawakatsu et al., 2000; Niu & Song, 2021). In particular, the prominence of pressurization VLP 
or depressurization VLP potentially illuminates degassing and vaporization process inside the SC as well as the 
strength/permeability of the conduit plug (Niu & Song, 2020). The dual signals of VLP and synchronous defor-
mation events during the 2011–2016 unrest and eruption activities also highlight the potential of monitoring the 
interaction between discrete storage zones within the magma-plumbing system (Niu & Song, 2021). However, as 
modern in situ instrumentations such as V-net have only become publicly available since 2011, monitoring and 
evaluating these interactions for historical eruptions are not straightforward. Furthermore, stations close to the 
edifice can be at high risk during more explosive eruptions (e.g., the 2015 phreatomagmatic eruption) and data 
availability is not warranted. This echoes the importance of monitoring weak, repetitive volcanoseismic signals 
using distant stations.

While Sandanbata et  al.  (2015) and Hendriyana and Tsuji  (2019) utilized high VLP band Rayleigh waves at 
the F-net stations to catalog VLP activities, it is straightforward to cluster the detected signals and distinguish 
pressurization VLPs from depressurization VLPs. On the other hand, it is feasible to detect the deformation 
events and characterize their source location/mechanism using low VLP band Rayleigh waves recorded at distant 
stations. Since the source of repetitive VLPs can be identified using Rayleigh waves from short-period ambi-
ent-noise cross-correlation (Zeng & Ni,  2010), we expect that the source of repetitive deformation events is 
detectable through long-period ambient-noise cross-correlation analysis as well. Evidently, if the event is small, 
source detection can be limited at distant stations.

As suggested by Niu and Song (2021), the deformation events likely represent short-lived, episodic transport of 
discrete magma batches between the roof of the magma chamber (Ohkura et al., 2009; Sudo et al., 2006; Sudo 
& Kong, 2001) and a preeruptive storage pool of mixed magma (Kawaguchi et al., 2020; Saito et al., 2018), the 
source validation using distant stations, as demonstrated in this report, further support such a scenario during the 
2011–2016 eruption cycle. While similar processes occur in the past eruption cycles remain to be investigated, 
it is paramount to expand the detection of deformation events against past volcanic activities during which dedi-
cated in situ stations near the edifice were unavailable. As noted in Section 5, the amplitude of the deformation 
events in Aso is generally small and it is not trivial to detect the signal without a signal enhancement procedure 
such as waveform stacking. However, if the deformation events are synchronous with VLPs as noted in 2011–
2016, one can first construct a VLP catalog with distant stations and the timing of each VLP event can be used to 
stack low VLP band Rayleigh waves and retrieve the deformation events.

On the other hand, the estimated force/moment ratio for VLPs in Aso volcano (i.e., 10 −4 m −1) potentially reflects 
a robust process or/and scale modulating the overpressure and magma/gas transport in the shallow conduit. It 
will be informative to systematically reevaluate such estimates in VLPs or/and volcanoseismic signals in diverse 
volcanic settings and magma compositions (e.g., Chouet et al., 2003, 2005, 2010; Dawson et al., 2011; De Barros 
et al., 2011; Duputel & Rivera, 2019; Kim et al., 2014; Lanza & Waite, 2018; Lyons & Waite, 2011; Matoza 
et  al., 2022; Nakano et  al., 2003; Ohminato, 2006; Ohminato et  al., 2006, 1998; Richardson & Waite, 2013; 
Uhira & Takeo, 1994; Waite et al., 2008). Cautions shall be exercised against the robustness of these estimates, 
especially when the estimated force/moment ratio is low. Presumably, uncertainties in the source location and 
unmodeled velocity structure can potentially result in a spurious single-force component (e.g., Bean et al., 2008; 
De Barros et al., 2011, 2013; Maeda et al., 2011).

While well-instrumented volcanoes such as Aso often focus on in situ observations near the edifice, the combi-
nation of data at in situ and distant stations should greatly improve the power in resolving the presence of single-
force component in the source. Concerning the tradeoff between a single-force component and a horizontal-crack 
component in shallow volcanic sources, source modeling shall include data in the near-field. Furthermore, the 
effect of tilt on the horizontal components at distant stations, even at the high VLP or low VLP band (e.g., Maeda 
et al., 2011; van Driel et al., 2015), is also greatly reduced. On the other hand, it is potentially more challenging 
to constrain single-force source against high frequency signals such as LPs using data at distant stations.



Journal of Geophysical Research: Solid Earth

NIU AND SONG

10.1029/2021JB023400

21 of 28

The availability of distant stations ensures continuous monitoring of VLP and synchronous deformation events 
even when in situ stations near the edifice became unavailable. Except several minor eruptions in 2003–2005 
(Miyabuchi et al., 2008), Aso volcano was mostly quiescent between 1991 and 2010. Expanding the detection 
of VLP and deformation events from 1991 to 2010 using the F-net stations could substantially improve our 
understandings of the feedback between the SC and SMSZ in the past three decades. Nevertheless, the example 
in Aso highlights the potential of remote detection and verification of repetitive volcanoseismic signals in other 
well-instrumented volcanoes in Japan (e.g., Maeda & Takeo, 2011; Yamamoto et al., 2002) and around the world 
(e.g., Chouet & Matoza, 2013; Park et al., 2020; Waite et al., 2008).

6.2. Remote Monitoring Against Uninstrumented Volcanoes

Only 10% of inland active volcanoes are monitored systematically (e.g., Poland, 2015). Space and aerial borne 
sensors, such as Interferometric Synthetic Aperture Radar (InSAR) (e.g., Biggs et al., 2011, 2014; Chaussard 
et al., 2013; Dzurisin, 2006; Ebmeier et al., 2018; Fournier et al., 2010; Lu & Dzurisin, 2014; Pinel et al., 2014; 
Pritchard & Simons, 2002; Reath et al., 2019) help identify surface deformation in uninstrumented volcanoes 
globally. The detection and characterization of repetitive volcanoseismic signals critical to the transport of magma 
and hydrothermal fluids within the magma plumbing system remain limited in well-instrumented volcanoes (e.g., 
Chouet & Matoza, 2013). As illustrated in this report, it is potentially feasible to detect and characterize repeti-
tive volcanoseismic signals remotely in uninstrumented volcanoes using continuous waveform recordings from 
established seismic networks. In particular, recent ambient-noise cross-correlation analyses have demonstrated 
the capability of detecting repetitive tremor-like signals from a persistent and localized source (e.g., Shapiro 
et al., 2006; Xia & Chen, 2020; Xia et al., 2013; Zeng & Ni, 2010, 2014), offering a new venue to systematically 
detect repetitive volcanoseismic signal using observations at distant stations.

Figure 16 summarizes the capacity of remote monitoring against ∼1,400 volcanoes with eruptions during the 
Holocene period (<10,000  years). Here we consider global broadband high-gain BH and HH channels from 
the Incorporated Research Institutions of Seismology (IRIS) and the permanent F-net and V-net seismic 
stations from NIED. As an example, Figure  16a shows that 5–15% (10–30%) of global Holocene volcanoes 
are surrounded by at least four broadband seismic stations within 50 km (100 km). In general, the fraction of 
volcanoes surrounded by more than four stations increases by a factor of 2–3 over the past ∼20 years. In Japan, 
the permanent broadband seismic network F-net has been established since 1999. While 20%–35% of Japanese 
volcanoes are surrounded by more than four F-net stations within 100 km (Figure 16b), the establishment of 
V-net since 2011 greatly improves the station coverage within 50 km, resulting in the coverage up to 30% of 
active volcanoes in Japan (Figure 16c). Interestingly, among Holocene volcanoes previously surveyed by remote 
sensing (e.g., InSAR, Biggs & Pritchard, 2017), 10%–25% (15%–50%) of these volcanoes are surrounded by at 
least four broadband stations within 50 km (100 km) (Figure 16d) and they are mostly located in Alaska-Aleutian, 
South America, Central America, Hawaii, Kyushu, North Izu-Bonin, central Mariana and the Northwest United 
States (Figure 16e; Figures S7, S8, and Table S1 in Supporting Information S1). Opportunities also exist in the 
Caribbean and Africa, especially in 2005–2015 (Figures S7, S8, and Table S1 in Supporting Information S1).

Presumably, joint analysis of remote seismic and geodetic monitoring provides a new gateway to a more compre-
hensive understanding of magmatic/nonmagmatic processes and the nature of surface deformation in uninstru-
mented volcanoes. While numerous volcanoes are surrounded by only 1–2 stations within 50 km (Figure 16e and 
Figure S8 in Supporting Information S1), even one broadband seismic station can potentially provide a critical 
monitoring opportunity (e.g., Fontaine et al., 2019; Lemoine et al., 2020). Facilitated by machine learning (e.g., 
Falcin et al., 2021; Langer et al., 2009; Maeda et al., 2021; Malfante et al., 2018; Manley et al., 2020; Titos 
et al., 2018), seismic monitoring efforts may be performed in concert with satellite remote sensing, including 
surface deformation, SO2 degassing and thermal output (e.g., Newhall et al., 2017; Reath et al., 2019), to interro-
gate the magma/gas transport within the transcrustal magmatic system during the quiescence and volcanic unrest 
in the preeruptive period. Such efforts focusing on the preeruptive periods complement infrasound monitoring 
during the syneruptive episodes (e.g., Matoza et al., 2019; McKee et al., 2021) and potentially help facilitate 
precursory analysis of upcoming eruptions and hazard mitigation (e.g., Dempsey et al., 2020).

Lastly, seismic monitoring of submarine volcanoes (e.g., D’Alessandro et al., 2009; Dziak et al., 2008, 2012; 
Fukao et  al.,  2018; Konter et  al.,  2004; Kudo et  al.,  1991; Lindsay et  al.,  2005; Wright et  al.,  2008; Watts 
et al., 2012; Wilcock et al., 2016; Yamasato et al., 1991) or axial volcanoes in mid-ocean ridges (e.g., Schlindwein 
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et al., 2005; Schmid et al., 2017; Tolstoy et al., 2001, 2006) can benefit from the deployment of ocean bottom 
sensors (e.g., seismometers, hydrophones), although observations have predominantly focused on volcanotec-
tonic earthquakes (VTs) and tremors. While a systematic detection and monitoring of repetitive volcanoseismic 
signals such as VLP or LP remain to be explored, future seismic monitoring may be coupled with hydroacoustics 
monitoring (e.g., Lyons et al., 2019; Tepp et al., 2020; Wech et al., 2018), sea-floor geodesy (e.g., Bürgmann & 
Chadwell, 2014; Chadwick et al., 2012; De Martino et al., 2020; Nooner & Chadwick, 2009) and global analysis 
of nondouble-couple events (e.g., Sandanbata et al., 2021; Shuler et al., 2013) to untangle the magma storage and 
ascent beneath submarine and axial volcanoes that remain largely unexplored.

Data Availability Statement
The seismic datasets from NIED V-net (https://doi.org/10.17598/nied.0006) and F-net (https://doi.org/10.17598/
nied.0005) can be downloaded from https://www.hinet.bosai.go.jp. The waveforms data sets can be obtained 
through the Continuous waveform data portal after user registration. The user can choose specific network 
(i.e., F-net, V-net) and download continuous data in 1-min segments. The downloaded data are in the WIN 
format, and they can be converted to SAC format through the utility package WIN2SAC provided by Hinet. Data 

Figure 16. Global remote detection and monitoring of repetitive volcanoseismic signals. (a) The fraction of global Holocene volcanoes (<10,000 years) surrounded 
by 𝐴𝐴 ≥ 4 global broadband seismic stations (Incorporated Research Institutions of Seismology (IRIS), BH, and HH channels) in selected distance threshold in different 
observation periods. The locations of 1,398 global volcanoes are provided by the Global Volcanism Program (Smithsonian Institution & Venzke, 2013). The number 
in the bottom-right corner shows the total number of volcanoes in the analysis. (b) The fraction of active volcanoes in Japan surrounded by 𝐴𝐴 ≥ 4 F-net broadband seismic 
stations in selected distance threshold in different observation periods. The locations of 110 active volcanoes with 137 active cones in Japan are provided by JMA 
(https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/menu.htm). (c) Same as (b), except displaying the result against F-net and V-net seismic stations. 
(d) Same as (a), except considering Holocene volcanoes surveyed by geodetic observations. (e) A map view of global detection and monitoring capacity in 2020–2021. 
The geographical locations of global broadband seismic stations are shown as black circles. Volcanoes with no geodetic observations, volcanoes with geodetic 
observations and reported deformation, and volcanoes with geodetic observations but no deformation are shown as open triangles, enclosed filled triangles, and filled 
triangles, respectively, color-coded by the number of broadband stations within 50 km.

https://doi.org/10.17598/nied.0006
https://doi.org/10.17598/nied.0005
https://doi.org/10.17598/nied.0005
https://www.hinet.bosai.go.jp
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processing and production of figures are implemented in Python with relevant modules such as ObsPy (https://
doi.org/10.5281/zenodo.3674646) and Matplotlib (https://doi.org/10.5281/zenodo.592536).
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