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Robust Frequency-Adaptive Quadrature
Phase-Locked-Loops with Lyapunov-certified

Global Stability
Gilberto Pin , Boli Chen , Giuseppe Fedele , Thomas Parisini

Abstract— This work describes and compares two phase-
locked-loop (PLL) algorithms aimed at tracking a biased si-
nusoidal signal with unknown frequency, amplitude and phase,
with inherent robustness to dc-offset. The proposed methods
endow Quadrature PLLs, renowned for their excellent tracking
performance, with frequency-adaptation capability, while pro-
viding robust global stability certificates. The large-gain global
stability, proven by Lyapunov-like arguments borrowed from
adaptive control theory, represents a major benefit compared
to conventional PLLs, whose convergence instead can be proven
only locally by small-signal analysis or small-gain assumptions.
In this connection, the proposed algorithms represent the first
frequency-adaptive and DC-bias rejecting PLL-type architec-
tures with Lyapunov-certified global stability. When used for
signal tracking, the proposed methods are shown to outperform
the adaptive observer, especially in noisy conditions. Moreover,
they provide more accurate frequency estimates than existent
frequency-adaptive PLLs, showing enhanced robustness in facing
both phase-noise and measurement perturbations.

I. INTRODUCTION

The power distribution network is undergoing tremendous
changes due to ever increasing penetration of distributed and
renewable energy resources. Such a trend poses new chal-
lenges due to the increased unpredictability of these new power
sources. A microgrid incorporating the renewable distributed
energy resources can be operated either in grid-connected
mode or in islanded mode. During both modes of operation,
monitoring and control of frequency plays a vital role for
power quality assessment, for the control and protection of the
power grid and also for the synchronization of the microgrid
with the main grid [1]. Due to the presence of disturbances
and uncertainties in the grid voltage, such as harmonics, noise,
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offsets and imbalances introduced by the instrumentation and
nonlinear loads, it is important that the frequency-estimation
approach is robust and fast in terms of response speed to
ensure reliable estimates of the fundamental frequency.

There is a rich literature on the approaches for estimat-
ing parameters of a sinusoidal signal, including amplitude,
frequency and phase angle. This estimation task arises in
many engineering domains, such as vibration attenuation in
mechanical systems, acoustics, electrical power monitoring,
signal processing and fault detection. However, in the con-
text of power-electrical engineering, the Phase-Locked-Loop
(PLL) method and its many variants still represent the most
used approaches. A comprehensive overview of common PLL
architectures, such as magnitude PLL (MPLL) [2], enhanced
PLL (EPLL) [3] and quadrature-PLL (QPLL) [4], can be
found in [5]. These modified PLL configurations are devised to
address the deficiency of the conventional PLL by mitigating
undesired oscillations. To address the DC-offset that usually
appears in an electrical signal, the nominal EPLL has been
augmented in [6] by an additional outer integrator loop for
DC-bias rejection. Moreover, the quadrature signal generation-
based PLLs (QSG-PLLs) are also highly popular for grid
synchronization [7], [8], [9], [10]. Depending on the technique
used for generating the quadrature signal, these PLLs may
be further categorized, such as the delay-based PLL [10].
In the literature, QSG units are sometimes also referred
to as Orthogonal Signal Generators (OSG). The Frequency
Locked-Loop (FLL) of [11], [12], that uses a Second Order
Generalized Integrator (SOGI) to implement the OSG, is for
instance capable of tracking sinusoidal signals with time-
varying frequency and amplitude. Other methods providing
frequency-adaptation ability to a PLL can be found in [13]
and [14]. The OSG-SOGI structure is also studied in [15],
[16], [17], [18] for biased sinusoidal signals. In particular,
[16] proposes a third order generalized integrator-based OSG
(OSG-TOGI), which is an effective extension of OSG-SOGI
for DC-offset rejection.

In spite of the popularity of the PLL techniques, global
Lyapunov stability proof is not available for the majority of
existing PLLs [19], [20]. Instead, their stability is usually
characterized by small-signal analysis, that provides only local
stability guarantees, or by averaging analysis, that relies on
small-gain assumptions [2], [14], [21] or a large reference
frequency [22]. In such cases, the tuning of adaptation gains
is subject to unpractical limiting conditions, and badly tuned
gains may lead to instability, particularly for large initialization
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error or in presence of measurement disturbances. The recent
work presented in [23] studies the global stability domains in
the design parameter space for type two PLLs. Nevertheless,
the PLL architectures described in [23] have neither frequency
adaptation capability nor dc-bias rejection. A wide variety of
techniques have been proposed in the literature for enhanced
stability properties. The adaptive observer [24], [25], [26],
[27], [28], [29] and nonlinear adaptive filtering [30], [31]
represent the two common tools for the construction of global
or semi-global convergent frequency-adaptive algorithms. De-
spite coming along with appealing global stability proofs,
these methods are not widely used in real-world applications,
mainly due to their complexity and the lack of an extensive,
comparable sample of practical case-studies.

Recently, a globally convergent PLL scheme with
frequency-adaptation capability has been developed in [32]
by suitably modifying the standard QPLL configuration. To
underline the stability property, the said algorithm has been
given the name Global QPLL (GQPLL). To distinguish the
original algorithm presented in [32] from the successive vari-
ants, in the sequel it will be denoted by Ordinary GQPLL
(O-GQPLL). The Lyapunov-based analysis depicted in [32]
showed that the adaptation gains of the O-GQPLL can be
made arbitrarily large in order to achieve a faster convergence
rate, while preserving global stability properties. An improved
version of the aforementioned O-GQPLL, endowed with ro-
bustifying modifications has been proposed in [33] and named
R-GQPLL. By introducing a further filtered augmentation, the
adaptation law has been made significantly simpler than that
of O-GQPLL. It enables the parameter projection operator to
be embedded in the adaptation dynamics, yielding enhanced
robustness to external perturbations. In this paper, the two
GQPLL variants are compared to provide further insight into
following aspects: 1) provide a consolidated summary of
the advantages of the R-GQPLL formulation over the O-
QPLL, 2) provide Lyapunov stability results in a self-contained
fashion, 3) suggest parameter tuning guidelines, and 4) show
by extended simulations the robustness of the R-GQPLL with
respect to a wide range of disturbances, including bounded
measurement noise, phase noise, frequency jumps and phase
jumps. In particular, this paper for the first time compares
the behavior of four methods, namely R-GQPLL, O-GQPLL,
EPLL and Adaptive Observer, in presence of phase-noise, that
is a critical perturbation known to destabilize classical PLLs.

The paper is organized as follows. The sinusoid estimation
problem in presence of measurement bias is formulated in
Section II. In Section III, the two GQPLL algorithms are
described. Then, the stability analysis in both cases is dealt
with in Section IV. Section V provides simulation examples
in which the performance of both approaches are compared.
Finally, Section VI comes to a conclusion on the basis of the
presented work.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let us consider the following sinusoidal signal s(t) in
trigonometric form:

s(t) = A sin(ϑ(t) + ϑ0) = a sin(ϑ(t)) + b cos(ϑ(t))

ϑ̇(t) = ω, ϑ(0) = 0, t ≥ 0 (1)

where ω ∈ R>0, A ∈ R>0 and ϑ0 are unknown frequency,
amplitude and the initial phase angle of the sine wave, while
a, b ∈ R are unknown parameters associated with the nominal
amplitude A by A =

√
a2 + b2. The present work concerns

the design of an estimation algorithm for reconstructing s(t)
and for monitoring the fundamental frequency ω from a
biased/perturbed measurement

y(t) = s(t) + c (2)

where c ∈ R is an unknown scalar constant (usually referred
to as “measurement bias” or “offset”).

The following assumption is introduced in this paper.
Assumption 1: The frequency ω of the sinusoidal signal and

the measurement bias c are known to belong to the compact
intervals ω ≤ ω ≤ ω and c ≤ c ≤ c with known (finite) lower
and upper bounds ω, ω, c, c : 0 < ω < ω < +∞, 0 < c ≤ c ≤
c < +∞.

The tracking objective in the unknown-frequency scenario
consists in finding the estimates ŝ and ω̂ of s(t) and ω,
respectively, such that

lim
t→+∞

s(t)− ŝ(t) = 0 , lim
t→+∞

ω − ω̂(t) = 0 (3)

III. GLOBAL QUADRATURE PLL ARCHITECTURE

Both the O-GQPLL and the R-GQPLL share the same
architecture, derived from the QSG-PLL. The said architecture
is sketched in Fig. 1, where Ω̂(t) denotes the estimate of the
squared-frequency Ω , ω2. The estimated signal ŷ(t) aimed
at tracking y(t) is given by

ŷ(t) = â(t) sin(ϑ̂(t)) + b̂(t) cos(ϑ̂(t)) + ĉ0, t ≥ 0 . (4)

where the instantaneous estimated angle ϑ̂(t) evolves accord-

ing to ˙̂
ϑ(t) =

√
Ω̂(t), t ≥ 0 with initial condition ϑ̂(0) = 0

without loss of generality. To proceed with the analysis, let
us introduce the tracking error e(t) , y(t) − ŷ(t) and the
lumped parameter K , Ωc. According to Assumption 1, there
exist Ω , ω2 and Ω , ω2, K , ω2c and K , ω2c, such
that Ω ∈ [Ω, Ω] and K ∈ [K, K]. The parameter adaptation
laws for the frequency estimate and the bias estimate will
take different form for the two GQPLL variants considered
in this work, namely the O-GQPLL and R-GQPLL. In the
following, both GQPLLs will be presented and analyzed
separately to characterize their stability properties. For the
sake of notational simplicity, in the sequel we will neglect
the explicit dependence from time of the signals and of the
time-varying estimated parameters.

Remark 3.1: It is not the goal of the presented work to
guarantee that â and b̂ converge to a and b, neither that they
reach constant values; therefore these signals can be viewed as
mere internal variables of the algorithm, instead of estimates
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Fig. 1. Scheme of the GQPLL architecture. The dashed lines denote the
additional signal paths compared to a conventional QSG-PLL. The Adaptive
System block implements different adaptation laws in the two proposed
variants: O-GQPLL and R-GQPLL. Together with an estimate of the squared-
frequency Ω̂, the Adaptive system injects in the PLL auxiliary signals aimed
at achieving robust global stability.

of some time-invariant parameters. This is in line with the
requirements of PLL schemes, that are usually required to
track a sinusoid, filtering out noise, and, in this case, to
estimate its frequency regardless of any measurement offset.

A. Ordinary GQPLL

This Section provides the full algorithm of O-GQPLL. Let
us start by introducing the adaptation laws for â and b̂:

˙̂a = µ1 sin(ϑ̂)e− δa , ˙̂
b = µ1 cos(ϑ̂)e+ δb (5)

where µ1 > 0 denotes a constant adaptation gain, δa and δb
are two additive signals that do not appear in the conventional
QPLL scheme and are injected to enhance the stability of the
PLL. These two auxiliary signals are designed as

δa,
√

Ω̂ cos(ϑ̂)
(
η0ĉ0+η1

(
ĉ1+
√

Ω̂
(
b̂ sin(ϑ̂)−â cos(ϑ̂)

)))

(6a)

δb,
√

Ω̂ sin(ϑ̂)
(
η0ĉ0+η1

(
ĉ1+
√

Ω̂
(
b̂ sin(ϑ̂)−â cos(ϑ̂)

)))

(6b)

with two constant tuning parameters η0 < 0 and η1 < 0
and two internal signals ĉ0 and ĉ1, that are obtained through
the following second-order nonlinear filter, parameterized by
a tunable coefficient µ0 > 0:

˙̂c0 = ĉ1 +
√

Ω̂
(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
(7a)

˙̂c1 = (µ0 − Ω̂)e− Ω̂ŷ + K̂. (7b)

Finally, the estimates for the squared-frequency Ω̂ and for the
fictitious parameter K are obtained by

Ω̂ , min

(
Ω,max

(
Ω , −k1

2
y2 + Θ̂Ω

))
, (8)

K̂ , min
(
K,max

(
K , k1y + Θ̂K

))
, (9)

where
˙̂
ΘΩ = k1y ˙̂y − k0ye ,

˙̂
ΘK = −k1

˙̂y + k0e. (10)

Note that the signal ˙̂y needed to implement the above adap-
tation laws can be obtained from available quantities without
direct differentiation:

˙̂y = ˙̂a sin(ϑ̂) +
˙̂
b cos(ϑ̂) +

√
Ω̂(â cos(ϑ̂)− b̂ sin(ϑ̂)) + ˙̂c0

= sin(ϑ̂)
(
µ1 sin(ϑ̂)e− δa

)
+cos(ϑ̂)

(
µ1 cos(ϑ̂)e+ δb

)
+ĉ1 .

The expressions (8) and (9) for the estimated squared-
frequency and the coefficient K are provided of a saturation
that keeps the estimates within the admissible sets. All in all,
the adaptive system has a total dynamical order of 7 with states
Θ̂k, Θ̂Ω, ĉ0, ĉ1, â, b̂, ϑ̂, and 6 user-defined constant adaptation
gains: µ0, µ1, η1, η2, k0, k1. The Lyapunov stability analysis
provided in Section IV will be instrumental to derive tuning
rules for the said gains in order to boost the performance while
maintaining the global stability of the O-GQPLL.

B. Robustified GQPLL

As it can be noticed in Section III-A, the frequency es-
timation of the O-GQPLL is based on a non-conventional
adaptation law, which makes it difficult to apply robustify-
ing modifications of adaptive control. Moreover, the param-
eter adaptation law given in (8) and (9) involves a direct
feedthrough from the noisy measurement y, which tends to
increase noise sensitivity. To further improve the robustness
of the O-GQPLL while maintaining the global asymptotic
convergence property, the dynamics of the PLL internal signals
are modified, and make it possible to obtain a convenient first
order error model linear-in-the parameters, which can be dealt
with by a conventional non-normalized adaptive law. As a
consequence, a robustifying modification such as projection
can be applied to the adaptive system. The resulting PLL
scheme is named Robustified GQPLL (R-GQPLL).

The R-GQPLL differs from O-GQPLL in the parameter-
adaptation dynamics. Consider an auxiliary signal y1, that
is obtained by filtering the signal measurement with the
following first order low-pass filter:

ẏ1 = −λ1y1 + y (11)

with λ1 > 0 an arbitrary positive constant and initial condition
y1(0) = y1. Given the filtered output y1, the signal ĉ1 in the
R-GQPLL is generated by the following o.d.e.:

˙̂c1 = (µ0 − Ω̂)e− Ω̂ŷ + K̂ − y1
˙̂
Ω + λ−1

1
˙̂
K, t ≥ 0, (12)

while the signals â, b̂, ĉ0 and ĉ1 follow the same dynamics of
the O-GQPLL, i.e. (7a) and (5), with a specific choice for the
adaptation gains µ1 and µ0:

µ0 , λ0λ1, µ1 , λ0 + λ1, (13)

where λ0 > 0 is a positive design parameter. The nonlinear
signals δa and δb are constructed by (6) as described in
Section III-A, whilst η0 and η1 in the case of the R-GQPLL
become time-varying signals, that depend on the estimated
squared-frequency Ω̂ and its time derivative:

η0 = 1− µ0
1

Ω̂
, η1 = −µ1

1

Ω̂
−

˙̂
Ω

2Ω̂2
(14)
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The division-by-zero singularity in (14) is avoided by con-
straining Ω̂ in a suitable admissible set. The update laws for
Ω̂ and K̂ in the case of the R-GQPLL take the following form:

˙̂
Ω =




−k0y1e,

{
(Ω < Ω̂ < Ω) ∨ ((Ω̂ = Ω) ∧ (

˙̂
Ω > 0))

∨((Ω̂ = Ω) ∧ (
˙̂
Ω < 0))

0, otherwise
(15)

˙̂
K =





λ−1
1 k0e,

{
(K < K̂ < K) ∨ ((K̂ = K) ∧ (e > 0))

∨((K̂ = K) ∧ (e < 0))
0, otherwise

(16)
with k0 > 0 the adaptation gain and where the projection
operator is utilized to confine Ω̂ and K̂ to the admissible
convex set specified by the known bounds K, K, Ω, Ω.

Overall, the dynamic order of the R-GQPLL is 8 with an
additional dynamic state of the filtered signal y1 as compared
to the O-GQPLL, introduced previously in Section III-A.
However, the number of design parameters is halved (only
3 parameters λ0, λ1, k0) that significantly reduces the tuning
complexity and makes the design much more straightforward.
Moreover, it will be shown that the R-GQPLL admits a greatly
simplified stability analysis as compared to the O-GQPLL.

IV. STABILITY ANALYSIS

This Section addresses the stability properties of both
GQPLL schemes. To carried out the analysis, following
parameter-estimation error variables are defined: Ω̃ , Ω − Ω̂
and K̃ , K − K̂. Let us consider θ , [Ω K]> the parameter
vector and denote by θ̂ , [Ω̂ K̂]> its estimate. Then, the
parameter-estimation error vector is defined as θ̃ , θ − θ̂.

A. Stability Analysis of the O-GQPLL

In view of (8)-(10), when the saturation is disabled, the
dynamics of the Ω̂ and K̂ are governed by

˙̂
Ω = −k1yẏ + k1y ˙̂y − k0ye = −k1yė− k0ye

˙̂
K = k1ẏ − k1

˙̂y + k0e = k1ė+ k0e

whilst ˙̂
Ω = 0 and ˙̂

K = 0 when the saturation is active. The
estimation error dynamics of both variables accounting for
the saturation can be formally expressed by the following dif-
ferential equations with discontinuous right-hand side (whose
solutions are intended in Filippov’s sense [34]):

˙̃Ω=




k1yė+ k0ye,

{
(Ω < Ω̂ < Ω) ∨ ((Ω̂ = Ω) ∧ (

˙̂
Ω > 0))

∨((Ω̂ = Ω) ∧ (
˙̂
Ω < 0))

0, otherwise
(17)

˙̃K=




−k1ė− k0e,

{
(K < K̂ < K)∨((K̂ = K)∧(

˙̂
K > 0))

∨((K̂ = K) ∧ (
˙̂
K < 0))

0, otherwise
(18)

Now, let us take the time-derivative of the error signal e:

ė = ωa cos(ϑ)− ωb sin(ϑ)− ˙̂a sin(ϑ)− â
√

Ω̂ cos(ϑ̂)

− ˙̂
b cos(ϑ̂) + b̂

√
Ω̂ sin(ϑ̂)− ˙̂c0 (19)

Substituting the expression for ˙̂c0 then (19) simplifies into

ė = ωa cos(ϑ)− ωb sin(ϑ)− ˙̂a sin(ϑ)− ˙̂
b cos(ϑ̂)− ĉ1 (20)

With reference to the expressions (6) for δa and δb, (5) can
be rewritten as

˙̂a = µ1 sin(ϑ̂)e−
√

Ω̂ cos(ϑ̂)
(
η0ĉ0 + η1

˙̂c0

)
(21a)

˙̂
b = µ1 cos(ϑ̂)e+

√
Ω̂ sin(ϑ̂)

(
η0ĉ0 + η1

˙̂c0

)
(21b)

where we have exploited the expression for ˙̂c0 to streamline the
notation. The right hand side of (20) can be further expanded
by substituting the expressions (21) for ˙̂a and ˙̂

b, respectively

ė = ωa cos(ϑ)− ωb sin(ϑ)− µ1e− ĉ1 (22)

The second time-derivative of the error yields to:

ë = −Ω(y − c)− µ1ė− ˙̂c1 (23)

Now, substituting (7b) into (23), after rearrangement with
respect to the parameter-estimation error vectors θ̃, we obtain

ë = ξ>θ̃ − µ1ė− µ0e, (24)

with ξ = [−y 1]> the vector of regressors. This differential
equation will permit to characterize the convergence of the
tracking error e and θ̃. To proceed with the analysis, let us
take the second derivative of ĉ0:

¨̂c0 = Ω̂
(
η0ĉ0 + η1

˙̂c0

)
+ (µ0 − Ω̂)e− Ω̂ĉ0 + K̂

+
˙̂
Ω

2
√

Ω̂

(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
.

(25)

By applying the identity b̂ sin(ϑ̂)− â cos(ϑ̂) = ( ˙̂c0 − ĉ1)/
√

Ω̂
that is inferred from (7a), (25) can be rearranged, ending up
with:

¨̂c0 = Ω̂

(
(η0 − 1)ĉ0 +

(
η1 −

k1yė+ k0ye

2Ω̂2

)
˙̂c0

)
+ v (26)

where

v , (µ0 − Ω̂)e+K̂

+





ĉ1(k1yė+ k0ye)

2Ω̂
,





(Ω < Ω̂ < Ω)

∨((Ω̂ = Ω) ∧ (
˙̂
Ω > 0))

∨((Ω̂ = Ω) ∧ (
˙̂
Ω < 0))

0, otherwise
(27)

can be seen as an external input to the above system, depend-
ing on the tracking error and on the parameters. The differen-
tial equation (25) describes the dynamics of the injection signal
ĉ0 and will be instrumental to analyze the internal stability of
the GQPLL scheme.

Now, we present the stability analysis of the proposed
scheme using the Barbalat’s Lemma. To apply Barbalat’s
lemma to the analysis of dynamic systems, we need the
following immediate corollary:

Lemma 4.1: (Lyapunov-like Lemma [35]) If a scalar func-
tion V (t, x) satisfies the following conditions:
• V (t, x) is lower bounded
• V̇ (t, x) is semi-negative definite
• V̇ (t, x) is uniformly continuous in time
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then V̇ (t, x) −−−→
t→∞

0.

Theorem 4.1: Given the sinusoidal signal s(t) defined in (1)
and the biased measurement y(t) (2), the O-GQPLL algorithm
given by (5)-(10) guarantees the asymptotic convergence of the
tracking error e and of the parameter-estimation error θ̃, and
the boundedness of all the internal signals â, b̂, δa, δb, ĉ0, ĉ1.

�
Proof: Consider a dynamic system that collects the

parameter-error dynamics (17), (18) and the error system (24)
and the dynamics of the auxiliary variable ĉ0 (26). The overall
system can be viewed as the cascade of two subsystems: 1)
the forward system that is described by (17), (18) and (24),
and 2) a non-autonomous dynamical system corresponding to
the error-driven auxiliary dynamics (26). As such, the overall
stability analysis can be performed in two successive steps,
respectively, for the two subsystems.

Step A: Consider now the following Lyapunov candidate
for the forward system of the error dynamics:

V =
1

2

(
e>Pe+ θ̃>θ̃

)

with e> , [e ė]> and the positive definite matrix P ,[
p11 p12

p12 p22

]
. For the sake of the further discussion, let us

recast V in the following scalar form V = p11e
2 + p22ė

2 +
2p12eė + Ω̃2 + K̃2. Given the convexity of the admissible
domain for the parameter-estimates Ω̂ and K̂, the proposed
saturated parameter adaptation law confines the estimate θ̂ ∈
R2 within a closed rectangular domain. Thus, it is sufficient to
take the conservative route of considering only the unsaturated
case [36] to prove the negative-definiteness of the derivative
of V along the system’s trajectory.

Next, we will show that there exist a P > 0, such that
V satisfies the assumptions of Lemma 4.1. Considering that
˙̃
θ = − ˙̂

θ, the derivative of V along the system’s trajectory
yields:

V̇ = p11eė+ p22ėë+ p12eë+ p12ė
2 − Ω̃

˙̂
Ω− K̃ ˙̂

K
= −p12µ0e

2−(p22µ1−p12)ė2+(p11−p12µ1−p22µ0)eė

+(k0 − p12)Ω̃ye+ (k1 − p22)Ω̃yė

−(k0 − p12)K̃e− (k1 − p22)K̃ė

To make V̇ semi-negative definite, let us first choose arbitrary
constant parameters µ0 > 0, µ1 > 0 and k0 > 0 (i.e., there
are no small-gain restrictions on the adaptation parameters).
Then, pick p12 = k0, p22 = p12+µ̄1

µ1
, for some arbitrary µ̄1 > 0

and set k1 = p22 and p11 = p12µ1 + p22µ0. The positive-
definiteness of P descends from the following two facts

det(P ) = p22p11 − p2
12 > p2

12 + µ̄1p12 − k2
0 > 0

tr(P ) = p11 + p22 > 0

implying that V is non-negative and radially unbounded. On
the other hand, it turns our that V̇ is semi-negative-definite:

V̇ = −k0µ0e
2 − µ̄1ė

2 ≤ 0

with the above choice for the elements of P and the associated
design of the tuning parameter. It’s easy to show also that V̈
is bounded, implying that V̇ is uniformly continuous.

In view of Lemma 4.1, it can be proven that e converges
to zero. Moreover, in view of well known adaptive control
results [37], θ̃ converges to zero provided the persistency of
excitation (PE) of ξ, which is always the case for a sinusoid
of nonzero amplitude. Therefore, we can conclude that

lim
t→∞

ŷ − y = 0 =⇒ lim
t→∞

ŷ = s+ c, (28a)

lim
t→∞

Ω̂− Ω = 0 =⇒ lim
t→∞

Ω̂ = ω2, (28b)

lim
t→∞

K̂ −K = 0 =⇒ lim
t→∞

K̂ = ω2c. (28c)

Step B: Having already proven that limt→∞ e = 0 and
limt→∞ ė = 0, it can be inferred from (22) that limt→∞ ĉ1 =
ωa cos(ϑ) − ωb sin(ϑ) is bounded. Moreover, the asymptotic
convergence of e and ė also implies that there exists an instant
tε, such that η1 − k1yė+k0ye

2Ω̂2
< 0, ∀t > tε as η1 is a negative

constant. Hence, the dynamics of ĉ0 is input-to-state stable
(ISS) with respect to v, which is bounded. By inspecting
(27), it is immediate to show that limt→∞ v = K̂ = K,
and in turn, from (26), we have that limt→∞ ĉ0 = K

Ω(1−η0)
and limt→∞ ċ0 = 0. The previous result combined with (21)
implies that ˙̂a and ˙̂

b are bounded. Finally, from (28a), which,
along with the boundedness of ĉ0, further implies that also
â and b̂ are bounded. Finally, the boundedness of δa and δb
can be proved by invoking (6) and the boundedness of all the
aforementioned signals, thus ending the proof.

Next, we show that the unbiased sinusoidal signal s(t) (see
(1)) can be reconstructed without steady state error by

ŝ = ŷ − K̂/Ω̂ . (29)

From the convergence of ŷ, K̂ and Ω̂, it follows that s− ŝ =
y−c−ŷ+K̂/Ω̂ converges to 0 in the steady state. Meanwhile,
the convergence of the frequency ω is guaranteed by (28b), and
therefore, the objective (3) is achieved.

B. Stability Analysis of the R-GQPLL

Since both GQPLLs have the same adaptation laws for
â, b̂, ĉ0 and the same definitions of δa and δb, it is straightfor-
ward to show that the second time-derivative of the error signal
e in this scenario yet follows (23). By applying expression ˙̂c1
shown in (12), the dynamic equation (23) can be expanded as
follows:

ë = −Ω̃y + K̃ − µ1ė− µ0e+ y1
˙̂
Ω− λ−1

1
˙̂
K (30)

With reference to the vector of regressors ξ defined in O-
GQPLL analysis (see (24)), we now define a vector of filtered
regressors ξ1 , [−y1 λ−1

1 ]>, evolving according to ξ̇1 =
−λ1ξ1+ξ with initial condition ξ1(0) = [−y1 λ−1

1 ]>, then the
tracking-error dynamics (30) can be rearranged and expressed
in the following form:

ë+ µ1ė+ µ0e = ξ>θ̃ − ξ>1 ˙̂
θ (31)

For the sake of brevity, let us denote the Laplace transform of
a time-domain signal u(·) : R→ R by JuK(s) = L{u(·)} (s).



6

By applying the Laplace transform to both sides of (31), it
holds that

(s2 + µ1s+ µ0)JeK(s) =
q
ξ>θ̃ − ξ>1 ˙̂

θ
y
(s) (32)

where the contribution of the exponentially decaying initial
conditions have been neglected (the polynomial s2 +µ1s+µ0

is Hurwitz by design). From (13), it holds that s2+µ1s+µ0 =
(s+ λ0)(s+ λ1). As such, equation (32) can be rewritten as

JeK(s) =
1

(s+ λ0)(s+ λ1)

q
ξ>θ̃ − ξ>1 ˙̂

θ
y
(s) . (33)

Consider

Je1K(s) ,
1

s+ λ1

q
ξ>θ̃ − ξ>1 ˙̂

θ
y
(s) . (34)

The next lines are devoted to show that e1, in the time domain,
verifies

e1 = ξ>1 θ̃. (35)

By differentiating both sides of (35), we obtain ė1 = −λ1e1 +

ξ>θ̃−ξ>1
˙̂
θ which is the time-domain equivalent of the Laplace

expression (34), thereby (35) is verified. Next, it can be
inferred from (33) and (34) that

JeK(s) =
1

s+ λ0
Je1K(s) . (36)

Hence, in the time domain we have the following first order
error model

ė = −λ0e+ ξ>1 θ̃ . (37)

which can be dealt with by conventional adaptation laws,
such as the projection-based ones given in (15) and (16).
Similarly to the analysis performed for the O-GQPLL, let us
also introduced the following system that describes the second
order time-derivative of ĉ0:

¨̂c0 = Ω̂
(
η0ĉ0 + η1

˙̂c0

)
+ (µ0 − Ω̂)e− Ω̂ĉ0 + K̂

+
˙̂
Ω
2Ω̂

(
˙̂c0 − ĉ1

)
− y1

˙̂
Ω + λ−1

1
˙̂
K

(38)

Defining v , (µ0 − Ω̂)e + K̂ − ˙̂
Ω

2Ω̂2
ĉ1 − y1

˙̂
Ω + λ−1

1
˙̂
K and

substituting in (38) the expressions for η0 and η1 given in (14),
we obtain

¨̂c0 = −µ1
˙̂c0 − µ0ĉ0 + v . (39)

Theorem 4.2: Given the sinusoidal signal s(t) defined in (1)
and the biased measurement y(t) (2), the R-GQPLL algorithm
given by (5), (6), (7a), (11)-(16) guarantees the asymptotic
convergence of the tracking error e and of the parameter-
estimation error θ̃, and the boundedness of all the other internal
signals â, b̂, δa, δb, ĉ0, ĉ1. �

Proof: By analogy with the previous analysis of the
O-GQPLL, we characterize the stability of the R-GQPLL
by resorting to the two-step approach based on the twofold
decomposition of the overall adaptive system: 1) the first
system is made up of the tracking error dynamics (37) and
the parameter-adaptation laws (15) and (16) (that correspond to
the time-derivatives of the scalar components of the parameter
vector θ̂ and, in turn, of the parameter error vector θ̃), and 2)
the LTI system (39) fed by v, that in turn depends on the
tracking error and on the parameter estimates.

Step A): Now, let us introduce the following candidate
Lyapunov function for the first subsystem (15), (16) and (37):

V =
1

2

(
k0e

2 + θ̃>θ̃
)

(40)

Similarly to the analysis conducted previously in Section IV-
A, it is sufficient to analyze the case in which the projection
is non-active.

The derivative of V along the system’s trajectory satisfies:

V̇ = k0eė− Ω̃
˙̂
Ω− K̃ ˙̂

K = −λ0k0e
2 ≤ 0

From the differential equation (37) we can establish the bound-
edness of ė (both θ̃ and ξ1 are bounded). Hence both e and
V̇ are uniformly continuous. By invoking Lemma 4.1, it can
be inferred that limt→∞ e = 0 and θ̃ is bounded. Moreover,
considering that y is bounded and that, in turn, y1 is bounded,
then from (15) and (16), we have that limt→∞

˙̂
θ = 0 (i.e.,

limt→∞
˙̂
Ω = 0 and limt→∞

˙̂
K = 0). Invoking standard argu-

ments of adaptive control θ̃ we can conclude that converges
to zero (exponentially) in case the regressor’s vector ξ1 is PE,
which is always the case for a non-degenerate sinusoid (non-
zero amplitude and frequency), which implies (28b) and (28c).

Step B): It remains to prove the boundedness of the auxil-
iary signals δa, δb, ĉ0 and ĉ1. From (31) we can conclude that
ë is bounded, which implies that ė is uniformly continuous. By
Barbalat Lemma we also have that limt→∞ ė = 0. Then, the
boundedness of the ĉ1, ĉ0, â and b̂ can be justified analogously
to the analysis carried in the O-GQPLL case.

As a final remark, it is immediate to show the convergence
of ŝ to s in case of PE by constructing ŝ in the form of (29).
Hence, the objective (3) is achieved.

Remark 4.1 (Parameter tuning): In view of the stability
analysis for both GQPLLs, it turns out that the adaptation gains
can be chosen arbitrarily large, enabling faster convergence
while preserving global stability properties. The certifiable
global stability of the GQPLL out of any small-gain as-
sumption represents a key benefit over the existent frequency
adaptive PLL schemes. However, in the presence of the mea-
surement noise, the parameter tuning is subject to the trade-
off between asymptotic accuracy and convergence speed. In
particular, large k1 in the O-GQPLL can significantly amplify
the noise injection (because of the direct feed-through of y)
and degrade asymptotic accuracy. The tuning of R-GQPLL is
more straightforward than that of O-GQPLL. It is possible to
use a relatively small λ0 for enhanced noise attenuation (due
to the low-pass filter (11)), in conjunction with a large k0 to
compromise the downscale of the signal input to the parameter
estimator, and therefore, fast convergence can be preserved
without significantly sacrificing the steady state accuracy.

Remark 4.2: Note that the Parameter projection is not
mandatory to ensure the boundedness â and b̂: their bound-
edness can be inferred from that of other signals. The only
parameters for which the projection is required (or other
robustifying provisions not considered in this paper, such as
σ-modification or deadzone-modification) are Ω̂ and K̂, that
appear in the Lyapunov function (40), whose time-derivative
along system’s trajectories is only semi-negative definite.
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V. SIMULATION RESULTS

In this Section, the behaviour of proposed GQPLLs will be
examined and compared with two representative approaches:
the EPLL [6] and an adaptive observer (AO) [38]. In particular,
the EPLL is one of the most popular PLL architectures in
the electrical applications, while the AO is often taken as a
baseline for comparison by the system-theoretic literature.

Example 1: Let us consider a sinusoidal measurement, sub-
jected to sudden frequency and offset variations and a bounded
measurement disturbance: y(t) = c(t) + 300 sin(2πf(t) t) +
d(t) with f(t) = 52.5 Hz, ∀t ∈ [0, 0.4), f(t) = 47.5 Hz, ∀t ∈
[0.4, 1.5] and c(t) = 6, ∀t ∈ [0, 1), c(t) = −12, ∀t ∈
[1, 1.5]. d(t) is a random noise with uniform distribution in
the interval [−10, 10]. For fair comparison, all the algorithms
are discretized by the Euler method with identical sampling
frequency 1MHz and all the methods are initialized with the
same initial frequency 50Hz. The O-GQPLL is tuned with:
µ0 = 5e4, µ1 = 200, k0 = 5e5, k1 = 2e4, η0 = −80, η1 =
−15, while the R-GQPLL is tuned with: λ0 = 500, λ1 =
250, k0 = 6e9. Both benchmark approaches are tuned so that
all the methods approximately share the same rise-time to the
initial frequency value.

The frequency-estimation trends obtained in the simulations
are depicted in Fig. 2. The initial transient of the frequency-
estimates puts in evidence that all the three methods have a
similar convergence speed at startup. As shown in Fig. 2,
the frequency change at t = 0.4s can be captured by all
the methods under concern, with comparable response speed.
A remarkable feature of the proposed GQPLL algorithms
can be appreciated at time t = 1s, when the DC-bias term
is suddenly changed. The estimates of the AO and EPLL
are severely perturbed whereas the GQPLLs are insensitive
to the offset-variation without showing noticeable transients.
Moreover, the robustness of the GQPLLs is evident from
the accuracy of the estimate at steady state. It is also worth
noticing the remarkable improvement of R-GQPLL over O-
GQPLL in terms of noise immunity, owing to the structural
enhancement of the R-GQPLL.

The reconstructed sinusoids provided by the methods under
comparison are depicted in Fig. 3. The unbiased sinusoidal
signal s(t) can be tracked by all the methods before the
frequency change at t = 0.4s. However, the AO is unable to
retrack s(t) after the frequency is perturbed, and the distortions
increase when more changes are introduced. The other three
approaches exhibit very similar synchronizing accuracy at
steady state, while the transient response of the EPLL tends
to be the fastest.

0.55 0.6 0.65 0.7 0.75

47

47.5

48

48.5

Fig. 2. Frequency estimates provided by the EPLL [6], the AO [38], the
O-GQPLL and the R-GQPLL.

Example 2: In this example, the robustness of the proposed
methodologies is further verified by more challenging situa-

Fig. 3. Tracking performance of EPLL [6], AO [38], the O-GQPLL and the
R-GQPLL.

tions. Consider y(t) = c + 240 sin(2πf t + ∆ϑ(t)) + d(t)
where the frequency and dc offset are fixed, f = 50Hz and
c = 10, while the phase angle is perturbed by ∆ϑ(t) =
0, ∀t ∈ [0, 0.4), ∆ϑ(t) = π/2, ∀t ∈ [0.4, 0.85), ∆ϑ(t) =
π/2+dp(t), ∀t ∈ [0.85, 1.5] with dp(t) a random phase-noise
with uniform distribution in the interval [−0.25, 0.25] and d(t)
denoting the measurement noise with the same characteristics
as in the previous example.

The time behavior of the estimated frequencies provided
by all four methods are reported in Fig. 4. As it can be
noticed, all the methods succeed in detecting the frequencies
with similar initial rising time. The GQPLLs are much less
susceptible to an abrupt phase jump, and they can significantly
improve the steady steady accuracy even in presence of phase-
noise, which severely deteriorates the performance of the
EPLL. It is worth noting that the R-GQPLL favorably deals
with phase-noise with an almost negligible stationary error.
Moreover, the reconstructed sinusoidal signal of each method

0.7 0.75 0.8 0.85 0.9
54

54.5

55

55.5

56

Fig. 4. Frequency estimates provided by the EPLL [6], the AO [38], the
O-GQPLL and the R-GQPLL.

are illustrated in Fig. 5 as well as the tracking error. Similarly
to the previous example, the AO is less accurate in term of
sinusoidal synchronization. Moreover, it follows from Fig. 5

Fig. 5. Tracking performance of EPLL [6], AO [38], the O-GQPLL and the
R-GQPLL.



8

that the GQPLLs are more robust as compared to the EPLL,
which is very sensitive to the phase-noise.

VI. CONCLUDING REMARKS

In this paper, the GQPLL paradigm is proposed for robust
tracking of a sinusoidal signal and its fundamental frequency
in presence of DC offset. Two variants of GQPLL are de-
scribed: O-GQPLL and R-GQPLL. Both the architectures
integrate the conventional OSG-PLL unit with specialized
parameter adaptation laws and signal injections. As such,
global stability is guaranteed as with adaptive observers, while
attaining fast and accurate synchronization to the original sinu-
soid as required by PLL applications. Moreover, when applied
to AC electrical systems, the proposed PLL schemes require
only a single-phase sinusoidal measurement for frequency esti-
mation, phase-locking, and fundamental signal reconstruction;
therefore, they can be easily extended to three-phase systems
without being affected by unbalanced loads.

By comparing the two GQPLLs, the R-GQPLL brings
together the fundamental architecture of the O-GQPLL with
additional modifications to the internal dynamics that enhance
the robustness in presence of unstructured measurement per-
turbations. Numerical simulations confirm that the R-GQPLL
is robust against additive measurement noise and is able to
track large and sudden parameter variations. The appealing
PLL-like architecture of both the proposed GQPLL schemes
together with their certified Lyapunov stability make them a
valid alternative to existing PLLs for the task of electrical
network monitoring and synchronization with mains.
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