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Abstract
Purpose Automation of sub-tasks during robotic surgery is challenging due to the high variability of the surgical scenes
intra- and inter-patients. For example, the pick and place task can be executed different times during the same operation and
for distinct purposes. Hence, designing automation solutions that can generalise a skill over different contexts becomes hard.
All the experiments are conducted using the Pneumatic Attachable Flexible (PAF) rail, a novel surgical tool designed for
robotic-assisted intraoperative organ manipulation.
Methods We build upon previous open-source surgical Reinforcement Learning (RL) training environment to develop a new
RL framework for manipulation skills, rlman. In rlman, contextual RL agents are trained to solve different aspects of the pick
and place task using the PAF rail system. rlman is implemented to support both low- and high-dimensional state information
to solve surgical sub-tasks in a simulation environment.
Results We use rlman to train state of the art RL agents to solve four different surgical sub-tasks involving manipulation
skills using the PAF rail. We compare the results with state-of-the-art benchmarks found in the literature. We evaluate the
ability of the agent to be able to generalise over different aspects of the targeted surgical environment.
Conclusion We have shown that the rlman framework can support the training of different RL algorithms for solving surgical
sub-task, analysing the importance of context information for generalisation capabilities. We are aiming to deploy the trained
policy on the real da Vinci using the dVRK and show that the generalisation of the trained policy can be transferred to the
real world.

Keywords Computer-assisted intervention · Robotic surgery · Reinforcement learning · Surgical automation

Introduction

The adoption ofRoboticMinimally Invasive Surgery (RMIS)
has been growing worldwide thanks to the introduction of
robotic platforms like the da Vinci Surgical System (Intuitive
Surgical Inc., Sunnyvale, CA,US). Besides its extensive clin-
ical use, the da Vinci System has been widely investigated
by researchers thanks to the open-source da Vinci Research
Kit (dVRK) [1] developed by Johns Hopkins University in
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the early 2010’s. The dVRK enabled the development of a
vibrant research community that has been investigating dif-
ferent robotic surgery problems [2]. With recent advances
in machine learning, learning-based approaches for robotic
surgery task understanding and automation, have become
and active area of research [2]. Among these approaches,
researchers have shown how with Reinforcement Learning
(RL) it is possible to solve tasks in different environmen-
tal conditions without the need of a human to tailor the
algorithm to specific solutions once conditions change. This
work builds upon a previously developed open-source RL-
oriented and dVRK-compatible simulation environment [3]
to develop rlman, a framework for RL training of manip-
ulation skills. The rlman framework can support diverse
surgical operation scenarios. To demonstrate its capabilities,
we present a case study focused on the use of the PAF rail
system for intraoperative organ repositioning [4]. Code is
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publicly available at https://github.com/Cladett/rlman. The
paper’s main contributions can be summarised as follows:

• We build upon the previous dVRL work [3] to develop
rlman, a training framework for manipulation skills.

• We conduct extensive experiments on RL algorithms
comparing four different manipulation skills with state-
of-the-art benchmarks [5].

• We implement contextual RL agents which are able to
generalise over context meta data.

• We evaluate the ability of the trained agent to generalise
over the pick and place task environment conditions.

Related work

Automation of intra-operative organmanipulation

During RAMIS, surgeons frequently reposition tissues and
organs with the help of the tool shafts. The PAF rail, shown
in Fig. 1, can be of great help for the surgeon when perform-
ing the aforementioned procedures [6,7]. The PAF rail uses
a series of vacuum-actuated suction cups to pair with the tar-
geted organ/tissue providing a flexible interface that enables
safe manipulation. Given the PAF rail design, the clinical
accuracy for this application can be measured as the orienta-
tion of the rail compared to the organ surface. To guarantee
a good suction, able to hold the weight of the organ, the rail
base needs to be parallel to the tissue. If this condition is not
verified, when the suction pump is turned on, the rail is not
able to guarantee a perfect suction with the organ tissue and
a loss of pressure occurs. More details are provided in the
supplementary material. Automating this step would allow
the surgeon to keep active control over the two main arms,

saving precious operating time without repeatedly switching
to the third arm.

RL in surgical robotics

Reinforcement Learning (RL) is a machine learning train-
ing method [8] that has been used vastly in robotic industrial
applications [9]. Because of the RL paradigm, to success-
fully train the agent, it needs to interact with the environment
hundreds of thousands to millions of times, making it fun-
damental to have an efficient and lightweight simulation
environment. The Surgical Robotics learning simulation
environments currently available are presented in Table 1.
Before these learning environments were introduced, two
main simulation environments were openly released in [10],
and [11], empowering the following developments. In the
former, the authors released the first V-REP model of the da
Vinci, and in the latter some learning support was introduced.
The first work that bridges the gap between medical robotics
andRL is the dVRLpresented in [3]. Thiswork introduces the
first learning environment compatible with OpenAIGym and
the dVRK. Other works focused on environments with better
dynamics interactions between the daVinci tools and soft tis-
sues [12,13]. Theseworks have been followed bymore recent
works presented in [5,14] where there has been improvement
in terms of environment dynamics and task characterisation.

Methods

Goal oriented RL

Reinforcement Learning is a paradigm used to solve prob-
lems that can be formalised as an agent interacting with an
environment. Formally, this type of problems is known as

Fig. 1 Representation of an
example surgical scene for
organ repositioning. The PAF
rail and the robotic tool are also
represented in rlman
environment

Table 1 Overview of surgical robotics training environments

Softwares Physics States Actions Tasks Bimanual ECM Objects

dVRL Python, V-REP Static+ Low dim 3 2 No No Cylinder, target

UnityFlexML Python, Unity Static+ Low dim 3 2 No No Tissues

SurRoL Python Dynamic Low, high dim 4 2 Yes Yes Needle, Blocks, etc.

DeformerNet Isaac gym Dynamic Low, high dim 4 2 No Yes Tissues

rlman Python, CoppeliaSim Static+ Low, high dim 4 2 No Yes PAF rail, Kidney, etc

Static+: simplified grasping strategy, with limited physical interaction
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Markov Decision Process (MDP). AnMDP is defined by the
following tuple: 〈S, A, P, γ, R〉, where S represents the state
space for which a given state st ∈ S, A the action space for
which at ∈ A, P the dynamics probabilities p(st+1 |st , at ),
andγ is the discount factor and R the reward space for rt ∈ R.
The aimofRL is to optimise a policyπ such as at = πθ (st ) to
maximise the expected returnE[∑H

t=0 γ t rt ], where H repre-
sents the horizon [8]. In goal-oriented RL algorithms, the aim
is to learn a parametrised Q-function, defined as Qw(s, a, g),
that estimates the expected return of taking an action a from
state s with goal g and the parametersw. In Q-learning prob-
lems, the solution relies on the minimisation of the Bellman
[8] error:

L = Qw(s, a, g) − (r + max
a′ Qw(s′, a′, g)) (1)

Standard actor-critic algorithms can be used to optimise
this objective, using a set of transitions (s, a, s′, g, r) which
can be collected off-policy. In practice, a target network is
often used for the second Q-function.

Contextual RL

Manipulation tasks can be defined as a sequence of different
steps, executed one after the other applying different skills.
For example, the pick and place task can be divided into
different surgemes each of which can be associated with dif-
ferent skills. Therefore, autonomous agents need to master
multiple skills in a sample-efficient manner to adapt effec-
tively to real world scenarios. Multi-Task Reinforcement
Learning (MTRL) represents a promising approach to train
effective real-world agents [15]. As previously described for
goal oriented RL, contextual RL aims to solve problems
known as Contextual MDP (CMDP) [16]. The first proposed
version of CMDP in [17] defines context as augmentation of
MDP using side information as form of context, in a similar
fashion to contextual bandits. Contextual MDP (CMDP) can
be defined as follows:

Definition 1 A CMDP is defined by a tuple 〈C, S, A, M〉
where C is the context space, S is the state space and A is
the action space. M is a function that maps a context c ∈ C
to MDP parameters M(c) = {Rc, T c}.

In a multi-task setting, where a family of MDPs is defined
as each MDP with a shared state space S, context can be
applied. However, Sc (either low-dimensional or high, like
pixels) is the only state space the agent has access to, and it
represents a subspace of the original state space S, focusing
only on objects relevant to the task analysed. DifferentMDPs
can be characterise by different combinations of objects and
skills. Therefore, the state space Sc and reward function Rc

can differ across MDPs as well as the T c representing the

transitions probability function. However, when objects are
shared across tasks, their dynamics remain consistent across
them. In thiswork,we defined Sc as the state space of an envi-
ronment characterised by obstacles with different shapes and
dimensions that can vary among pre-defined sets of values.
We measure the performance of RL methods in a range of
unseen (yet related) environmentswith different environment
configuration.

rlman library

rlman trains different parts of the intraoperative organ
manipulation task (Fig. 2), inside the same environment
space. Following the architecture introduced in [3], all the
environments can interface in a Gym-like fashion with state-
of-the-art RL libraries.

Environment variables

The training of each skill takes place in a different envi-
ronment. We have defined a set of environment variables
that are randomised at every reset of an episode for each
environment. The variables have been selected to make the
experiment as similar as possible to the actual clinical sce-
nario. For the reach skill, the variables randomised are the
initial tooltip position, the target position, the initial position
and orientation of the rail alongwith the grasping site. Lastly,
the retrieving environment also has the randomisation of the
initial position and orientation of the kidney with the target
location belonging to the kidney surface. We define the ori-
entation range for the rail based on potential configurations
in a real clinical scenario, see Fig. 3, right side.

Workspace volumes We defined the randomisation of the
workspace for the scene object as a cubic volume bounded
by ω ∈ R

+ and centered around the position phome ∈ R
3.

The entire workspace Wa can then be defined as:

Wa = {p
= [px , py , pz] ∈ R

3 : ∀x ∈ phome − ω < x < phome + ω}
(2)

Moreover, for the experiment described in section “Gener-
alisation over context meta data” we proposed a different
formulation for the workspace asWb = Wtrain +Wtest , with
Wtest defined as one eighth of the full volumeWb andWtrain

the remaining portion, as shown in Fig. 3.

Action space

The RL agent is responsible for selecting the next Cartesian
position of the robot aswell as the gripper orientation, and the
inverse kinematics is then computed inside the environment
[10]. The jaw angle jt is ranged between [0, 1], with 0 being
completely closed and 1 entirely open. As shown in Table
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Fig. 2 Representation of the
four environments used to train
the different skills and their
respective environment
variables. Starting from the top
left clockwise: reaching skill
characterised by the
ReachTarget (RT) environment,
shown here, and ReachRail
(RR), picking skill with the
PickRail (PR) environment, the
pick and place with
PickPlaceRail (PPR) and
retrieving skill with
RetrieveRailkidney (RRk)

Fig. 3 Definition of the workspace volumes on the left, and of the orientation randomisation ranges for the rail on the right

1, the grasping is characterised by the following simplified
strategy: objects are considered grasped when jt < 0.25 and
the proximity sensor located in between the tooltip grippers
is triggered. As suggested in [18], actions are normalised in
the following way:

pt+1 = σ�t + pt (3)

jt+1 = (ψt + 1)/2 (4)

where �t , ψt ∈ [−1, 1] represent the actions that the agent
can choose. σ represents a safety threshold that restricts the
maximum step size between different actions.

State space

rlman supports both low-dimensional Cartesian coordinates
and high-dimensional states represented by RGB mask
images rendered by OpenGL. In the first case, the differ-
ence in complexity of the state space allows the agent to
focus on continuous control learning with sample efficiency

while sacrificing the perception of the task. In the second
case, image perception, which represents powerful control
data in robotics, is required. All the experiments have been
conducted with low-dimensional state space definition, apart
from the reach skill environment where high-dimensional
state spaces have been investigated. For the low dimension
case, as for the actions, the values are randomised based on
p̂t = (pt − phome)/ω. For the reach skill environment, the
images are acquired by a single vision sensor attached to the
Endoscope CameraManipulator (ECM). The frames are first
converted from RGB to grey-scale and then down-sampled
from 320x240 to 64x64 in order to decrease the computa-
tional load.

Reward functions

Reward shaping is a crucial step when designing a RL prob-
lem [19]. In rlmanweaim to investigate the agents’ capability
of generalising. Given a success function h(s, g), where g
represents the designed goal for the task, the reward will be
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0 when the task is successful and −1 otherwise. As a result,
binary rewards can be defined as follows:

r(s, g) =
{
0 if h(s, g) > ∂

−1 if h(s, g) < ∂
(5)

where ∂ represents the acceptance threshold. Details on the
success function will be provided on the experiment sec-
tion. Given the complexity of the task, for the reach skill in
the high-dimensional case we opted for the following dense
reward r(s) = −k(ω)‖h(s, g)‖, where k is the normalisation
factor.

Algorithms

We evaluate every skills environment with model-free RL
algorithms, including the on-policy method Proximal Pol-
icy Optimisation (PPO) [20], the off-policy method Deep
Deterministic Policy Gradient (DDPG) [21] also tested with
Hindsight Experience Reply (HER) [22], as described in
section “Goal oriented RL”. For the high-dimensional envi-
ronment, we also used Deep Q-Networks (DQN) [23].

Experiments

rlman-skills evaluation

We divided the intraoperative organ manipulation task into
different part that we associated with a different skill and
trained them in the rlman framework. These skills were
selected based on the need of dexterity and high precision
in the surgical context of intraoperative organ manipulation
applied to the PAF rail test case. All the experiments were run
using as robotic tool the Large Needle Driver (LND). For the
experiments, the manipulation workspace was set to ω = 5
cm and the success function set to h(s, g) = ω‖pt −g‖ < ∂ ,
where ∂ is set to 3mm.

1. Reach Rail this environment was mainly used as valida-
tion for testing the feasibility of using low-dimensional
state information (RR -ReachRail) and high-dimensional
ones (RT -ReachTarget). In both cases, the goal is to reach
a circular target whose position is randomised, without
considering jaw angles. For the RR case, the tooltip posi-
tion has to reach the target over the rail within a tolerance
and to be perpendicular to the table’s surface. For RT, the
relative position between the endoscope and the robotic
arm is selected based on [24], to maximise the camera
field of view.

2. Pick Rail in this environment (PR) we introduce the jaw
angle. The robotic tool has to approach the rail and actu-

ally open and close the jaw to ensure a correct grasp. The
PAF rail is characterised by eight different grasping sites,
which are randomised during training.

3. RetrieveRail this skill aims to train the capability of prop-
erly locating the rail over the target organ. Fundamental
task to assess the clinical accuracy, the base of the rail
needs to be parallel to the kidney surface. The Retriev-
eRailkidney (RRk) is characterised by a kidney phantom
representing the target. Further details on the phantom
choice are provided in the supplementary material.
The goal of this task is to retrieve the rail, whose start-
ing configuration is fixed, and place it over the kidney
target position with the correct orientation to guarantee a
successful suction.

4. Pick and place Rail in this environment (PickPlaceRail,
PPR) the goal is to sequentially pick the rail and drive
it towards the target position. Grasping site, rail position
and target are all randomised inside the training volume.

Due to the extreme challenge of learning manipulation
skills that need to be transferable to a surgical environ-
ment characterised by small size objects and high-precision
movements, we decided to adopt low-dimensional state
representation when involving the rail, and test the high-
dimensional one as proof of concept using a simplified
circular target.

Generalisation over environment variables

We selected the PPR environment to run further experi-
ments to assess the capability of the agent to generalise over
environment variables and unseen portions of the training
volumes.

As highlighted in Table 2, we defined the five different
environment variables described in section “rlman library”
as: graspsite, rail pos , railor , eepos and target . We ran six
different experiments, indicated by the E#, randomising, for
each experiment, different sets of environment variables. In
addition, each of these experiments have been run twice in
order to test them using the two different volumes Wa and
Wb defined in section “rlman library”.

Table 2 Randomisation of the environment variables in PPR

Grasp rail pos railor eepos T arget

E1 rnd Fixed Fixed Fixed Fixed

E2 rnd rnd Fixed Fixed Fixed

E3 rnd rnd rnd Fixed Fxed

E4 rnd rnd Fixed Fixed rnd

E5 rnd rnd rnd rnd Fixed

E6 rnd rnd rnd rnd rnd
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Generalisation over context meta data

We augmented the PPR environment with three additional
obstacles ideally representing anatomical regions we want
the RL agent to avoidwhen executing the pick and place task.
A picture of the environment is reported in the supplemen-
tary material.Wewanted to test if the agent could execute the
task successfully regardless of the condition of the context of
the experiments. Therefore, obstacles have been added to the
environment to simulate anatomical regions.Whenever a col-
lision is detected between the robot, the PAF rail and any of
the obstacles, the environment resets and the episode restarts.
This environment behaviour will discourage the agent to
move close to the obstacles, learning behaviour that can trans-
late safely for future clinical practice. As explained in section
“rlman-skills evaluation”, the anatomy was approximated
with a cuboid shape to reduce overhead. As described in
the methods section, we enrich the state space using the meta
data characterising these obstacles. Specifically, we input the
3D Cartesian position of the centroid of each cube and their
size (represented by their volumes). The size is randomised
at every episode with the following criteria: given δl = 2mm
defined as the incremental factor, each side of the cuboids at
every reset can be randomised inside the following interval

[l0 ± δl ], where l0 is the size of each side chosen as reference
for each cuboid.

Results

Skills benchmarks

It becomes very challenging for a RL agent to solve multi-
step tasks, such as pick and place, without any previous
knowledge of the task [19]. Therefore, for the PR and PPT
tasks we integrated demonstrations into the training process,
as done in [25], by collecting 50 episodes for eachof the tasks.
We heuristically control the robot in simulation to record the
demonstrations. Figure 4 shows a summary of the results of
the evaluation for RL agents. We use the success rates during
testing as evaluation metric for the results of the experiments
[5]. For representation purposes, we reported only the algo-
rithm showing positive results, for complete picture refer to
the supplementary material. The results for training agents in
rlman are compared to SurRoL benchmarks. For the compar-
ison, we selected only the SurRoL environments that were
presenting the same state-space definition adopted in rlman.
Therefore, even if the task had slightly different definition,
e.g. using a different object, the characterization of the prob-

Fig. 4 Average success rate during testing of the analysed skills for
each environment shown over four random seeds, with one epoch set
as 40 episodes. The average value are represented by continuous line,

the lighted shaded region represent the standard deviation (std); and
the dark shaded region the standard error. A more detail version can be
found in the supplementary material
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Fig. 5 Representation of the results during testing for the PPR environment. Number of experiments refer to Table 2

lem remains the same.We replicate the results onourmachine
only for tasks that are strictly related to the skills analysed
in rlman. Each experiment was run four times, randomly
changing the seed for every execution. The supplementary
material provides a more comprehensive picture showing
also the training graphs.

Pick and place results

The results from the pick and place generalisation experi-
ments are shown in Fig. 5. For full training and testing results,
refer to the supplementarymaterial. As it is possible to notice,
increasing the number of randomised environment variables
negatively affects the agents’ performance, especially when
randomising railor and eepos . When the rail orientation is
not randomised, the rail is always sitting over the table sur-
face. When we introduce random rail orientation, the rail’s
position is shifted in order to avoid any penetration with the
table’s surface. Hence, the possible configuration space of
the rail becomesmuch bigger andwithmore complex entries,
affecting the agent’s performance. When randomising eepos ,
it could happen that the relative distance between robotic tool,
rail and target is too long for the agent to be able to solve the
task within the maximum number of time steps declared for
that task, see supplementary material for example. This is
not the case when there is no randomisation of eepos because
the volumes are always defined around phome, as described
in section “rlman library”.

Discussion and conclusion

We presented rlman, a learning framework for manipula-
tion skills compatible with the dVRK. Four learning-based
surgical manipulation skills were developed and validated
using the PAF rail system as a test case. Extensive exper-
iments were carried out in simulation to compare skills
trained in rlman with similar ones trained in the benchmark
environment. Despite the tasks present the same formula-
tion, differences encountered in the results might be due to
different environment’s formulation and variables. We also
reported results, Fig. 6, of using single camera frames as state
information and how the agent can learn how to solve the
task using this information. Further experiments were devel-
oped in the pick and place environment to test the agent’s
capability to generalise over different surgical scenes. The
box-plot, in Fig. 6, shows that despite the initial distance
between target and robot, the agent can correctly generalise
and always solve the task complying with the acceptance
threshold. The presented results prove that the agent trained
with the randomisation of different environment variables
can generalise over unseen volumes and environment meta
data equally. We aim to translate all the skills learned in
simulation to the real robot, especially testing how the gen-
eralisation capabilities can be transferred from sim-to-real.
Adjustments can be done also in the simulation environment
to improve training performance when all the environment

Fig. 6 On the left: success rate for RT task. On the right: error representation between final tool position and goal compared to their initial distances
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variables are randomised, improving, for example, randomi-
sation conditions and maximum amount of time steps, as
well as more detailed characterization of the interaction
between obstacles and successful grasping. Furtherworkwill
involve a better comparisonwith the benchmark environment
focusing on the differences between environment variables.
Moreover, clinical experiments will be carried out to better
assess the clinical accuracy required during the intraoperative
organ repositioning. Promising future extensions of rlman
involve the implementation of different skills allowing the
agent to transfer-learn across them and extending the high-
dimensional states to multiple tasks. In this scenario, the
agent would be able to select which task to execute based
on the type of state information that will receive as input.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-022-02630-
2.
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