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While fire is an important ecological process, wildfire size and severity have increased
as a result of climate change, historical fire suppression, and lack of adequate fuels
management. Ladder fuels, which bridge the gap between the surface and canopy
leading to more severe canopy fires, can inform management to reduce wildfire risk.
Here, we compared remote sensing and field-based approaches to estimate ladder fuel
density. We also determined if densities from different approaches could predict wildfire
burn severity (Landsat-based Relativized delta Normalized Burn Ratio; RdNBR). Ladder
fuel densities at 1-m strata and 4-m bins (1–4 m and 1–8 m) were collected remotely
using a terrestrial laser scanner (TLS), a handheld-mobile laser scanner (HMLS), an
unoccupied aerial system (UAS) with a multispectral camera and Structure from Motion
(SfM) processing (UAS-SfM), and an airborne laser scanner (ALS) in 35 plots in oak
woodlands in Sonoma County, California, United States prior to natural wildfires.
Ladder fuels were also measured in the same plots using a photo banner. Linear
relationships among ladder fuel densities estimated at broad strata (1–4 m, 1–8 m) were
evaluated using Pearson’s correlation (r). From 1 to 4 m, most densities were significantly
correlated across approaches. From 1 to 8 m, TLS densities were significantly correlated
with HMLS, UAS-SfM and ALS densities and UAS-SfM and HMLS densities were
moderately correlated with ALS densities. Including field-measured plot-level canopy
base height (CBH) improved most correlations at medium and high CBH, especially
those including UAS-SfM data. The most significant generalized linear model to predict
RdNBR included interactions between CBH and ladder fuel densities at specific 1-m
stratum collected using TLS, ALS, and HMLS approaches (R2 = 0.67, 0.66, and 0.44,
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respectively). Results imply that remote sensing approaches for ladder fuel density can
be used interchangeably in oak woodlands, except UAS-SfM combined with the photo
banner. Additionally, TLS, HMLS and ALS approaches can be used with CBH from 1
to 8 m to predict RdNBR. Future work should investigate how ladder fuel densities
using our techniques can be validated with destructive sampling and incorporated into
predictive models of wildfire severity and fire behavior at varying spatial scales.

Keywords: ladder fuels, terrestrial laser scanner (TLS), handheld-mobile laser scanner (HMLS), unoccupied aerial
system (UAS), airborne laser scanner (ALS), Structure from Motion (SfM), wildfire burn severity

INTRODUCTION

There is an urgent need in the western United States to reduce
wildfire hazard and restore wildfire’s historic role as a beneficial
ecological process (Stephens et al., 2012; Duff et al., 2013, 2019).
Surface fuels, often < 1 m in height and mostly horizontal in
orientation, carry fire across the ground when there is continuity
of litter, slash, herbaceous vegetation, shrubs, small conifers, and
downed woody material (Brown, 1982; Schmidt et al., 2008).
Ladder fuels, which are live and dead vegetation that bridge
the gap between the surface and the canopy, can provide a
conduit for a low-severity surface fire to become a high-severity
canopy fire (Menning and Stephens, 2007; Ottmar et al., 2007).
Management targeted at reducing surface and ladder fuels can
effectively mitigate wildfire intensity and burn severity (Agee and
Skinner, 2005; Ritchie et al., 2007; Safford et al., 2012; Prichard
et al., 2013). Due to the scale of the area that requires treatment,
targeted management must be informed by mapping the spatial
distribution of ladder fuels to help prevent high-severity fires.

It is generally time consuming and ineffective to quantify
ladder fuel loads in the field using traditional forestry methods
(e.g., Keane et al., 2005). Sometimes, fuels are measured indirectly
via canopy base height (CBH), the average distance between the
bottom of the canopy and the ground. An alternative approach
is to estimate fuel structure via remote sensing technology.
Relative to field-based techniques, remote sensing allows for
measurements across large and inaccessible areas at a potentially
lower cost, depending on scale of measurements (Gale et al.,
2021). Sensing can be from a top-down or downward (typically
airborne or spaceborne) or a bottom-up or upward (typically
ground-based) view of forest structure (Skowronski et al.,
2011). Depending on photon flux at a particular wavelength,
biochemistry, and three-dimensional (3D) structure, downward
sensing will generally detect more upper-canopy components due
to progressive attenuation of photons from the top of the canopy
to the surface, whereas, for the same reasons, upward sensing will
be relatively sensitive to lower-canopy components.

From the downward sensing perspective, the use of airborne
laser scanners (ALS), or LiDAR, has been used to estimate
spatially explicit fuel parameters over landscape to regional
scales (Andersen et al., 2005; Jakubowski et al., 2013; Kelly and
Di Tommaso, 2015; González-Ferreiro et al., 2017), and can
contribute to reliable and robust estimates of modeled forest
fire behavior (Kelly et al., 2017). For example, in oak woodlands
of northern California, ALS data were used to estimate canopy

cover, canopy height, and ladder fuels at 1-m resolution at a
county scale (∼458,000 ha; Green et al., 2020).

At plot to stand scales (i.e., 1 to 50 ha), unoccupied aerial
systems (UAS; Joyce et al., 2021) can be outfitted to acquire
LiDAR (i.e., active sensing) or digital aerial images (i.e., passive
sensing) at lower costs relative to airplane-mounted sensors,
which is useful for repeated forest monitoring (Campbell et al.,
2020; Hillman et al., 2021a,b). When UAS are flown to capture
images with sufficient overlap (e.g., 75–85%), Structure from
Motion (SfM) data processing can generate 3D point clouds of
vegetation structure, which has the potential to quantify fuel
loads. Although UAS-SfM generally provides highly variable or
unresolved data of below-canopy vegetation structure (Wallace
et al., 2016; Graham et al., 2019; Hillman et al., 2021a,b; Reilly
et al., 2021), the technology has been used to successfully estimate
canopy height and cover, DBH, and stem count (Wallace et al.,
2016; Shin et al., 2018; Puliti et al., 2020; Reilly et al., 2021).

From the upward sensing perspective, terrestrial laser
scanning (TLS) is a ground-based form of LiDAR mounted
on a tripod. This technology has been used successfully
to estimate plot-scale variables related to the spread of
canopy fires, subtle fire-induced change, and forest fuels
structural metrics (García et al., 2011; Gupta et al., 2015;
Chen et al., 2016; Hillman et al., 2021a,b), with millimeter
accuracy and precision (Disney, 2019). The use of TLS
allows for fine-scale and high-resolution measurement of forest
structure, enabling studies to measure quantitative changes
in fuels over time (Wallace et al., 2016; Singh et al.,
2018).

Handheld-mobile laser scanners (HMLS), also used from
the upward sensing perspective, are a lightweight LiDAR about
30% the cost of a TLS. HMLS have been used to accurately
estimate tree height under 25 m (Hyyppä et al., 2020) and
diameter at breast height (DBH; Chudá et al., 2020; Hyyppä
et al., 2020) with less variation than field measurements. In
addition, HMLS technology typically requires less processing
time compared to TLS and reduces the issues of occlusion
that occur with TLS sampling on a fixed grid due to HMLS
being one single walking scan. This allows for many different
scan angles and locations, albeit with the compromise of
lower range and precision compared to TLS, particularly in
scanning the upper canopy (Ryding et al., 2015; Almeida
et al., 2019; Soma et al., 2021). Currently, few studies have
investigated the use of HMLS to examine forest structure
parameters (Marselis et al., 2016; Donager et al., 2021), and
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we are unaware of any studies that have focused on HMLS
and ladder fuels.

While remote sensing approaches are valuable, calibration
and validation of remote sensing data with ground-based
data is crucial. There are very few studies to date that
validate fuels measured by remote sensing with ground-
based direct measurements, such as destructive sampling or
intercept methods (Hillman et al., 2019). Kramer et al. (2016)
presented a low-cost ground-based photographic technique
(referred to hereafter as “photo banner”) to visually measure
ladder fuels from 1 to 4 m. Importantly, photo banner
measurements were found to correlate with ladder fuel density
developed using ALS data from 1 to 8 m (Kramer et al.,
2016). Currently, land managers and conservation groups in
Sonoma County, California have explored machine learning
models to predict wildfire severity that include ladder fuel
point densities from 1 to 4 m via ALS measurements
(Green et al., 2020). The higher the density of shrubs and
forest ladder fuels, the higher the canopy damage observed
following wildfires.

Given the important predictive role of ladder fuels estimated
by ALS data, but the often prohibitive cost and effort required
for repeat monitoring with ALS data, the purpose of this study
was to compare a suite of remote sensing approaches (TLS,
HMLS, UAS-SfM, and ALS) and field measurements (photo
banner) to measure plot-scale ladder fuels in oak woodlands
in the same region. In addition, we compared the use of
various measurements of ladder fuel densities to predict wildfire
burn severity in an effort to provide alternative options to
ALS data. Specifically, we aimed to answer the following
questions: (1) What is the linear relationship between ladder
fuel densities estimated using TLS, HMLS, UAS-SfM, ALS,
and photo banner methods and do the strength of these
correlations change in plots with different forest structure
(i.e., mean CBH)?; (2) For each method, can ladder fuels
be used to predict wildfire burn severity (i.e., Landsat-based
Relativized delta Normalized Burn Ratio; RdNBR) at a plot
scale? If so, which ladder fuel density strata from 1 to 8 m
is the most important predictor variable?; and, (3) When
predicting burn severity, do different methods of estimating
ladder fuel densities or including CBH lead to different predictive
capabilities?

We hypothesized that ladder fuel densities from different
approaches would be correlated to each other if their
measurement approach was similar (i.e., terrestrial or airborne
perspectives, laser or image based). In addition, we hypothesized
that TLS and HMLS collected data would most accurately
predict burn severity (RdNBR) due to high point density,
closely followed by ALS. We predicted UAS-SfM and the photo
banner would not be able to significantly predict burn severity
(estimated using RdNBR; Miller and Thode, 2007) due to the
lack of below canopy detection of UAS-SfM and 4-m height
limit of the banner. We hypothesized that the most important
predictor of burn severity would be ladder fuel density strata
from 1 to 4 m, as it was highly significant in the Green et al.
(2020) model.

MATERIALS AND METHODS

Data Collection and Processing
Remote sensing and field data related to forest structure were
collected from two study sites, Pepperwood Preserve (3,200 acres;
38◦ 34′ 57.5′′ N, 122◦ 42′ 37.3′′ W) and Saddle Mountain Open
Space Preserve (960 acres; 38◦ 30′ 3.3′′ N, 122◦ 37′ 44.6′′ W),
both in the Mayacamas Mountains in Sonoma County 10-20 km
outside of Santa Rosa, California, United States (Figure 1 and
Supplementary Figure 1).

The most prominent community at Pepperwood is oak
woodlands, with rolling hills also consisting of Douglas-fir and
redwood conifer forests, chaparral shrublands, and grassland
(Evett et al., 2013; Ackerly et al., 2020). Saddle Mountain
primarily consists of mixed hardwood and conifer forest, oak
woodland, grassland, and chaparral. Across the two study
sites, the top five species in both abundance and basal area
are Pseudotsuga menziesii (PSME), Quercus agrifolia (QUAG),
Q. garryana (QUGA), Q. kelloggi (QUKE), and Umbellularia
californica (UMCA; Supplementary Figure 2). While PSME
has the most basal area (33%), it is the third most abundant
based on density (17%). QUAG and QUGA are the second most
basal area dominant species and have the greatest abundance,
comprising 23% and 17% of the trees across all plots, respectively.
Between the two sites, CBH, DBH, and tree height were
similar in distribution, although the number of trees per plot
was greater at Saddle Mountain compared to Pepperwood
(Supplementary Figure 3).

In September 2019, Pepperwood Preserve data were collected
from 24 plots (20 × 20 m, 0.04 ha) that are part of a Sentinel
site plot network and have had demographic measurements
collected since 2013 (Ackerly et al., 2013). In 2017, the
Tubbs Fire burned through Pepperwood, creating a dramatic
gradient in wildfire severity throughout all plots. Immediately
following the measurement survey in September 2019, 60% of
Pepperwood Preserve re-burned in the Kincade Fire including 14
of our 24 study plots.

In August 2020, we established 11 plots (circular with a radius
of 11.3 m, 0.04 ha) at Saddle Mountain Open Space Preserve. In
September 2020, immediately following the measurement survey,
the Glass Fire burned all of the plots.

At each site, a variety of approaches were used to generate
ladder fuel densities at different height strata from 1 to 8 m
(Table 1). All measurements (TLS, HMLS, UAS-SfM, photo
banner) were taken at the phenologically same time each
year at each site (Pepperwood = September 2019; Saddle
Mountain = August 2020), except ALS which was collected
between September and November 2013 at both sites. Since
ALS data collection occurred prior to both the Tubbs and Glass
Fires, changes in both forest structure and ladder fuels could be
expected by the time of our field and remote sensing surveys.
Reilly et al. (2021) compared canopy metrics at Pepperwood
between 2019 UAS-SfM data to the 2013 ALS data and found
significant relationships between these methods for unburned
sites. However, they did detect changes in canopy attributes with
increasing wildfire severity (RdNBR). We interpret our results
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FIGURE 1 | Map of our study locations (Pepperwood Preserve and Saddle Mountain Open Space Preserve) and plots (indicated by gray squares and circles) in
Sonoma County, California. The perimeter of each wildfire that occurred during our research study is shown in red.

in light of this time lag and disturbance history. Below, we first
describe the field-based methods used (photo banner, canopy
base height), and then follow with descriptions of the remote
sensing approaches (TLS, HMLS, UAS-SfM, ALS).

Photo Banner
We adopted Kramer et al.’s (2016) photo banner to
measure ladder fuels at a plot-level (see Supplementary

TABLE 1 | Ladder fuel density calculations.

Ladder fuel
density strata

# Points in strata # Points in and below strata

1–2 m sum(Z > 1 & Z < = 2) sum(Z > = 0 & Z < = 2)

2–3 m sum(Z > 2 & Z < = 3) sum(Z > = 0 & Z < = 3)

3–4 m sum(Z > 3 & Z < = 4) sum(Z > = 0 & Z < = 4)

4–5 m sum(Z > 4 & Z < = 5) sum(Z > = 0 & Z < = 5)

5–6 m sum(Z > 5 & Z < = 6) sum(Z > = 0 & Z < = 6)

6–7 m sum(Z > 6 & Z < = 7) sum(Z > = 0 & Z < = 7)

7–8 m sum(Z > 7 & Z < = 8) sum(Z > = 0 & Z < = 8)

Material for more details). In each plot, the photo banner
(Supplementary Figure 4) was placed at the plot edge or corner
and a digital photograph was taken facing the corner from the
plot center (Supplementary Figure 5), providing a total of 4
pictures per plot.

Ladder fuel banner photos were analyzed by finding the
percent area of all parts of vegetation covering the photo banner
via ImageJ (Kramer et al., 2016; National Institute of Health,
Maryland, United States, version 1.52). First, the image was
converted into an 8-bit grayscale image. The measured area was
set to a single 1 × 0.5-m rectangle and the intensity, or lightness,
threshold was adjusted to select the darker parts. This selection
included any vegetation in front of the photo banner and could
include shadows. This selection was then converted into percent
area. The photos were independently analyzed by two people and
results were averaged per 1 × 0.5-m area section to account for
human error. The photo banner pictures were taken at 34 out of
35 total plots and 24 out of 25 burned plots.

Canopy Base Height
Canopy base height (CBH), a distance that influences vertical
propagation of fire and is easily measured in the field or by
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remote sensing is the variable most often used to model the
transition of surface to crown fires, as opposed to ladder fuels
(García et al., 2011). However, the definition of CBH varies
across the literature. From the point of view of fire behavior,
CBH is a fuel metric that defines the distance between the
bottom of the canopy and ground. According to some authors
(e.g., Scott and Reinhardt, 2001), it is the lowest height in a
stand at which there is a sufficient amount of forest canopy
fuel to propagate fire vertically into the canopy, i.e., the height
above ground level at which the bulk density reaches a specified
minimum value (Sando and Wick, 1972). When this definition
is used, ladder fuels such as lichen, dead branches and small
trees must be included in the calculation of CBH. However, other
authors (e.g., Cruz et al., 2003) have indicated that CBH can be
calculated as the average vertical distance between the ground
surface and the live canopy fuel layer. The advantage of this
definition is that it is compatible with the canopy fuel stratum
characteristics used in the crown fire initiation and propagation
model developed by Van Wagner (1977).

For this study, we defined CBH as the average distance
between the bottom of the canopy and ground. Specifically, tree
crown base height was defined as the lowest live crown with
at least two branches at the same height and less than a 1-m
gap from the continuous main crown. Crown base height was
measured for each tree > 10 cm DBH in each plot. A tape
measure was used to measure from the lowest live crown to the
ground when possible. In cases when a tape measure could not
reach, a laser hypsometer was used. Then, to determine canopy
base height (CBH), the crown base heights for each tree within
each plot were averaged. The CBH values were binned evenly
into four CBH categories supporting a visual inspection of the
data distribution as follows: low (0–3 m), medium (3.01–6 m),
high (6.01–9 m), and very high (>9 m). The sample size for the
number of plots in each CBH category varied and was n = 8 (low),
n = 8–12 (medium), n = 6–7 (high) and n = 4–5 (very high).

Terrestrial Laser Scanner
A Riegl VZ-400i TLS (RIEGL Laser Measurement Systems
GmbH) was used to scan each plot. The VZ-400i is a discretized
multiple-return LiDAR scanner with a 1550-nm wavelength
(shortwave infrared), 1200 kHz pulse rate and a 0.35-mrad beam
divergence (Wilkes et al., 2017; Gonzalez de Tanago et al., 2018).
This TLS has a maximum scan range of 800 m with view angles
of 360◦ in azimuth and 100◦ in zenith angles (Lau et al., 2019).
Within each plot, there were 9 scan positions 10-11.3 m apart
based on a grid (Supplementary Figure 5), as recommended by
Wilkes et al. (2017) to capture uniform point density throughout
the plot and canopy. No significant relative difference in point
density was found between the two sites. At each scan position,
both an upright position scan and a 90◦ tilt scan were taken
to get complete coverage of the ground and the upper canopy.
These scans were taken at times of the day when it was not windy
(usually between 7 am and 4 pm PST). If there was a gust of wind,
the scan was canceled and taken again once the wind slowed to
prevent a ghosting effect in the point cloud.

Processing for TLS data occurred in RiSCAN PRO (Riegl Laser
Measurement Systems GmbH, Horn, Austria, version 2.8.2). This

software allowed us to align all scans within each plot to each
other to create one plot-level scan. First, a coarse registration
was applied using automatic registration. Automatic registration
used voxels with a resolution of 0.50 m and an on-board Global
Navigation Satellite System (GNSS) to align the scans to each
other in space. Then, plane files were generated for a Multi-
Station Adjustment (MSA), which properly aligned the planes
to each other for the most accurate registration by adjusting
the orientation and position of each scan position in several
iterations to calculate the best overall fit. Using GNSS, data were
georeferenced in NAD83(2011)/UTM Zone 10N and geoid 12B
for accurate height data. Once registered and georeferenced,
TLS plot-level data were manually aligned to ALS data for
accurate georeferencing in RiSCAN PRO. Following registration
and alignment, Lidar360 (GreenValley International, Berkeley,
California, version 4.1) was used to create a 0.25-m raster DEM
interpolated from a triangular irregular network (TIN) from
TLS data for each plot. This DEM was then used to height-
normalize plot-level TLS data. TLS data were collected at all 35
plots and all 25 burned plots. The plot center was determined
from visual examination of the ALS-adjusted TLS point cloud
and used for determining the plot location and aerial extent
for all methods.

Handheld-Mobile Laser Scanner
We used a GeoSLAM ZEB-Revo (GeoSLAM, Nottingham,
United Kingdom) HMLS system, which has a 905 nm laser (near
infrared), scan range of 360◦ in azimuth and 270◦ in zenith
angles, and maximum range of 15 to 20 m. We walked the HMLS
for 5–10 min throughout each plot to collect data points. The
path of the HMLS was a closed loop around the perimeter while
pointing the instrument toward the center of the plot and then
walking smaller loops inward in a haphazard pattern to scan areas
that could not be collected from the perimeter (Bauwens et al.,
2016; Supplementary Figure 6).

Using the GeoSLAM software (GeoSLAM, Nottingham,
United Kingdom), HMLS data were automatically generated
for each plot. The resulting point clouds were then imported
into RiSCAN PRO and aligned to the ALS-aligned TLS data
using MSA. This allowed georeferencing of HMLS data in
NAD83(2011)/UTM Zone 10N with geoid 12B. Lidar360 was
then used to height normalize HMLS data by creating a TIN-
generated DEM (see TLS) for each plot. HMLS data were
collected at all 35 plots and all 25 burned plots.

Unoccupied Aerial System
A SenseFly eBee X fixed-wing UAS with a MicaSense RedEdge-
MX sensor, which collects blue, green, red, red edge, and near-IR
spectral bands, was flown during the same time period that TLS,
HMLS, and photo banner data were collected. A DJI Matrice 200
quadcopter UAS with the same MicaSense RedEdge-MX sensor
was used for two plots at Saddle Mountain due to accessibility
issues. Pepperwood was split into eleven zones with average size
of 33 ha and total area of 332 ha. Saddle Mountain was split into
five zones with an average size of 6 ha and total area of 29 ha.
Each zone had two autonomous flights at 120-m above-canopy
height, 75% along- and across-track overlap in a crosshatch grid
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pattern, and a nadir view angle for the sensor. For more detailed
information about UAS methods see Reilly et al. (2021).

Pix4Dmapper (Pix4D, Lausanne, Switzerland, version 4.4.12
and 4.6.4) was used to create reflectance orthomosaics for each
spectral band with an 8-cm resolution for each zone and perform
SfM point cloud processing for each flight zone using the green
spectral band. Using Lidar360’s ICP registration, UAS-SfM data
were aligned to ALS data. Due to the accuracy of the ALS DEM
(see below), it was used to height-normalize UAS-SfM data using
the R lidR and raster packages (Hijmans et al., 2019; R Core Team,
2020; Roussel et al., 2020). UAS-SfM data were collected at 33 out
of 35 plots, but only 29 of these plots (17 out of 25 burned plots)
had data below 8 m due to UAS limitations on below canopy
vegetation detection. Two plots were not flown due to overhead
cable obstructions.

Airborne Laser Scanner
Airborne laser scanner (ALS) data were downloaded from
existing data collected in 2013 for Sonoma County (QL1/2013).
The imagery was collected using Leica ALS50 and ALS70 sensors
at 5054 m altitude on a Beechcraft Airliner twin turboprop
aircraft. These sensors have 1064 nm (NIR) lasers. The maximum
RMSE for the georeferencing of this data was 0.2 cm due to
the use of 9,685 ground control points (Watershed Sciences,
2016). Data can be found at http://sonomavegmap.org/data-
downloads/.

Most pre-processing was already complete for the ALS
dataset. Watershed Sciences (2016) used TerraSolid to classify
ground points and a statistical surface algorithm to refine their
classification. For each UAS zone, ALS ground points were used
to create a 1-m raster DEM using the R lidR (Roussel et al., 2020)
and raster packages and TIN interpolation. The DEM was then
used to height-normalize the ALS point cloud for each zone. ALS
data were collected at all 35 plots and all 25 burned plots.

Wildfire Burn Severity
We defined burn severity using the Relativized delta Normalized
Burn Ratio (RdNBR) applied to pre- and post-fire Landsat 8
multispectral satellite imagery (Miller and Thode, 2007). RdNBR
measures the amount of dead vegetation post-fire in relation to
the amount of alive pre-fire vegetation. Therefore, a positive value
indicates a decrease in vegetation cover. In California, RdNBR
has been well-calibrated with field measurements of wildfire
severity (Miller et al., 2009), and Landsat-based time series of
RdNBR have been used to track regional shifts in fire severity
(Mallek et al., 2013; Coppoletta et al., 2016; Stevens et al., 2017;
Nigro and Molinari, 2019). This metric measures the change in
vegetation as a result of wildfire, rather than the energy output or
other environmental responses, such as soil (Keeley, 2009).

We used Landsat 8 Collection 2 Level-2 data from USGS
EarthExplorer. These data were atmospherically corrected
reflectance measurements with a 30-m pixel resolution. The
Kincade fire started on October 23, 2019 and burned until
November 6, 2019. For pre-fire data, a Landsat image from
October 17, 2019 was used. For post-fire data, a November 2, 2019
image was used as the fire was 72% contained by then and was
no longer burning in the study plots on that date. The Glass fire

started on September 27, 2020 and burned until October 20, 2020.
A Landsat image from September 17, 2020 was used for pre-fire
data and an October 19, 2020 image was used for post-fire data
as the fire was no longer burning in the study plots on that date.
To determine dNBRoffset, which accounts for seasonal phenology
changes between pre- and post-fire images, the mean dNBR in a
1-km area around each fire perimeter was calculated and focused
on the native forests as defined by the Sonoma County Lifeform
Project.1

A raster layer was created for each calculation and, using
TLS plot centers, the average of the closest 9 cells (3 × 3
cells; 90 × 90 m), including the cell where the plot center was
located, were used to measure the continuous RdNBR value
for each plot, following the techniques of Miller and Thode
(2007). Plot RdNBR values were binned into four burn severity
classes, using breaks determined with the dNBR offset (Miller and
Thode, 2007): no change (-500-0), low (69–315), moderate (316–
640), and high (640–1200). Due to a small sample size for high
severity plots (n = 1), the high severity plot was grouped into
a moderate and above group (316–1200). Categorical data for
RdNBR were created for exploratory analyses but were not used
in the final models presented here (model results can be found in
Supplementary Table 1).

Data Analyses
Ladder Fuels
For all point clouds from each method, a standardized vector
polygon was used to cut each point cloud to either a 20 × 20-m
square (Pepperwood) or 11.3-m radius circle (Saddle Mountain)
plot. Ladder fuel densities were then extracted at the plot level
from TLS, HMLS, UAS-SfM, and ALS point-cloud data using the
lidR package in R (Roussel et al., 2020). The mean CBH across
all plots (5.0 m) plus one standard deviation (2.7 m) was used to
determine the maximum height for ladder fuels (8.0 m). That is,
we chose not to calculate ladder fuel strata > 8 m as we did not
want to consistently include living crowns in our measurements.
It should be noted, however, that in plots with low or medium
CBH, ladder fuel strata > 6 m might include parts of the living
crowns of trees. Fuels below 1 m are often defined as surface fuels
(Keane et al., 2012; Kramer et al., 2016), thus we used 1 m as the
minimum height for ladder fuel strata. Using Equation 1 (Kramer
et al., 2016, Table 2), the density of points within all 1-m strata
from 1 to 8 m were calculated using points above 0 m in the
denominator (Table 1). We also computed ladder fuel densities
in 1-4 m and 1-8 m strata.

ladder fuel density =
# points in strata

# points in and below strata
(1)

Comparing Ladder Fuel Densities Across Methods
Ladder fuel density data were log transformed for normality
(Supplementary Figure 7) and Pearson’s product moment
correlation (r) values were used to compare ladder fuel densities
from 1–4 m to 1–8 m between each method. Since the
photo banner was only 4-m tall, photo banner data were not

1http://sonomavegmap.org/data-downloads/
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included in analyses using the 1–8 m strata. Plots were grouped
into CBH bins and individual correlations were conducted
on these separate classes to determine if overall plot forest
canopy structure influenced the strength and significance of
the correlations. Note that for this study, CBH data were only
measured in the field and not via remote sensing methods.
To discuss the results of Pearson’s correlation heat maps, the
following classifications were used: negative (–1 to –0.01), very
low (0 to 0.30), low (0.31 to 0.50), moderate (0.51 to 0.70), and
high (0.71 to 1.00).

Modeling the Relationship Between Ladder Fuels and
Burn Severity
To determine the effect of ladder fuels densities on RdNBR,
and interactions with CBH, generalized linear models were
selected using proc GLMSELECT in SAS (SAS Institute Inc, Cary,
North Carolina, version 9.4) using forward stepwise variable
selection based on minimizing Schwarz’s Bayesian Criteria (SBC).
Model residuals were visually assessed for approximate normality
and homoscedasticity. The global model contained each ladder
fuel density strata at discrete 1-m increments, CBH, and the
interaction between CBH and each ladder fuel density strata. The
model selection process started with the intercept only model and
the variables with the most explanatory power that decreased the
SBC were added until adding the next variable gave an equivalent
SBC. Both burn severity continuous data and binned categories
were analyzed, but only CBH categories were used in the final
model as they had significantly more predictive power. The
coefficient of determination (R2) for continuous values and the
likelihood ratios (LR) for categorical values were used to evaluate
model performance and SBC was used to evaluate the explanatory
power of the selected variables. The greater the value for R2 or
LR, the higher the predictive power of the model, but the lower
the SBC, the higher the explanatory power of the variables.

RESULTS

Sensitivity to Ladder Fuel Density Among
Methods
Data collected by TLS, HMLS, UAS-SfM, and ALS had average
plot-level point densities of 399,064 pts/m2, 16,378 pts/m2, 330

TABLE 2 | Average plot-level percentage of points by stratum.

TLS HMLS UAS-SfM ALS

0–1 m 43.5% 64.2% 14.9% 16.3%

1–2 m 10.4% 13.0% 2.4% 1.1%

2–3 m 7.7% 6.8% 1.2% 1.9%

3–4 m 5.9% 4.2% 1.1% 2.3%

4–5 m 4.8% 2.9% 1.2% 2.7%

5–6 m 4.4% 2.3% 1.7% 3.2%

6–7 m 4.0% 1.9% 2.5% 3.8%

7–8 m 3.5% 1.4% 3.2% 4.6%

Total 1–8 m 40.7% 32.5% 13.3% 19.6%

Total 0–8 m 84.2% 96.7% 28.2% 35.9%

TABLE 3 | Average plot-level point density (points/m2) by stratum.

TLS HMLS UAS-SfM ALS

0–1 m 173,788.30 10,201.52 31.74 3.20

1–2 m 57,311.12 2,884.81 10.55 1.70

2–3 m 61,264.81 2,088.40 10.40 1.97

3–4 m 47,787.23 1,364.58 11.89 2.10

4–5 m 36,910.99 899.64 11.33 2.18

5–6 m 31,782.90 672.06 15.25 2.32

6–7 m 27,585.26 514.63 21.13 2.31

7–8 m 22,966.50 380.56 24.78 2.50

pts/m2, and 17 pts/m2, respectively. For each method, there
was a high percentage of points between 0 and 1 m and
a decrease in the percentage of points between 1 and 2 m
(Table 2). While our ladder fuel density strata were between
1 and 8 m, we also included the point density between 0
and 1 m in our discussion as this measurement was included
in the calculation of each ladder fuel density strata. The TLS
and HMLS data gradually decreased in point density with
increasing strata height, due to bottom-up scanning of the forest
(Table 2). On average, 84% of TLS plot data were below 8 m,
and 40.7% were between 1 and 8 m (Table 3). On average,
96.7% of HMLS plot data were below 8 m, and 32.5% were
between 1 and 8 m (Table 3). The inability of HMLS to
sense above 8 m is clearly seen for representative plots with
mean or high CBH when compared to ALS (Figure 2). In
contrast, point density in UAS-SfM and ALS data gradually
diminished with decreasing strata height (not including 1–
2 m for UAS-SfM, which had 1.2% more points than 2–3 m),
due to the top-down views of those sensors (Table 2). Data
collected using UAS-SfM had the highest point density at the
top of the canopy, but the technique did not capture as many
understory or ground points as TLS or HMLS (Figure 2). Only
13.3% of UAS-SfM data were between 1 and 8 m, while 28.2%
were between 0 and 8 m (Table 3). Data collected by ALS
were comparatively sparse, but had better canopy penetration
than UAS-SfM, with an average of 35.9% of points between
0 and 8 m, 19.6% of points between 1 and 8 m, and 2.8%
of points in each stratum between 1 and 8 m (Figure 2 and
Table 3).

Comparing Ladder Fuel Densities Across
Methods
The largest significant correlation for ladder fuel densities from
1 to 4 m was between TLS and ALS (r = + 0.87, p < 0.001;
Figure 3). The only non-significant correlation was between
UAS-SfM and the photo banner (r = + 0.33, p > 0.1). All
other methods were at least marginally significantly correlated
(r from +0.49 to +0.84, p from 0.10 to <0.001) and TLS
had the largest and most significant correlations with other
methods (average r = + 0.76, average p < 0.001). The greatest
correlation for ladder fuels strata 1-8 m was between TLS
and ALS (r = + 0.71, p < 0.001) and TLS had the largest
and most significant correlations with other methods (average
r = + 0.69, average p < 0.001). The least significant and lowest

Frontiers in Forests and Global Change | www.frontiersin.org 7 April 2022 | Volume 5 | Article 818713

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-818713 April 6, 2022 Time: 12:31 # 8

Forbes et al. Ladder Fuels and Burn Severity

FIGURE 2 | Vertical profile of vegetation (VVP) generated by each remote sensing method, separated into bins based on CBH for a representative plot. The CBH
categories used are as follows: low (0–3 m), medium (3.01–6 m), high (6.01–9 m), and very high (>9 m). We included a plot with a CBH of ∼8 m as this is the mean
plus one standard deviation and used as the maximum height for our ladder fuels strata. The percentage of points at each height was found by dividing the number
of points at each height by the total number of points (above 0.5 m) for each method. VVP under 8 m shows the same data as the whole VVP, but zoomed in. The
gray dashed line shown in the VVP represents 8 m, the maximum height we used for ladder fuels, the gray dashed lines shown in the VVP under 8 m, are in 1m
increments and represent our ladder fuel densities.

correlation was between UAS-SfM and HMLS (r = + 0.30,
p = 0.1).

Comparing Ladder Fuel Densities Across
Methods Within Canopy Base Height
Categories
Terrestrial laser scanner (TLS) and HMLS were not significantly
correlated for ladder fuel density strata 1–4 m in very high
(r = + 0.66, p = 0.2) CBH plots, but were significantly correlated
in low (r = + 0.72, p = 0.04), medium (r = + 0.94, p < 0.001),
and high CBH plots (r = + 0.91, p = 0.004; Figure 4). TLS and
ALS had high correlations in all CBH plots (r from + 0.70 to
+ 0.96, p from 0.1 to < 0.001). TLS and ALS were significantly

correlated in medium (r = + 0.96, p < 0.001) and high CBH
plots (r = + 0.96, p < 0.001). UAS-SfM was not significantly
correlated with TLS or HMLS at any CBH class (note removal
of UAS-SfM from very high CBH class). HMLS and ALS were
significantly correlated in low (r = + 0.74, p = 0.04), medium
(r = + 0.88, p < 0.001), and high (r = + 0.85, p = 0.02).
UAS-SfM and ALS were significantly correlated for low CBH
plots (r = + 0.72, p < 0.04) and high CBH plots (r = + 0.86,
p = 0.03). The photo banner only had significant correlations
with TLS (r = + 0.84, p = 0.001), HMLS (r = + 0.75,
p = 0.008), and ALS (r = + 0.62, p = 0.04) in medium CBH
plots and TLS (r = + 0.94, p = 0.001) and ALS (r = + 0.88,
p = 0.008) in high CBH plots. The photo banner had the lowest
correlations overall, and was the only method to have negative
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FIGURE 3 | Heatmap of Pearson correlation coefficients to compare ladder fuel densities 1–4 m and 1–8 m across methods. Significance is as follows: *** p-value ≤
0.001 and ** 0.001 > p-value ≤ 0.01.

FIGURE 4 | Heatmap of Pearson correlation coefficients for ladder fuel density 1–4 m by CBH category across all methods. The CBH categories used are as
follows: low (0–3 m), medium (3.01–6 m), high (6.01–9 m), and very high (> 9 m). Significance is as follows: *** p-value ≤ 0.001, ** 0.001 > p-value ≤ 0.01,
* 0.01 > p-value ≤ 0.05.

correlations. While the plot sample size per CBH category was
small (n = 4 to n = 12), there were some patterns observed
(Table 4). Relative to full data correlations, the separation of
plots by CBH categories generally increased the strength of the
correlations in medium and high CBH plots (most so for the
banner and UAS correlations) and decreased the strength of the
correlations in low and very high CBH plots (especially when
using photo banner data).

Modeling the Relationship Between
Ladder Fuels and Burn Severity
The ladder fuel stratum/strata selected for each model to best
predict RdNBR varied among methods (Table 5). TLS and ALS
data produced the best models with very similar explanatory
(R2 = 0.67 and 0.66, respectively) and predictive (SBC = 255.4

and 252.7, respectively) power. Both models included fuel strata
1–2 m, with the interaction of CBH. The TLS model also included
CBH, and the ALS model also included fuel strata 3–4 m and
fuel strata 5–6 m with the CBH interaction. The UAS-SfM model
had the next highest predictive power (R2 = 0.53) and included
fuel strata 7–8 m and fuel strata 3–4 m with a CBH interaction.
However, the lack of below canopy detection caused this model to
have a lower sample size than the other models, which artificially
increases R2 and does not allow the SBC value to be comparable
to other models. The HMLS model included fuel strata 7–8 m
with a CBH interaction, with less explanatory and predictive
power (R2 = 0.44, SBC = 259.0) than the other models. The photo
banner model did not include any ladder fuels data and had no
predictive power. Parameter estimates from the model can be
found in Supplementary Table 2 and model fit criteria are shown
in Supplementary Figure 8.
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TABLE 4 | Differences (1) between the Pearson correlation values of ladder fuel
density from 1 to 4 m strata calculated without (full data) and with canopy base
height (CBH) categories (low, medium, high and very high).

Methods Full data
correlation

1 Low 1 Medium 1 High 1 Very High

RS Top down

ALS – UAS-Sfm 0.65 0.11 0.07 0.25 NA

RS Bottom up

TLS – HMLS 0.76 –0.12 0.10 0.07 –0.18

RS Mixed

TLS – UAS-SfM 0.64 –0.02 0.02 0.16 NA

TLS – ALS 0.85 –0.17 0.06 0.09 –0.11

HMLS – UAS-SfM 0.32 0.14 0.13 –0.11 NA

HMLS – ALS 0.72 –0.08 0.06 0.03 –0.38

Field-based

Photo Banner – TLS 0.70 –0.10 0.11 0.21 –0.41

Photo Banner – HMLS 0.54 –0.44 0.23 0.22 –0.65

Photo Banner – UAS-SfM 0.28 –0.15 0.12 0.48 NA

Photo Banner – ALS 0.56 –0.19 0.07 0.33 –0.58

A positive value indicates that the correlation with CBH category had a higher
Pearson’s r compared to the correlation without CBH category; a negative value
means the full data correlation had a higher Pearson’s r compared to the correlation
with CBH category. Methods are separated into remote sensing (RS) measurement
approaches (top-down, bottom-up, mixed) or field-based.

DISCUSSION

Due to the immense economic and ecological impact of wildfires
and the significant relationship between canopy damage and
ladder fuel density found in previous studies (Dennison et al.,
2014; Balch et al., 2018; Green et al., 2020; Hernandez, 2020),
we evaluated different remote sensing and traditional field-based
approaches for measuring ladder fuel density. In addition, we
aimed to determine if ladder fuels, and which ladder fuel stratum
in particular, could be used to predict wildfire burn severity in
our study forests. Indeed, an assessment of 3D fuel structure is an
important planning tool to assist in designing effective forest fuels
management actions in light of wildfire (Hillman et al., 2021a,b).

Comparing Ladder Fuel Densities Across
Methods
Estimates of ladder fuel densities were generated using TLS,
HMLS, UAS-SfM, ALS, and photo banner methods, using sub-
canopy height stratification techniques similar to other studies
(Skowronski et al., 2007; Kramer et al., 2016; Rowell et al.,

2020). While it was not possible to field validate the ladder fuel
density measured by each method in this study (i.e., through
destructive sampling), our results imply that all methods, except
UAS-SfM and the photo banner from 1 to 4 m and UAS-SfM
and HMLS from 1 to 8 m (note that the photo banner is not
included in this binned strata), can be used interchangeably to
quantify ladder fuel density in 1-4 or 1-8 m strata. These results
support work by Kramer et al. (2016) who found that the photo
banner could be used to validate ALS measurements of ladder
fuels. The non-ALS approaches explored in our study are easier
and less expensive to collect than ALS data at the plot scale.
Thus, these alternative methods can be completed at a high
temporal resolution, and might be beneficial for land managers
to describe changes in ladder fuel density over time. In addition,
it is possible that since there was a strong, significant correlation
between TLS, HMLS, and ALS based density estimates, these
approaches may be able to assist in the calibration and validation
of spaceborne optical, LiDAR, and SAR missions (e.g., GEDI,
ICESAT-2, NISAR, BIOMASS; Levick et al., 2021; Leite et al.,
2022), or a state-wide forest monitoring system such as the
California Forest Observatory, which estimates ladder fuels and
CBH from multispectral satellite imagery calibrated with ALS.

While we found various strong relationships between methods
in ladder fuel densities, the magnitude of each measurement
across techniques was not the same, primarily due to differences
from the top-down (ALS, UAS-SfM), bottom-up (TLS, HMLS)
or 2D ground-based view (photo banner) of the canopy. Since
TLS and HMLS had 84% and 97% of their collected points below
8 m, respectively, HMLS and TLS ladder fuels were significantly
correlated. In contrast, only about a third of UAS and ALS points
were below 8 m (28% and 36%, respectively), with UAS points
heavily concentrated in the upper canopy or in canopy gaps
(Figure 2). Consequently, ladder fuel correlations between UAS
and ALS were generally weaker than TLS and HMLS. These
findings corroborate other studies which have found that TLS are
more sensitive to 3D structure in the lower canopy than ALS and
UAS LiDAR (García et al., 2011; Brede et al., 2019; Hillman et al.,
2021a,b; Levick et al., 2021).

Similar to Hillman et al. (2021b), UAS-SfM methods
were unable to consistently detect sub-canopy structure when
compared to TLS, particularly in forests with closed canopies. We
explored this technology due to its relatively low cost compared
to airborne small-footprint lidar, mounted either on a plane
or UAS. Despite its limitations, we found that UAS-SfM was
significantly correlated with ALS across a range of ladder fuel

TABLE 5 | GLM model results using continuous RdNBR.

Model R2 SBC

Sample Size

Total NC Low Moderate +

TLS Int, 1–2 m*CBH, CBH 0.67 255.4 25 3 13 9

HMLS Int, 7–8 m*CBH 0.44 259.0 25 3 13 9

UAS-SfM Int, 7–8 m, 3–4 m*CBH 0.53 174.0 17 3 9 5

ALS Int, 1–2 m, 3–4 m, 5–6 m*CBH 0.66 252.7 25 3 13 9

Banner Int 0.00 251.2 24 3 12 9

Sample sizes reported by method and burn severity categories (no change, low, moderate and above).
The symbol * signifies the interaction between CBH and the ladder fuel density strata.

Frontiers in Forests and Global Change | www.frontiersin.org 10 April 2022 | Volume 5 | Article 818713

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-818713 April 6, 2022 Time: 12:31 # 11

Forbes et al. Ladder Fuels and Burn Severity

strata, and correlations strengthened considerably with ALS
and TLS when considering CBH classes. Thus, while patterns
in metrics were correlated between sensors, variation in the
ladder fuel percentage values due to top-down vs. bottom-up
measurement approaches, in addition to factors such as laser
scan overlap, scan angles, wavelength, and power, could explain
differential significance of correlations among ladder fuels in our
results, and ultimately their utility in subsequent fire behavior or
burn-severity modeling.

While we used density-based approaches to estimate ladder
fuels, future studies should explore the use of voxel-based metrics
or standardization of density metrics using voxels (Hillman et al.,
2021a,b). While Green et al. (2020) and Atchley et al. (2021)
and found significant results using density methods, voxels, a
unit which defines 3D space, could be an alternative way of
calculating ladder fuels. Wilson et al. (2021) found voxels to
effectively explain the effects of logging and wildfire on vertical
fuel continuity by using these methods to explain forest structure.

Modeling the Relationship Between
Ladder Fuels and Burn Severity
Measurements of ladder fuel densities using various remote
sensing approaches were able to moderately estimate wildfire
burn severity. When we examined the utility of ladder fuel density
and CBH to predict RdNBR, the most common ladder fuels
strata included were 1–2 m, 3–4 m and 7–8 m, even though
in some plots it is possible that 7–8 m included data from tree
canopies (Figure 2, Low CBH). These results support results by
Green et al. (2020) who showed that ladder fuels from 1 to 4 m
measured by ALS were a significant predictor of post-fire canopy
damage, along with other with additional topographic variables
(R2 = 0.63 for non-wind driven fires; R2 = 0.56 for wind-driven
fires). Our models that included TLS- and ALS-based data had
the highest predictive power, followed by the model using HMLS
data. TLS provides very detailed data of forest structure beyond
8 m (Figure 2; Disney, 2019), and thus was expected to be a useful
approach for collecting data to predict RdNBR.

Models using ladder fuel densities collected from HMLS and
UAS-SfM approaches were not as useful to predict RdNBR. While
Bauwens et al. (2016) found HMLS outperformed TLS when
estimating forest inventory metrics, HMLS is less reliable for
density metrics, as point density varies based on length of scan
and the walking path taken by the user. Also, we observed nearly
complete loss of information beyond 8 m height with HMLS.
Although the RdNBR UAS-SfM model did not perform as well
as TLS or ALS, it had an R2 from 0.50 to 0.53, slightly better
than HMLS (although the UAS-SfM model had fewer total plots,
as previously mentioned). We thus find that there is some value
in UAS-SfM, particularly in forests with gaps in the canopy or
relatively low CBH, such as oak woodlands or managed stands,
where some lower-canopy points are detected in the SfM process.
In addition, our previous research found multispectral UAS-SfM
to be useful for monitoring changes in upper-canopy structure
and greenness after wildfires (Reilly et al., 2021). We also note that
multi-angle views can improve detection of sub-canopy structure
with UAS-SfM (Lamping et al., 2021), a factor that we could not

explore as we were constrained to a nadir view by our UAS and
sensor equipment.

Importantly, the strength of ladder fuel densities to predict
RdNBR were stronger in all analyses when CBH was included.
This finding agrees with those of Fernández-Guisuraga et al.
(2021) who found that severe ecosystem damage was mainly
driven by vegetation structure rather than topography or patch
size, with different roles of pre-fire fuel structure parameters.
Many studies have accurately estimated CBH from ALS data
(Andersen et al., 2005; Kelly et al., 2017; Luo et al., 2018; Moran
et al., 2020; Stefanidou et al., 2020; Chamberlain et al., 2021),
and a few studies have estimated CBH with TLS data (García
et al., 2011; Novotny et al., 2021), so ideally these forest structure
variables could be estimated via remote sensing instead of a
field-based approach, to maintain a continuity in data collection.

In the future, additional forest structure variables which have
been shown to be important in predicting burn severity in our
ecosystem (i.e., canopy height, spatial context of surrounding
vegetation types, and topography), could be included into a
predictive model (Green et al., 2020). Further, climate variables,
especially annual mean vapor-pressure deficit, wind speed, and
burning index (Chen et al., 2021), as well as those related to
weather and fire propagation, could also help inform future
models as they may exert dominant control over burn severity in
relation to topography (Viedma et al., 2015; García-Llamas et al.,
2020), particularly under extreme climatic conditions (Turner
and Romme, 1994). With a more robust model that includes these
additional forest structure, topographic and climate variables
collected over more plots, the role of ladder fuels can be further
assessed and extrapolated to broader spatial scales which has
significant applications to scaling fire risk.

CONCLUSION

Remote sensing methods allow for opportunities to discover
new pathways to estimate forest fuels and predict wildfire
severity. Our study illustrated the utility of diverse remote
sensing techniques to measure ladder fuel density, and results
indicated that land managers who do not have access to all of
these approaches can use different approaches interchangeably
across the same spatial extents. Our results also stress the
importance of forest canopy structure to compare ladder fuels
across methods or predict burn severity and suggest that methods
for ladder fuel estimation should include canopy structure to
account for differences in measurement techniques. We expect
that these remote sensing approaches at the plot-level will
contribute to future research to incorporate ladder fuel density
into predictive models of wildfire severity and fire behavior at
varying spatial scales.
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