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The performance of wearable sensors in the detection of
SARS-CoV-2 infection: a systematic review

Marianna Mitratza*, Brianna Mae Goodale*, Aizhan Shagadatova, Vladimir Kovacevic, Janneke van de Wijgert, Timo B Brakenhoff,
Richard Dobson, Billy Franks, Duco Veen, Amos A Folarin, Pieter Stolk, Diederick E Grobbee, Maureen Cronin, George S Downward

Containing the COVID-19 pandemic requires rapidly identifying infected individuals. Subtle changes in physiological
parameters (such as heart rate, respiratory rate, and skin temperature), discernible by wearable devices, could act as
early digital biomarkers of infections. Our primary objective was to assess the performance of statistical and
algorithmic models using data from wearable devices to detect deviations compatible with a SARS-CoV-2 infection.
We searched MEDLINE, Embase, Web of Science, the Cochrane Central Register of Controlled Trials (known as
CENTRAL), International Clinical Trials Registry Platform, and ClinicalTrials.gov on July 27, 2021 for publications,
preprints, and study protocols describing the use of wearable devices to identify a SARS-CoV-2 infection. Of
3196 records identified and screened, 12 articles and 12 study protocols were analysed. Most included articles had a
moderate risk of bias, as per the National Institute of Health Quality Assessment Tool for Observational and Cross-
Sectional Studies. The accuracy of algorithmic models to detect SARS-CoV-2 infection varied greatly (area under the
curve 0-52-0-92). An algorithm’s ability to detect presymptomatic infection varied greatly (from 20% to 88% of
cases), from 14 days to 1 day before symptom onset. Increased heart rate was most frequently associated with
SARS-CoV-2 infection, along with increased skin temperature and respiratory rate. All 12 protocols described
prospective studies that had yet to be completed or to publish their results, including two randomised controlled
trials. The evidence surrounding wearable devices in the early detection of SARS-CoV-2 infection is still in an early
stage, with a limited overall number of studies identified. However, these studies show promise for the early detection
of SARS-CoV-2 infection. Large prospective, and preferably controlled, studies recruiting and retaining larger and

more diverse populations are needed to provide further evidence.

Introduction

On Dec 31, 2019, WHO recognised the emergence of
SARS-CoV-2, a novel virus in the coronavirus family.!
Since then, the outbreak of illness caused by the
SARS-CoV-2 virus (COVID-19) has become a global
pandemic, causing more than 458 million cases and
6 million deaths, until March, 2022.?

A key strategy for containing the COVID-19 pandemic
has been the rapid identification and contact tracing of
infected individuals.** RT-PCR constitutes the gold
standard for diagnostic testing of COVID-19.7 Despite
developments in rapid testing, the timing of testing in
relation to stage of infection hinders public health efforts
to control the virus* On average, from SARS-CoV-2
infection to symptom onset takes 6 days, although the
incubation period can be as long as 18 days.” The viral load
from the upper respiratory tract increases during the
incubation period, reaches a peak around symptom onset,
and then gradually declines.® Many national health
guidelines recommend testing for the general population
after symptom onset, or a few days after suspected
exposure to the virus, regardless of symptoms, to limit
false-negative test results."* However, viral load could be
sufficiently high enough for transmission before people
have symptoms or qualify for testing.”*

COVID-19 remains difficult to distinguish from other
respiratory illnesses on the basis of reported symptoms
alone. Many common COVID-19 symptoms (eg, fever
and cough) overlap with other influenza-like illnesses.”*
Some patients with confirmed COVID-19 report
symptoms uniquely associated with the virus
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(eg, anosmia), but such symptoms rarely appear early in
the disease.” Furthermore, 20-30% of individuals
infected with SARS-CoV-2 never develop symptoms.”?
The US Centers for Disease Control and Prevention
report that presymptomatic or asymptomatic people
account for half of SARS-CoV-2 virus transmissions.”

To reduce transmission rates in the general population,
identifying SARS-CoV-2 infections before or in the
absence of symptom onset is crucial. A range of non-
invasive, commercially available physiological monitors
(ie, wearable devices) could help in detecting presympto-
matic and asymptomatic infections and controlling the
pandemic. Because of rapid technological advancements,
relatively subtle fluctuations in physiological parameters
such as body temperature, respiratory rate, heart rate,
heart rate variability, skin perfusion, and oxygen
saturation (SpO,) can be measured by sensors commonly
found in smartwatches, smart rings, and fitness trackers.
Fever remains one of the most commonly reported
COVID-19 infection symptoms;* thus, the inclusion of
thermometer sensors on an increasing number of
wearable devices, despite their reliance on sensors worn
on distal body parts, might render them suitable to
detecting SARS-CoV-2 infection. Of note, peripheral
temperatures measured by wearable devices have shown
greater sensitivity than oral measurements in detecting
subtle temperature shifts (eg, =0-2°C).* With regard to
the COVID-19 pandemic, wrist temperatures have been
found to be equally stable and less susceptible to
environmental influences than forehead temperatures.*
Calls for additional research on the role wearable devices
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could serve in the early and comprehensive detection of
SARS-CoV-2 infections have emphasised their potential
ability to inform population and individual health
responses to the pandemic.” Several studies, mostly of
retrospective design, have shown the feasibility of wear-
able devices in indicating the presence of SARS-CoV-2
infection by monitoring one or more physiological
parameters, but an overview of the evidence is not yet
available.

In this systematic review, we aimed to summarise and
assess the added value of wearable devices in the
detection of SARS-CoV-2 infection within the adult
population (ie, those 18 years and older). Our primary
question regards the current state of evidence on the
diagnostic accuracy of statistical and algorithmic models
using wearable sensor data. We also consider the time
from detection to symptom onset and which physiological
parameters provide the best indication of a subclinical or
symptomatic SARS-CoV-2 infection.

Methods

Search strategy and selection criteria

We conducted our systematic review in line with our
protocol® and report our findings according to PRISMA
recommendations. We initially searched the literature
between Dec 17 and Dec 21, 2020, on the electronic
databases PubMed (MEDLINE), Embase, Web of Science,
Cochrane Central Register of Controlled Trials (known as
CENTRAL), International Clinical Trials Registry
Platform, and ClinicalTrials.gov. As the use of wearables
to identify SARS-CoV-2 infections remains an ongoing
area of research, we also searched preprint repositories
(medRxiv and bioRxiv) for non-peer-reviewed studies
between Dec 17 and Dec 21, 2020. We manually searched
the reference lists of articles and reviews included for
full-text screening to identify additional relevant studies.
To ensure as current a review as possible, we repeated
the above searches on March 8, 2021, and March 9, 2021,
and again on July 27, 2021, before final analysis.

The search terms for each database (appendix pp 3-5)
were selected on the basis of the authors’ knowledge
regarding wearable devices and SARS-CoV-2 infection.
All databases were searched for the years 2020 and 2021,
aligning with WHO’s timeline of SARS-CoV-2 discovery.'
We did not restrict our search by setting or language.

Articles and protocols showing randomised controlled
trials (RCTs), non-RCTs, and observational studies
(prospective and retrospective) were eligible for
inclusion, provided they examined wearable devices’
detection of SARS-CoV-2 infection in a non-hospitalised
population. We defined wearable devices as non-invasive
body-worn sensors automatically monitoring one or
more physiological parameters in real-time, including—
but not limited to—skin temperature, respiratory rate,
heart rate, heart rate variability, or skin perfusion or a
combination of these parameters. Additional criteria for
study selection included reporting on how SARS-CoV-2

was diagnosed (ie, a reference test). Studies reporting on
exclusively inpatient or paediatric and adolescent
populations (ie, those 17 years and younger), internal
wearable devices, wearables requiring manual data
collection, or wearables designed for hospital settings
were excluded. Case reports, editorials, commentaries,
personal opinions, and animal studies were also not
eligible for inclusion.”

Data analysis

We provide detailed descriptions of data extraction and
analysis in the appendix (p 6). Briefly, all articles found
via our search underwent deduplication and title and
abstract screening. Two authors (MM and AS for the
initial search) then reviewed the full text of all papers
identified and included during the initial screening. Any
discrepancies were resolved through discussions with a
third reviewer (GSD). Papers meeting our inclusion
criteria underwent data extraction to obtain study-level
information on participant demographics, study design
and setting, sample size, the type of wearable device and
it's sensors, reference test, definition of key model
parameters and features, and performance metrics (eg,
area under the curve [AUC] and other test statistics). We
contacted all corresponding authors to discuss missing
data and areas of uncertainty. Finally, we assessed the
risk of bias for each study’s primary outcomes using an
adapted version of the National Institutes of Health
Quality Assessment Tool for Observational Cohort and
Cross-Sectional Studies.” Per our protocol, a meta-
analysis of the results could not be done, given the
heterogeneity in approaches and outcomes.

Results

The first database search, done on Dec 17-21, 2020,
identified 1601 records with an additional four articles
retrieved from manually screening review reference lists.
The second search, conducted on March 8-9, 2021, found
an additional 574 records, and the third search, done on
July 27, 2021, found an additional 1691 records, resulting
in 3196 unique records overall, after deduplication. After
title and abstract screening, 173 articles were retained for
full-text review, of which 12"** fulfilled our inclusion
and exclusion criteria (appendix p 7). All studies were
observational, and seven were strictly retro-
spective;#*2%3%%  although some researchers imple-
mented control procedures, no RCTs were reported. Our
searches also identified 12 study protocols,”** including
two RCTs.®* Eight protocols were recorded in online
registries; one was a preprint, and three were published
(appendix pp 8-9). During extraction, we contacted the
corresponding authors for studies with missing data and
received replies from six of the 12 research teams.

We compiled the key characteristics for the 12 studies
included in this systematic review (table 1, see
appendix pp 11-14 for a detailed description). Most
studies recruited active users of wearable devices with a
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In general, algorithmic models for detecting
SARS-CoV-2 infection were developed retrospectively
across the nine studies and focused predominantly on
symptomatic disease. Except for Quer and colleagues*
and Cleary and colleagues,” each research team employed
cross-validation to test their algorithm’s generalisability.
Four studies randomly split their data into training and
validation sets,**** whereas other researchers tested
their algorithm on healthy and COVID-19-negative
controls,” recruited an independent set of participants,®
or used a leave-one-out cross-validation.” Acknowledging
the effects of seasonal and temporal variance on infection
models, Nestor and colleagues™ validated their model on

both a retrospective and prospective test set, determined
by its chronological order compared with the training and
the validation sets. Reflecting the breadth of model
specifications, overall accuracy varied greatly across
studies (AUCs ranged from 0-52 to 0-92).** Among
articles reporting sensitivity and specificity, the authors
seemingly prioritised specificity over sensitivity (figure 1)
meaning that with one exception,* studies with very high
specificity did not achieve comparably high sensitivity.
With more input features, models improved in
performance. Quer and colleagues™ showed that although
the model ingesting only symptoms (AUC 0-71)
performed similar to the model ingesting only wearable

Modelsincluded  Device sensors Manufacturer  Regulatory status Principle of operation
in analysis
Apple Unspecified; Apple  Accelerometer, Apple The EU granted European conformity (CE;  The Apple Watch provides wearers with a wrist-based notification
Watch333 Watch Series 4or 5 electrical heart also known as Conformité Européenne)  system, transmitting messages and alerts from their smartphone
sensor,* gyroscope, marking in March, 2019, for ECGapp and  in real-time; it can be worn during physical activity; its battery life
and photo- irregular HR notifications; US FDA ranges from 1-5-18 h; in addition to supporting third-party apps,
plethysmography approved ECG app for software as a the Apple Watch includes health-focused proprietary apps; newer
medical device, temporary approval models (eg, the Series 6) include blood oxygen and ECG apps, in
expanded to encompass remote addition to the widespread irregular heart rhythm alerts
monitoring of heart health during the
COVID-19 pandemic
E4 wristband®*®  Unspecified Accelerometer, Empatica The EU granted CE marking to the E4 Lacking a hardware display, the E4 wristband enables the user to
electrodermal wristband, in conjunction with the record 32 h of continuous data between device charges; it collects
activity and galvanic complementary Aura system, in March, data through multiple sensors and transmits them to a cloud
skin response, event 2021, as a class lla medical device platform, storing up to 60 h of data between transfers; the device
mark button, intended to detect and alert users to an allows researchers to record biometric data of participants who are
infrared thermopile, early respiratory infection; approval not  wearing the device at home or in the lab and develop their own
internal clock, and granted yet by FDA customised apps to access participant data in real-time
photo-
plethysmography
Fitbit lonic; Charge 3and  Accelerometer, Fitbit Approval not granted yet by EU or FDA All wrist-worn Fitbit devices rely on wearable sensors to track HR,
smartwatches  Charge 4; Inspire2  altimeter,* step count, and sleep stage and quality; newer smartwatch
and and Inspire HR; barometer,* electrical versions (eg, Sense and Versa models) also track skin temperature,
trackers®?#4  Sense; Versa2and  heart sensors,* GPS,* SpO, concentrations, and document potential atrial fibrillation
Versa 3; gyroscope,® episodes; depending on the model, Fitbit displays provide real-
unspecified orientation,* optical time measurement updates related to the wearer’s physical activity
HR,* PurePulse 2.0 and smartphone activity; Fitbit devices can be used continuously
HR,* SpO,,* and skin and paired with a complementary mobile app, lasting up to 6 days
temperature* between charges
Oura Ring*® Unspecified Accelerometer, Oura Approval not granted yet by EU or FDA The Oura’s finger-worn design emits a physical display; designed for
negative constant wear and is water resistant, the Oura ring has a 5-7 day
temperature battery life; the company has created an accompanying mobile app
coefficient, photo- for the Oura ring; users can track their sleep, activity, and so-called
plethysmography, readiness scores on their phone; the sleep score reflects how long
and temperature the user spends in deep, rapid eye movement, and light sleep, in
addition to providing personalised tips for maximising rest; the
activity score considers the user’s daily steps, calories burned, and
amount of time spent inactive; finally, the readiness score gives
users a numeric estimate from 0 to 100 of how much their body has
recovered from previous activity
WHOOP Unspecified Accelerometer, WHOOP Approval not granted yet by EU or FDA The wrist-worn WHOOP Strap collects physiological data
Strap® capacitive touch, continuously through multiple sensors; with no digital display on
gyroscope, photo- its hardware, the WHOOP strap’s battery lasts 4-5 days; when
plethysmography, synced with the complementary smartphone app, the WHOOP
and thermometer system quantifies the user’s sleep quality, provides
recommendations on how much physical exertion could be
tolerated, and measures resting HR and HRV; the WHOOP app also
enables users to log specific behaviours in a journal each day
Only the named wearable devices, based on the relevant included literature, are described in the table; thus, the unnamed throat-worn patch (Lonini et al, 2021)* is not presented here. ECG=electrocardiogram.
FDA=Food and Drug Administration. HR=heart rate. HRV=heart rate variability. SpO,=oxygen saturation. *Model-dependent sensors.
Table 2: Summary of the wearable devices discussed by name in the included literature, their sensors, and principles of operation
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Figure 1: Comparison of the sensitivity and specificity of different machine learning models used for early
SARS-CoV-2 detection

The size of the circle representing each study is proportional to its number of participants. The colour of the circle is
proportional to the percentage of participants positive for SARS-CoV-2 in the study.
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Figure 2: An overview of the main physiological parameters analysed across different studies

The SARS-CoV-2 associated changes in physiological parameters are shown with upward triangles (indicating a
value increase), downward triangles (indicating a value decrease), and circles (indicating parameters were analysed
in the study but direction of change was not reported). Notably, Bogu and Snyder’s* algorithm found bidirectional
heart rate abnormalities compared with baseline measurements. Similarly, Natarajan and colleagues® report an
overall increase in heart rate variability due to COVID-19, despite an initial decrease.

sensor data (AUC 0-72), ingesting both symptoms and
sensor data led to superior model performance
(AUC 0-80). One cross-sectional study combined data
from three separate devices and a self-report questionnaire
to achieve an accuracy of 98-1%, compared with 82-4%
when relying solely on wearable sensor data.* A study
enrolling patients with an influenza-like illness episode,
which included COVID-19-positive individuals, showed
that the symptom-based model (AUC 0-78) outperformed
the wearable-based model (sensitivity 0-52, false positive
rate 0-4) in distinguishing between COVID-19 cases and
non-COVID-19 influenza-like illness cases.” With one
rare exception,” the best performing models (ie, those
with >90% specificity” and recall of =80%") detected a
COVID-19 infection 3-7 days after symptom onset.*****
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The accumulated evidence suggests a trade-off between
a model’s accuracy and its ability to identify SARS-CoV-2
infection before symptom onset. Only four of the
reviewed studies developed models that could detect an
impending symptomatic SARS-CoV-2 infection,***
ranging from 14 days® to the day before symptom onset.”
The algorithms’ ability to detect presymptomatic
infection also spanned a broad range (20-88% of
SARS-CoV-2 infections);**** however, the greater the
number of days preceding symptom onset, the fewer
COVID-19 cases a model could identify. For example,
Mishra and colleagues® detected physiological anom-
alies in 88% of COVID-19 cases (22 of 25 individuals with
a symptom onset date) a median of 4 days (IQR -7 to 0)
before symptom onset with their model, whereas Bogu
and Snyder® reported detecting 56% of COVID-19 cases
(14 of 25 individuals) a median of 6-94 days
(IQR -7 to =6 22) before symptom onset.

Heart rate, heart rate variability, respiratory rate, skin
temperature, and activity levels comprised the most
commonly reported physiological parameters measured
by wearable devices (figure 2). We discuss the three
physiological metrics that could serve as leading indi-
cators of a SARS-CoV-2 infection, and other parameters
are reviewed in the appendix (pp 15-20).

Eight articles examining data from more than three
wearable devices collectively showed a positive asso-
ciation between SARS-CoV-2 infection and elevated
heart rate.”**2**% Smarr and colleagues® calculated
baseline physiological measurements for each Oura-
wearing participant (n=50), comparing them to their
mean heart rate during the first week of symptomatic
infection. They found no significant difference in heart
rate during illness based on participants’ self-reported
symptom onset date (p=0-13), but an association with
an increase in heart rate when paired with the start of
device-measured temperature shifts (p=0-02). Mishra
and colleagues® integrated heart rate and step data from
32 Fitbit users to generate a novel heart rate over steps
feature. Their analysis revealed that, among
25 individuals with discernible changes in their physio-
logical parameters around symptom onset, heart rate
increased by a median of 7 beats per min. Using a
subset of Mishra and colleagues’ data,”” Bogu and
Snyder® developed an algorithm to detect anomalies in
resting heart rate around the time of a potential
SARS-CoV-2 infection and reported that COVID-19-
positive individuals had more recorded hours of
abnormal heart rate during the infectious period than
healthy peers or those who were ill from a cause other
than COVID-19.

Although heart rate anomalies could help alert a
wearable device user to an impending infection, research
suggests changes in heart rate alone cannot differentiate a
SARS-CoV-2 infection from other influenza-like illnesses.
Shapiro and colleagues® showed that both patients with
COVID-19 and patients with influenza had elevated heart
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rate following self-reported symptom onset. In their
device-agnostic studies, Quer and colleagues® and Cleary
and colleagues” found no relative difference between
elevated heart rate in COVID-19-negative cohorts and
COVID-19-positive cohorts (p=0-33 and p=0-18).**
Furthermore, the same machine learning model ingesting
a heart-rate-derived feature could not discriminate well
between COVID-19-positive individuals and COVID-19-
negative individuals (AUC 0-52 and 0-63)."* In another
study,” even variability in heart rate before and after
activity remained similar, regardless of health status.
Converging evidence suggests intrapersonal heart rate
might increase following a SARS-CoV-2 infection, but it
cannot serve as the sole discriminating factor.

Three of the four studies examining SARS-CoV-2
infection’s effect on respiratory rate found that it
increased around symptom onset.*** In one study,®
SARS-CoV-2-positive Oura users had higher respiratory
rates during the early symptomatic period than during
the pre-illness baseline (p=0-002). Training a convo-
lutional neural network on physiological data from
1257 Fitbit wearers, Natarajan and colleagues® reported
that, during a SARS-CoV-2 infection, respiratory rate
deviated from its baseline value more than other para-
meters. In contrast, Miller and colleagues™ did not
identify respiratory rate as a leading indicator of a
potential SARS-CoV-2 infection in their examination of
271 WHOOP strap users who reported COVID-19
symptoms; compared with other physiological para-
meters, respiratory rate had the lowest coefficient of
intraindividual variance over time, regardless of whether
the patient was healthy or ill on a given day.

Whereas other articles considered deviations in
respiratory rate during a SARS-CoV-2 infection compared
with a previous baseline period, Lonini and colleagues®
examined physiological changes occurring on the same
day before and after a given activity. The researchers
equipped 15 participants with SARS-CoV-2 infection and
14 healthy participants with an unnamed wearable
device. Patients positive for SARS-CoV-2 had similar
respiratory rate variability in response to exercise
compared with healthy peers (p=0-095), despite a higher
baseline value. Cohort demographic differences,
however, limit the generalisability of their findings, as
most COVID-19 cases had a comorbidity that could have
affected their baseline respiratory rate (eg, asthma).”

Although fever was one of the first COVID-19
symptoms identified by WHO,* of the studies that
measured skin temperature, only Smarr and colleagues®
focused on assessing deviations in this physiological
parameter. They compared Oura users’ baseline skin
temperature to the period following self-reported
COVID-19 symptom onset. Statistical analysis revealed
an increase in temperature during a symptomatic
SARS-CoV-2 infection (p=0-024), with 76% (38 of 50) of
participants registering an increase in temperature in the
days preceding symptom onset.

www.thelancet.com/digital-health Vol 4 May 2022

We evaluated risk of bias on the basis of the National
Institutes of Health’s Quality Assessment Tool for
Observational Cohort and Cross-sectional Studies.” We
provide a study-by-study breakdown and detailed
descriptions of individual biases in the appendix
(pp 21-24). In general, most studies presented a
moderate risk of bias; the definition, size, self-reporting
of diagnosis, and demographics of the study populations
represented a major source of potential bias. Several
articles did not clearly define the study population
(eg, age, comorbidities, and nationality).”***>*# Three
studies also had small samples (total analysed sample
n=<1500), despite starting from very large recruited
populations (>30000 individuals).”*** Some researchers
attempted to address the restricted sample size and
class imbalance (ie, the number of participants who
were positive and negative for COVID-19, or positive
and negative days, depending on the type of observation
that was analysed) in their algorithms by upsampling
infection days,” implementing bootstrapping with
replacement,” or generating a synthetic training
dataset.* Moreover, most studies identified SARS-CoV-2
infection through participant self-report,”*******% which
is overly reliant on subjective data and potentially
misses asymptomatic cases. Confounding represented a
source of bias faced by many studies, given their
restricted adjustment for major demographic factors.
Furthermore, many pre-existing comorbidities
(eg, body-mass index)” shown to affect COVID-19
vulnerability and severity were rarely ingested by the
algorithms.**?*

In addition to the articles detailing completed research,
12 study protocols met inclusion criteria.”**The protocols
are investigating numerous wearable devices, ranging
from a repurposed fertility tracking bracelet®® to a
wearable device supplemented by a sensor placed under
the participant's mattress.” These studies aimed to
assess changes in physiological parameters commonly
examined by the other studies we included in our
analysis, including heart rate, heart rate variability, and
temperature. At least one protocol intends to examine a
previously unreported parameter (ie, blood pulse wave).”
Unlike the completed studies, all protocols propose
prospective studies, including two RCTs.** Two protocols
plan to include healthy control groups.**

Discussion

This systematic review examined 12 publications and
preprints and 12 study protocols related to wearable
devices’ ability to detect a potential SARS-CoV-2 infection.
We observed large variability in device type, physiological
parameters analysed, and the operationalisation of
diagnostic accuracy across models. Some authors relied
on statistical analysis to detect differences between or
within participants, whereas others used machine
learning algorithms. Accordingly, models varied in their
feature specification and performance.
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At present, the overall body of evidence regarding the
use of wearable devices to detect COVID-19 shows
promising, albeit early stage, findings. Most studies drew
on retrospective data, had small sample sizes, and did
not examine physiological differences from other
influenza-like illnesses. Although some studies used
PCR testing to confirm SARS-CoV-2 infection, this
practice was not universally deployed, potentially
introducing diagnostic biases and restricting the
comparability of studies to each other. Only three of the
included studies explicitly reported using PCR testing—
either a weekly PCR test,” a per occurrence self-reported
PCR test,” or a one-time PCR test upon hospital arrival.*®
The fact that two of those studies were conducted solely”
or partly*® on health-care professionals shows that this
type of population might have had easier access to PCR
testing, because of job requirements during the first
wave of the COVID-19 pandemic, than the general
population. Each study had a different design (ie,
prospective,” retrospective,” and cross-sectional)* and
investigated the ability of different devices (ie, Apple-
Watch,” Fitbit,”” and Empatica E4*) to detect deviations in
physiological parameters associated with a SARS-CoV-2
infection. Of note, the only included studies that present
findings for participants who are infected but asympto-
matic, report the use of PCR testing as the reference
test.*** Their relatively small sample sizes and prospective
and cross-sectional designs could have made it feasible to
require PCR testing during data collection. Also, two
studies that used PCR tests to determine infection and
that aimed to classify the current infection status of
participants by developing neural networks, achieved
high accuracy (98-1%* and 77-0%*) and specificity
(99:0%).** However, this performance cannot
necessarily be attributed to reliance on the gold-standard
PCR tests as an infection marker, as multiple other
differences in the specifications and inputs to their
models could have influenced their capabilities for
detecting a SARS-CoV-2 infection. For example,
Natarajan and colleagues® enrolled a large sample
(n=1257) of symptomatic Fitbit users and examined the
classification of a given day for each individual as healthy
or ill based on preceding physiological data of heart rate,
heart rate variability, and respiratory rate, as well as
demographic characteristics. In contrast, Hassantabar
and colleagues® analysed a much smaller sample (n=87)
of healthy (negative PCR test) and symptomatic and
asymptomatic patients infected with SARS-CoV-2
(positive PCR test) by monitoring data for up to 1 h from
multiple devices measuring galvanic skin response,
SpO,, and blood pressure, and collecting questionnaire
data on demographics, symptoms, and comorbidities.
Despite disparate methods and differences in follow-up
time, both studies validated high-performing machine
learning algorithms for diagnosing a SARS-CoV-2
infection. Less than half of the studies included a control
group of healthy participants, which further limits

generalisability.*”*# Findings from several studies on
changes in physiological parameters might also appear
contradictory at first glance. However, discrepancies in
the direction or magnitude of change could be
attributable to the brand or model of a given device. For
example, both Miller and colleagues™ and Natarajan and
colleagues® analysed data from a wrist-worn device and
arrived at differing conclusions about the effect of SARS-
CoV-2 infection on respiratory rate. However, the sensors
in the specific hardware or the underlying data extraction
techniques for interpreting raw sensor data could vary
substantially between the WHOOP strap studied by
Miller and colleagues™ and the Fitbit bracelet studied by
Natarajan and colleagues.” Both wearable devices have a
photoplethysmography sensor; however, differences in
sampling rates for the sensors could explain variations in
interbeat intervals and derived respiratory rates. Device-
agnostic studies, pooling data from multiple device
models and brands, might seem to directly address these
discrepancies through uniform data processing and
algorithm development; yet similar concerns could
nevertheless render their results difficult to interpret.
Recruiting Fitbit users and collecting data from
participants’ Apple HealthKits and Google-based devices,
Quer and colleagues™ did not correct for potential
confounding biases related to the different wearables.
Their finding of no changes in heart rate on the basis of
SARS-CoV-2 infection status could have derived from
how each wearable device measures and processes its
raw physiological data. Subsequent device-agnostic
studies could further clarify the relationship between
seemingly discrepant findings by conducting a head-to-
head comparison and determining whether a model’s
performance varied by device type.

Beyond biases introduced by differences in the studied
wearable devices and their associated sensors, the
included articles also lacked standardisation in their
algorithm development and reporting of performance
metrics. After receiving the raw physiological data from a
wearable device, researchers make decisions regarding the
signal’s preprocessing and cleaning (eg, normalising®*
or transforming data Dbefore model training).”
Additionally, researchers must choose which optimiser to
use when training their model; different optimiser
selections can affect model fit and performance. The
included studies used more than five types of optimisers
in training their respective models. Best practice in
machine learning also suggests having a separate test or
validation dataset from the training dataset; although two
studies did not include any test set* seven articles
varied greatly in their approach to validating their
machine learning algorithm,****#%%2% and the remaining
three studies used statistical analyses rather than machine
learning methods.””* Miller and colleagues® tested their
model on a dataset of participants derived from the same
population as their training data, although their data were
recorded during a different time period; in contrast,
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Hassantabar and colleagues™ relied on a categorically
different population (ie, healthy controls) to validate their
algorithm. How each research team chose their test or
validation sets inherently influenced their algorithm’s
performance. Showing how the algorithm development
process affects performance, Nestor and colleagues®
reported their model’s sensitivity, specificity, and other
metrics if held to the same evaluation schemes as other
authors.**** Their best performing model achieved
higher sensitivity and specificity compared with Natarajan
and colleagues,” and higher sensitivity and similar
specificity compared with Miller and colleagues.”
Recently, the scientific community has recognised the
need for improved standardisation in algorithm develop-
ment and performance metric reporting, particularly as
they relate to health outcomes; multiple publications have
called for clinical trials to use machine learning
techniques to show their data input process, handling of
missing or poor-quality data, and outcomes.”** Although
aligned with current practices in machine learning, the
varied approaches to algorithm development documented
across the included studies could have introduced bias in
the findings.

Except for two papers,* the examined studies also did
not consider how physiological parameters might differ
between symptomatic and asymptomatic SARS-CoV-2
infections. Most authors trained their algorithms
exclusively on symptomatic infections. Identifying
asymptomatic infections and building a corresponding
model requires testing participants repeatedly for
SARS-CoV-2 antibodies; a procedure not done by any of
the studies included in our systematic review. Using
specialised anomaly-detection algorithms, researchers
could train a machine learning model to recognise
intrapersonal deviations in physiological parameters
during the period between baseline seronegativity and
known seroconversion. This model could retrospectively
identify the timing of a previous SARS-CoV-2 infection
and be applied prospectively to determine real-time
asymptomatic—but nevertheless still transmissible—
infections. A single protocol, identified by our literature
review, has proposed prospective testing and subsequent
development of an asymptomatic infection detection
algorithm, although it does not specify the method for
doing so.* Our systematic review suggests wearable
devices could help identify SARS-CoV-2 illness before
symptom onset, with little self-reported data,***>*#
suggesting their possible usefulness in detecting
asymptomatic infection.”

An additional challenge identified by this systematic
review was that none of the models detecting SARS-CoV-2
infection on the basis of physiological parameters were
tested or validated in real-time; although one study tested
their online algorithm retrospectively.” An algorithm-
informed real-time indicator that ingests wearable sensor
data could enable individuals to make behavioural
changes, such as seeking a SARS-CoV-2 test early and
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self-isolating. Another study simulated real-world
deployment, warning that the shifting prevalence of
COVID-19 could cause substantial overestimation of
model performance.” All identified protocols, however,
follow a prospective design, with three protocols aiming
to assess an algorithm-driven alert system for health-care
professionals®** or the wearable device users.®* Future
research plans thus show the need and desire to address
this gap.

This systematic review also highlights the dispro-
portionate representation of wrist-worn devices in
research surrounding SARS-CoV-2 detection, restricting
the results’ potential generalisability. Four of the five
named devices were smartwatches or wrist-worn straps,
whereas only two of the 12 included articles (17%) studied
physiological changes related to a SARS-CoV-2 infection
with other types of wearable devices (eg, a smart ring).***
We designed our search strategy to minimise potential
bias in method of wearable device by including generic
terms (eg, remote sensing technology) and searching
specifically for non-wrist-worn devices (eg, skin patch
and smart glasses; see appendix pp 3-5 for a full list of
search terms). Nevertheless, the literature was skewed
heavily towards wrist-based wearable devices. An
inherent limitation resulting from this disproportionate
representation, differences in sensor types, size, and
placement could lead to variations in their measurements
and accuracy. Although it is beyond the scope of this
systematic review to dissect the engineering and design
principles varying across wearable devices, we
acknowledge the preponderance of wrist-based wearable
devices in the summarised literature might unduly
influence our findings and conclusions. More studies
focused on non-wrist-worn devices will be needed to
disentangle how device type influences algorithm
performance and which physiological parameters change
in relation to SARS-CoV-2 infection. Five protocols
identified by our search include non-wrist-worn sensor
components, and the results of these studies will
contribute much-needed data to this body of
evidence.ﬂAS,%,SO,Sl

Despite constituting key features affecting participant
compliance and overall adoptability, the wearability and
perceived ease of use for each studied wearable device
were not discussed in any of the included studies.
Additionally, comparing usability across devices is
difficult because of differences in study design. For
example, snapshot studies** recruiting small samples
for a short period of time placed a small burden on
participants in terms of time and effort; a participant
might be more likely to tolerate an uncomfortable device
if they need only to wear it for a few hours compared with
a study lasting several months. Conversely, studies using
stand-alone consumer wearables relied on users to opt-in
to their clinical trials;*****%% participants might have
felt more comfortable with the device they already own
compared to study participants who were given the
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device as study material.”” Many of the included studies
required a minimum time or days of use of the wearable
device as a prerequisite for a participant to be included
in the analysed sample.”**** However, there were
differences in how long users had to wear the device each
day between studies with extended timelines. For
example, some studies®* developed their models using
only night data, although the devices were designed to be
worn throughout the day. Consequently, their findings
suggest individuals need only wear the device while at
rest to detect a SARS-CoV-2 infection. Usability and
perceived ease-of-use would probably be affected by how
often a user has to wear the device, in addition to its
baseline comfort. Finally, some researchers observed that
participants occasionally did not use the wearable device
when symptomatic,® indicating participant’s health
could interact with the device’s overall wearability, affect
data collection, and subsequently the underlying model’s
ability to detect an infection. This research team also
argued that devices requiring daily charging are expected
to have more missing data, showing that this feature
potentially affects the data quality of the study.” Although
another research team analysed all participants in the
cohort and used machine learning models that can
handle implicitly missing data for this purpose, they
report a drop in performance if an individual had not
worn the device for a week.” The fact that several of the
included study protocols aim to assess the feasibility of
wearing a device for a specific amount of time is
encouraging.”** Various future studies intend to
establish individuals’ comfort in following the necessary
compliance schedule to maximise the usefulness of a
SARS-COV-2 detection algorithm. One trial designed for
the specific intensive settings of a 14-day quarantine will
instruct participants to wear the device all the time except
for when showering and charging the device.” Similarly,
another planned study will ask participants to wear the
device all the time outside of work (health-care workers)
for 30 days, but recognises in their protocol that there is a
small chance of discomfort or skin abrasion from the
prolonged use of the wristband without following
appropriate hygiene practices.” One trial will aim to
balance the prolonged follow-up of the participants with
asking them to wear the monitoring bracelet only at
night, so that the skin can breathe and dry during the
day.* Although we cannot comment on the wearability or
ease-of-use of the studied devices, future synthesis of
these factors for each device should be feasible given the
clinical trials underway.

Finally, sample selection and participant demographics
limit the models’ generalisability across populations. For
example, most studies, which were done solely or largely
in the USA, had little racial diversity, despite COVID-19
disproportionately ~affecting Black and Hispanic
communities in the USA.” Wearable devices have
previously shown variable performance across differing
skin tones; consequently, if research does not explicitly

include these populations, diagnostic accuracy and
potential for public good within vulnerable communities
remains limited.® Similarly, although some models
attempted to take into account sex-based variance,**
none of the machine learning algorithms considered
how physiological parameters change across the
menstrual cycle.”* Future researchers should consider
and fine-tune their algorithms to adjust for sex-based
differences, thereby reducing the likelihood that a
postovulatory shift in temperature, for example, would
be erroneously labelled as COVID-19.

Despite these limitations, the reviewed studies provide
valuable insights for future research on common
wearable-measured physiological parameters. Eight
articles showed an increase in heart rate associated with
a SARS-CoV-2 infection,”***** in line with population-
level heart rate data associated with influenza.® Similarly,
changes in skin temperature and activity frequency
provide encouraging results for emerging wearable
devices equipped with a temperature sensor and an
accelerometer. Notably, behavioural changes, such as
receiving a SARS-CoV-2 test result after symptom onset
could result in an overestimation of the performance of
models based on activity frequency, limiting the use of
these data samples.” In addition, establishing a
conclusive COVID-19-related pattern in respiratory rate
and heart rate variability requires additional replications
to disentangle contradicting or inconclusive initial
findings. Other features, such as coughing patterns
from mechanoacoustic sensors could be used to decipher
further trends relevant to a SARS-CoV-2 infection,”
although this possibility remains to be shown. Several
experimental papers also used this approach,® although
their content did not fit the inclusion criteria for this
systematic review.

This study represents a comprehensive search of
multiple databases and literature to date; we included
multiple synonyms for each primary term, tailored the
search terms to each database, manually screened
reference lists, and actively tried to mitigate any missing
data. Owing to the rapid pace of COVID-19 research, we
also sought out preprint sources. Despite these strengths,
although we did not restrict language in the databases we
used, we did not search databases publishing only non-
English publications; thus we might have overlooked
relevant literature published in another language.
Additionally, we identified only studies captured
according to our search terms, in specific medical and
research databases. Despite our efforts, we might have
missed some relevant studies which have not yet been
published in peerreviewed journals or as preprints
(eg, findings reported in news articles or company press
releases). We sought to mitigate this potential limitation
by including a supplementary search for study protocols,
which could highlight ongoing clinical trials and
potential future publications relevant to our research
question.
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Conclusion

Adequately containing the COVID-19 pandemic requires
rapid identification of individuals who are infectious.
Although wearable devices could help, this systematic
review highlights the need for well designed and
controlled studies to robustly identify if wearables can
accurately detect SARS-CoV-2 infection before symptom
onset or in asymptomatic individuals in comparison to
the current gold-standard diagnostic method. Future
studies should additionally consider how inherent
differences in wearable sensor methods, raw data
processing, and algorithm development contribute to the
detection of infection-associated deviations in physio-
logical measurements and how to address sources of bias.
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