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The performance of wearable sensors in the detection of 
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Richard Dobson, Billy Franks, Duco Veen, Amos A Folarin, Pieter Stolk, Diederick E Grobbee, Maureen Cronin, George S Downward

Containing the COVID-19 pandemic requires rapidly identifying infected individuals. Subtle changes in physiological 
parameters (such as heart rate, respiratory rate, and skin temperature), discernible by wearable devices, could act as 
early digital biomarkers of infections. Our primary objective was to assess the performance of statistical and 
algorithmic models using data from wearable devices to detect deviations compatible with a SARS-CoV-2 infection. 
We searched MEDLINE, Embase, Web of Science, the Cochrane Central Register of Controlled Trials (known as 
CENTRAL), International Clinical Trials Registry Platform, and ClinicalTrials.gov on July 27, 2021 for publications, 
preprints, and study protocols describing the use of wearable devices to identify a SARS-CoV-2 infection. Of 
3196 records identified and screened, 12 articles and 12 study protocols were analysed. Most included articles had a 
moderate risk of bias, as per the National Institute of Health Quality Assessment Tool for Observational and Cross-
Sectional Studies. The accuracy of algorithmic models to detect SARS-CoV-2 infection varied greatly (area under the 
curve 0·52–0·92). An algorithm’s ability to detect presymptomatic infection varied greatly (from 20% to 88% of 
cases), from 14 days to 1 day before symptom onset. Increased heart rate was most frequently associated with 
SARS-CoV-2 infection, along with increased skin temperature and respiratory rate. All 12 protocols described 
prospective studies that had yet to be completed or to publish their results, including two randomised controlled 
trials. The evidence surrounding wearable devices in the early detection of SARS-CoV-2 infection is still in an early 
stage, with a limited overall number of studies identified. However, these studies show promise for the early detection 
of SARS-CoV-2 infection. Large prospective, and preferably controlled, studies recruiting and retaining larger and 
more diverse populations are needed to provide further evidence.

Introduction
On Dec 31, 2019, WHO recognised the emergence of 
SARS-CoV-2, a novel virus in the coronavirus family.1 
Since then, the outbreak of illness caused by the 
SARS-CoV-2 virus (COVID-19) has become a global 
pandemic, causing more than 458 million cases and 
6 million deaths, until March, 2022.2

A key strategy for containing the COVID-19 pandemic 
has been the rapid identification and contact tracing of 
infected individuals.3,4 RT-PCR constitutes the gold 
standard for diagnostic testing of COVID-19.5–7 Despite 
developments in rapid testing, the timing of testing in 
relation to stage of infection hinders public health efforts 
to control the virus.8 On average, from SARS-CoV-2 
infection to symptom onset takes 6 days, although the 
incubation period can be as long as 18 days.9 The viral load 
from the upper respiratory tract increases during the 
incubation period, reaches a peak around symptom onset, 
and then gradually declines.10 Many national health 
guidelines recommend testing for the general population 
after symptom onset, or a few days after suspected 
exposure to the virus, regardless of symptoms, to limit 
false-negative test results.11–14 However, viral load could be 
sufficiently high enough for transmission before people  
have symptoms or qualify for testing.15,16

COVID-19 remains difficult to distinguish from other 
respiratory illnesses on the basis of reported symptoms 
alone. Many common COVID-19 symptoms (eg, fever 
and cough) overlap with other influenza-like illnesses.17,18 
Some patients with confirmed COVID-19 report 
symptoms uniquely associated with the virus 

(eg, anosmia), but such symptoms rarely appear early in 
the disease.19 Furthermore, 20–30% of individuals 
infected with SARS-CoV-2 never develop symptoms.20–22 
The US Centers for Disease Control and Prevention 
report that presymptomatic or asymptomatic people 
account for half of SARS-CoV-2 virus transmissions.23

To reduce transmission rates in the general population, 
identifying SARS-CoV-2 infections before or in the 
absence of symptom onset is crucial. A range of non-
invasive, commercially available physiological monitors 
(ie, wearable devices) could help in detecting presympto
matic and asymptomatic infections and controlling the 
pandemic. Because of rapid technological advancements, 
relatively subtle fluctuations in physiological parameters 
such as body temperature, respiratory rate, heart rate, 
heart rate variability, skin perfusion, and oxygen 
saturation (SpO2) can be measured by sensors commonly 
found in smartwatches, smart rings, and fitness trackers. 
Fever remains one of the most commonly reported 
COVID-19 infection symptoms;24 thus, the inclusion of 
thermometer sensors on an increasing number of 
wearable devices, despite their reliance on sensors worn 
on distal body parts, might render them suitable to 
detecting SARS-CoV-2 infection. Of note, peripheral 
temperatures measured by wearable devices have shown 
greater sensitivity than oral measurements in detecting 
subtle temperature shifts (eg, ≥0·2°C).25 With regard to 
the COVID-19 pandemic, wrist temperatures have been 
found to be equally stable and less susceptible to 
environmental influences than forehead temperatures.26 
Calls for additional research on the role wearable devices 
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could serve in the early and comprehensive detection of 
SARS-CoV-2 infections have emphasised their potential 
ability to inform population and individual health 
responses to the pandemic.27 Several studies, mostly of 
retrospective design, have shown the feasibility of wear
able devices in indicating the presence of SARS-CoV-2 
infection by monitoring one or more physiological 
parameters, but an overview of the evidence is not yet 
available.

In this systematic review, we aimed to summarise and 
assess the added value of wearable devices in the 
detection of SARS-CoV-2 infection within the adult 
population (ie, those 18 years and older). Our primary 
question regards the current state of evidence on the 
diagnostic accuracy of statistical and algorithmic models 
using wearable sensor data. We also consider the time 
from detection to symptom onset and which physiological 
parameters provide the best indication of a subclinical or 
symptomatic SARS-CoV-2 infection.

Methods
Search strategy and selection criteria
We conducted our systematic review in line with our 
protocol28 and report our findings according to PRISMA 
recommendations. We initially searched the literature 
between Dec 17 and Dec 21, 2020, on the electronic 
databases PubMed (MEDLINE), Embase, Web of Science, 
Cochrane Central Register of Controlled Trials (known as 
CENTRAL), International Clinical Trials Registry 
Platform, and ClinicalTrials.gov. As the use of wearables 
to identify SARS-CoV-2 infections remains an ongoing 
area of research, we also searched preprint repositories 
(medRxiv and bioRxiv) for non-peer-reviewed studies 
between Dec 17 and Dec 21, 2020. We manually searched 
the reference lists of articles and reviews included for 
full-text screening to identify additional relevant studies. 
To ensure as current a review as possible, we repeated 
the above searches on March 8, 2021, and March 9, 2021, 
and again on July 27, 2021, before final analysis. 

The search terms for each database (appendix pp 3–5) 
were selected on the basis of the authors’ knowledge 
regarding wearable devices and SARS-CoV-2 infection. 
All databases were searched for the years 2020 and 2021, 
aligning with WHO’s timeline of SARS-CoV-2 discovery.1 
We did not restrict our search by setting or language.

Articles and protocols showing randomised controlled 
trials (RCTs), non-RCTs, and observational studies 
(prospective and retrospective) were eligible for 
inclusion, provided they examined wearable devices’ 
detection of SARS-CoV-2 infection in a non-hospitalised 
population. We defined wearable devices as non-invasive 
body-worn sensors automatically monitoring one or 
more physiological parameters in real-time, including—
but not limited to—skin temperature, respiratory rate, 
heart rate, heart rate variability, or skin perfusion or a 
combination of these parameters. Additional criteria for 
study selection included reporting on how SARS-CoV-2 

was diagnosed (ie, a reference test). Studies reporting on 
exclusively inpatient or paediatric and adolescent 
populations (ie, those 17 years and younger), internal 
wearable devices, wearables requiring manual data 
collection, or wearables designed for hospital settings 
were excluded. Case reports, editorials, commentaries, 
personal opinions, and animal studies were also not 
eligible for inclusion.28

Data analysis
We provide detailed descriptions of data extraction and 
analysis in the appendix (p 6). Briefly, all articles found 
via our search underwent deduplication and title and 
abstract screening. Two authors (MM and AS for the 
initial search) then reviewed the full text of all papers 
identified and included during the initial screening. Any 
discrepancies were resolved through discussions with a 
third reviewer (GSD). Papers meeting our inclusion 
criteria underwent data extraction to obtain study-level 
information on participant demographics, study design 
and setting, sample size, the type of wearable device and 
it’s sensors, reference test, definition of key model 
parameters and features, and performance metrics (eg, 
area under the curve [AUC] and other test statistics). We 
contacted all corresponding authors to discuss missing 
data and areas of uncertainty. Finally, we assessed the 
risk of bias for each study’s primary outcomes using an 
adapted version of the National Institutes of Health 
Quality Assessment Tool for Observational Cohort and 
Cross-Sectional Studies.29 Per our protocol, a meta-
analysis of the results could not be done, given the 
heterogeneity in approaches and outcomes.

Results
The first database search, done on Dec 17–21, 2020, 
identified 1601 records with an additional four articles 
retrieved from manually screening review reference lists. 
The second search, conducted on March 8–9, 2021, found 
an additional 574 records, and the third search, done on 
July 27, 2021, found an additional 1691 records, resulting 
in 3196 unique records overall, after deduplication. After 
title and abstract screening, 173 articles were retained for 
full-text review, of which 1219,30–40 fulfilled our inclusion 
and exclusion criteria (appendix p 7). All studies were 
observational, and seven were strictly retro
spective;19,30–32,35,38,40 although some researchers imple
mented control procedures, no RCTs were reported. Our 
searches also identified 12 study protocols,41–52 including 
two RCTs.43,50 Eight protocols were recorded in online 
registries; one was a preprint, and three were published 
(appendix pp 8–9). During extraction, we contacted the 
corresponding authors for studies with missing data and 
received replies from six of the 12 research teams.

We compiled the key characteristics for the 12 studies 
included in this systematic review (table 1; see 
appendix pp 11–14 for a detailed description). Most 
studies recruited active users of wearable devices with a 

See Online for appendix
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self-reported retrospective SARS-CoV-2 infection; none 
of the studies tested participants for the presence of 
SARS-CoV-2 antibodies to detect mild or asymptomatic 
infections for which the participant had not sought 
diagnostic testing. Researchers commonly used historical 
information from long-term wearable use to examine 
changes in physiological parameters in the days before 
and after a patient’s diagnosis or symptom onset. The 
studies recruited predominantly from European and 
North American countries. Nine studies examined 
SARS-CoV-2 infection among the general public, whereas 
three enrolled health-care professionals.31,36,37 Three 
research teams characterised their studies as proof-of-
concept studies.38–40 Four studies were pre-prints.31,32,36,40

The participant sample size (n=29 to 32 198), sex ratio 
(17–70% male and 30–81% female), and mean ages 
(29–57 years) varied widely between studies. Information 
on ethnicity and race was collected and analysed in five 
studies,19,32,33,37,38 with only two studies recruiting a 
relatively diverse population.19,37

Various wearable devices were investigated across the 
12 studies, with bracelet design constituting the most 
common style. Five studies examined physiological 
parameter changes exclusively19,32,33,35,40 or almost exclu
sively (99%)31 measured by Fitbit devices. Other, less 
commonly investigated wrist-worn devices included the 
WHOOP strap,30 the Apple watch,37 and the Empatica E436 
(one study each). One study examined a smart ring, the 
Oura,38 whereas another study analysed data from an 
unnamed device worn on the user’s throat.39 The final 
study remained device-agnostic; most participants wore 
Fitbits (78∙4%), but any device that paired with Apple 
HealthKit or Google Fit met eligibility criteria and was 
included.34 The 12 studies examined wearable device-
measured physiological changes in respiratory rate,30,35,38,39 
heart rate,19,31–35,38–40 heart rate variability,35,37–39 skin temper
ature,36,38 and movement19,31–34,39 (table 2; appendix pp 15–20).

Across studies, the research teams drew on diverse 
methods for examining wearable devices’ ability to detect 
SARS-CoV-2 infection (appendix pp 10–11). Nine studies 
used machine learning algorithms to identify how 
physiological data (supplemented by symptom reports 
in three studies)32,34,36 could detect SARS-CoV-2 
infection,30–36,39,40 including an anomaly detection auto
encoder,40 gradient-boosted classifiers,30,32 and deep,36 
convolutional,35 or gated recurrent-unit32 neural networks. 
The remaining three studies used statistical analyses, such 
as mixed-effect models19,37 and Wilcoxon rank-sum tests.38 
Although some studies examined differences between 
SARS-CoV-2 infection and other influenza-like 
illnesses,19,32,33,40 most authors focused solely on SARS-CoV-2 
infection. Nine studies built models to directly compare 
wearable data from patients positive for SARS-CoV-2 with 
healthy33,36,37,39,40 or SARS-CoV-2-negative controls.19,31,32,34 
Eight studies considered intra-participant changes in 
baseline parameters as they progressed from uninfected to 
presymptomatic to symptomatic infection.19,30,32,33,35,37,38,40
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In general, algorithmic models for detecting 
SARS-CoV-2 infection were developed retrospectively 
across the nine studies and focused predominantly on 
symptomatic disease. Except for Quer and colleagues34 
and Cleary and colleagues,31 each research team employed 
cross-validation to test their algorithm’s generalisability. 
Four studies randomly split their data into training and 
validation sets,32,35,36,40 whereas other researchers tested 
their algorithm on healthy and COVID-19-negative 
controls,33 recruited an independent set of participants,30 
or used a leave-one-out cross-validation.39 Acknowledging 
the effects of seasonal and temporal variance on infection 
models, Nestor and colleagues32 validated their model on 

both a retrospective and prospective test set, determined 
by its chronological order compared with the training and 
the validation sets. Reflecting the breadth of model 
specifications, overall accuracy varied greatly across 
studies (AUCs ranged from 0∙52 to 0∙92).34,39 Among 
articles reporting sensitivity and specificity, the authors 
seemingly prioritised specificity over sensitivity (figure 1) 
meaning that with one exception,36 studies with very high 
specificity did not achieve comparably high sensitivity. 
With more input features, models improved in 
performance. Quer and colleagues34 showed that although 
the model ingesting only symptoms (AUC 0∙71) 
performed similar to the model ingesting only wearable 

Models included 
in analysis

Device sensors Manufacturer Regulatory status Principle of operation 

Apple 
Watch31,34,37

Unspecified; Apple 
Watch Series 4 or 5

Accelerometer, 
electrical heart 
sensor,* gyroscope, 
and photo
plethysmography

Apple The EU granted European conformity (CE; 
also known as Conformité Européenne) 
marking in March, 2019, for ECG app and 
irregular HR notifications; US FDA 
approved ECG app for software as a 
medical device, temporary approval 
expanded to encompass remote 
monitoring of heart health during the 
COVID-19 pandemic

The Apple Watch provides wearers with a wrist-based notification 
system, transmitting messages and alerts from their smartphone 
in real-time; it can be worn during physical activity; its battery life 
ranges from 1·5–18 h; in addition to supporting third-party apps, 
the Apple Watch includes health-focused proprietary apps; newer 
models (eg, the Series 6) include blood oxygen and ECG apps, in 
addition to the widespread irregular heart rhythm alerts

E4 wristband36 Unspecified Accelerometer, 
electrodermal 
activity and galvanic 
skin response, event 
mark button, 
infrared thermopile, 
internal clock, and 
photo
plethysmography

Empatica The EU granted CE marking to the E4 
wristband, in conjunction with the 
complementary Aura system, in March, 
2021, as a class IIa medical device 
intended to detect and alert users to an 
early respiratory infection; approval not 
granted yet by FDA

Lacking a hardware display, the E4 wristband enables the user to 
record 32 h of continuous data between device charges; it collects 
data through multiple sensors and transmits them to a cloud 
platform, storing up to 60 h of data between transfers; the device 
allows researchers to record biometric data of participants who are 
wearing the device at home or in the lab and develop their own 
customised apps to access participant data in real-time

Fitbit 
smartwatches 
and 
trackers19,31–35,40

Ionic; Charge 3 and 
Charge 4; Inspire 2 
and Inspire HR; 
Sense; Versa 2 and 
Versa 3; 
unspecified

Accelerometer, 
altimeter,* 
barometer,* electrical 
heart sensors,* GPS,* 
gyroscope,* 
orientation,* optical 
HR,* PurePulse 2.0 
HR,* SpO2,* and skin 
temperature*

Fitbit Approval not granted yet by EU or FDA All wrist-worn Fitbit devices rely on wearable sensors to track HR, 
step count, and sleep stage and quality; newer smartwatch 
versions (eg, Sense and Versa models) also track skin temperature, 
SpO2 concentrations, and document potential atrial fibrillation 
episodes; depending on the model, Fitbit displays provide real-
time measurement updates related to the wearer’s physical activity 
and smartphone activity; Fitbit devices can be used continuously 
and paired with a complementary mobile app, lasting up to 6 days 
between charges

Oura Ring38 Unspecified Accelerometer, 
negative 
temperature 
coefficient, photo
plethysmography, 
and temperature

Oura Approval not granted yet by EU or FDA The Oura’s finger-worn design emits a physical display; designed for 
constant wear and is water resistant, the Oura ring has a 5–7 day 
battery life; the company has created an accompanying mobile app 
for the Oura ring; users can track their sleep, activity, and so-called 
readiness scores on their phone; the sleep score reflects how long 
the user spends in deep, rapid eye movement, and light sleep, in 
addition to providing personalised tips for maximising rest; the 
activity score considers the user’s daily steps, calories burned, and 
amount of time spent inactive; finally, the readiness score gives 
users a numeric estimate from 0 to 100 of how much their body has 
recovered from previous activity

WHOOP 
Strap30

Unspecified Accelerometer, 
capacitive touch, 
gyroscope, photo
plethysmography, 
and thermometer

WHOOP Approval not granted yet by EU or FDA The wrist-worn WHOOP Strap collects physiological data 
continuously through multiple sensors; with no digital display on 
its hardware, the WHOOP strap’s battery lasts 4–5 days; when 
synced with the complementary smartphone app, the WHOOP 
system quantifies the user’s sleep quality, provides 
recommendations on how much physical exertion could be 
tolerated, and measures resting HR and HRV; the WHOOP app also 
enables users to log specific behaviours in a journal each day

Only the named wearable devices, based on the relevant included literature, are described in the table; thus, the unnamed throat-worn patch (Lonini et al, 2021)35 is not presented here. ECG=electrocardiogram. 
FDA=Food and Drug Administration. HR=heart rate. HRV=heart rate variability. SpO2=oxygen saturation. *Model-dependent sensors.

Table 2: Summary of the wearable devices discussed by name in the included literature, their sensors, and principles of operation
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sensor data (AUC 0∙72), ingesting both symptoms and 
sensor data led to superior model performance 
(AUC 0∙80). One cross-sectional study combined data 
from three separate devices and a self-report questionnaire 
to achieve an accuracy of 98∙1%, compared with 82∙4% 
when relying solely on wearable sensor data.36 A study 
enrolling patients with an influenza-like illness episode, 
which included COVID-19-positive individuals, showed 
that the symptom-based model (AUC 0·78) outperformed 
the wearable-based model (sensitivity 0·52, false positive 
rate 0·4) in distinguishing between COVID-19 cases and 
non-COVID-19 influenza-like illness cases.32 With one 
rare exception,33 the best performing models (ie, those 
with >90% specificity35 and recall of ≥80%30) detected a 
COVID-19 infection 3–7 days after symptom onset.30,34,35

The accumulated evidence suggests a trade-off between 
a model’s accuracy and its ability to identify SARS-CoV-2 
infection before symptom onset. Only four of the 
reviewed studies developed models that could detect an 
impending symptomatic SARS-CoV-2 infection,33,35,38,40 
ranging from 14 days33 to the day before symptom onset.35 
The algorithms’ ability to detect presymptomatic 
infection also spanned a broad range (20–88% of 
SARS-CoV-2 infections);30,33,35,40 however, the greater the 
number of days preceding symptom onset, the fewer 
COVID-19 cases a model could identify. For example, 
Mishra and colleagues33 detected physiological anom
alies in 88% of COVID-19 cases (22 of 25 individuals with 
a symptom onset date) a median of 4 days (IQR –7 to 0) 
before symptom onset with their model, whereas Bogu 
and Snyder40 reported detecting 56% of COVID-19 cases 
(14 of 25 individuals) a median of 6∙94 days 
(IQR –7 to –6∙22) before symptom onset.

Heart rate, heart rate variability, respiratory rate, skin 
temperature, and activity levels comprised the most 
commonly reported physiological parameters measured 
by wearable devices (figure 2). We discuss the three 
physiological metrics that could serve as leading indi
cators of a SARS-CoV-2 infection, and other parameters 
are reviewed in the appendix (pp 15–20).

Eight articles examining data from more than three 
wearable devices collectively showed a positive asso
ciation between SARS-CoV-2 infection and elevated 
heart rate.19,31,33–35,38–40 Smarr and colleagues38 calculated 
baseline physiological measurements for each Oura-
wearing participant (n=50), comparing them to their 
mean heart rate during the first week of symptomatic 
infection. They found no significant difference in heart 
rate during illness based on participants’ self-reported 
symptom onset date (p=0·13), but an association with 
an increase in heart rate when paired with the start of 
device-measured temperature shifts (p=0·02). Mishra 
and colleagues33 integrated heart rate and step data from 
32 Fitbit users to generate a novel heart rate over steps 
feature. Their analysis revealed that, among 
25 individuals with discernible changes in their physio
logical parameters around symptom onset, heart rate 
increased by a median of 7 beats per min. Using a 
subset of Mishra and colleagues’ data,33 Bogu and 
Snyder40 developed an algorithm to detect anomalies in 
resting heart rate around the time of a potential 
SARS-CoV-2 infection and reported that COVID-19-
positive individuals had more recorded hours of 
abnormal heart rate during the infectious period than 
healthy peers or those who were ill from a cause other 
than COVID-19.

Although heart rate anomalies could help alert a 
wearable device user to an impending infection, research 
suggests changes in heart rate alone cannot differentiate a 
SARS-CoV-2 infection from other influenza-like illnesses. 
Shapiro and colleagues19 showed that both patients with 
COVID-19 and patients with influenza had elevated heart 

Figure 1: Comparison of the sensitivity and specificity of different machine learning models used for early 
SARS-CoV-2 detection
The size of the circle representing each study is proportional to its number of participants. The colour of the circle is 
proportional to the percentage of participants positive for SARS-CoV-2 in the study.

0 10 20 30 40 50 60 70 80 90 100
0

80

70

90

100

Sp
ec

ifi
cit

y 
(%

)

Sensitivity (%)

Miller et al30

Natarajan et al35 Hassantabar et al36

Quer et al34

Nestor et al32

Participants positive 
for COVID-19 (%)

0·63
16·21
29·89
65·52
100

Sample size (n)

87
271
333

1257
32 198

Figure 2: An overview of the main physiological parameters analysed across different studies
The SARS-CoV-2 associated changes in physiological parameters are shown with upward triangles (indicating a 
value increase), downward triangles (indicating a value decrease), and circles (indicating parameters were analysed 
in the study but direction of change was not reported). Notably, Bogu and Snyder’s40 algorithm found bidirectional 
heart rate abnormalities compared with baseline measurements. Similarly, Natarajan and colleagues35 report an 
overall increase in heart rate variability due to COVID-19, despite an initial decrease.

Step count 
or cadence

Sleep

Skin 
temperature

Respiratory 
rate

Hirt
en et a

l37

Heart rate 
variability

Hassa
ntabar e

t a
l36

Mille
r e

t a
l30

Nesto
r e

t a
l32

Bogu and Snyder4
0

Cleary et a
l31

Lonini et a
l39

Mish
ra et a

l33 

Natarajan et a
l35

Quer e
t a

l34

Shapiro
 et a

l19

Smarr e
t a

l38

Heart rate

M
ea

su
re

d 
ph

ys
io

lo
gi

ca
l p

ar
am

et
er

s

Measured, but directionality not reported or analysed
Increased upon COVID-19 onset
Decreased upon COVID-19 onset



www.thelancet.com/digital-health   Vol 4   May 2022	 e378

Review

rate following self-reported symptom onset. In their 
device-agnostic studies, Quer and colleagues34 and Cleary 
and colleagues31 found no relative difference between 
elevated heart rate in COVID-19-negative cohorts and 
COVID-19-positive cohorts (p=0∙33 and p=0∙18).31,34 
Furthermore, the same machine learning model ingesting 
a heart-rate-derived feature could not discriminate well 
between COVID-19-positive individuals and COVID-19-
negative individuals (AUC 0∙52 and 0·63).31,34 In another 
study,39 even variability in heart rate before and after 
activity remained similar, regardless of health status. 
Converging evidence suggests intrapersonal heart rate 
might increase following a SARS-CoV-2 infection, but it 
cannot serve as the sole discriminating factor.

Three of the four studies examining SARS-CoV-2 
infection’s effect on respiratory rate found that it 
increased around symptom onset.35,38,39 In one study,38 
SARS-CoV-2-positive Oura users had higher respiratory 
rates during the early symptomatic period than during 
the pre-illness baseline (p=0∙002). Training a convo
lutional neural network on physiological data from 
1257 Fitbit wearers, Natarajan and colleagues35 reported 
that, during a SARS-CoV-2 infection, respiratory rate 
deviated from its baseline value more than other para
meters. In contrast, Miller and colleagues30 did not 
identify respiratory rate as a leading indicator of a 
potential SARS-CoV-2 infection in their examination of 
271 WHOOP strap users who reported COVID-19 
symptoms; compared with other physiological para
meters, respiratory rate had the lowest coefficient of 
intraindividual variance over time, regardless of whether 
the patient was healthy or ill on a given day.

Whereas other articles considered deviations in 
respiratory rate during a SARS-CoV-2 infection compared 
with a previous baseline period, Lonini and colleagues39 
examined physiological changes occurring on the same 
day before and after a given activity. The researchers 
equipped 15 participants with SARS-CoV-2 infection and 
14 healthy participants with an unnamed wearable 
device. Patients positive for SARS-CoV-2 had similar 
respiratory rate variability in response to exercise 
compared with healthy peers (p=0∙095), despite a higher 
baseline value. Cohort demographic differences, 
however, limit the generalisability of their findings, as 
most COVID-19 cases had a comorbidity that could have 
affected their baseline respiratory rate (eg, asthma).39

Although fever was one of the first COVID-19 
symptoms identified by WHO,24 of the studies that 
measured skin temperature, only Smarr and colleagues38 
focused on assessing deviations in this physiological 
parameter. They compared Oura users’ baseline skin 
temperature to the period following self-reported 
COVID-19 symptom onset. Statistical analysis revealed 
an increase in temperature during a symptomatic 
SARS-CoV-2 infection (p=0∙024), with 76% (38 of 50) of 
participants registering an increase in temperature in the 
days preceding symptom onset.

We evaluated risk of bias on the basis of the National 
Institutes of Health’s Quality Assessment Tool for 
Observational Cohort and Cross-sectional Studies.29 We 
provide a study-by-study breakdown and detailed 
descriptions of individual biases in the appendix 
(pp 21–24). In general, most studies presented a 
moderate risk of bias; the definition, size, self-reporting 
of diagnosis, and demographics of the study populations 
represented a major source of potential bias. Several 
articles did not clearly define the study population 
(eg, age, comorbidities, and nationality).19,30,32,33,40 Three 
studies also had small samples (total analysed sample 
n=<1500), despite starting from very large recruited 
populations (>30 000 individuals).19,34,35 Some researchers 
attempted to address the restricted sample size and 
class imbalance (ie, the number of participants who 
were positive and negative for COVID-19, or positive 
and negative days, depending on the type of observation 
that was analysed) in their algorithms by upsampling 
infection days,30 implementing bootstrapping with 
replacement,39 or generating a synthetic training 
dataset.36 Moreover, most studies identified SARS-CoV-2 
infection through participant self-report,19,30–35,37,38,40 which 
is overly reliant on subjective data and potentially 
misses asymptomatic cases. Confounding represented a 
source of bias faced by many studies, given their 
restricted adjustment for major demographic factors. 
Furthermore, many pre-existing comorbidities 
(eg, body-mass index)53 shown to affect COVID-19 
vulnerability and severity54 were rarely ingested by the 
algorithms.31,35,36

In addition to the articles detailing completed research, 
12 study protocols met inclusion criteria.41–52 The protocols 
are investigating numerous wearable devices, ranging 
from a repurposed fertility tracking bracelet43,49 to a 
wearable device supplemented by a sensor placed under 
the participant’s mattress.45 These studies aimed to 
assess changes in physiological parameters commonly 
examined by the other studies we included in our 
analysis, including heart rate, heart rate variability, and 
temperature. At least one protocol intends to examine a 
previously unreported parameter (ie, blood pulse wave).50 
Unlike the completed studies, all protocols propose 
prospective studies, including two RCTs.43,50 Two protocols 
plan to include healthy control groups.46,51

Discussion
This systematic review examined 12 publications and 
preprints and 12 study protocols related to wearable 
devices’ ability to detect a potential SARS-CoV-2 infection. 
We observed large variability in device type, physiological 
parameters analysed, and the operationalisation of 
diagnostic accuracy across models. Some authors relied 
on statistical analysis to detect differences between or 
within participants, whereas others used machine 
learning algorithms. Accordingly, models varied in their 
feature specification and performance.
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At present, the overall body of evidence regarding the 
use of wearable devices to detect COVID-19 shows 
promising, albeit early stage, findings. Most studies drew 
on retrospective data, had small sample sizes, and did 
not examine physiological differences from other 
influenza-like illnesses. Although some studies used 
PCR testing to confirm SARS-CoV-2 infection, this 
practice was not universally deployed, potentially 
introducing diagnostic biases and restricting the 
comparability of studies to each other. Only three of the 
included studies explicitly reported using PCR testing—
either a weekly PCR test,37 a per occurrence self-reported 
PCR test,35 or a one-time PCR test upon hospital arrival.36 
The fact that two of those studies were conducted solely37 
or partly36 on health-care professionals shows that this 
type of population might have had easier access to PCR 
testing, because of job requirements during the first 
wave of the COVID-19 pandemic, than the general 
population. Each study had a different design (ie, 
prospective,37 retrospective,35 and cross-sectional)36 and 
investigated the ability of different devices (ie, Apple-
Watch,37 Fitbit,35 and Empatica E436) to detect deviations in 
physiological parameters associated with a SARS-CoV-2 
infection. Of note, the only included studies that present 
findings for participants who are infected but asympto
matic, report the use of PCR testing as the reference 
test.36,37 Their relatively small sample sizes and prospective 
and cross-sectional designs could have made it feasible to 
require PCR testing during data collection. Also, two 
studies that used PCR tests to determine infection and 
that aimed to classify the current infection status of 
participants by developing neural networks, achieved 
high accuracy (98·1%36 and 77·0%35) and specificity 
(99·0%).35,36 However, this performance cannot 
necessarily be attributed to reliance on the gold-standard 
PCR tests as an infection marker, as multiple other 
differences in the specifications and inputs to their 
models could have influenced their capabilities for 
detecting a SARS-CoV-2 infection. For example, 
Natarajan and colleagues35 enrolled a large sample  
(n=1257) of symptomatic Fitbit users and examined the 
classification of a given day for each individual as healthy 
or ill based on preceding physiological data of heart rate, 
heart rate variability, and respiratory rate, as well as 
demographic characteristics. In contrast, Hassantabar 
and colleagues36 analysed a much smaller sample (n=87) 
of healthy (negative PCR test) and symptomatic and 
asymptomatic patients infected with SARS-CoV-2 
(positive PCR test) by monitoring data for up to 1 h from 
multiple devices measuring galvanic skin response, 
SpO2, and blood pressure, and collecting questionnaire 
data on demographics, symptoms, and comorbidities. 
Despite disparate methods and differences in follow-up 
time, both studies validated high-performing machine 
learning algorithms for diagnosing a SARS-CoV-2 
infection. Less than half of the studies included a control 
group of healthy participants, which further limits 

generalisability.33,36,37,39,40 Findings from several studies on 
changes in physiological parameters might also appear 
contradictory at first glance. However, discrepancies in 
the direction or magnitude of change could be 
attributable to the brand or model of a given device. For 
example, both Miller and colleagues30 and Natarajan and 
colleagues35 analysed data from a wrist-worn device and 
arrived at differing conclusions about the effect of SARS-
CoV-2 infection on respiratory rate. However, the sensors 
in the specific hardware or the underlying data extraction 
techniques for interpreting raw sensor data could vary 
substantially between the WHOOP strap studied by 
Miller and colleagues30 and the Fitbit bracelet studied by 
Natarajan and colleagues.35 Both wearable devices have a 
photoplethysmography sensor; however, differences in 
sampling rates for the sensors could explain variations in 
interbeat intervals and derived respiratory rates. Device-
agnostic studies, pooling data from multiple device 
models and brands, might seem to directly address these 
discrepancies through uniform data processing and 
algorithm development; yet similar concerns could 
nevertheless render their results difficult to interpret. 
Recruiting Fitbit users and collecting data from 
participants’ Apple HealthKits and Google-based devices, 
Quer and colleagues34 did not correct for potential 
confounding biases related to the different wearables. 
Their finding of no changes in heart rate on the basis of 
SARS-CoV-2 infection status could have derived from 
how each wearable device measures and processes its 
raw physiological data. Subsequent device-agnostic 
studies could further clarify the relationship between 
seemingly discrepant findings by conducting a head-to-
head comparison and determining whether a model’s 
performance varied by device type.

Beyond biases introduced by differences in the studied 
wearable devices and their associated sensors, the 
included articles also lacked standardisation in their 
algorithm development and reporting of performance 
metrics. After receiving the raw physiological data from a 
wearable device, researchers make decisions regarding the 
signal’s preprocessing and cleaning (eg, normalising30,34 
or transforming data before model training).32 
Additionally, researchers must choose which optimiser to 
use when training their model; different optimiser 
selections can affect model fit and performance. The 
included studies used more than five types of optimisers 
in training their respective models. Best practice in 
machine learning also suggests having a separate test or 
validation dataset from the training dataset; although two 
studies did not include any test set,31,34 seven articles 
varied greatly in their approach to validating their 
machine learning algorithm,30,32,33,35,36,39,40 and the remaining 
three studies used statistical analyses rather than machine 
learning methods.19,37,38 Miller and colleagues30 tested their 
model on a dataset of participants derived from the same 
population as their training data, although their data were 
recorded during a different time period; in contrast, 
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Hassantabar and colleagues36 relied on a categorically 
different population (ie, healthy controls) to validate their 
algorithm. How each research team chose their test or  
validation sets inherently influenced their algorithm’s 
performance. Showing how the algorithm development 
process affects performance, Nestor and colleagues32 
reported their model’s sensitivity, specificity, and other 
metrics if held to the same evaluation schemes as other 
authors.30,33,35 Their best performing model achieved 
higher sensitivity and specificity compared with Natarajan 
and colleagues,35 and higher sensitivity and similar 
specificity compared with Miller and colleagues.30 
Recently, the scientific community has recognised the 
need for improved standardisation in algorithm develop
ment and performance metric reporting, particularly as 
they relate to health outcomes; multiple publications have 
called for clinical trials to use machine learning 
techniques to show their data input process, handling of 
missing or poor-quality data, and outcomes.55,56 Although 
aligned with current practices in machine learning, the 
varied approaches to algorithm development documented 
across the included studies could have introduced bias in 
the findings.

Except for two papers,36,37 the examined studies also did 
not consider how physiological parameters might differ 
between symptomatic and asymptomatic SARS-CoV-2 
infections. Most authors trained their algorithms 
exclusively on symptomatic infections. Identifying 
asymptomatic infections and building a corresponding 
model requires testing participants repeatedly for 
SARS-CoV-2 antibodies; a procedure not done by any of 
the studies included in our systematic review. Using 
specialised anomaly-detection algorithms, researchers 
could train a machine learning model to recognise 
intrapersonal deviations in physiological parameters 
during the period between baseline seronegativity and 
known seroconversion. This model could retrospectively 
identify the timing of a previous SARS-CoV-2 infection 
and be applied prospectively to determine real-time 
asymptomatic—but nevertheless still transmissible—
infections. A single protocol, identified by our literature 
review, has proposed prospective testing and subsequent 
development of an asymptomatic infection detection 
algorithm, although it does not specify the method for 
doing so.43 Our systematic review suggests wearable 
devices could help identify SARS-CoV-2 illness before 
symptom onset, with little self-reported data,30,33,35,38,40 
suggesting their possible usefulness in detecting 
asymptomatic infection.37

An additional challenge identified by this systematic 
review was that none of the models detecting SARS-CoV-2 
infection on the basis of physiological parameters were 
tested or validated in real-time; although one study tested 
their online algorithm retrospectively.33 An algorithm-
informed real-time indicator that ingests wearable sensor 
data could enable individuals to make behavioural 
changes, such as seeking a SARS-CoV-2 test early and 

self-isolating. Another study simulated real-world 
deployment, warning that the shifting prevalence of 
COVID-19 could cause substantial overestimation of 
model performance.32 All identified protocols, however, 
follow a prospective design, with three protocols aiming 
to assess an algorithm-driven alert system for health-care 
professionals45,50 or the wearable device users.43,45 Future 
research plans thus show the need and desire to address 
this gap.

This systematic review also highlights the dispro
portionate representation of wrist-worn devices in 
research surrounding SARS-CoV-2 detection, restricting 
the results’ potential generalisability. Four of the five 
named devices were smartwatches or wrist-worn straps, 
whereas only two of the 12 included articles (17%) studied 
physiological changes related to a SARS-CoV-2 infection 
with other types of wearable devices (eg, a smart ring).38,39 
We designed our search strategy to minimise potential 
bias in method of wearable device by including generic 
terms (eg, remote sensing technology) and searching 
specifically for non-wrist-worn devices (eg, skin patch 
and smart glasses; see appendix pp 3–5 for a full list of 
search terms). Nevertheless, the literature was skewed 
heavily towards wrist-based wearable devices. An 
inherent limitation resulting from this disproportionate 
representation, differences in sensor types, size, and 
placement could lead to variations in their measurements 
and accuracy. Although it is beyond the scope of this 
systematic review to dissect the engineering and design 
principles varying across wearable devices, we 
acknowledge the preponderance of wrist-based wearable 
devices in the summarised literature might unduly 
influence our findings and conclusions. More studies 
focused on non-wrist-worn devices will be needed to 
disentangle how device type influences algorithm 
performance and which physiological parameters change 
in relation to SARS-CoV-2 infection. Five protocols 
identified by our search include non-wrist-worn sensor 
components, and the results of these studies will 
contribute much-needed data to this body of 
evidence.41,45,46,50,51

Despite constituting key features affecting participant 
compliance and overall adoptability, the wearability and 
perceived ease of use for each studied wearable device 
were not discussed in any of the included studies. 
Additionally, comparing usability across devices is 
difficult because of differences in study design. For 
example, snapshot studies36,39 recruiting small samples 
for a short period of time placed a small burden on 
participants in terms of time and effort; a participant 
might be more likely to tolerate an uncomfortable device 
if they need only to wear it for a few hours compared with 
a study lasting several months. Conversely, studies using 
stand-alone consumer wearables relied on users to opt-in 
to their clinical trials;19,30,32–35,38,40 participants might have 
felt more comfortable with the device they already own 
compared to study participants who were given the 
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device as study material.31,37 Many of the included studies 
required a minimum time or days of use of the wearable 
device as a prerequisite for a participant to be included 
in the analysed sample.19,30,35,38 However, there were 
differences in how long users had to wear the device each 
day between studies with extended timelines. For 
example, some studies30,35 developed their models using 
only night data, although the devices were designed to be 
worn throughout the day. Consequently, their findings 
suggest individuals need only wear the device while at 
rest to detect a SARS-CoV-2 infection. Usability and 
perceived ease-of-use would probably be affected by how 
often a user has to wear the device, in addition to its 
baseline comfort. Finally, some researchers observed that 
participants occasionally did not use the wearable device 
when symptomatic,33 indicating participant’s health 
could interact with the device’s overall wearability, affect 
data collection, and subsequently the underlying model’s 
ability to detect an infection. This research team also 
argued that devices requiring daily charging are expected 
to have more missing data, showing that this feature 
potentially affects the data quality of the study.33 Although 
another research team analysed all participants in the 
cohort and used machine learning models that can 
handle implicitly missing data for this purpose, they 
report a drop in performance if an individual had not 
worn the device for a week.32 The fact that several of the 
included study protocols aim to assess the feasibility of 
wearing a device for a specific amount of time is 
encouraging.41,44,45 Various future studies intend to 
establish individuals’ comfort in following the necessary 
compliance schedule to maximise the usefulness of a 
SARS-COV-2 detection algorithm. One trial designed for 
the specific intensive settings of a 14-day quarantine will  
instruct participants to wear the device all the time except 
for when showering and charging the device.50 Similarly, 
another planned study will ask participants to wear the 
device all the time outside of work (health-care workers) 
for 30 days, but recognises in their protocol that there is a 
small chance of discomfort or skin abrasion from the 
prolonged use of the wristband without following 
appropriate hygiene practices.52 One trial will aim to 
balance the prolonged follow-up of the participants with 
asking them to wear the monitoring bracelet only at 
night, so that the skin can breathe and dry during the 
day.43 Although we cannot comment on the wearability or 
ease-of-use of the studied devices, future synthesis of 
these factors for each device should be feasible given the 
clinical trials underway.

Finally, sample selection and participant demographics 
limit the models’ generalisability across populations. For 
example, most studies, which were done solely or largely 
in the USA, had little racial diversity, despite COVID-19 
disproportionately affecting Black and Hispanic 
communities in the USA.57 Wearable devices have 
previously shown variable performance across differing 
skin tones; consequently, if research does not explicitly 

include these populations, diagnostic accuracy and 
potential for public good within vulnerable communities 
remains limited.58 Similarly, although some models 
attempted to take into account sex-based variance,34,35 
none of the machine learning algorithms considered 
how physiological parameters change across the 
menstrual cycle.59–61 Future researchers should consider 
and fine-tune their algorithms to adjust for sex-based 
differences, thereby reducing the likelihood that a 
postovulatory shift in temperature, for example, would 
be erroneously labelled as COVID-19.

Despite these limitations, the reviewed studies provide 
valuable insights for future research on common 
wearable-measured physiological parameters. Eight 
articles showed an increase in heart rate associated with 
a SARS-CoV-2 infection,19,32–35,38–40 in line with population-
level heart rate data associated with influenza.62 Similarly, 
changes in skin temperature and activity frequency 
provide encouraging results for emerging wearable 
devices equipped with a temperature sensor and an 
accelerometer. Notably, behavioural changes, such as 
receiving a SARS-CoV-2 test result after symptom onset 
could result in an overestimation of the performance of 
models based on activity frequency, limiting the use of 
these data samples.31 In addition, establishing a 
conclusive COVID-19-related pattern in respiratory rate 
and heart rate variability requires additional replications 
to disentangle contradicting or inconclusive initial 
findings. Other features, such as coughing patterns 
from mechanoacoustic sensors could be used to decipher 
further trends relevant to a SARS-CoV-2 infection,39 
although this possibility remains to be shown. Several 
experimental papers also used this approach,63 although 
their content did not fit the inclusion criteria for this 
systematic review.

This study represents a comprehensive search of 
multiple databases and literature to date; we included 
multiple synonyms for each primary term, tailored the 
search terms to each database, manually screened 
reference lists, and actively tried to mitigate any missing 
data. Owing to the rapid pace of COVID-19 research, we 
also sought out preprint sources. Despite these strengths, 
although we did not restrict language in the databases we 
used, we did not search databases publishing only non-
English publications; thus we might have overlooked 
relevant literature published in another language. 
Additionally, we identified only studies captured 
according to our search terms, in specific medical and 
research databases. Despite our efforts, we might have 
missed some relevant studies which have not yet been 
published in peer-reviewed journals or as preprints 
(eg, findings reported in news articles or company press 
releases). We sought to mitigate this potential limitation 
by including a supplementary search for study protocols, 
which could highlight ongoing clinical trials and 
potential future publications relevant to our research 
question.
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Conclusion
Adequately containing the COVID-19 pandemic requires 
rapid identification of individuals who are infectious. 
Although wearable devices could help, this systematic 
review highlights the need for well designed and 
controlled studies to robustly identify if wearables can 
accurately detect SARS-CoV-2 infection before symptom 
onset or in asymptomatic individuals in comparison to 
the current gold-standard diagnostic method. Future 
studies should additionally consider how inherent 
differences in wearable sensor methods, raw data 
processing, and algorithm development contribute to the 
detection of infection-associated deviations in physio
logical measurements and how to address sources of bias.
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