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1. Introduction

If (an)n≥0 is a sequence of combinatorial numbers or polynomials with a0 = 1, it is 
often fruitful to seek to express its ordinary generating function as a continued fraction 
of either Stieltjes (S) type,

∞∑
n=0

ant
n = 1

1 − α1t

1 − α2t

1 − · · ·

, (1.1)

or Jacobi (J) type,

∞∑
n=0

ant
n = 1

1 − γ0t−
β1t

2

1 − γ1t−
β2t

2

1 − · · ·

. (1.2)

(Both sides of these expressions are to be interpreted as formal power series in the 
indeterminate t.) This line of investigation goes back at least to Euler [51,52], but it 
gained impetus following Flajolet’s [53] seminal discovery that any S-type (resp. J-type) 
continued fraction can be interpreted combinatorially as a generating function for Dyck 
(resp. Motzkin) paths with suitable weights for each rise and fall (resp. each rise, fall 
and level step). There are now literally dozens of sequences (an)n≥0 of combinatorial 
numbers or polynomials for which a continued-fraction expansion of the type (1.1) or 
(1.2) is explicitly known.

Our approach in this paper will be (in part) to run this program in reverse: we start 
from a continued fraction in which the coefficients α (or β and γ) contain indetermi-
nates in a nice pattern, and we attempt to find a combinatorial interpretation for the 
resulting polynomials an — namely, as enumerating permutations, set partitions or per-
fect matchings according to some natural multivariate statistics. We call our an “master 
polynomials” because our continued fractions will contain the maximum number of inde-
pendent indeterminates consistent with the given pattern. As a consequence, our results 
will contain many previously obtained identities as special cases, providing a common 
refinement of all of them.

For future reference, let us recall the formula [112, p. 21] [110, p. V-31] for the con-
traction of an S-fraction to a J-fraction: (1.1) and (1.2) are equal if

γ0 = α1 (1.3a)

γn = α2n + α2n+1 for n ≥ 1 (1.3b)

βn = α2n−1α2n (1.3c)
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The plan of this paper is as follows: In Sections 2–4 we present our results for per-
mutations, set partitions and perfect matchings, respectively. In Section 5 we review 
briefly the two main ingredients of our proofs: namely, the combinatorial interpretation 
of continued fractions in terms of Dyck and Motzkin paths [53], and the notion (due to 
Flajolet [53] and Viennot [110]) of labeled Dyck or Motzkin paths. Finally, in Sections 6
and 7 we supply the proofs for permutations and set partitions, respectively: they em-
ploy bijections onto labeled Motzkin paths. The proofs for perfect matchings will have 
already been presented in Section 4, as corollaries of the results for set partitions and 
permutations.

2. Permutations: statement of results

2.1. S-fraction

Euler [51, section 21]1 showed that the generating function of the factorials can be 
represented as an S-type continued fraction

∞∑
n=0

n! tn = 1

1 − 1t

1 − 1t

1 − 2t

1 − 2t
1 − · · ·

(2.1)

with coefficients α2k−1 = k, α2k = k. Inspired by (2.1), let us introduce the polynomials 
Pn(x, y, u, v) defined by the continued fraction

∞∑
n=0

Pn(x, y, u, v) tn = 1

1 − xt

1 − yt

1 − (x + u)t

1 − (y + v)t

1 − (x + 2u)t

1 − (y + 2v)t
1 − · · ·

(2.2)

with coefficients

α2k−1 = x + (k − 1)u (2.3a)

α2k = y + (k − 1)v (2.3b)

1 The paper [51], which is E247 in Eneström’s [49] catalogue, was probably written circa 1746; it was 
presented to the St. Petersburg Academy in 1753, and published in 1760.
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Clearly Pn(x, y, u, v) is a homogeneous polynomial of degree n; it therefore has three 
“truly independent” variables. Since Pn(1, 1, 1, 1) = n!, which enumerates permutations 
of an n-element set, it is plausible to expect that Pn(x, y, u, v) enumerates permutations 
of [n] according to some natural trivariate statistic. Our first result gives two alternative 
versions of this trivariate statistic:

Theorem 2.1 (S-fraction for permutations). The polynomials Pn(x, y, u, v) defined by 
(2.2)/(2.3) have the combinatorial interpretations

(a) Pn(x, y, u, v) =
∑

σ∈Sn

xarec(σ)yerec(σ)un−exc(σ)−arec(σ)vexc(σ)−erec(σ) (2.4)

and

(b) Pn(x, y, u, v) =
∑

σ∈Sn

xcyc(σ)yerec(σ)un−exc(σ)−cyc(σ)vexc(σ)−erec(σ) (2.5)

We will prove parts (a) and (b) in Sections 6.1 and 6.2, respectively, as special cases of 
more general results.

To explain the symbols used here — and others to be used subsequently — let us 
define the relevant permutation statistics. Given a permutation σ ∈ Sn, an index i ∈ [n]
(or a value σ(i) ∈ [n]) is called a

• record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all j < i [note in particular 
that the index 1 is always a record and that the value n is always a record];

• antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for all j > i [note in 
particular that the index n is always an antirecord and that the value 1 is always an 
antirecord];

• exclusive record (erec) if it is a record and not also an antirecord;
• exclusive antirecord (earec) if it is an antirecord and not also a record;
• record-antirecord (rar) (or pivot) if it is both a record and an antirecord;
• neither-record-antirecord (nrar) if it is neither a record nor an antirecord.

Every index i thus belongs to exactly one of the latter four types; we refer to this classifi-
cation as the record classification. We denote the number of cycles, records, antirecords, 
. . . in σ by cyc(σ), rec(σ), arec(σ), . . . , respectively.

Next we say that an index i ∈ [n] is a

• cycle peak (cpeak) if σ−1(i) < i > σ(i);
• cycle valley (cval) if σ−1(i) > i < σ(i);
• cycle double rise (cdrise) if σ−1(i) < i < σ(i);
• cycle double fall (cdfall) if σ−1(i) > i > σ(i);
• fixed point (fix) if σ−1(i) = i = σ(i).
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Clearly every index i belongs to exactly one of these five types; we refer to this classifi-
cation as the cycle classification. A rougher classification is that an index i ∈ [n] (or a 
value σ(i) ∈ [n]) is an

• excedance (exc) if σ(i) > i [i.e. i is either a cycle valley or a cycle double rise];
• anti-excedance (aexc) if σ(i) < i [i.e. i is either a cycle peak or a cycle double fall];
• fixed point (fix) if σ(i) = i.

Clearly every index i belongs to exactly one of these three types. We also say that i is a 
weak excedance if σ(i) ≥ i, and a weak anti-excedance if σ(i) ≤ i.

The record and cycle classifications of indices are related as follows:

(a) Every record is a weak excedance, and every exclusive record is an excedance.
(b) Every antirecord is a weak anti-excedance, and every exclusive antirecord is an anti-

excedance.
(c) Every record-antirecord is a fixed point.

Furthermore,

(d) The largest (resp. smallest) element of a cycle of length ≥ 2 is always a cycle peak 
(resp. cycle valley),

and hence in particular

(d′) Every cycle contains at least one non-excedance, and at least one non-anti-
excedance.

It follows that exc − erec, n − exc − arec and n − exc − cyc are all nonnegative, so that 
the right-hand sides of (2.4) and (2.5) are indeed polynomials.

2.2. Examples

Many special cases of Theorem 2.1 were previously known. For instance:

• The Stirling cycle polynomials

Pn(x, 1, 1, 1) = Sn(x) =
n∑[

n

k

]
xk = x(x + 1) · · · (x + n− 1) , (2.6)
k=0
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where 
[
n
k

]
denotes the number of permutations of [n] with k cycles (or k an-

tirecords2); or their homogenized version

Pn(x, y, y, y) = Sn(x, y) =
n∑

k=0

[
n

k

]
xk yn−k = x(x + y) · · · (x + (n− 1)y) . (2.7)

The continued fraction (2.2) for this case was found already by Euler [51, section 26]
[52].3

• The Eulerian polynomials

Pn(1, y, 1, y) = An(y) =
n∑

k=0

〈
n

k

〉
yk (2.8)

where 
〈
n
k

〉
denotes the number of permutations of [n] with k excedances (or k de-

scents); or their homogenized version

Pn(x, y, x, y) = An(x, y) =
n∑

k=0

〈
n

k

〉
xn−k yk . (2.9)

The continued fraction (2.2) for this case was found by Stieltjes [104, section 79].4
• A two-variable combination of the Stirling cycle and Eulerian polynomials [19,21,22,

37,57,71,74,95]

Pn(x, y, 1, y) = Fn(x, y) =
∑

σ∈Sn

xcyc(σ)yexc(σ) (2.10)

or its homogenized version

Pn(x, y, u, y) = Fn(x, y, u) =
∑

σ∈Sn

xcyc(σ)yexc(σ)un−exc(σ)−cyc(σ) . (2.11)

2 Foata’s fundamental transformation [57, section I.3] [101, pp. 17–18] [17, section 3.3.1] shows that cyc 
and rec (or equivalently arec) are equidistributed on Sn.
3 The paper [52], which is E616 in Eneström’s [49] catalogue, was apparently presented to the St. Peters-

burg Academy in 1776, and published posthumously in 1788.
4 Stieltjes does not specifically mention the Eulerian polynomials, but he does state that the continued 

fraction is the formal Laplace transform of (1 − y)/(et(y−1) − y), which is well known to be the exponen-
tial generating function of the Eulerian polynomials. Stieltjes also refrains from showing the proof: “Pour 
abréger, je supprime toujours les artifices qu’il faut employer pour obtenir la transformation de l’intégrale 
définie en fraction continue” (!). But a proof is sketched, albeit also without much explanation, in the 
book of Wall [112, pp. 207–208]. The J-fraction corresponding to the contraction (1.3) of this S-fraction 
was proven, by combinatorial methods, by Flajolet [53, Theorem 3B(ii) with a slight typographical error]. 
Also, Dumont [41, Propositions 2 and 7] gave a direct combinatorial proof of the S-fraction, based on an 
interpretation of the Eulerian polynomials in terms of “bipartite involutions of [2n]” and a bijection of these 
onto Dyck paths.
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The continued fraction (2.2) for this case was again found by Stieltjes [104, sec-
tion 81].5 These polynomials have a nice explicit formula [37,94] that can be derived 
by simple algebra from [37, eqns. (1.3)/(3.3)/(3.5)] [74, Corollary 2.3]:

Pn(x, y, u, y) =
n∑

k=0

{
n

k

}
(y − u)n−k

k−1∏
j=0

(x + ju) (2.12)

where 
{

n
k

}
denotes the number of partitions of an n-element set into k nonempty 

blocks. When u = y this reduces to (2.7); when u = x it becomes [using (2.9)] the 
well-known [62, eqns. (6.39)/(6.40)] identity

n∑
k=0

〈
n

k

〉
xn−k yk =

n∑
k=0

k!
{

n

k

}
(y − x)n−kxk (2.13)

that relates the Eulerian polynomials to the ordered Bell polynomials.6
• The record-antirecord permutation polynomials

Pn(a, b, 1, 1) =
∑

σ∈Sn

aarec(σ) berec(σ) (2.14)

or their homogenized version

Pn(a, b, c, c) =
∑

σ∈Sn

aarec(σ) berec(σ) cn−arec(σ)−erec(σ) (2.15a)

=
∑

σ∈Sn

aarec(σ) berec(σ) cnrar(σ) . (2.15b)

Dumont and Kreweras [43] proved the continued fraction

∞∑
n=0

Pn(a, b, 1, 1) tn = 1

1 − at

1 − bt

1 − (a + 1)t

1 − (b + 1)t
1 − · · ·

(2.16a)

= 2F0

(
a, b

—

∣∣∣∣ t)/
2F0

(
a, b− 1

—

∣∣∣∣ t) , (2.16b)

5 Once again, Stieltjes does not specifically mention the polynomials, but he states that the continued 
fraction is the formal Laplace transform of [(1 − y)/(et(y−1) − y)]x, which is the exponential generating 
function of the polynomials Pn(x, y, 1, y).
6 The ordered Bell polynomials appear already (albeit without the combinatorial interpretation) in Euler’s 

book Foundations of Differential Calculus, with Applications to Finite Analysis and Series, first published 
in 1755 [50, paragraph 172]. This book is E212 in Eneström’s [49] catalogue. Furthermore, the identity 
(2.13) appears already there [50, paragraphs 172 and 173]; it was rediscovered a century-and-a-half later 
by Frobenius [60]. See also [54, pp. 150–151] for a simple bijective proof.
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where the second equality is a classic [112, section 92] [64, Theorem 6.5] corollary of 
Gauss’ continued fraction for ratios of contiguous 2F1.7 These polynomials are also 
essentially identical to the Martin–Kearney [81] polynomials: see [48] for details. See 
also Section 2.6 below for a q-generalization of (2.14)/(2.16).

• As a special case of (2.15), the polynomials [83, A145879/A202992]

Pn(x, x, u, u) =
n∑

k=0

T (n, k)xn−kuk (2.17)

where T (n, k) is the number of permutations σ ∈ Sn having exactly k indices that 
are the middle point of a pattern 321 (clearly 0 ≤ k ≤ n − 2 when n ≥ 2). In 
particular, T (n, 0) is the number of 321-avoiding permutations, which equals the 
Catalan number Cn; so these polynomials interpolate between Cn and n!.8

• As another special case of (2.15), the homogenized Narayana polynomials [83, 
A001263/A090181]

Pn(x, y, 0, 0) =
∑

σ∈Sn(321)

xarec(σ)yerec(σ) (2.18a)

=
∑

σ∈Sn(321)

xarec(σ)yexc(σ) (2.18b)

=
n∑

k=0

1
n

(
n

k

)(
n

k − 1

)
xkyn−k , (2.18c)

which count 321-avoiding permutations according to the number of antirecords or 
exclusive records or excedances (among many other combinatorial interpretations 
[105,106]).9 These interpretations of the Narayana numbers were found by Vella 
[109, Proposition 2.12] and Elizalde [46, Proposition 2.7(1)].

2.3. First J-fraction

In Section 2.1 we classified indices in a permutation according to their record status 
(exclusive record, exclusive antirecord, record-antirecord or neither-record-antirecord) 
and also according to their cycle status (cycle peak, cycle valley, cycle double rise, cycle 
double fall or fixed point). Applying now both classifications simultaneously, we obtain 
10 disjoint categories:

7 Dumont and Kreweras [43] stated their result in terms of records and exclusive antirecords, which is of 
course equivalent to (2.14) via the bijection σ �→ R ◦ σ ◦ R with R(i) = n + 1 − i (i.e. reversal combined 
with complementation).
8 We thank Andrew Elvey Price for drawing our attention to these polynomials.
9 For a 321-avoiding permutation — that is, one in which there are no neither-record-antirecords — the 

containments given in (a)–(c) above are equalities: that is, an index i is a record (resp. exclusive record, 
antirecord, exclusive antirecord) if and only if it is a weak excedance (resp. excedance, weak anti-excedance, 
anti-excedance). See Section 2.14 below for further enumerative results on 321-avoiding permutations.
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• ereccval: exclusive records that are also cycle valleys;
• ereccdrise: exclusive records that are also cycle double rises;
• eareccpeak: exclusive antirecords that are also cycle peaks;
• eareccdfall: exclusive antirecords that are also cycle double falls;
• rar: record-antirecords (these are always fixed points);
• nrcpeak: neither-record-antirecords that are also cycle peaks;
• nrcval: neither-record-antirecords that are also cycle valleys;
• nrcdrise: neither-record-antirecords that are also cycle double rises;
• nrcdfall: neither-record-antirecords that are also cycle double falls;
• nrfix: neither-record-antirecords that are also fixed points.

Clearly every index i belongs to exactly one of these 10 types; we call this the record-
and-cycle classification. The master polynomial encoding all these statistics is

Qn(x1, x2, y1, y2, z, u1, u2, v1, v2, w) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ) ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ) . (2.19)

(Thus, the variables x1, y1, u1, v1 are associated to cycle peaks and valleys, x2, y2, u2, v2
to cycle double rises and falls, and z, w to fixed points.) It turns out that these 10-variable 
homogeneous polynomials have a beautiful J-fraction.

But we can go farther, by further refining the classification of fixed points. If i is a 
fixed point of σ, we define its level by

lev(i, σ) def= #{j < i : σ(j) > i} = #{j > i : σ(j) < i} . (2.20)

[The two expressions are equal because σ is a bijection from [1, i) ∪ (i, n] to itself.] Note 
that for σ ∈ Sn, we have 0 ≤ lev(i, σ) ≤ min(i − 1, n − i) ≤ �(n − 1)/2�. Clearly, a fixed 
point i is a record-antirecord if and only if its level is 0, and a neither-record-antirecord 
if and only if its level is ≥ 1. Let us now count the number of fixed points of each level: 
for σ ∈ Sn and � ≥ 0 we define

fix(σ, �) def= #{i ∈ [n] : σ(i) = i and lev(i, σ) = �} . (2.21)

We then introduce indeterminates w = (w�)�≥0 and write

wfix(σ) def=
∞∏
�=0

w
fix(σ,�)
� =

∏
i∈fix

wlev(i,σ) . (2.22)

The master polynomial encoding all these (now infinitely many) statistics is
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Qn(x1, x2, y1, y2, u1, u2, v1, v2,w) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ) , (2.23)

which reduces to (2.19) if we set w0 = z and w� = w for � ≥ 1. We then have:

Theorem 2.2 (First J-fraction for permutations). The ordinary generating function of 
the polynomials (2.23) has the J-type continued fraction

∞∑
n=0

Qn(x1, x2, y1, y2, u1, u2, v1, v2,w) tn =

1

1 − w0t−
x1y1t2

1 − (x2 + y2 + w1)t−
(x1 + u1)(y1 + v1)t2

1 − (x2 + u2 + y2 + v2 + w2)t−
(x1 + 2u1)(y1 + 2v1)t2

1 − · · ·

(2.24)

with coefficients

γ0 = w0 (2.25a)

γn = [x2 + (n− 1)u2] + [y2 + (n− 1)v2] + wn for n ≥ 1 (2.25b)

βn = [x1 + (n− 1)u1] [y1 + (n− 1)v1] (2.25c)

We will prove this theorem in Section 6.1, as a special case of a more general result.

Remark. The continued fraction (2.24) shows that Qn depends on its arguments only via 
the combinations (2.25a,b,c). In particular, it depends on x2, y2 only via the combination 
x2 +y2, and on u2, v2 only via the combination u2 +v2; consequently (but more weakly), 
it is symmetric under x2 ↔ y2 and independently under u2 ↔ v2. Furthermore, it 
is symmetric under (x1, u1) ↔ (y1, v1). It would be interesting to try to understand 
combinatorially (directly at the level of permutations) why these properties hold.

One very special case of these properties is easy to understand combinatorially: Qn

is invariant under the simultaneous interchange (x1, u1, x2, u2) ↔ (y1, v1, y2, v2). This 
is because the bijection σ 	→ R ◦ σ ◦ R with R(i) = n + 1 − i (i.e. reversal combined 
with complementation) interchanges cycle peaks with cycle valleys, cycle double rises 
with cycle double falls, and records with antirecords (while preserving the number of 
fixed points at each level). But the more specific properties encoded in (2.25) remain 
mysterious. �
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Comparing (2.23) with (2.4), we see that Qn(x1, x2, y1, y2, u1, u2, v1, v2, w) reduces to 
Pn(x, y, u, v) if we set

x1 = x2 = w0 = x, y1 = y2 = y, u1 = u2 = w1 = w2 = . . . = u, v1 = v2 = v .

(2.26)
With this specialization the J-fraction coefficients (2.25) reduce to

γ0 = x (2.27a)

γn = (x + nu) + [y + (n− 1)v] for n ≥ 1 (2.27b)

βn = [x + (n− 1)u] [y + (n− 1)v] (2.27c)

which are precisely those that arise as the contraction (1.3) of an S-type continued 
fraction with coefficients (2.3). So Theorem 2.1(a) is an immediate consequence of a very 
special case of Theorem 2.2.

2.4. Second J-fraction

The generalization of Theorem 2.1(b) is less satisfying, because cyc does not seem to 
mesh well with the record classification: even the three-variable polynomials

P̂n(x, y, λ) =
∑

σ∈Sn

xarec(σ)yerec(σ)λcyc(σ) (2.28)

do not have a J-fraction with polynomial coefficients (starting at γ2 we get rational 
functions).10 However, cyc does mesh well with the complete cycle classification (cpeak, 
cdfall, cval, cdrise, fix), as was shown by one of us [114, Théorème 3] more than two 

10 The first coefficients are

γ0 = λx, β1 = λxy, γ1 = λ + x + y, β2 = λ + x + y + λxy ,

followed by

γ2 =
(x + y)(3 + xy) + (2 + x + x2 + y + 4xy + y2)λ + (1 + xy)λ2

λ + x + y + λxy
.

It can then be shown that

(a) γ2 is not a polynomial in x (when y and λ are given fixed real values) unless λ ∈ {−1, 0, +1} or 
y ∈ {−1, +1} or λy = −1.

(b) γ2 is not a polynomial in y unless λ ∈ {−1, 0, +1} or x ∈ {−1, +1} or λx = −1.
(c) γ2 is not a polynomial in λ unless x ∈ {−1, +1} or y ∈ {−1, +1} or x + y = 0 or xy = −1.
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decades ago.11 In fact, it seems that cyc almost meshes with the complete record-and-
cycle classification; and we can also include the refined classification of fixed points. Let 
us define the polynomial

Q̂n(x1, x2, y1, y2, u1, u2, v1, v2,w, λ) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)λcyc(σ) , (2.29)

which extends (2.23) by including the factor λcyc(σ). We find empirically that we need 
make only one specialization — either u1 = x1 or v1 = y1 — to obtain a good J-fraction. 
Let us state the latter:

Conjecture 2.3. The ordinary generating function of the polynomials Q̂n specialized to 
v1 = y1 has the J-type continued fraction

∞∑
n=0

Q̂n(x1, x2, y1, y2, u1, u2, y1, v2,w, λ) tn =

1

1 − λw0t−
λx1y1t2

1 − (x2 + y2 + λw1)t− (λ + 1)(x1 + u1)y1t2

1 − (x2 + y2 + u2 + v2 + λw2)t− (λ + 2)(x1 + 2u1)y1t2

1 − · · ·

(2.30)

with coefficients

γ0 = λw0 (2.31a)

γn = [x2 + (n− 1)u2] + [y2 + (n− 1)v2] + λwn for n ≥ 1 (2.31b)

βn = (λ + n− 1) [x1 + (n− 1)u1] y1 (2.31c)

We have tested this conjecture through n = 12.12

11 The paper [114] used traditional combinatorial methods to establish an exponential generating function 
for permutations with these weights, and then used algebraic methods to transform this exponential gener-
ating function into a continued fraction for the ordinary generating function. Here, by contrast, we employ 
bijections onto labeled Motzkin paths to establish the continued fraction directly. We think it is instructive 
to compare these two quite different methods of proof.

A special case of [114, Théorème 3] with one fewer “truly independent” variable — namely, including 
cval, cdrise, fix and cyc, but not distinguishing cpeak from cdfall — was obtained recently by Elizalde [47, 
eqn. (3)], using a bijection onto labeled Motzkin paths that is essentially the same as ours. We will discuss 
the connection with Elizalde’s work in Sections 2.16 and 6.2.
12 The CPU time and memory required for this computation were as follows:
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Alas, we are unable at present to prove Conjecture 2.3; we are only able to prove the 
weaker version in which we make the two specializations v1 = y1 and v2 = y2:

Theorem 2.4 (Second J-fraction for permutations). The ordinary generating function of 
the polynomials Q̂n specialized to v1 = y1 and v2 = y2 has the J-type continued fraction

∞∑
n=0

Q̂n(x1, x2, y1, y2, u1, u2, y1, y2,w, λ) tn =

1

1 − λw0t−
λx1y1t2

1 − (x2 + y2 + λw1)t− (λ + 1)(x1 + u1)y1t2

1 − (x2 + 2y2 + u2 + λw2)t− (λ + 2)(x1 + 2u1)y1t2

1 − · · ·

(2.32)

with coefficients

γ0 = λw0 (2.33a)

γn = [x2 + (n− 1)u2] + ny2 + λwn for n ≥ 1 (2.33b)

βn = (λ + n− 1) [x1 + (n− 1)u1] y1 (2.33c)

We will prove this theorem in Section 6.2, as a special case of a more general result.
Comparing (2.29) with (2.5), we see that if we set

x1 = x2 = y, u1 = u2 = v, y1 = y2 = v1 = v2 = w� = u, λ = x/u , (2.34)

then Q̂n(x1, x2, y1, y2, u1, u2, v1, v2, w, λ) reduces to∑
σ∈Sn

xcyc(σ)yearec(σ)un−aexc(σ)−cyc(σ)vaexc(σ)−earec(σ) , (2.35)

which is of course equivalent to (2.5) via the bijection σ 	→ R ◦ σ ◦ R with R(i) =
n + 1 − i, which interchanges earec ↔ erec and aexc ↔ exc while preserving cyc. With 

n CPU time Memory
(seconds) (gigabytes)

7 4 0.04
8 32 0.06
9 301 0.2
10 3125 2
11 35947 24
12 456045 299

This computation was carried out in Mathematica 11.1.0 on a Dell PowerEdge R930 computer with 2 TB 
shared memory and four Intel Xeon E7-8891v4 CPUs running at 2.8 GHz. Our attempt at computing n = 13
crashed for lack of memory.
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this specialization the J-fraction coefficients (2.33) reduce to (2.27), which in turn arise by 
contraction from the S-fraction with coefficients (2.3). So Theorem 2.1(b) is an immediate 
consequence of a very special case of Theorem 2.4.

Here is another interesting specialization of Theorem 2.4: let us take

x1 = zu1, x2 = zw, v1 = y1, v2 = y2, w0 = z, w� = w for � ≥ 1 , (2.36)

so that Q̂n(x1, x2, y1, y2, u1, u2, v1, v2, w, λ) reduces to∑
σ∈Sn

zarec(σ)y
cval(σ)
1 y

cdrise(σ)
2 u

cpeak(σ)
1 u

nrcdfall(σ)
2 wnrfix(σ)+eareccdfall(σ)λcyc(σ) . (2.37)

Then these polynomials have a J-fraction with coefficients

γ0 = λz (2.38a)

γn = (λ + z)w + (n− 1)u2 + ny2 for n ≥ 1 (2.38b)

βn = (λ + n− 1) (z + n− 1)u1y1 (2.38c)

which are symmetric under z ↔ λ. This symmetry of the joint distribution of 
(arec, cval, cdrise, cpeak,nrcdfall,nrfix + eareccdfall, cyc) under arec ↔ cyc generalizes 
the symmetry of (arec, cyc) that was found by Cori [31, Theorem 2]. It would be inter-
esting to find a bijective explanation of this symmetry.

2.5. p,q-generalizations of the first J-fraction

We can further extend Theorems 2.1(a) and 2.2 by introducing a p, q-generalization. 
Recall that for integer n ≥ 0 we define

[n]p,q = pn − qn

p− q
=

n−1∑
j=0

pjqn−1−j (2.39)

where p and q are indeterminates; it is a homogeneous polynomial of degree n − 1 in p
and q, which is symmetric in p and q. In particular, [0]p,q = 0 and [1]p,q = 1; and for 
n ≥ 1 we have the recurrence

[n]p,q = p [n− 1]p,q + qn−1 = q [n− 1]p,q + pn−1 . (2.40)

If p = 1, then [n]1,q is the well-known q-integer

[n]q = [n]1,q = 1 − qn

1 − q
=

{
0 if n = 0
1 + q + q2 + . . . + qn−1 if n ≥ 1

(2.41)

If p = 0, then
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Fig. 1. Pictorial representation of the permutation σ = 9 3 7 4 6 11 2 8 10 1 5 =
(1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11.

[n]0,q =
{

0 if n = 0
qn−1 if n ≥ 1

(2.42)

The statistics on permutations corresponding to the variables p and q will be crossings
and nestings, defined as follows: First we associate to each permutation σ ∈ Sn a pictorial 
representation (Fig. 1) by placing vertices 1, 2, . . . , n along a horizontal axis and then 
drawing an arc from i to σ(i) above (resp. below) the horizontal axis in case σ(i) > i

[resp. σ(i) < i]; if σ(i) = i we do not draw any arc. Each vertex thus has either out-degree 
= in-degree = 1 (if it is not a fixed point) or out-degree = in-degree = 0 (if it is a fixed 
point). Of course, the arrows on the arcs are redundant, because the arrow on an arc 
above (resp. below) the axis always points to the right (resp. left).

We then say that a quadruplet i < j < k < l forms an

• upper crossing (ucross) if k = σ(i) and l = σ(j);
• lower crossing (lcross) if i = σ(k) and j = σ(l);
• upper nesting (unest) if l = σ(i) and k = σ(j);
• lower nesting (lnest) if i = σ(l) and j = σ(k).

We also consider some “degenerate” cases with j = k, by saying that a triplet i < j < l

forms an

• upper joining (ujoin) if j = σ(i) and l = σ(j) [i.e. the index j is a cycle double rise];
• lower joining (ljoin) if i = σ(j) and j = σ(l) [i.e. the index j is a cycle double fall];
• upper pseudo-nesting (upsnest) if l = σ(i) and j = σ(j);
• lower pseudo-nesting (lpsnest) if i = σ(l) and j = σ(j).

These are clearly degenerate cases of crossings and nestings, respectively. See Fig. 2. 
Note that upsnest(σ) = lpsnest(σ) for all σ, since for each fixed point j, the number of 
pairs (i, l) with i < j < l such that l = σ(i) has to equal the number of such pairs with 
i = σ(l) [it is just lev(j, σ) as defined in (2.20)]; we therefore write these two statistics 
simply as

psnest(σ) def= upsnest(σ) = lpsnest(σ) . (2.43)
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Fig. 2. Crossing, nesting, joining and pseudo-nesting.

And of course ujoin = cdrise and ljoin = cdfall.
Note also that

ucross(σ) = lcross(σ−1) (2.44a)

unest(σ) = lnest(σ−1) (2.44b)

ujoin(σ) = ljoin(σ−1) (2.44c)

psnest(σ) = psnest(σ−1) (2.44d)

We can further refine the four crossing/nesting categories by examining more closely 
the status of the inner index (j or k) whose outgoing arc belonged to the crossing or 
nesting: we say that a quadruplet i < j < k < l forms an

• upper crossing of type cval (ucrosscval) if k = σ(i) and l = σ(j) and σ−1(j) > j;
• upper crossing of type cdrise (ucrosscdrise) if k = σ(i) and l = σ(j) and σ−1(j) < j;
• lower crossing of type cpeak (lcrosscpeak) if i = σ(k) and j = σ(l) and σ−1(k) < k;
• lower crossing of type cdfall (lcrosscdfall) if i = σ(k) and j = σ(l) and σ−1(k) > k;
• upper nesting of type cval (unestcval) if l = σ(i) and k = σ(j) and σ−1(j) > j;
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Fig. 3. Refined categories of crossing and nesting.

• upper nesting of type cdrise (unestcdrise) if l = σ(i) and k = σ(j) and σ−1(j) < j;
• lower nesting of type cpeak (lnestcpeak) if i = σ(l) and j = σ(k) and σ−1(k) < k;
• lower nesting of type cdfall (lnestcdfall) if i = σ(l) and j = σ(k) and σ−1(k) > k.

See Fig. 3. Please note that for the “upper” quantities the distinguished index (i.e. the 
one for which we examine both σ and σ−1) is in second position (j), while for the “lower” 
quantities the distinguished index is in third position (k).

The master polynomial encoding all these statistics (but no others yet) is

Pn(p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, r+, r−, s) =

∑
σ∈Sn

p
ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 p

lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 ×

q
unestcval(σ)
+1 q

unestcdrise(σ)
+2 q

lnestcpeak(σ)
−1 q

lnestcdfall(σ)
−2 ×

r
ujoin(σ)
+ r

ljoin(σ)
− spsnest(σ) . (2.45)

It turns out that these 11-variable polynomials have a beautiful J-fraction:
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Theorem 2.5 (J-fraction for crossing and nesting statistics). The ordinary generating 
function of the polynomials Pn defined by (2.45) has the J-type continued fraction

∞∑
n=0

Pn(p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, r+, r−, s) tn =

1

1 − t− t2

1 − (r+ + r− + s)t−
[2]p+1,q+1 [2]p−1,q−1 t

2

1 − ([2]p+2,q+2r+ + [2]p−2,q−2r− + s2)t−
[3]p+1,q+1 [3]p−1,q−1 t

2

1 − · · ·
(2.46)

with coefficients

γn = [n]p+2,q+2r+ + [n]p−2,q−2r− + sn (2.47a)

βn = [n]p+1,q+1 [n]p−1,q−1 (2.47b)

We will prove this theorem in Section 6.1, as a special case of a more general result.
The continued fraction (2.46)/(2.47) of course has the symmetry (p+1, p+2, q+1,

q+2, r+) ↔ (p−1, p−2, q−1, q−2, r−), which is obvious from the definition (2.45) by con-
sidering the bijection σ 	→ σ−1. Less trivially, it has the four separate symmetries 
p+1 ↔ q+1, p+2 ↔ q+2, p−1 ↔ q−1 and p−2 ↔ q−2; it would be interesting to un-
derstand these combinatorially.

If one tries to expand the generating function (2.46) into an S-fraction, one obtains 
coefficients αn that are rational functions rather than polynomials (starting at n = 4). 
But under the specialization

p+1 = p+2, q+1 = q+2, r+ = 1, r− = p−1 = p−2, s = q−1 = q−2 , (2.48)

the J-fraction (2.46)/(2.47) does arise as the contraction (1.3) of an S-fraction with 
polynomial coefficients:

Corollary 2.6 (S-fraction for crossing and nesting statistics). The ordinary generating 
function of the polynomials Pn defined by (2.45), under the specialization (2.48), has the 
S-type continued fraction

∞∑
n=0

Pn(p+, p+, p−, p−, q+, q+, q−, q−, 1, p−, q−) tn = 1

1 − t

1 − t

1 − [2]p−,q−t

1 − [2]p+,q+t

1 − · · ·

with coefficients
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α2k−1 = [k]p−,q− (2.49a)

α2k = [k]p+,q+ (2.49b)

Remark. We could of course interchange + and − everywhere, i.e. set

p−1 = p−2, q−1 = q−2, r− = 1, r+ = p+1 = p+2, s = q+1 = q+2 , (2.50)

and obtain α2k−1 = [k]p+,q+ , α2k = [k]p−,q− . �

The next step is to try to include the variables x, y, u, v from (2.4) — or more ambi-
tiously, the variables x1, x2, y1, y2, z, u1, u2, v1, v2, w from (2.19); or yet more ambitiously, 
the variables x1, x2, y1, y2, u1, u2, v1, v2, w from (2.23). Amazingly, this latter program 
works. Let us define the polynomial

Qn(x1, x2, y1, y2, u1, u2, v1, v2,w, p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ) ×

p
ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 p

lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 ×

q
unestcval(σ)
+1 q

unestcdrise(σ)
+2 q

lnestcpeak(σ)
−1 q

lnestcdfall(σ)
−2 spsnest(σ) . (2.51)

(We have omitted r+ and r− since they are redundant in view of ujoin = cdrise and 
ljoin = cdfall.) We then have a beautiful J-fraction that simultaneously generalizes The-
orems 2.2 and 2.5:

Theorem 2.7 (First J-fraction for permutations, p, q-generalization). The ordinary gen-
erating function of the polynomials Qn defined by (2.51) has the J-type continued fraction

∞∑
n=0

Qn(x1, x2, y1, y2, u1, u2, v1, v2,w, p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s) tn =
1

1−w0t−
x1y1t

2

1−(x2+y2+sw1)t−
(p−1x1+q−1u1)(p+1y1+q+1v1)t2

1−(p−2x2+q−2u2+p+2y2+q+2v2+s2w2)t−
(p2

−1x1+q−1[2]p−1,q−1u1)(p2
+1y1+q+1[2]p+1,q+1v1)t2

1−···

(2.52)
with coefficients

γ0 = w0 (2.53a)

γn = (pn−1
−2 x2 + q−2 [n− 1]p−2,q−2u2) + (pn−1

+2 y2 + q+2 [n− 1]p+2,q+2v2) + snwn

for n ≥ 1 (2.53b)
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βn = (pn−1
−1 x1 + q−1 [n− 1]p−1,q−1u1) (pn−1

+1 y1 + q+1 [n− 1]p+1,q+1v1) (2.53c)

We will prove this theorem in Section 6.1, as a special case of a more general result.

Remarks. 1. The continued fraction (2.52) shows that Qn depends on its arguments only 
via the combinations (2.53a,b,c): in particular, it is symmetric under (x1, u1, p−1, q−1) ↔
(y1, v1, p+1, q+1) and independently under (x2, u2, p−2, q−2) ↔ (y2, v2, p+2, q+2). It would 
be interesting to try to understand combinatorially (directly at the level of permutations) 
why these properties hold. The symmetry of Qn under the simultaneous application of 
both of these interchanges is an immediate consequence of the bijection σ 	→ R ◦ σ ◦ R
with R(i) = n + 1 − i, which interchanges cycle peaks with cycle valleys, cycle double 
rises with cycle double falls, and records with antirecords (while preserving the number 
of fixed points at each level). But the more specific properties encoded in (2.53) remain 
mysterious.

2. Please note that when x1 = u1, then pn−1
−1 x1 + q−1 [n − 1]p−1,q−1u1 simplifies to 

[n]p−1,q−1x1, which has the symmetry p−1 ↔ q−1; and similarly when x2 = u2, y1 = v1
or y2 = v2. It would be interesting to understand combinatorially why these symmetries 
hold. If we make all four of these specializations (i.e. forgo taking account of record 
statistics), then the coefficients (2.53) simplify to

γn = [n]p−2,q−2x2 + [n]p+2,q+2y2 + snwn (2.54a)

βn = [n]p−1,q−1 [n]p+1,q+1 x1y1 (2.54b)

3. Once one includes the detailed classification of fixed points according to their level 
(2.20), the variable s becomes redundant: it simply sends w� → s�w�. This reflects the 
fact that

psnest(σ) =
∑
j∈fix

lev(j, σ) . � (2.55)

Some historical remarks. 1. The pioneering work on crossings and nestings in permuta-
tions is that of Corteel [33], and our presentation is strongly inspired by hers. However, 
her definitions of crossings and nestings are less refined than ours, and also partly asym-
metrical between “upper” and “lower” (i.e. between σ and σ−1): she defines

cross(σ) = ucross(σ) + lcross(σ) + ujoin(σ) (2.56a)

nest(σ) = unest(σ) + lnest(σ) + psnest(σ) (2.56b)

and subsequent workers [65,67,96,97] have followed her in this definition. Here nest(σ) =
nest(σ−1) by (2.44); but cross(σ) �= cross(σ−1) in general, because of the appearance of 
ujoin without ljoin in (2.56a). Corteel [33] obtained the special case of Theorem 2.7 with 
three variables y, p, q, where x1 = x2 = u1 = u2 = 1, y1 = v1 = w� = y, p+1 = p+2 =
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p−1 = p−2 = p, y2 = v2 = py, q+1 = q+2 = q−1 = q−2 = s = q.13 Some refinements of 
this result were obtained by Shin and Zeng [96,97].

2. Our refined categories of crossing and nesting are inspired by the “octabasic” per-
mutation polynomials of Simion and Stanton [100, Theorem 2.2].

3. Shortly after completing the proof of Theorem 2.7, we discovered that these ideas 
were anticipated two decades ago in a remarkable but apparently little-known paper 
of Randrianarivony [88].14 In this paper, which was also inspired in part by the work 
of Simion and Stanton [99,100], Randrianarivony [88, Théorème 1] almost obtained our 
full Theorem 2.7: he had all our variables except w and s. That is, he included all our 
statistics except the classification of fixed points by level.

One reason for the unfortunate neglect of Randrianarivony’s work may be that it 
was written in French. Another reason may be that he did not write explicitly any 
continued fraction, contenting himself with an assertion [88, Théorème 1] about the 
moment sequence associated to the orthogonal polynomials satisfying a particular three-
term recurrence. But in the introduction to his paper he stated explicitly [88, p. 507]
that “Le problème est alors équivalent à la donnée d’une interprétation des coefficients 
du développement de Taylor de la J-fraction continue avec les paramètres bn et λn.”

4. A very recent paper of Blitvić and Steingrímsson [16] also contains a large part of 
Theorem 2.7, namely, the specialization x1 = u1, x2 = u2, y1 = v1, y2 = v2, w� = w ∀�
[16, Theorem 1]. That is, they have included all the cycle statistics and the refined 
crossing-and-nesting statistics (including the pseudo-nesting statistic), but not the record 
statistics or the detailed classification of fixed points by level. As a result, they obtained 
the J-fraction with coefficients (2.54).

5. Some other q-versions, involving the number of inversions in σ, were obtained two 
decades ago by one of us [113,115] and recently by Elizalde [47, eqn. (4)]. All of these 
are special cases of Theorem 2.7 (or its S-fraction corollary, Theorem 2.8 below), as we 
explain in Section 2.16. �

2.6. p,q-generalizations of the first S-fraction

It turns out that suitable specializations of the J-fraction (2.52)/(2.53) can be ob-
tained as the contraction (1.3) of an S-fraction with polynomial coefficients. We make 
the specializations

x1 = x (2.57a)

x2 = p−x (2.57b)

y1 = y2 = y (2.57c)

13 Her usage of the variables p and q is the reverse of ours — i.e. she writes qcross(σ)pnest(σ) — but this 
does not matter in comparing her formulae to ours, because in her specialization the formulae are anyway 
symmetric between p and q.
14 According to the Web of Science, the paper [88] has been cited only once [68].
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u1 = u (2.57d)

u2 = p−u (2.57e)

v1 = v2 = v (2.57f)

w0 = x (2.57g)

w� = u for � ≥ 1 (2.57h)

p+1 = p+2 = p+ (2.57i)

p−1 = p−2 = p− (2.57j)

q+1 = q+2 = q+ (2.57k)

q−1 = q−2 = q− (2.57l)

s = q− (2.57m)

[which include (2.48) as the special case x = y = u = v = 1]. The polynomial Qn defined 
in (2.51) then reduces to the eight-variable polynomial

Pn(x, y, u, v, p+, p−, q+, q−) =
∑

σ∈Sn

xarec(σ)yerec(σ)un−exc(σ)−arec(σ)vexc(σ)−erec(σ) ×

p
ucross(σ)
+ p

lcross(σ)+ljoin(σ)
− q

unest(σ)
+ q

lnest(σ)+psnest(σ)
− ,

(2.58)

and the coefficients (2.53) reduce to

γ0 = x (2.59a)

γn = (pn−x + q− [n]p−,q−u) + (pn−1
+ y + q+ [n− 1]p+,q+v) for n ≥ 1 (2.59b)

βn = (pn−1
− x + q− [n− 1]p−,q−u) (pn−1

+ y + q+ [n− 1]p+,q+v) (2.59c)

Therefore, the J-fraction (2.52)/(2.53) with the specializations (2.57) is the contraction 
(1.3) of the following S-fraction:

Theorem 2.8 (First S-fraction for permutations, p, q-generalization). The ordinary gen-
erating function of the polynomials Pn defined by (2.58) has the S-type continued fraction

∞∑
Pn(x, y, u, v, p+, p−, q+, q−) tn =
n=0
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1

1 − xt

1 − yt

1 − (p−x + q−u)t

1 − (p+y + q+v)t

1 − (p2
−x + q− [2]p−,q−u)t

1 − (p2
+y + q+ [2]p+,q+v)t

1 − · · ·

(2.60)

with coefficients

α2k−1 = pk−1
− x + q− [k − 1]p−,q−u (2.61a)

α2k = pk−1
+ y + q+ [k − 1]p+,q+v (2.61b)

Note that the polynomial Pn(x, y, u, v, p+, p−, q+, q−) reduces to Pn(x, y, u, v) [cf. 
(2.2)/(2.4)] if we set p+ = p− = q+ = q− = 1, and to Pn(p+, p+, p−, p−, q+, q+, q−, q−,
1, p−, q−) [cf. (2.45)/(2.48)] if we set x = y = u = v = 1. So Theorem 2.8 simultaneously 
generalizes Theorem 2.1(a) and Corollary 2.6.

One other interesting specialization of Theorem 2.8 is

Pn(x, qy, 1, q, q, q, q2, q2) =
∑

σ∈Sn

xarec(σ)yerec(σ)qinv(σ) , (2.62)

where inv(σ) is the inversion number (see Section 2.16 below); this formula follows from 
(2.58) and (2.141a). The corresponding continued fraction (2.60)/(2.61) was found in 
[113] and has coefficients

α2k−1 = qk−1 (x + q + . . . + qk−1) (2.63a)

α2k = qk (y + q + . . . + qk−1) (2.63b)

As one might expect by analogy with (2.16), the corresponding ordinary generating 
function (2.60) can be written as a ratio of basic hypergeometric functions 2φ0, which 
are defined by [61, pp. 4–5]

2φ0

(
a, b

—
; q, z

)
def=

∞∑
n=0

(a; q)n (b; q)n
(q; q)n

(−1)n q−n(n−1)/2 zn (2.64)

and can be related to the Heine hypergeometric function 2φ1,

2φ1

(
a, b

c
; q, z

)
def=

∞∑
n=0

(a; q)n (b; q)n
(c; q)n (q; q)n

zn , (2.65)

either as a limiting case
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2φ0

(
a, b

—
; q, z

)
= lim

c→∞ 2φ1

(
a, b

c
; q, cz

)
(2.66)

or as a specialization to c = 0:

2φ0

(
a, b

—
; q, z

)
= 2φ1

(
a−1, b−1

0
; q−1, abq−1z

)
. (2.67)

Starting from Heine’s [63] continued fraction for ratios of contiguous 2φ1 [73, pp. 318–322]
[34, p. 395],

2φ1

(
a, bq

cq
; q, z

)

2φ1

(
a, b

c
; q, z

) = 1
1 − α1z

1 − α2z

1 − · · ·

(2.68)

with coefficients

α2k−1 = (1 − aqk−1) (b− cqk−1) qk−1

(1 − cq2k−2) (1 − cq2k−1) (2.69a)

α2k = (1 − bqk) (a− cqk) qk−1

(1 − cq2k−1) (1 − cq2k) (2.69b)

and applying either (2.66) or (2.67), we obtain a continued fraction for ratios of contigu-
ous 2φ0:

2φ0

(
a, bq

—
; q, q−1z

)

2φ0

(
a, b

—
; q, z

) = 1
1 − α1z

1 − α2z

1 − · · ·

(2.70)

with coefficients

α2k−1 = −(1 − aqk−1) q−(2k−1) (2.71a)

α2k = −(1 − bqk) q−2k (2.71b)

The continued fraction (2.63) can then be obtained from (2.70)/(2.71) by setting

a = r−1 [r + (1 − r)x] (2.72a)

b = r + (1 − r) y (2.72b)

q = r−1 (2.72c)

z = t (2.72d)
1 − r
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and then renaming r ← q.

Remark. There is an alternative specialization of (2.52)/(2.53), generalizing (2.50), in 
which + and − are interchanged compared to (2.57), and in which also the roles of (x, u)
and (y, v) are interchanged:

x1 = x2 = x (2.73a)

y1 = y (2.73b)

y2 = p+y (2.73c)

u1 = u2 = u (2.73d)

v1 = v (2.73e)

v2 = p+v (2.73f)

w0 = y (2.73g)

w� = v for � ≥ 1 (2.73h)

p+1 = p+2 = p+ (2.73i)

p−1 = p−2 = p− (2.73j)

q+1 = q+2 = q+ (2.73k)

q−1 = q−2 = q− (2.73l)

s = q+ (2.73m)

The resulting S-fraction then has the coefficients (2.61) but with (x, u, p−, q−) ↔
(y, v, p+, q+). This is also a consequence of the bijection σ 	→ R◦σ◦R with R(i) = n +1 −i, 
which interchanges cycle peaks with cycle valleys, cycle double rises with cycle double 
falls, records with antirecords, and upper with lower. �

2.7. First master J-fraction

Let us now return to the J-fraction of Theorem 2.7, with its 17 indeterminates (or 16 
if we exclude the redundant variable s) plus the infinite collection w. It turns out that 
this is by no means the end of the story. Indeed, we can go much farther, and obtain a 
polynomial in five infinite families of indeterminates a = (a�,�′)�,�′≥0, b = (b�,�′)�,�′≥0, 
c = (c�,�′)�,�′≥0, d = (d�,�′)�,�′≥0, e = (e�)�≥0 that will have a nice J-fraction and that will 
include the polynomial (2.51) as a specialization.15 The basic idea is that, rather than 
counting the total numbers of quadruplets i < j < k < l that form upper (resp. lower) 

15 In our original version of this master J-fraction, the weights a, b, c, d were factorized in the form a�,�′ =
a(1)
� a(2)

�′ , etc. We thank Andrew Elvey Price for suggesting the generalization in which this factorization is 
avoided.
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crossings or nestings, we should instead count the number of upper (resp. lower) crossings 
or nestings that use a particular vertex j (resp. k) in second (resp. third) position, and 
then attribute weights to the vertex j (resp. k) depending on those values.

More precisely, we define

ucross(j, σ) = #{i < j < k < l : k = σ(i) and l = σ(j)} (2.74a)

unest(j, σ) = #{i < j < k < l : k = σ(j) and l = σ(i)} (2.74b)

lcross(k, σ) = #{i < j < k < l : i = σ(k) and j = σ(l)} (2.74c)

lnest(k, σ) = #{i < j < k < l : i = σ(l) and j = σ(k)} (2.74d)

Note that ucross(j, σ) and unest(j, σ) can be nonzero only when j is a cycle valley or a 
cycle double rise, while lcross(k, σ) and lnest(k, σ) can be nonzero only when k is a cycle 
peak or a cycle double fall. And we obviously have

ucrosscval(σ) =
∑

j∈cval
ucross(j, σ) (2.75)

and analogously for the other seven crossing/nesting quantities defined in Section 2.5. 
Recall, finally, the definition (2.20) of the level of a fixed point j:

lev(j, σ) = #{i < j < l : l = σ(i)} = #{i < j < l : i = σ(l)} . (2.76)

We now introduce five infinite families of indeterminates a = (a�,�′)�,�′≥0, b =
(b�,�′)�,�′≥0, c = (c�,�′)�,�′≥0, d = (d�,�′)�,�′≥0, e = (e�)�≥0 and define the polynomial 
Qn(a, b, c, d, e) by

Qn(a,b, c,d, e) =

∑
σ∈Sn

∏
i∈cval

aucross(i,σ), unest(i,σ)
∏

i∈cpeak
blcross(i,σ), lnest(i,σ) ×

∏
i∈cdfall

clcross(i,σ), lnest(i,σ)
∏

i∈cdrise
ducross(i,σ), unest(i,σ)

∏
i∈fix

elev(i,σ) . (2.77)

These polynomials then have a beautiful J-fraction:

Theorem 2.9 (First master J-fraction for permutations). The ordinary generating func-
tion of the polynomials Qn(a, b, c, d, e) has the J-type continued fraction

∞∑
Qn(a,b, c,d, e) tn =
n=0
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1

1 − e0t −
a00b00t

2

1 − (c00 + d00 + e1)t −
(a01 + a10)(b01 + b10)t2

1 − (c01 + c10 + d01 + d10 + e2)t −
(a02 + a11 + a20)(b02 + b11 + b20)t2

1 − · · ·

(2.78)

with coefficients

γn = c�n−1 + d�n−1 + en (2.79a)

βn = a�n−1 b�n−1 (2.79b)

where

a�n−1
def=

n−1∑
�=0

a�,n−1−� (2.80)

and likewise for b, c, d.

We will prove this theorem in Section 6.1. It is our “master theorem” for permutations, 
from which most of the others (namely, all those not including the statistic cyc) can be 
derived.

Remark. It seems far from obvious (at least to us) why Qn(a, b, c, d, e) depends on 
a, b, c, d, e only via the combinations (2.79a,b). Even some partial cases of this — e.g. 
the fact that the dependence on c and d is only via their sum c + d — seem nontrivial. 
Of course, this behavior is a consequence of the bijection onto labeled Motzkin paths 
that we will use in Section 6.1 to prove Theorem 2.9. But it would be interesting to 
understand it combinatorially, directly at the level of permutations. �

Let us now show how to recover Qn(x1, x2, y1, y2, u1, u2, v1, v2, w, p+1, p+2, p−1, p−2, 
q+1, q+2, q−1, q−2, s) as a specialization of Qn(a, b, c, d, e), and thereby obtain Theo-
rem 2.7 as a special case of Theorem 2.9. We need a simple lemma:

Lemma 2.10 (Records and antirecords in terms of nestings). Let σ ∈ Sn and i ∈ [n].

(a) If i is a cycle valley or cycle double rise, then i is a record if and only if unest(i, σ) =
0; and in this case it is an exclusive record.

(b) If i is a cycle peak or cycle double fall, then i is an antirecord if and only if 
lnest(i, σ) = 0; and in this case it is an exclusive antirecord.

Proof. (a) By hypothesis we have σ(i) > i. Then i fails to be a record if and only if 
there exists j < i such that σ(j) > σ(i); and by (2.74b) this is exactly the assertion that 
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unest(i, σ) > 0. The final statement follows from the fact that every record-antirecord is 
a fixed point.

(b) is similar. �
In view of (2.55), (2.75) and Lemma 2.10, the specialization needed for obtaining 

(2.51) from (2.77) is

a�,�′ = p�+1q
�′

+1 ×
{
y1 if �′ = 0
v1 if �′ ≥ 1

(2.81a)

b�,�′ = p�−1q
�′

−1 ×
{
x1 if �′ = 0
u1 if �′ ≥ 1

(2.81b)

c�,�′ = p�−2q
�′

−2 ×
{
x2 if �′ = 0
u2 if �′ ≥ 1

(2.81c)

d�,�′ = p�+2q
�′

+2 ×
{
y2 if �′ = 0
v2 if �′ ≥ 1

(2.81d)

e� = s�w� (2.81e)

We then have

a�n−1 = pn−1
+1 y1 + q+1 [n− 1]p+1,q+1v1 (2.82)

and similarly for b�n−1, c�n−1, d�n−1, so that we obtain the weights (2.53) as a specialization 
of (2.79). This shows that Theorem 2.7 is a special case of Theorem 2.9.

Remark. After discovering and proving Theorem 2.9, we realized that Flajolet had, in 
a certain sense, anticipated these ideas already in his 1980 paper [53]! In [53, Proposi-
tion 7A] Flajolet gives the J-fraction for labeled Motzkin paths in which distinct weights 
are assigned to steps according to their type (rise, fall or level step), starting height hi−1
and label ξi (Theorem 5.3 below). So this is a general “master J-fraction” for labeled 
Motzkin paths, from which one need only pull back via a bijection to obtain master 
J-fractions for specific combinatorial objects (such as permutations). As will be seen in 
Section 6.1, our method for proving Theorem 2.9 is precisely this. �

2.8. First master S-fraction

We can also obtain a master S-fraction by specializing the parameters in Theorem 2.9
and then applying the contraction formula (1.3). There are two possibilities, depending 
on whether we want the S-fraction to be “a first” or “b first”. Let us begin by showing 
the latter, as it meshes better with the specializations (2.81) and (2.57).
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b first. The J-fraction (2.78)/(2.79) is the contraction (1.3) of the S-fraction

1

1 − b00t

1 − a00t

1 − (b01 + b10)t

1 − (a01 + a10)t
1 − · · ·

(2.83)

with coefficients α2k−1 = b�k−1 and α2k = a�k−1 if we choose a, b, c, d, e so that

c�n−1 + d�n−1 + en = a�n−1 + b�n for all n ≥ 0 (2.84)

[where of course c�−1 = d�−1 = 0 by the definition (2.80)]. Therefore:

Theorem 2.11 (First master S-fraction for permutations). In the ring Z[a, b, c, d, e], let 
I be the ideal generated by the relations (2.84) for all n ≥ 0. Then

∞∑
n=0

Qn(a,b, c,d, e) tn = 1

1 − b00t

1 − a00t

1 − (b01 + b10)t

1 − (a01 + a10)t
1 − · · ·

(2.85)

with coefficients

α2k−1 = b�k−1 (2.86a)

α2k = a�k−1 (2.86b)

as an identity in Z[a, b, c, d, e]/I.

In applications we will specialize a, b, c, d, e in such a way that the relations (2.84)
hold. There are many ways of doing this; for instance, we could arrange to have

d�n−1 = a�n−1 for all n ≥ 1 (2.87a)

c�n−1 + en = b�n for all n ≥ 0 (2.87b)

(or alternatively the same thing with c and d interchanged). And this in turn can be 
done in many ways; the simplest way to have d�n−1 = a�n−1 for all n is to have d = a
(that is, d�,�′ = a�,�′ for all �, �′).

In particular, we can obtain Theorem 2.8 in this way, by making the specializations 
(2.81) and (2.57): this leads to
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a�,�′ = d�,�′ = p�+q
�′

+ ×
{
y if �′ = 0
v if �′ ≥ 1

(2.88a)

b�,�′ = p�−q
�′

− ×
{
x if �′ = 0
u if �′ ≥ 1

(2.88b)

c�,�′ = p�−q
�′

− ×
{
p−x if �′ = 0
p−u if �′ ≥ 1

(2.88c)

e� = q�− ×
{
x if �′ = 0
u if �′ ≥ 1

(2.88d)

and hence

a�n−1 = d�n−1 = pn−1
+ y + q+ [n− 1]p+,q+v (2.89a)

b�n−1 = pn−1
− x + q− [n− 1]p−,q−u (2.89b)

c�n−1 = pn−x + p−q− [n− 1]p−,q−u (2.89c)

The equation (2.87b) is then satisfied by virtue of (2.40). So Theorem 2.8 is a special 
case of Theorem 2.11. And Theorem 2.1(a) is the further special case obtained by setting 
p+ = p− = q+ = q− = 1.

a first. Completely analogous considerations show that the J-fraction (2.78)/(2.79) is 
the contraction (1.3) of the S-fraction

1

1 − a00t

1 − b00t

1 − (a01 + a10)t

1 − (b01 + b10)t
1 − · · ·

(2.90)

with coefficients α2k−1 = a�k−1 and α2k = b�k−1 if we choose c, d, e so that

c�n−1 + d�n−1 + en = b�n−1 + a�n for all n ≥ 0 . (2.91)

This leads to an analogue of Theorem 2.11 in which the roles of a and b are interchanged. 
And one special case of this is obtained from (2.81) and (2.73).

2.9. p,q-generalizations of the second J-fraction

We can also make a p, q-generalization of the second J-fraction involving cyc (Sec-
tion 2.4). Let us define the polynomial
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Q̂n(x1, x2, y1, y2, u1, u2, v1, v2,w, p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s, λ) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ) ×

p
ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 p

lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 ×

q
unestcval(σ)
+1 q

unestcdrise(σ)
+2 q

lnestcpeak(σ)
−1 q

lnestcdfall(σ)
−2 spsnest(σ)λcyc(σ) , (2.92)

which extends (2.51) by including the factor λcyc(σ). We refrain from attempting to 
generalize Conjecture 2.3, and simply limit ourselves to stating the p, q-generalization 
of Theorem 2.4 that we are able to prove. It turns out that we need to make the spe-
cializations v1 = y1, v2 = y2, q+1 = p+1 and q+2 = p+2. The result is therefore the 
following:

Theorem 2.12 (Second J-fraction for permutations, p, q-generalization). The ordinary 
generating function of the polynomials Q̂n specialized to v1 = y1, v2 = y2, q+1 = p+1, 
q+2 = p+2 has the J-type continued fraction

∞∑
n=0

Q̂n(x1, x2, y1, y2, u1, u2, y1, y2,w, p+1, p+2, p−1, p−2, p+1, p+2, q−1, q−2, s, λ) tn =
1

1−λw0t−
λx1y1t

2

1−(x2+y2+λsw1)t−
(λ+1)(p−1x1+q−1u1)p+1y1t

2

1−(p−2x2+2p+2y2+q−2u2+λs2w2)t−
(λ+2)(p2

−1x1+q−1[2]p−1,q−1u1)p2
+1y1t

2

1−···

(2.93)
with coefficients

γ0 = λw0 (2.94a)

γn = (pn−1
−2 x2 + q−2 [n− 1]p−2,q−2u2) + npn−1

+2 y2 + λsnwn for n ≥ 1 (2.94b)

βn = (λ + n− 1) (pn−1
−1 x1 + q−1 [n− 1]p−1,q−1u1) pn−1

+1 y1 (2.94c)

We will prove this theorem in Section 6.2, as a special case of a more general result.

Remarks. 1. This J-fraction is not invariant under the reversal R(i) = n +1 −i, because we 
have made specializations affecting cval and cdrise (namely, v1 = y1, v2 = y2, q+1 = p+1, 
q+2 = p+2) but have not made the analogous specializations for cpeak and cdfall (that 
is, u1 = x1, u2 = x2, q−1 = p−1, q−2 = p−2). However, if we do make also the latter 
specializations, then the coefficients (2.94) simplify to

γn = npn−1
−2 x2 + npn−1

+2 y2 + λsnwn (2.95a)

βn = n (λ + n− 1) pn−1
−1 pn−1

+1 x1y1 (2.95b)
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which are now invariant under the simultaneous interchange (x1, x2, p−1, p−2) ↔
(y1, y2, p+1, p+2).

2. It is curious to observe that the second J-fraction (2.93)/(2.94) can be obtained 
as a specialization of the first J-fraction (2.52)/(2.53): namely, we specialize v1 = y1, 
v2 = y2, q+1 = p+1, q+2 = p+2 and then make the substitutions y1 ← λy1, v1 ← y1, 
w� ← λw�. It would be interesting to understand this identity directly at the level of the 
polynomials Qn [cf. (2.51)] and Q̂n [cf. (2.92)]. �

2.10. p,q-generalizations of the second S-fraction

It turns out that suitable specializations of the J-fraction (2.93)/(2.94) can be obtained 
as the contraction (1.3) of an S-fraction with polynomial coefficients. It suffices to make 
the specializations

x1 = x2 = x (2.96a)

y1 = y (2.96b)

y2 = p+y (2.96c)

u1 = u2 = u (2.96d)

w� = y for all � ≥ 0 (2.96e)

p+1 = p+2 = p+ (2.96f)

p−1 = p−2 = p− (2.96g)

q−1 = q−2 = q− (2.96h)

s = p+ (2.96i)

The polynomial Q̂n defined in (2.92) then reduces to the seven-variable polynomial

P̂n(x, y, u, p+, p−, q−, λ) =
∑

σ∈Sn

xearec(σ)ywex(σ)un−earec(σ)−wex(σ) ×

p
ucross(σ)+unest(σ)+ereccdrise(σ)+psnest(σ)
+ p

lcross(σ)
− q

lnest(σ)
− λcyc(σ) .

(2.97)

It can then be checked that the J-fraction (2.93)/(2.94) with the specializations (2.96)
is the contraction (1.3) of the following S-fraction:

Theorem 2.13 (Second S-fraction for permutations, p, q-generalization). The ordinary 
generating function of the polynomials P̂n defined by (2.97) has the S-type continued 
fraction
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∞∑
n=0

P̂n(x, y, u, p+, p−, q−, λ) tn =

1

1 − λyt

1 − xt

1 − (λ + 1) p+yt

1 − (p−x + q−u)t

1 − (λ + 2) p2
+yt

1 − (p2
−x + q− [2]p−,q−u)t

1 − · · ·

(2.98)

with coefficients

α2k−1 = (λ + k − 1) pk−1
+ y (2.99a)

α2k = pk−1
− x + q− [k − 1]p−,q−u (2.99b)

2.11. Second master J-fraction

As with the first J-fraction, we can go much farther, and obtain a J-fraction in infinitely 
many indeterminates. We again introduce five infinite families of indeterminates: a =
(a�)�≥0, b = (b�,�′)�,�′≥0, c = (c�,�′)�,�′≥0, d = (d�,�′)�,�′≥0, e = (e�)�≥0; please note that 
a now has one index rather than two. We then define the polynomial Q̂n(a, b, c, d, e, λ)
by

Q̂n(a,b, c,d, e, λ) =

∑
σ∈Sn

λcyc(σ)
∏

i∈cval
aucross(i,σ)+unest(i,σ)

∏
i∈cpeak

blcross(i,σ), lnest(i,σ) ×

∏
i∈cdfall

clcross(i,σ), lnest(i,σ)
∏

i∈cdrise
ducross(i,σ)+unest(i,σ), unest(σ−1(i),σ)

∏
i∈fix

elev(i,σ) .

(2.100)

Note that here, in contrast to the first master J-fraction, Q̂n depends on ucross(i, σ) and 
unest(i, σ) only via their sum (that is the price we have to pay in order to include the 
statistic cyc); and note also the somewhat bizarre appearance of unest(σ−1(i), σ) as the 
second index on d. These polynomials have a nice J-fraction:

Theorem 2.14 (Second master J-fraction for permutations). The ordinary generating 
function of the polynomials Q̂n(a, b, c, d, e, λ) has the J-type continued fraction

∞∑
Q̂n(a,b, c,d, e, λ) tn =
n=0
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1

1 − λe0t −
λa0b00t

2

1 − (c00 + d00 + λe1)t −
(λ + 1)a1(b01 + b10)t2

1 − (c01 + c10 + d10 + d11 + λe2)t −
(λ + 2)a2(b02 + b11 + b20)t2

1 − · · ·

(2.101)

with coefficients

γn = c�n−1 + d�n−1 + λen (2.102a)

βn = (λ + n− 1) an−1 b�n−1 (2.102b)

where

b�n−1
def=

n−1∑
�=0

b�,n−1−� (2.103a)

c�n−1
def=

n−1∑
�=0

c�,n−1−� (2.103b)

d�n−1
def=

n−1∑
�=0

dn−1,� (2.103c)

We will prove this theorem in Section 6.2. It is our “master theorem” for permutation 
polynomials that include the statistic cyc.

Let us now show how to recover Q̂n(x1, x2, y1, y2, u1, u2, y1, y2, w, p+1, p+2, p−1, p−2, 
p+1, p+2, q−1, q−2, s, λ) as a specialization of Q̂n(a, b, c, d, e), and thereby obtain Theo-
rem 2.12 as a special case of Theorem 2.14. In view of (2.55), (2.75) and Lemma 2.10, it 
suffices to set

a� = p�+1y1 (2.104a)

b�,�′ = p�−1q
�′

−1 ×
{
x1 if �′ = 0
u1 if �′ ≥ 1

(2.104b)

c�,�′ = p�−2q
�′

−2 ×
{
x2 if �′ = 0
u2 if �′ ≥ 1

(2.104c)

d�,�′ = p�+2y2 (no dependence on �′) (2.104d)

e� = s�w� (2.104e)

We then have

b�n−1 = pn−1
−1 x1 + q−1 [n− 1]p−1,q−1u1 (2.105a)
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c�n−1 = pn−1
−2 x2 + q−2 [n− 1]p−2,q−2u2 (2.105b)

d�n−1 = npn−1
+2 y2 (2.105c)

so that we obtain the weights (2.94) as a specialization of (2.102). This shows that 
Theorem 2.12 is a special case of Theorem 2.14.

2.12. Second master S-fraction

Analogously to what was done in Section 2.8 to obtain the first master S-fraction, we 
can also obtain a second master S-fraction by specializing the parameters in Theorem 2.14
and then applying the contraction formula (1.3). There are various ways in which this 
can be done, but the one that seems to us most natural goes as follows: From (2.102) we 
see that λ is associated with e and with either a or b; but since a and e are both singly-
indexed, while b is doubly-indexed, it seems most natural to set a = e and associate λ
with a. We thus take α2k−1 = (λ + k − 1)ak−1 = (λ + k − 1)ek−1 and α2k = b�k−1; we 
must then choose a, b, c, d so that

c�n−1 + d�n−1 = b�n−1 + nen . (2.106)

This too can be done in various ways; the simplest seems to be to choose b = c and 
dn−1,� = en = an ∀�. This yields:

Theorem 2.15 (Second master S-fraction for permutations). The ordinary generating 
function of the polynomials Q̂n(a, b, c, d, e, λ) specialized to a = e, b = c and dn−1,� =
en = an ∀� has the S-type continued fraction

∞∑
n=0

Q̂n(a,b,b,d, a, λ)
∣∣
dn−1,�=an ∀� t

n = 1

1 − λa0t

1 − b�0t

1 − (λ + 1)a1t

1 − b�1t
1 − · · ·

(2.107)

with coefficients

α2k−1 = (λ + k − 1)ak−1 (2.108a)

α2k = b�k−1 (2.108b)

If in Theorem 2.15 we then make the specializations (2.104) and (2.96), we obtain 
Theorem 2.13.
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2.13. Counting connected components; indecomposable permutations

Let us now show how to extend our permutation polynomials to count also the con-
nected components of a permutation. As a corollary, we will obtain continued fractions 
for indecomposable permutations.

A divider of a permutation σ ∈ Sn is an index i ∈ [n] such that σ maps the interval 
[1, i] into (hence onto) itself; equivalently, σ maps the complementary interval [i + 1, n]
into (hence onto) itself. Clearly, when n = 0 (hence σ = ∅) there are no dividers; when 
n ≥ 1, the index n is always a divider, and there may or may not be others. A connected 
component of σ ∈ Sn [30, p. 262] [83, A059438] is a minimal nonempty interval [i, j] ⊆ [n]
such that the intervals [1, i −1], [i, j] and [j+1, n] are all mapped by σ into (hence onto) 
themselves. If 1 ≤ i1 < i2 < . . . < ik = n are the dividers of σ, then [1, i1], [i1 + 1, i2], 
. . . , [ik−1 +1, ik] are its connected components. So the number of connected components 
equals the number of dividers; we write it as cc(σ). Thus cc(∅) = 0; for n ≥ 1 we have 
1 ≤ cc(σ) ≤ n, with cc(σ) = n if and only if σ is the identity permutation. A permutation 
σ is called indecomposable (or irreducible or connected) if cc(σ) = 1 [83, A003319] (see 
also [29,31,32,43,56]).16

In any of the permutation polynomials studied thus far, we can insert an additional 
factor ζcc(σ). This affects the continued fractions as follows:

Theorem 2.16 (Counting connected components in permutations). Consider any of the 
polynomials (2.4), (2.5), (2.23), (2.29), (2.45), (2.51), (2.58), (2.77), (2.92) or (2.100), 
and insert an additional factor ζcc(σ). Then the continued fractions associated to the 
ordinary generating functions are modified as follows: in each S-fraction, multiply α1 by 
ζ; in each J-fraction, multiply γ0 and β1 by ζ.

This result has an easy proof in our labeled-Motzkin-paths formalism, as we shall 
remark in Sections 6.1 and 6.2. But it also has a simple “renewal theory” explanation, 
as follows: Given permutations σ = (σ1, . . . , σm) ∈ Sm and τ = (τ1, . . . , τn) ∈ Sn, let 
us define their concatenation σ|τ ∈ Sm+n as (σ1, . . . , σm, τ1 + m, . . . , τn + m). Multiple 
concatenations are defined in the obvious way. Then every permutation can be written 
uniquely as a concatenation of (zero or more) indecomposable permutations (namely, σ
restricted to its connected components, with indices relabeled to start at 1). Now let Pn

be any permutation polynomial based on statistics that are additive under concatenation, 
and include also a factor ζcc(σ); and let P ind

n be the corresponding polynomial with the 
sum restricted to indecomposable permutations (without the factor ζ). Now define the 
ordinary generating functions

16 Warnings: 1) Bóna [17, p. 162] defines a permutation to be “indecomposable” if there does not exist an 
index k ∈ [n − 1] such that σ(i) > σ(j) (greater!!) whenever i ≤ k < j. This differs from our definition, but 
is related to it by the involution σ �→ R ◦ σ where R(i) = n + 1 − i.

2) The term “irreducible” has also been employed [7,8] to denote a different class of permutations, 
namely, those in which there is no index i satisfying σ(i + 1) − σ(i) = 1.
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f(t) =
∞∑

n=0
Pnt

n (2.109a)

g(t) =
∞∑

n=1
P ind
n tn (2.109b)

Then it is immediate from the foregoing that

f(t) = 1
1 − ζg(t) . (2.110)

Moreover, all of the statistics that have been considered here are indeed additive under 
concatenation: it is easy to see that this holds for statistics based on the cycle structure, 
on the record structure, or on crossings and nestings. Theorem 2.16 is an immediate 
consequence.

Remark. Let us observe that, by contrast, some of the statistics based on the linear
structure of the permutation (see Section 2.17) are not additive under concatenation. 
For instance, the ascents in σ|τ include those in σ and τ plus one more at the boundary 
between σ and τ ; so the ascent statistic is not additive. (It does, however, behave in a 
simple way under concatenation.) On the other hand, the descents in σ|τ include only 
those in σ and τ , so the descent statistic is additive. �

These considerations also allow us to deduce continued fractions for the ordinary 
generating functions of the polynomials P ind

n associated to indecomposable permutations. 
Indeed, it follows immediately from (2.110) that if f(t) is the ordinary generating function 
associated to all permutations (without factors ζcc(σ)), then g(t) = 1 − 1/f(t) is the 
ordinary generating function associated to indecomposable permutations. Thus, if the 
polynomials Pn (without factors ζcc(σ)) are given by an S-fraction

∞∑
n=0

Pnt
n = 1

1 − α1t

1 − α2t

1 − · · ·

, (2.111)

then the polynomials P ind
n are given by an S-fraction

∞∑
n=1

P ind
n tn = α1t

1 − α2t

1 − α3t

1 − · · ·

. (2.112)

And if the Pn are given by a J-fraction
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∞∑
n=0

Pnt
n = 1

1 − γ0t−
β1t

2

1 − γ1t−
β2t

2

1 − · · ·

, (2.113)

then the P ind
n are given by a J-fraction plus an additive linear term:

∞∑
n=1

P ind
n tn = γ0t + β1t

2

1 − γ1t−
β2t

2

1 − γ2t−
β3t

2

1 − · · ·

. (2.114)

2.14. 321-avoiding permutations

A permutation σ is called 321-avoiding if there do not exist indices i < j < k such 
that σ(i) > σ(j) > σ(k). In other words, σ is 321-avoiding if there does not exist an index 
j that is neither a record nor an antirecord. In detail, this means that every cycle valley 
or cycle double rise is an exclusive record, every cycle peak or cycle double fall is an 
exclusive antirecord, and every fixed point is a record-antirecord.17 It is well known [17, 
Section 4.2] [102, item 115] that the number of 321-avoiding permutations of [n] is the 
Catalan number Cn. By specializing our preceding results to suppress neither-record-
antirecords, we can deduce continued fractions for the ordinary generating functions 
of polynomials enumerating 321-avoiding permutations with a variety of record and 
crossing/nesting statistics.

The simplest such result is obtained by setting u = v = 0 in Theorem 2.1; as mentioned 
already in (2.18), this leads to the homogenized Narayana polynomials and their ordinary 
generating function

∞∑
n=0

Pn(x, y, 0, 0) tn = 1

1 − xt

1 − yt

1 − xt

1 − yt

1 − · · ·

(2.115)

with coefficients α2k−1 = x, α2k = y. Specializing further to x = y = 1 we obtain the 
well-known S-fraction for the ordinary generating function of the Catalan numbers:

∞∑
n=0

Cnt
n = 1

1 − t

1 − t

1 − t

1 − · · ·

(2.116)

17 The converses are of course true in every permutation, as was observed in Section 2.1.
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with coefficients αn = 1.
More generally, we can set u1 = u2 = v1 = v2 = w = 0 in (2.19); or even more 

generally, we can set u1 = u2 = v1 = v2 = 0 and w� = 0 for � ≥ 1 in (2.23) or (2.51). 
Taking the latter leads to the J-fraction

∞∑
n=0

Qn(x1, x2, y1, y2, 0, 0, 0, 0, w0,0, p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s) tn =

1

1 − w0t−
x1y1t

2

1 − (x2 + y2)t−
p−1p+1x1y1t

2

1 − (p−2x2 + p+2y2)t−
p2
−1p

2
+1x1y1t

2

1 − · · ·

(2.117)

with coefficients

γ0 = w0 (2.118a)

γn = pn−1
−2 x2 + pn−1

+2 y2 for n ≥ 1 (2.118b)

βn = pn−1
−1 pn−1

+1 x1y1 (2.118c)

Note that q±1, q±2, s do not enter here; this is because:

Lemma 2.17. A 321-avoiding permutation cannot have an upper nesting, lower nesting, 
upper pseudo-nesting or lower pseudo-nesting.

Proof. Suppose that σ ∈ Sn has an upper nesting or pseudo-nesting, i.e. there exist 
i, j ∈ [n] such that i < j ≤ σ(j) < σ(i). Now partition [n] = [1, j] ∪ [j + 1, n]. There is at 
least one arc of σ running from [1, j] to [j + 1, n] — namely, the arc from i to σ(i) — so 
there must be at least one arc running in the opposite direction, i.e. there exists k > j

such that σ(k) ≤ j. And in case σ(j) = j, then we must have σ(k) < j. So σ(k) < σ(j), 
contradicting the hypothesis that σ is 321-avoiding. An analogous proof works if σ has 
a lower nesting or pseudo-nesting. �

We can also get an S-fraction by setting u = v = 0 in (2.58); this leads to

∞∑
Pn(x, y, 0, 0, p+, p−, q+, q−) tn =
n=0
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1

1 − xt

1 − yt

1 − p−xt

1 − p+yt

1 − p2
−xt

1 − p2
+yt

1 − · · ·

(2.119)

with coefficients

α2k−1 = pk−1
− x (2.120a)

α2k = pk−1
+ y (2.120b)

2.15. Cycle-alternating permutations

A permutation σ is called cycle-alternating if it has no cycle double rises, cycle double 
falls, or fixed points; thus, each cycle of σ is of even length (call it 2k) and consists of k
cycle valleys and k cycle peaks in alternation. Deutsch and Elizalde [36, Proposition 2.2]
have shown that the number of cycle-alternating permutations of [2n] is the secant num-
ber E2n (see also Biane [14]). By specializing our preceding results to suppress cycle 
double rises, cycle double falls and fixed points, we can deduce continued fractions for 
the ordinary generating functions of polynomials enumerating cycle-alternating permu-
tations with a variety of record and crossing/nesting statistics.

The simplest such result is obtained by setting x2 = y2 = u2 = v2 = w� = 0 in 
Theorem 2.2. Then all the coefficients γn in the J-fraction vanish, so that we obtain an 
S-fraction in the variable t2 that enumerates cycle-alternating permutations according 
to their record statistics. Changing t2 to t, we have:

Theorem 2.18 (S-fraction for cycle-alternating permutations). The ordinary generating 
function of the polynomials

Q2n(x1, 0, y1, 0, u1, 0, v1, 0,0) =
∑

σ∈Sca
2n

x
eareccpeak(σ)
1 y

ereccval(σ)
1 u

nrcpeak(σ)
1 v

nrcval(σ)
1

(2.121)
enumerating cycle-alternating permutations according to their record statistics has the 
S-type continued fraction

∞∑
n=0

Q2n(x1, 0, y1, 0, u1, 0, v1, 0,0) tn = 1

1 − x1y1t

1 − (x1 + u1)(y1 + v1)t

1 − (x1 + 2u1)(y1 + 2v1)t

(2.122)
1 − · · ·
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with coefficients

αn = [x1 + (n− 1)u1] [y1 + (n− 1)v1] . (2.123)

In particular, specializing to x1 = y1 = u1 = v1 = 1, we obtain the well-known 
[92,103] [53, Theorem 3B(iii)] S-fraction expansion of the ordinary generating function 
of the secant numbers:

∞∑
n=0

E2nt
n = 1

1 − 12t

1 − 22t

1 − 32t

1 − · · ·

(2.124)

with coefficients αn = n2.
More generally, we can make the corresponding specialization in Theorem 2.7 and 

thereby include crossing and nesting statistics:

Theorem 2.19 (S-fraction for cycle-alternating permutations, p, q-generalization). The 
ordinary generating function of the polynomials

Q2n(x1, 0, y1, 0, u1, 0, v1, 0,0, p+1, 0, p−1, 0, q+1, 0, q−1, 0, 0) =

∑
σ∈Sca

2n

x
eareccpeak(σ)
1 y

ereccval(σ)
1 u

nrcpeak(σ)
1 v

nrcval(σ)
1 ×

p
ucrosscval(σ)
+1 p

lcrosscpeak(σ)
−1 q

unestcval(σ)
+1 q

lnestcpeak(σ)
−1 (2.125)

enumerating cycle-alternating permutations according to their record and crossing/nest-
ing statistics has the S-type continued fraction

∞∑
n=0

Q2n(x1, 0, y1, 0, u1, 0, v1, 0,0, p+1, 0, p−1, 0, q+1, 0, q−1, 0, 0) tn =

1

1 − x1y1t

1 − (p−1x1 + q−1u1)(p+1y1 + q+1v1)t

1 − (p2
−1x1 + q−1[2]p−1,q−1u1)(p2

+1y1 + q+1[2]p+1,q+1v1)t
1 − · · ·

(2.126)

with coefficients

αn = (pn−1
−1 x1 + q−1 [n− 1]p−1,q−1u1) (pn−1

+1 y1 + q+1 [n− 1]p+1,q+1v1) . (2.127)

Most generally, we can set c = d = e = 0 in the first master J-fraction for permuta-
tions (Theorem 2.9) to obtain:
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Theorem 2.20 (First master S-fraction for cycle-alternating permutations). The ordinary 
generating function of the polynomials

Q2n(a,b,0,0,0) =
∑

σ∈Sca
2n

∏
i∈cval

aucross(i,σ), unest(i,σ)
∏

i∈cpeak
blcross(i,σ), lnest(i,σ) (2.128)

enumerating cycle-alternating permutations has the S-type continued fraction

∞∑
n=0

Q2n(a,b,0,0,0) tn = 1

1 − a00b00t

1 − (a01 + a10)(b01 + b10)t

1 − (a02 + a11 + a20)(b02 + b11 + b20)t
1 − · · ·

(2.129)

with coefficients

αn = a�n−1 b�n−1 (2.130)

where a�n−1
def=

n−1∑
�=0

a�,n−1−� and likewise for b.

We can also obtain a second S-fraction for cycle-alternating permutations by setting 
x2 = y2 = u2 = v2 = w� = 0 in Theorem 2.4: this allows us to include the counting of 
cycles (λ), but at the expense of ignoring the record status of cycle valleys (v1 = y1). 
We have:

Theorem 2.21 (Second S-fraction for cycle-alternating permutations). The ordinary gen-
erating function of the polynomials

Q̂2n(x1, 0, y1, 0, u1, 0, y1, 0,0, λ) =
∑

σ∈Sca
2n

x
eareccpeak(σ)
1 u

nrcpeak(σ)
1 y

cval(σ)
1 λcyc(σ) (2.131)

has the S-type continued fraction

∞∑
n=0

Q̂2n(x1, 0, y1, 0, u1, 0, y1, 0,0, λ) tn = 1

1 − λx1y1t

1 − (λ + 1)(x1 + u1)y1t

1 − (λ + 2)(x1 + 2u1)y1t

1 − · · ·

(2.132)

with coefficients

αn = (λ + n− 1) [x1 + (n− 1)u1] y1 . (2.133)
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Note that here the variable y1 is redundant, as it can be absorbed into x1 and u1. 
This reflects the fact that for cycle-alternating permutations one has cval = cpeak =
eareccpeak + nrcpeak.

More generally, we can make the corresponding specialization in Theorem 2.12 and 
thereby include crossing and nesting statistics (again subject to the specialization v1 =
y1):

Theorem 2.22 (Second S-fraction for cycle-alternating permutations, p, q-generalization). 
The ordinary generating function of the polynomials

Q̂2n(x1, 0, y1, 0, u1, 0, y1, 0,0, p+1, 0, p−1, 0, q+1, 0, q−1, 0, 0, λ) =

∑
σ∈Sca

2n

x
eareccpeak(σ)
1 u

nrcpeak(σ)
1 y

cval(σ)
1 ×

p
ucrosscval(σ)
+1 p

lcrosscpeak(σ)
−1 q

unestcval(σ)
+1 q

lnestcpeak(σ)
−1 λcyc(σ) (2.134)

has the S-type continued fraction

∞∑
n=0

Q̂2n(x1, 0, y1, 0, u1, 0, y1, 0,0, p+1, 0, p−1, 0, q+1, 0, q−1, 0, 0, λ) tn =

1

1 − λx1y1t

1 − (λ + 1)(p−1x1 + q−1u1)p+1y1t

1 − (λ + 2)(p2
−1x1 + q−1[2]p−1,q−1u1)p2

+1y1t

1 − · · ·

(2.135)

with coefficients

αn = (λ + n− 1) (pn−1
−1 x1 + q−1 [n− 1]p−1,q−1u1) pn−1

+1 y1 . (2.136)

Most generally, we can set c = d = e = 0 in the second master J-fraction for permu-
tations (Theorem 2.14) to obtain:

Theorem 2.23 (Second master S-fraction for cycle-alternating permutations). The ordi-
nary generating function of the polynomials

Q̂2n(a,b,0,0,0, λ)

=
∑

σ∈Sca
2n

λcyc(σ)
∏

i∈cval
aucross(i,σ)+unest(i,σ)

∏
i∈cpeak

blcross(i,σ), lnest(i,σ) (2.137)

has the S-type continued fraction
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∞∑
n=0

Q̂2n(a,b,0,0,0, λ) tn = 1

1 − λa0b00t

1 − (λ + 1)a1(b01 + b10)t

1 − (λ + 2)a2(b02 + b11 + b20)t
1 − · · ·

(2.138)

with coefficients

αn = (λ + n− 1) an−1 b�n−1 (2.139)

where b�n−1
def=

n−1∑
�=0

b�,n−1−�.

A final remark. In Section 4 we will enumerate perfect matchings — which are a subclass 
of cycle-alternating permutations — with distinct weights for even and odd cycle peaks. 
On the other hand, Dumont [39,40] has shown that if one enumerates all permutations 
with distinct weights for even and odd cycle peaks, one obtains the Schett polynomials, 
which are closely related to the Jacobian elliptic functions. It would be interesting to 
know whether any of our S-fractions for cycle-alternating permutations can likewise be 
refined by giving distinct weights for even and odd cycle peaks. �

2.16. A remark on the inversion statistic

An inversion of a permutation σ ∈ Sn is a pair (i, j) ∈ [n] × [n] such that i < j and 
σ(i) > σ(j). We write

inv(σ) def= #{(i, j) : i ≤ j and σ(i) > σ(j)} (2.140)

for the number of inversions in σ. Note that inv(σ) = inv(σ−1).
De Médicis and Viennot [35, Lemme 3.1] gave an expression for inv(σ) that can be 

translated into our language as follows (see also [96, eq. (40)]):

Proposition 2.24. We have

inv = exc + (ucross + 2 unest) + (lcross + ljoin + 2 lnest + 2 lpsnest) (2.141a)

= cval + cdrise + cdfall + ucross + lcross + 2(unest + lnest + psnest)

(2.141b)

Note that (2.141b) is invariant under σ ↔ σ−1, since cval(σ) = cval(σ−1), cdrise(σ) =
cdfall(σ−1), ucross(σ) = lcross(σ−1), unest(σ) = lnest(σ−1) and psnest(σ) =
psnest(σ−1).

Since the proof of Proposition 2.24 given in [35] is rather lengthy, for completeness let 
us give a short proof. This proof is based on the following pair of identities [28, Lemma 8]:
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Lemma 2.25. For any permutation σ, we have

#{(i, j) : i ≤ j < σ(i) and σ(j) > j} = #{(i, j) : σ(i) < σ(j) ≤ i and σ(j) > j}
(2.142)

#{(i, j) : i ≤ j < σ(i) and σ(j) ≤ j} = #{(i, j) : σ(i) < σ(j) ≤ i and σ(j) ≤ j}
(2.143)

Proof of Lemma 2.25. The equality (2.142) was proven by Clarke [27, Lemma 3]. To 

prove (2.143), note that 
n∑

i=1
[σ(i) − i] = 0 and hence 

∑
i : σ(i)>i

[σ(i) − i] =
∑

i : σ(i)<i

[i −σ(i)], 

or in other words

#{(i, j) : i ≤ j < σ(i)} = #{(i, j) : σ(i) < σ(j) ≤ i} . (2.144)

Subtracting (2.142) from (2.144) yields (2.143). �
Proof of Proposition 2.24. Let us begin by observing that (2.142) and (2.143) can be 
rewritten, by consideration of cases, as

#{(i, j) : i ≤ j < σ(i) and σ(j) > j} = exc + ucross + unest (2.145)

#{(i, j) : σ(i) < σ(j) ≤ i and σ(j) ≤ j} = ljoin + lcross + lnest + lpsnest
(2.146)

Let us now divide the set of inversion pairs {(i, j) : i < j and σ(i) > σ(j)} into three 
classes:

1) σ(i) ≤ i [hence σ(j) < σ(i) ≤ i < j];
2) σ(i) > i and σ(j) ≥ j [hence i < j ≤ σ(j) < σ(i)];
3) σ(i) > i and σ(j) < j.

The first class yields lnest + lpsnest. The second class yields unest + upsnest. Let us 
divide the third class into two subclasses:

3a) σ(i) > i and σ(j) < j and σ(i) ≤ j [hence σ(j) < σ(i) ≤ j and σ(i) > i];
3b) σ(i) > i and σ(j) < j and σ(i) > j [hence i < j < σ(i) and σ(j) < j].

Class (3a) is the right-hand side of (2.142) [with i ↔ j], which by (2.142)/(2.145) equals 
exc + ucross + unest. On the other hand, the left-hand side of (2.143) can be rewritten 
as #{(i, j) : i < j < σ(i) and σ(j) ≤ j} (since i = j contradicts the other inequalities), 
which in turn equals class (3b) plus upsnest; therefore, by (2.143)/(2.146), class (3b) 
yields ljoin + lcross + lnest (since upsnest = lpsnest). Combining classes (1), (2), (3a) 
and (3b) and using upsnest = lpsnest gives (2.141a). �
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See also the end of Section 6.2 for an alternate proof of Proposition 2.24 based on the 
Biane bijection to labeled Motzkin paths.

Using Proposition 2.24, results involving inv can be translated to the cycle, crossing 
and nesting statistics, which in our opinion are more fundamental. For instance, we see 
from (2.141b) that Zeng’s [113] S-fraction for the weights aarec(σ)berec(σ)qinv(σ) is the 
special case of Theorem 2.8 with

x = a, y = qb, u = 1, v = q, p+ = p− = q, q+ = q− = q2 , (2.147)

as already remarked in Section 2.6. See also [115, eqns. (2.3) and (3.2)] for the 
special case b = 1. Similarly, Elizalde’s [47, eqn. (4)] J-fraction for the weights 
acval(σ)bcdrise(σ)wfix(σ)qinv(σ) is the special case of Theorem 2.7 with

x1 = u1 = 1, x2 = u2 = q, y1 = v1 = qa, y2 = v2 = qb, w� = w ∀�,
p+1 = p+2 = p−1 = p−2 = q, q+1 = q+2 = q−1 = q−2 = q2, s = q2 . (2.148)

Indeed, we can obtain a more general J-fraction with weights acval(σ)bcdrise(σ)ccpeak(σ)

dcdfall(σ)wfix(σ)qinv(σ) by specializing Theorem 2.7 to

x1 = u1 = c, x2 = u2 = qd, y1 = v1 = qa, y2 = v2 = qb, w� = w ∀�,
p+1 = p+2 = p−1 = p−2 = q, q+1 = q+2 = q−1 = q−2 = q2, s = q2 , (2.149)

yielding continued-fraction coefficients

γn = qn [n]q (b + d) + λq2nw (2.150a)

βn = q2n−1 [n]2q ac (2.150b)

as a specialization of (2.54).

Remark. Note that we are unable to include an additional weight λcyc(σ) in this latter 
J-fraction, because Theorem 2.12 requires q+1 = p+1 and q+2 = p+2, which are not the 
case in (2.149). This inability to include the weight λcyc(σ) is not merely a limitation of 
our method of proof, but is inherent in the problem. Indeed, even the simpler weight 
qinv(σ)λcyc(σ) gives rise to a J-fraction with coefficients that are rational functions rather 
than polynomials: the first coefficients are

γ0 = λ, β1 = λq, γ1 = q(2 + λq), β2 = q2(λ + 2q + λq2), (2.151)

followed by

γ2 = q2(2 + 6λq + 6q2 + λ2q2 + 4λq3 + λ2q4)
λ + 2q + λq2 . (2.152)

It can then be shown that



48 A.D. Sokal, J. Zeng / Advances in Applied Mathematics 138 (2022) 102341
(a) γ2 is a polynomial in λ if and only if q ∈ {−1, 0, +1, −i, i}; and
(b) γ2 is a polynomial in q if and only if λ ∈ {−1, 0, +1}.

Note also that the cases q = ±1 and λ = ±1 are reducible to the trivial cases q = 1 or 
λ = 1 by exploiting the elementary identity inv(σ) + cyc(σ) = n mod 2. �

Similarly, Elizalde’s [47, section 4.2] J-fraction for 321-avoiding permutations with the 
weights acval(σ)bcdrise(σ)w

rar(σ)
0 qinv(σ) is the special case of (2.117)/(2.118) with

x1 = 1, x2 = q, y1 = qa, y2 = qb, p+1 = p+2 = p−1 = p−2 = q . (2.153)

Finally, Biane [14, section 6] has given a q-analogue of (2.124), by defining the q-secant 
numbers in terms of cycle-alternating permutations:

E2n(q) def=
∑

σ∈Sca
2n

qinv(σ) . (2.154)

Since a cycle-alternating permutation cannot have any cycle double rises, cycle double 
falls or fixed points, the identity (2.141) specializes in this case to

inv = cval + ucross + lcross + 2(unest + lnest) . (2.155)

Applying Theorem 2.19 with

x1 = u1 = 1, y1 = v1 = q, p+1 = p−1 = q, q+1 = q−1 = q2 , (2.156)

we obtain an S-fraction with coefficients

αn = q2n−1 [n]2q , (2.157)

exactly as given by Biane [14].

2.17. A remark on linear statistics

In this paper we have studied the classification of indices i ∈ [n] in a permutation 
σ ∈ Sn according to cyclic statistics, i.e. cycle peak, cycle valley, cycle double rise, cycle 
double fall, and fixed point. An alternative classification involves linear statistics, i.e. 
classifying indices i ∈ [n] as

• peak: σ(i − 1) < σ(i) > σ(i + 1);
• valley: σ(i − 1) > σ(i) < σ(i + 1);
• double rise: σ(i − 1) < σ(i) < σ(i + 1);
• double fall: σ(i − 1) > σ(i) > σ(i + 1).
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However, in order to define the linear statistics it is necessary to adopt boundary con-
ditions at the two ends (i = 0 and i = n + 1): namely, at each end we can set σ to 
be either 0 (or equivalently −∞), n + 1 (or equivalently +∞), or “undefined” — where 
an inequality involving “undefined” is considered to be automatically false. (Thus, for 
instance, if σ(0) = undefined, then we count peaks, valleys, double rises and double falls 
only starting at i = 2.) So there are nine possible combinations of boundary conditions, 
of which four are essentially distinct:

• σ(0) = σ(n + 1) = 0 [or the “dual” σ(0) = σ(n + 1) = n + 1];
• σ(0) = 0 and σ(n + 1) = n + 1 [or the “dual” σ(0) = n + 1 and σ(n + 1) = 0];
• σ(0) = 0 and σ(n + 1) = undefined [or any of the three “duals”];
• σ(0) = σ(n + 1) = undefined.

The first two of these boundary conditions have been extensively studied (e.g. [59,114]), 
and some limited sets of statistics (e.g. only peaks) have been studied under all of these 
boundary conditions (e.g. [75,85,116]).

It would be an interesting project to study the joint distribution of the four linear 
statistics — possibly along with other statistics — under each of the four possible bound-
ary conditions, and to obtain continued fractions for the associated ordinary generating 
functions. We can imagine at least two ways in which this could be done: by transforming 
our results for cyclic statistics using Foata’s fundamental transformation [57, section 1.3]
[101, pp. 17–18] [17, section 3.3.1] or some other bijection (e.g. [28, section 5]); or alterna-
tively by imitating our proofs in Section 6 but using the Françon–Viennot [59] bijection 
in place of the Foata–Zeilberger [58] and Biane [14] bijections.18 We must leave this 
study for future work; but we should note that an impressive start was already made 
two decades ago by Randrianarivony [88, Théorème 2].

Let us observe, finally, that there is an alternate way of getting p, q-generalizations by 
using generalized pattern avoidance instead of crossings and nestings [16,26,28,33,96,97]. 
These pattern-avoidance statistics mesh naturally with linear statistics.

3. Set partitions: statement of results

3.1. S-fraction

The Bell number Bn is, by definition, the number of partitions of an n-element set 
into nonempty blocks; by convention we set B0 = 1. The ordinary generating function 
of the Bell numbers can be represented as an S-type continued fraction

18 See [28, section 5] for a discussion of the relationship between these three bijections.
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∞∑
n=0

Bn t
n = 1

1 − 1t

1 − 1t

1 − 1t

1 − 2t
1 − · · ·

(3.1)

with coefficients α2k−1 = 1, α2k = k.19 Inspired by (3.1), let us introduce the polynomials 
Bn(x, y, v) defined by the continued fraction

∞∑
n=0

Bn(x, y, v) tn = 1

1 − xt

1 − yt

1 − xt

1 − (y + v)t

1 − xt

1 − (y + 2v)t
1 − · · ·

(3.2)

with coefficients

α2k−1 = x (3.3a)

α2k = y + (k − 1)v (3.3b)

Clearly Bn(x, y, v) is a homogeneous polynomial of degree n; it therefore has two “truly 
independent” variables. Since Bn(1, 1, 1) = Bn, it is plausible to expect that Bn(x, y, v)
enumerates partitions of the set [n] according to some natural bivariate statistic. Of 
course Bn(x, y, v) is simply Pn(x, y, u, v) [cf. (2.2)] specialized to u = 0; but our goal 
here is to interpret it in terms of set partitions, not permutations. Our result is:

Theorem 3.1 (S-fraction for set partitions). The polynomials Bn(x, y, v) defined by 
(3.2)/(3.3) have the combinatorial interpretation

Bn(x, y, v) =
∑
π∈Πn

x|π|yerec(π)vn−|π|−erec(π) (3.4)

where |π| [resp. erec(π)] denotes the number of blocks (resp. exclusive records) in π.

19 We are not sure where the S-fraction (3.1) first appeared. The J-fraction that is equivalent to (3.1) by 
contraction (1.3) was found by Touchard [108, section 4] in 1956 (up to a change of variables x = 1/t). 
Flajolet [53, Theorem 2(ia)] gave a combinatorial proof of this J-fraction; and he observed [53, pp. 141–142]
that this J-fraction is implicit in the three-term recurrence relation for the Poisson–Charlier polynomials 
[24, p. 25, Exercise 4.10]. The S-fraction (3.1) — as well as some q-generalizations — can be derived directly 
from the functional equation satisfied by the ordinary generating function ∑∞

n=0 Bnt
n: see [42] [115, proof 

of Lemma 3] for this elegant method. The S-fraction (3.1) is also a straightforward consequence of Aigner’s 
[1] evaluation of the zero-shifted and once-shifted Hankel determinants of the Bell numbers. However, there 
may well be earlier references (for either the S-fraction or the J-fraction) of which we are unaware; we would 
be grateful to readers for drawing our attention to them.
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We need to explain what we mean by an “exclusive record” of a set partition π. First 
of all, given a partition π of [n], we say that an element i ∈ [n] is

• an opener if it is the smallest element of a block of size ≥ 2;
• a closer if it is the largest element of a block of size ≥ 2;
• an insider if it is a non-opener non-closer element of a block of size ≥ 3;
• a singleton if it is the sole element of a block of size 1.

Clearly every element i ∈ [n] belongs to precisely one of these four classes.
Then we define “exclusive record” as follows: For i ∈ [n], write Bπ(i) for the block of 

π containing i, and then define σ′(i) to be the next-larger element of Bπ(i) after i, if i
is not the largest element of Bπ(i), and 0 otherwise. We then say that an index i ∈ [n]
is an exclusive record of π if it is a nonzero record of the word σ′, i.e. if σ′(i) �= 0 and 
σ′(j) < σ′(i) for all j < i. Pictorially, we can say that i is an exclusive record of π if 
it is not the largest element of its block (that is, it is either an opener or an insider) 
and its right neighbor (within its block) sticks out farther to the right than any right 
neighbor (within its block) of a vertex < i. In Section 3.7 we will reinterpret the notion 
of exclusive record in terms of nestings.

Since every exclusive record is either an opener or an insider, while |π| equals the num-
ber of closers plus the number of singletons, it follows that n− |π| − erec(π) counts the 
openers and insiders that are not exclusive records. In particular, n− |π| − erec(π) ≥ 0, 
so that the right-hand side of (3.4) is indeed a polynomial.

We will prove Theorem 3.1 in Section 7.1.

Remarks. 1. For the special case y = v, i.e. the Bell polynomials

Bn(x) = Bn(x, 1, 1) =
∑
π∈Πn

x|π| =
n∑

k=0

{
n

k

}
xk (3.5)

or their homogenization, Flajolet [53, Theorem 2(ib)] found a J-type continued fraction 
that is equivalent by contraction (1.3) to the specialization of (3.2). Later, Dumont [42]
found the S-fraction directly by a functional-equation method, and one of us used this 
same method to find [115, Lemma 3] two q-generalizations of the S-fraction (these will 
be discussed in Section 3.11 below).

2. The triangular array corresponding to the polynomials Bn(x, 1, x) can be found 
in [83, A085791], but without a combinatorial interpretation. The sub-triangular array 
corresponding to the polynomials Bn(1, 1, v), which interpolate between the Catalan 
numbers (v = 0) and the Bell numbers (v = 1), is apparently not in [83]. �
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3.2. J-fraction

We can refine the polynomial Bn(x, y, v) by distinguishing between singletons and 
blocks of size ≥ 2; in addition, we can distinguish between exclusive records that are 
openers and those that are insiders; and finally, among indices that are not exclusive 
records, we can also distinguish those that are openers from those that are insiders. 
That is, we define

Bn(x1, x2, y1, y2, v1, v2) =
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 y

erecin(π)
1 y

erecop(π)
2 v

nerecin(π)
1 v

nerecop(π)
2 ,

(3.6)
where m1(π) is the number of singletons in π, m≥2(π) is the number of non-singleton 
blocks (or equivalently the number of closers), erecin(π) is the number of insiders that 
are exclusive records, erecop(π) is the number of openers that are exclusive records, 
nerecin(π) is the number of insiders that are not exclusive records, and nerecop(π) is the 
number of openers that are not exclusive records. We then have a nice J-fraction:

Theorem 3.2 (J-fraction for set partitions). The ordinary generating function of the poly-
nomials Bn(x1, x2, y1, y2, v1, v2) has the J-type continued fraction

∞∑
n=0

Bn(x1, x2, y1, y2, v1, v2) tn =

1

1 − x1t−
x2y2t

2

1 − (x1 + y1)t−
x2(y2 + v2)t2

1 − (x1 + y1 + v1)t−
x2(y2 + 2v2)t2

1 − · · ·

(3.7)

with coefficients

γ0 = x1 (3.8a)

γn = x1 + y1 + (n− 1)v1 for n ≥ 1 (3.8b)

βn = x2 [y2 + (n− 1)v2] (3.8c)

We will prove this theorem in Section 7.2, as a special case of a more general result. The 
case y1 = y2 = v1 = v2 was obtained previously by Flajolet [53, Theorem 2].

When specialized to x1 = x2 and y1 = y2 and v1 = v2, (3.6) reduces to (3.4), and 
the J-fraction (3.7) is the contraction (1.3) of the S-fraction (3.2). So Theorem 3.1 is a 
corollary of a special case of Theorem 3.2.

Warning: Because we have chosen to define x1 and x2 as conjugate to m1(π) and 
m≥2(π), respectively, the meaning of the subscripts 1 and 2 in the continued fraction 
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(3.7) is reversed vis-à-vis our usage for permutations (compare Theorem 3.2 with Theo-
rem 2.2).

Remark. By setting y1 = v1 = 0, we can suppress insiders and thereby restrict the sum to 
set partitions in which every block is of size either 1 or 2. (These are in obvious bijection 
with involutions, i.e. permutations in which every cycle is of length either 1 or 2.) The 
resulting J-fraction (3.7)/(3.8) has γn = x1 for all n, which means [2, eq. (6.15)] [9, 
Proposition 4] that the polynomials Bn(x1, x2, 0, y2, 0, v2) are the x1-binomial transform 
of the polynomials Bn(0, x2, 0, y2, 0, v2) = xn

2Bn(0, 1, 0, y2, 0, v2) that enumerate perfect 
matchings:

Bn(x1, x2, 0, y2, 0, v2) =
n∑

k=0

(
n

k

)
Bk(0, x2, 0, y2, 0, v2) xn−k

1 . (3.9)

This relation is also obvious combinatorially. See Section 4 for more information on 
perfect matchings. �

3.3. First p,q-generalization: crossings and nestings

Let π = {B1, B2, . . . , B|π|} be a partition of [n]. We associate to the partition π

a graph Gπ with vertex set [n] such that i, j are joined by an edge if and only if they 
are consecutive elements within the same block.20 (The graph Gπ thus has |π| connected 
components and n − |π| edges.) We always write an edge e of Gπ as a pair (i, j) with 
i < j. We then say that a quadruplet i < j < k < l forms a

• crossing (cr) if (i, k) ∈ Gπ and (j, l) ∈ Gπ [note that i, k and j, l must then belong to 
different blocks];

• nesting (ne) if (i, l) ∈ Gπ and (j, k) ∈ Gπ [note that i, l and j, k must then belong to 
different blocks].

We also consider the “degenerate” case with j = k, by saying that a triplet i < j < l

forms a

• pseudo-nesting (psne) if j is a singleton and (i, l) ∈ Gπ.

See Fig. 4. We define cr(π) [resp. ne(π), psne(π)] to be number of crossings (resp. nestings, 
pseudo-nestings) in π.

We now introduce a p, q-generalization of the polynomial (3.6):

Bn(x1, x2, y1, y2, v1, v2, p, q, r)

20 Kasraoui and Zeng [69] call this the partition graph associated to π; Mansour [80, Definition 3.50] calls 
it the standard representation of π.
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Fig. 4. Crossing, nesting and pseudo-nesting for set partitions.

Fig. 5. Refined categories of crossing and nesting for set partitions. Here a large circle marks an opener.

=
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 y

erecin(π)
1 y

erecop(π)
2 v

nerecin(π)
1 v

nerecop(π)
2 pcr(π)qne(π)rpsne(π) .

(3.10)

These polynomials have a nice J-fraction, as we shall see.
But we can go farther, and refine the categories of crossing and nesting by analogy with 

what was done for permutations in Section 2.5. Let us say that a quadruplet i < j < k < l

forms a

• crossing of opener type (crop) if (i, k) ∈ Gπ and (j, l) ∈ Gπ and j is an opener;
• crossing of insider type (crin) if (i, k) ∈ Gπ and (j, l) ∈ Gπ and j is an insider;
• nesting of opener type (neop) if (i, l) ∈ Gπ and (j, k) ∈ Gπ and j is an opener;
• nesting of insider type (nein) if (i, l) ∈ Gπ and (j, k) ∈ Gπ and j is an insider.

See Fig. 5. Please note that here the distinguished index j is the one in second posi-
tion. The categories crop, crin, neop, nein for set partitions correspond, respectively, to 
ucrosscval, ucrosscdrise, unestcval, unestcdrise for permutations, under a mapping that 
will be discussed in Section 3.7 below.
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Let us now define the refined polynomial

Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r)

=
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 y

erecin(π)
1 y

erecop(π)
2 v

nerecin(π)
1 v

nerecop(π)
2 ×

p
crin(π)
1 p

crop(π)
2 q

nein(π)
1 q

neop(π)
2 rpsne(π) . (3.11)

(Thus, the variables y1, v1, p1, q1 are associated with insiders; y2, v2, p2, q2 are associated 
with openers; x1 and r are associated with singletons; and x2 can be interpreted as 
associated with closers.) These polynomials have a nice J-fraction:

Theorem 3.3 (J-fraction for set partitions, first p, q-generalization). The ordinary gen-
erating function of the polynomials Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) has the J-type 
continued fraction

∞∑
n=0

Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) tn =

1

1 − x1t−
x2y2t

2

1 − (rx1 + y1)t−
x2(p2y2 + q2v2)t2

1 − (r2x1 + p1y1 + q1v1)t−
x2(p2

2y2 + q2 [2]p2,q2v2)t2

1 − · · ·

(3.12)

with coefficients

γ0 = x1 (3.13a)

γn = rnx1 + pn−1
1 y1 + q1 [n− 1]p1,q1v1 for n ≥ 1 (3.13b)

βn = x2 (pn−1
2 y2 + q2 [n− 1]p2,q2v2) (3.13c)

We will prove this theorem in Section 7.2, as a special case of a more general result.
Note that βn is homogeneous of degree n − 1 in the pair (p2, q2). So if we multiply 

both p2 and q2 by C, this has the effect of multiplying βn by Cn−1.
Note also that when yi = vi (for i = 1 and/or 2), the weight pn−1

i yi + qi [n − 1]pi,qivi
simplifies to [n]pi,qiyi. In this case the weights (3.13) are invariant under pi ↔ qi. (In par-
ticular, if y1 = v1 and y2 = v2, then the weights are invariant under the independent
interchanges p1 ↔ q1 and p2 ↔ q2.) It would be interesting to find a bijective proof of 
these symmetries.
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In particular, the specialization y1 = y2 = v1 = v2, p1 = p2, q1 = q2 and r = 1 of 
Theorem 3.3 was proven earlier by Kasraoui and Zeng [69, Proposition 4.1]. In this spe-
cialization, the symmetry p ↔ q is also a consequence of Kasraoui–Zeng’s [69] bijection 
that interchanges crossings and nestings while preserving various other statistics.

When specialized to x1 = x2, y1 = y2, v1 = v2, p2 = rp1 and q2 = rq1, the J-fraction 
(3.12) arises as the contraction (1.3) of an S-fraction with polynomial coefficients:

Corollary 3.4 (S-fraction for set partitions, first p, q-generalization). The ordinary gen-
erating function of the polynomials Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) specialized to 
x1 = x2, y1 = y2, v1 = v2, p2 = rp1, q2 = rq1 has the S-type continued fraction

∞∑
n=0

Bn(x, x, y, y, v, v, p, rp, q, rq, r) tn = 1

1 − xt

1 − yt

1 − rxt

1 − (py + qv)t

1 − r2xt

1 − (p2y + q [2]p,qv)t
1 − · · ·

(3.14)
with coefficients

α2k−1 = rk−1x (3.15a)

α2k = pk−1y + q [k − 1]p,qv (3.15b)

Remark. Josuat-Vergès and Rubey [67, Theorem 1.2] have given an explicit formula for 
[xk] Bn(x, x, 1, 1, 1, 1, 1, 1, q, q, 1), which enumerates the partitions of [n] with k blocks 
according to the number of nestings (or crossings). This formula is analogous to, but 
more complicated than, the Touchard–Riordan formula for perfect matchings given in 
(4.28) below. �

3.4. Second p,q-generalization: overlaps and coverings

We can form a different type of p, q-generalization by looking at the crossings and 
nestings of entire blocks rather than nearest-neighbor edges. We say that blocks B1 and 
B2 of π form

• an overlap if minB1 < minB2 < maxB1 < maxB2;
• a covering if minB1 < minB2 < maxB2 < maxB1;
• a pseudo-covering if minB1 < minB2 = maxB2 < maxB1 (so that here B2 is a 

singleton).
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Fig. 6. Overlap, covering and pseudo-covering for set partitions. The line segments represent the intervals 
[minB1, maxB1] and [minB2, maxB2]. Only the smallest and largest elements of each block are shown 
explicitly with a dot.

See Fig. 6. We write ov(π), cov(π) and pscov(π) for the number of overlaps, coverings 
and pseudo-coverings in π, respectively.

Let us also observe that pscov(π) = psne(π): for if B2 = {j} is a singleton and 
minB1 < j < maxB1, then there is precisely one edge (i, l) ∈ Gπ with i, l ∈ B1 such 
that i < j < l. So pseudo-coverings and pseudo-nestings are two different names for the 
same quantity.

Let us now define two related quantities:

ovin(π)

=
∑

j∈insiders
#{(B1, B2) : j ∈ B2 and minB1 < j < maxB1 < maxB2} (3.16a)

covin(π)

=
∑

j∈insiders
#{(B1, B2) : j ∈ B2 and minB1 < j < maxB2 < maxB1} (3.16b)

Here j is explicitly required to be an insider of the block B2 (not an opener). Let us 
stress, however, that both possible inequalities of minB1 and minB2 are allowed, with 
opposite effect:

• If minB1 < minB2, then the pair (B1, B2) contributing to ovin (resp. covin) is an 
overlap (resp. covering).

• If minB1 > minB2, then the pair (B1, B2) contributing to ovin (resp. covin) is a 
covering (resp. overlap).

The motivation for these somewhat strange definitions will become apparent in Sec-
tion 3.9.

Along with these definitions, we can introduce a different notion of record that is 
better adapted to overlaps and coverings. Recall that j is an exclusive record of π if it is 
either an opener or an insider and its right neighbor (within its block) sticks out farther 
to the right than any previous right neighbor as we read the graph Gπ from left to right. 
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Let us now say that j is a block-record if it is either an opener or an insider and its block
sticks out farther to the right than any block containing a vertex < j. That is, j is a 
block-record if it is an opener or insider of a block B and there does not exist a block 
B′ satisfying minB′ < j < maxB < maxB′. We write brec(π) for the number of block-
records in π; and more specifically, we write brecin(π) for the number of insiders that are 
block-records, brecop(π) for the number of openers that are block-records, nbrecin(π)
for the number of insiders that are not block-records, and nbrecop(π) for the number 
of openers that are not block-records. In Section 3.9 we will reinterpret the notion of 
block-record in terms of coverings.

We now define a polynomial that is analogous to (3.11) but uses block-records, over-
laps, coverings and pseudo-coverings in place of exclusive records, crossings, nestings and 
pseudo-nestings:

B(2)
n (x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r)

=
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 y

brecin(π)
1 y

brecop(π)
2 v

nbrecin(π)
1 v

nbrecop(π)
2 ×

p
ovin(π)
1 p

ov(π)
2 q

covin(π)
1 q

cov(π)
2 rpscov(π) . (3.17)

It turns out that these polynomials are not merely analogous to (3.11); they are identical
to (3.11):

Theorem 3.5. We have

B(2)
n (x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) = Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) .

(3.18)

We will prove this theorem in Sections 7.2 and 7.3, by showing that both polynomials 
have the same J-fraction (3.12)/(3.13). It would be interesting to find a direct bijective 
proof of the identity (3.18).

Historical remark. Our introduction of overlaps and coverings is inspired by the work of 
Flajolet and Schott [55] and Claesson [25]. Flajolet and Schott considered nonoverlapping
partitions (i.e. partitions with no overlaps) and gave [55, eq. (27)] a J-fraction for the 
weight x|π|, i.e. (3.12)/(3.13) reinterpreted using Theorem 3.5 and then specialized to 
x1 = x2 = x, y1 = y2 = v1 = v2 = 1, p1 = 1, p2 = 0 and q1 = q2 = r = 1: namely, 
γn = x + n and βn = x. Claesson considered monotone partitions (i.e. partitions with 
no coverings) and constructed a bijection between them and nonoverlapping partitions 
[25, Proposition 6]; he also related them to permutations that avoid certain generalized 
patterns. To our knowledge, no one has heretofore considered giving weights (other than 
0 or 1) to overlaps and coverings. �



A.D. Sokal, J. Zeng / Advances in Applied Mathematics 138 (2022) 102341 59
3.5. Some useful identities

Before proceeding further, let us record some useful identities that relate the statistics 
that have just been introduced.

To begin with, we have the trivial identities

erecop(π) + nerecop(π) = brecop(π) + nbrecop(π) (3.19a)

erecin(π) + nerecin(π) = brecin(π) + nbrecin(π) (3.19b)

in which both sides express the total number of openers (resp. insiders).
Somewhat less trivially, we have:

Lemma 3.6 (Crossings + nestings = overlaps + coverings). We have

crop(π) + neop(π) = ov(π) + cov(π) (3.20a)

crin(π) + nein(π) = ovin(π) + covin(π) (3.20b)

The proof of Lemma 3.6 is not difficult, but we defer it to Section 3.9, where it will arise 
naturally as a special case of a more general identity (see Lemma 3.11).

Finally, we have:

Lemma 3.7 (Crossings and nestings modulo 2). We have

cr(π) = crin(π) + crop(π) = ov(π) mod 2 (3.21a)

crin(π) + neop(π) = cov(π) mod 2 (3.21b)

crop(π) + nein(π) = ov(π) + ovin(π) + covin(π) mod 2 (3.21c)

ne(π) = nein(π) + neop(π) = cov(π) + ovin(π) + covin(π) mod 2 (3.21d)

Proof. We first prove (3.21a). Each pair of crossing arcs (i, k) and (j, l) must belong to 
a pair of distinct non-singleton blocks, call them B1 and B2 where minB1 < minB2; 
and the pair (B1, B2) must form either an overlap (i.e. minB1 < minB2 < maxB1 <

maxB2) or a covering (i.e. minB1 < minB2 < maxB2 < maxB1). So we shall consider 
pairs of blocks (B1, B2) of these two types, and for each such pair we shall count modulo 
2 the number of pairs of crossing arcs between B1 and B2.

Suppose first that the pair (B1, B2) forms an overlap. Then (see Fig. 7a) each arc of 
B1 is crossed either zero or two times by an arc of B2, except for the arc of B1 that 
is crossed by the opener arc of B2, which is crossed only once. So the total number of 
crossing pairs of B1 with B2 is odd.

Now suppose that the pair (B1, B2) forms a covering. Then (see Fig. 7b) each arc of 
B1 is crossed either zero or two times by an arc of B2, except for the two arcs of B1 that 
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Fig. 7. Situation in the proof of Lemma 3.7, when the pair (B1, B2) forms (a) an overlap or (b) a covering.

are crossed by the opener and closer arcs of B2, which are each crossed only once. So 
the total number of crossing pairs of B1 with B2 is even.

Summing over all pairs (B1, B2) gives (3.21a).
Then (3.21b,c,d) are an immediate consequence of (3.21a) and (3.20a,b). �

3.6. Third and fourth p,q-generalizations: crossings, nestings, overlaps and coverings

Let us now try to go even farther, by introducing a ridiculously general polynomial 
that includes both crossing-nesting and overlap-covering statistics, and both exclusive-
record and block-record statistics:

B̃n(x1, x2, y1, y2, v1, v2, y
′
1, y

′
2, v

′
1, v

′
2, p1, p2, q1, q2, p

′
1, p

′
2, q

′
1, q

′
2, r)

=
∑
π∈Πn

x
m1(π)
1 x

m≥2(π)
2 y

erecin(π)
1 y

erecop(π)
2 v

nerecin(π)
1 v

nerecop(π)
2 ×

(y′1)brecin(π)(y′2)brecop(π)(v′1)nbrecin(π)(v′2)nbrecop(π) ×
p
crin(π)
1 p

crop(π)
2 q

nein(π)
1 q

neop(π)
2 ×

(p′1)ovin(π)(p′2)ov(π)(q′1)covin(π)(q′2)cov(π) rpsne(π) . (3.22)

Of course, this polynomial is much too general to admit a J-fraction with polynomial 
coefficients; indeed, even the specialization y′1 = y′2 = v′1 = v′2 = 1 and p1 = p2 =
q1 = q2 = p′1 = q′1 = 1 does not admit such a J-fraction.21 Nevertheless, there are some 
specializations of (3.22) with a surprisingly large number of independent variables that 

21 The first coefficients of the J-fraction are

γ0 = x1, β1 = x2y2, γ1 = rx1 + y1, β2 = x2(p′
2y2 + q

′
2v2) ,

but then

γ2 = r
2
x1 +

p′
2(y1v2 + y2v1) + q′2(y1y2 + v1v2)

′ ′
p2y2 + q2v2
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do have nice J-fractions. However, it turns out that they have nice J-fractions because 
they are really just the polynomial (3.11) in disguise.

Before explaining how all this comes about, let us first note some simple homogeneities 
that arise as a result of the identities (3.19)–(3.21):

(a) Multiplying y1 and v1 by C is equivalent to multiplying y′1 and v′1 by C.
(b) Multiplying y2 and v2 by C is equivalent to multiplying y′2 and v′2 by C.
(c) Multiplying p1 and q1 by C is equivalent to multiplying p′1 and q′1 by C.
(d) Multiplying p2 and q2 by C is equivalent to multiplying p′2 and q′2 by C.
(e) Multiplying p′2 by ε = ±1 is equivalent to multiplying p1 and p2 by ε.
(f) Multiplying q′2 by ε = ±1 is equivalent to multiplying p1 and q2 by ε.

In particular, in the specializations that will be considered:

(a1) Setting y1 = v1 = C is equivalent to setting y1 = v1 = 1 and then multiplying y′1
and v′1 by C.

(a2) Setting y′1 = v′1 = C is equivalent to setting y′1 = v′1 = 1 and then multiplying y1

and v1 by C.

Similarly,

(b1) Setting y2 = v2 = C is equivalent to setting y2 = v2 = 1 and then multiplying y′2
and v′2 by C.

(b2) Setting y′2 = v′2 = C is equivalent to setting y′2 = v′2 = 1 and then multiplying y2

and v2 by C.

Likewise,

(c1) Setting p1 = q1 = C is equivalent to setting p1 = q1 = 1 and then multiplying p′1
and q′1 by C.

(c2) Setting p′1 = q′1 = C is equivalent to setting p′1 = q′1 = 1 and then multiplying p1

and q1 by C.
(d1) Setting p2 = q2 = C is equivalent to setting p2 = q2 = 1 and then multiplying p′2

and q′2 by C.
(d2) Setting p′2 = q′2 = C is equivalent to setting p′2 = q′2 = 1 and then multiplying p2

and q2 by C.

And more generally,

is not a polynomial.
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(e/f) Setting p′2 = εC and q′2 = ε̂C with ε, ̂ε ∈ {−1, 1} is equivalent to setting p′2 = q′2 = 1
and then multiplying p1 by εε̂, p2 by εC, and q2 by ε̂C.

So, in making these specializations, we might as well take C = 1 to simplify the formulae, 
while remembering that the results actually generalize to arbitrary C.

We now have:

Theorem 3.8 (Four equivalent specializations of B̃n). The following specializations of the 
polynomial B̃n(x1, x2, y1, y2, v1, v2, y′1, y

′
2, v

′
1, v

′
2, p1, p2, q1, q2, p′1, p

′
2, q

′
1, q

′
2, r) are equal:

(i) y′1 = v′1 = 1, y′2 = v′2 = 1, p′1 = q′1 = 1, p′2 = q′2 = 1.
(ii) y1 = v1 = 1, y2 = v2 = 1, p1 = q1 = 1, p2 = q2 = 1 (and then dropping primes).
(iii) y′1 = v′1 = 1, y2 = v2 = 1, p′1 = q′1 = 1, p2 = q2 = 1 (and then dropping primes).
(iv) y1 = v1 = 1, y′2 = v′2 = 1, p1 = q1 = 1, p′2 = q′2 = 1 (and then dropping primes).

Here the specialization (i) is just the polynomial Bn defined in (3.11), while the 
specialization (ii) is the polynomial B(2)

n defined in (3.17); and the equality of these two 
specializations was already stated in Theorem 3.5. Now Theorem 3.8 asserts that the 
specializations (iii) and (iv) are also equal to these. Note the logic: we can choose to count 
insiders either by crossings, nestings and exclusive records [specializations (i) and (iii)] or 
by overlaps, coverings and block-records [(ii) and (iv)]; and we can independently choose 
to count openers either by crossings, nestings and exclusive records [(i) and (iv)] or by 
overlaps, coverings and block-records [(ii) and (iii)]. No matter which of the four choices 
we make, we obtain the same polynomial. We will prove this theorem in Sections 7.2–7.4, 
by showing that all four polynomials have the same J-fraction (3.12)/(3.13). It would be 
interesting to find a direct bijective proof of these identities.

3.7. First master J-fraction

But we can go much farther, and obtain a polynomial in four infinite families of 
indeterminates a = (a�,�′)�,�′≥0, b = (b�)�≥0, d = (d�,�′)�,�′≥0, e = (e�)�≥0 that will have 
a nice J-fraction and that will include Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) [defined 
in (3.11)] as a specialization.22 The basic idea is that, rather than counting the total
numbers of quadruplets i < j < k < l that form crossings or nestings, we should instead 
count the number of crossings or nestings that use a particular vertex j in second (or 
sometimes third) position, and then attribute weights to the vertex j depending on those 
values.

22 In our original version of this master J-fraction, the weights a, d were factorized in the form a�,�′ =
a(1)
� a(2)

�′ , etc. We thank Andrew Elvey Price for suggesting the generalization in which this factorization 
is avoided. This generalization will play a key role in our analysis of perfect matchings (see the proofs of 
Theorems 4.1 and 4.4 below).
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More precisely, we define

cr(j, π) = #{i < j < k < l : (i, k) ∈ Gπ and (j, l) ∈ Gπ} (3.23a)

ne(j, π) = #{i < j < k < l : (i, l) ∈ Gπ and (j, k) ∈ Gπ} (3.23b)

Note that cr(j, π) and ne(j, π) can be nonzero only when j is either an opener or an 
insider; and summing over those j gives the refined categories of crossings and nestings:

crop(π) =
∑

j∈openers
cr(j, π) (3.24a)

crin(π) =
∑

j∈insiders
cr(j, π) (3.24b)

neop(π) =
∑

j∈openers
ne(j, π) (3.24c)

nein(π) =
∑

j∈insiders
ne(j, π) (3.24d)

In addition, let us define

qne(j, π) = #{i < j < l : (i, l) ∈ Gπ} ; (3.25)

we call this a quasi-nesting of the vertex j. Please note that here j can be a vertex of any 
type (but of course it must belong to a block that is different from the one containing i
and l). When j is a singleton, this gives the pseudo-nestings:

psne(π) =
∑

j∈singletons
qne(j, π) . (3.26)

When j is an opener or an insider, we have simply

qne(j, π) = cr(j, π) + ne(j, π) , (3.27)

so no new information is obtained. And finally, when j is a closer, qne(j, π) counts the 
number of times that the closer j occurs in third position in a crossing or nesting: when 
(i, l) ∈ Gπ is a pair contributing to qne(j, π), and (h, j) ∈ Gπ, then we have either 
h < i < j < l (so that the quadruplet is a crossing) or i < h < j < l (so that the 
quadruplet is a nesting), but we do not keep track of which one it is.

We now introduce four infinite families of indeterminates a = (a�,�′)�,�′≥0, b = (b�)�≥0, 
d = (d�,�′)�,�′≥0, e = (e�)�≥0 and define the polynomials Bn(a, b, d, e) by

Bn(a,b,d, e) =∑ ∏
acr(i,π), ne(i,π)

∏
bqne(i,π)
π∈Πn i∈openers i∈closers
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×
∏

i∈insiders
dcr(i,π), ne(i,π)

∏
i∈singletons

eqne(i,π) . (3.28)

These polynomials then have a beautiful J-fraction:

Theorem 3.9 (First master J-fraction for set partitions). The ordinary generating func-
tion of the polynomials Bn(a, b, d, e) has the J-type continued fraction

∞∑
n=0

Bn(a,b,d, e) tn =

1

1 − e0t−
a00b0t

2

1 − (d00 + e1)t−
(a01 + a10)b1t

2

1 − (d01 + d10 + e2)t−
(a02 + a11 + a20)b2t

2

1 − · · ·

(3.29)

with coefficients

γn = d�n−1 + en (3.30a)

βn = a�n−1 bn−1 (3.30b)

where

a�n−1
def=

n−1∑
�=0

a�,n−1−� (3.31)

and likewise for d.

We will prove this theorem in Section 7.2.

Remarks. 1. It seems far from obvious (at least to us) why Bn(a, b, d, e) depends on 
a, b, d, e only via the combinations (3.30a,b). Of course, this behavior is a consequence 
of the bijection onto labeled Motzkin paths that we will use in Section 7.2 to prove 
Theorem 3.9. But it would be interesting to understand it combinatorially, directly at 
the level of set partitions.

2. It is unfortunate that the polynomial (3.28) treats openers and closers asymmet-
rically, but we do not see any way to avoid this. One can, of course, interchange the 
roles of openers and closers by passing to the reversed partition; indeed, this reversal 
will be employed, for technical reasons, in our proof in Section 7.2. But, whichever way 
one does it, one is left with a polynomial that uses doubly-indexed indeterminates a�,�′
for one class and singly-indexed indeterminates b� for the other. We do not see any way 
to obtain a continued fraction for a polynomial with two doubly-indexed indeterminates. 
(But perhaps we are missing something.) �
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Let us now show how to recover Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) as a special-
ization of Bn(a, b, d, e), and thus obtain Theorem 3.3 (and hence also Theorem 3.2) as 
a special case of Theorem 3.9. The needed specialization is

a�,�′ = p�2 ×

⎧⎨⎩y2 if �′ = 0

q�
′

2 v2 if �′ ≥ 1
(3.32a)

b� = x2 (3.32b)

d�,�′ = p�1 ×

⎧⎨⎩y1 if �′ = 0

q�
′

1 v1 if �′ ≥ 1
(3.32c)

e� = r� x1 (3.32d)

Most of this is obvious: singletons get a weight e� = r�x1; we count blocks of size ≥ 2 at 
their closers, hence b� = x2; and by (3.24) we count crossings and nestings at openers 
and insiders, which explains the factors p�2 and q�

′
2 in a�,�′ , and p�1 and q�

′
1 in d�,�′ . Finally, 

recall that j is an exclusive record of π if it is not the largest element of its block (i.e. 
it is either an opener or an insider) and the next element in its block sticks out farther 
to the right than any right neighbor (within its block) of a vertex < j. In other words, 
j is an exclusive record if and only if it is an opener or insider and is not the second 
element in a nesting, i.e. ne(j, π) = 0. This explains the factor y2 in a�,�′ when �′ = 0, 
and the factor v2 when �′ ≥ 1; and likewise the factors y1 and v1 in d�,�′ . This completes 
the proof that Bn(x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) is obtained from the specialization 
(3.32) of Bn(a, b, d, e). Inserting this specialization into (3.30)/(3.31) yields the weights 
(3.13).

Remarks. 1. The definitions (3.23)–(3.28) can be motivated by following closely the anal-
ogy with the first master J-fraction for permutations (Section 2.7). We begin by mapping 
set partitions into permutations as follows: Given a set partition π ∈ Πn, we define the 
permutation σ ∈ Sn such that the disjoint cycles of σ are the blocks of π, each traversed 
in increasing order (with the largest element of course followed by the smallest element). 
The mapping π 	→ σ is clearly a bijection of Πn onto S�

n, where S�
n denotes the subset of 

Sn consisting of permutations in which each cycle of length � ≥ 2 contains precisely one 
cycle peak (namely, the cycle maximum), one cycle valley (namely, the cycle minimum), 
� −2 cycle double rises, and no cycle double falls. In particular, openers, closers, insiders 
and singletons of π ∈ Πn map, respectively, into cycle valleys, cycle peaks, cycle double 
rises and fixed points of σ ∈ S�

n.
We now define set-partition statistics that are simply the images of the permutation 

statistics ucross, unest, lcross, lnest and lev [cf. (2.74)/(2.76)] under this mapping.
The images of ucross(j, σ) and unest(j, σ) are precisely cr(j, π) and ne(j, π) as defined 

in (3.23). This explains why in the definitions (3.23) we have put the distinguished index 
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in second position. More specifically, the images of ucrosscval, ucrosscdrise, unestcval
and unestcdrise are crop, crin, neop and nein, respectively.

As for lcross and lnest, we observe that the only lower arcs in the permutation σ are 
those that map the closer of a non-singleton block to that block’s opener; therefore, the 
images of lcross(k, σ) and lnest(k, σ) are

ov(k, π) = #{(B,B′) : minB < minB′ < k = maxB < maxB′} (3.33a)

cov(k, π) = #{(B,B′) : minB′ < minB < k = maxB < maxB′} (3.33b)

which can be nonzero only when k is a closer (of a block B of size ≥ 2). And then

ov(π) =
∑

k∈closers

ov(k, π) (3.34a)

cov(π) =
∑

k∈closers

cov(k, π) (3.34b)

since we can count the block B at its closer. So the analogues of lcross and lnest are 
overlaps and coverings. (Of course, we here have only lcrosscpeak and lnestcpeak, since 
lcrosscdfall = lnestcdfall = 0 for σ ∈ S�

n.)
Finally, the image of lev(j, σ) can be defined in two equivalent ways, corresponding 

to upper pseudo-nestings and lower pseudo-nestings. If j is a singleton, we define

psne(j, π) = #{i < j < k : (i, k) ∈ Gπ} . (3.35)

Summing over singletons j gives the total number of pseudo-nestings:

psne(π) =
∑

j∈singletons
psne(j, π) . (3.36)

On the other hand, if j is a singleton we also define

pscov(j, π) = #{B : minB < j < maxB} . (3.37)

Summing over singletons j gives the total number of pseudo-coverings:

pscov(π) =
∑

j∈singletons
pscov(j, π) . (3.38)

But it is easy to see that psne(j, π) = pscov(j, π), since for each block B satisfying 
minB < j < maxB, there is precisely one edge (i, k) ∈ Gπ with i, k ∈ B that satisfies 
i < j < k. So these are simply two different names for the same object, which we have 
here called qne(j, π) [cf. (3.25)], specialized now to the case in which j is a singleton.
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The polynomial (3.28) is then obtained from the corresponding permutation polyno-
mial (2.77) by specializing to c = 0 (corresponding to the absence of cycle double falls 
for σ ∈ S�

n) and then further specializing b to be independent of lcross and lnest.
Unfortunately, we are unable to employ this mapping to permutations to prove The-

orem 3.9. The trouble is that it does not seem possible to encode the other property 
defining the subset S�

n ⊆ Sn — namely, that each cycle of length � ≥ 2 contains pre-
cisely one cycle peak and one cycle valley — in the polynomial (2.77). Perhaps this 
problem could be alleviated by using instead the second master J-fraction for permuta-
tions [cf. (2.100)], which includes the statistic cyc: for we could substitute a → λ−1a and 
e → λ−1e and take λ → ∞, thereby forcing σ ∈ S�

n. But then we would only be able 
to handle ucross and unest via their sum, which would amount to specializing (for in-
stance) v1 = y1 and v2 = y2 in Theorem 3.2, which would be a severe limitation. Or 
perhaps Theorem 3.9 could be proven by finding a different bijection of set partitions 
onto a subclass of permutations. But we have been unable (thus far) to find a suitable 
bijection, so we are instead obliged to prove Theorem 3.9 by a direct argument on set 
partitions (see Section 7.2).

2. Instead of (3.32b) we could take, more generally, b� = (q′)�x2. But it is easy to see 
that if k is a closer, then

qne(k, π) = ov(k, π) + cov(k, π) (3.39)

[cf. (3.25) and (3.33)], so that∑
k∈closers

qne(k, π) = ov(π) + cov(π) = crop(π) + neop(π) (3.40)

[cf. (3.20a) and (3.34)]. So taking b� = (q′)�x2 is equivalent to taking b� = x2 and then 
multiplying p2 and q2 by q′. This can alternatively be seen by observing that, according 
to (3.30b), multiplying b� by (q′)� has the same effect on the J-fraction as multiplying 
a�,�′ by (q′)�+�′ . �

3.8. First master S-fraction

We can also obtain a master S-fraction by specializing the parameters in Theorem 3.9. 
Indeed, the J-fraction (3.29)/(3.30) is the contraction (1.3) of the S-fraction

1

1 − b0t

1 − a00t

1 − b1t

1 − (a01 + a10)t
1 − · · ·

(3.41)

with coefficients α2k−1 = bk−1 and α2k = a�k−1 if we choose d, e so that



68 A.D. Sokal, J. Zeng / Advances in Applied Mathematics 138 (2022) 102341
d�n−1 + en = a�n−1 + bn for all n ≥ 0 . (3.42)

There are many ways of doing this; the simplest is to set en = bn for all n ≥ 0 and then 
choose a, d in any way such that

d�n−1 = a�n−1 for all n ≥ 1 . (3.43)

Even this latter choice can be done in many ways; the simplest is to choose a freely and 
then set d = a. These choices lead to the following result:

Theorem 3.10 (Master S-fraction for set partitions). The ordinary generating function 
of the polynomials Bn(a, b, a, b) has the S-type continued fraction

∞∑
n=0

Bn(a,b, a,b) tn = 1

1 − b0t

1 − a00t

1 − b1t

1 − (a01 + a10)t
1 − · · ·

(3.44)

with coefficients

α2k−1 = bk−1 (3.45a)

α2k = a�k−1 (3.45b)

where a�n−1
def=

n−1∑
�=0

a�,n−1−�.

To obtain the S-fraction (3.14) from Theorem 3.10, we make the specializations

a�,�′ = p� ×

⎧⎨⎩y if �′ = 0

q�
′
v if �′ ≥ 1

(3.46a)

b� = x (3.46b)

3.9. Second master J-fraction

Let us now define a second master J-fraction, following the same scheme as in Sec-
tion 3.7 but now using overlaps and coverings (as defined in Section 3.4) in place of 
crossings and nestings.

We begin by defining

ov(j, π) = #{(B1, B2) : j ∈ B2 and minB1 < j < maxB1 < maxB2} (3.47a)

cov(j, π) = #{(B1, B2) : j ∈ B2 and minB1 < j < maxB2 < maxB1} (3.47b)
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Note that ov(j, π) and cov(j, π) can be nonzero only when j is either an opener or an 
insider (since j ∈ B2 and j < maxB2). If we sum over openers, then each block B2 gets 
counted once (namely, with j = minB2), and we obtain the total numbers of overlaps 
and coverings:

ov(π) =
∑

j∈openers
ov(j, π) (3.48a)

cov(π) =
∑

j∈openers
cov(j, π) (3.48b)

On the other hand, if we sum over insiders, then we obtain the quantities ovin and covin
defined in (3.16):

ovin(π) =
∑

j∈insiders
ov(j, π) (3.49a)

covin(π) =
∑

j∈insiders
cov(j, π) (3.49b)

Remark. Compare (3.24) with (3.48)/(3.49): we see that the total numbers of overlaps 
and coverings are not analogous to the total numbers of crossings and nestings; rather, 
they are analogous to the total numbers of crossings and nestings of opener type. �

In addition, let us define

qcov(j, π) = #{B : B /� j and minB < j < maxB} . (3.50)

We call this a quasi-covering of the vertex j; please note that here j can be a vertex of 
any type. When j is a singleton, this gives the pseudo-coverings:∑

j∈singletons
qcov(j, π) = pscov(π) . (3.51)

When j is an opener or an insider, we have simply

qcov(j, π) = ov(j, π) + cov(j, π) , (3.52)

so that in particular ∑
j∈openers

qcov(j, π) = ov(π) + cov(π) (3.53a)

∑
qcov(j, π) = ovin(π) + covin(π) (3.53b)
j∈insiders
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And finally, when j is a closer, qcov(j, π) counts the number of blocks B1 that either 
overlap or cover the block B2 whose closer is j; in particular, we have∑

j∈closers
qcov(j, π) = ov(π) + cov(π) . (3.54)

But the quantity qcov(j, π) has already been introduced under a different name: we 
have in fact

qcov(j, π) = qne(j, π) (3.55)

[cf. (3.25)], no matter what is the type of the vertex j. And this is easy to see: if a vertex 
j and a block B satisfy j /∈ B and minB < j < maxB, then there is precisely one edge 
(i, l) ∈ Gπ with i, l ∈ B that satisfies i < j < l. So quasi-nestings and quasi-coverings 
are just two different names for the same quantity. For future reference, let us record the 
relevant facts about this quantity:

Lemma 3.11 (Quasi-nestings of openers and insiders).

(a) If j is an opener or an insider, we have

qne(j, π) = qcov(j, π) = cr(j, π) + ne(j, π) = ov(j, π) + cov(j, π) . (3.56)

(b) We have ∑
j∈openers

qne(j, π) =
∑

j∈openers
qcov(j, π)

= crop(π) + neop(π) = ov(π) + cov(π) (3.57a)∑
j∈insiders

qne(j, π) =
∑

j∈insiders
qcov(j, π)

= crin(π) + nein(π) = ovin(π) + covin(π) (3.57b)∑
j∈closers

qne(j, π) =
∑

j∈closers
qcov(j, π)

= crop(π) + neop(π) = ov(π) + cov(π) (3.57c)∑
j∈singletons

qne(j, π) =
∑

j∈singletons
qcov(j, π)

= psne(π) + pscov(π) (3.57d)

Here we have simply recalled (3.24), (3.27), (3.48), (3.49), (3.52), (3.54) and (3.55). Note 
that Lemma 3.11(b) refines Lemma 3.6, while Lemma 3.11(a) is a further refinement.

Let us now introduce four infinite families of indeterminates a = (a�,�′)�,�′≥0, b =
(b�)�≥0, d = (d�,�′)�,�′≥0, e = (e�)�≥0 and define the polynomials B(2)

n (a, b, d, e) by
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B(2)
n (a,b,d, e) =∑

π∈Πn

∏
i∈openers

aov(i,π), cov(i,π)
∏

i∈closers
bqne(i,π)

×
∏

i∈insiders
dov(i,π), cov(i,π)

∏
i∈singletons

eqne(i,π) . (3.58)

But it turns out that these polynomials B(2)
n (a, b, d, e) are not simply analogues of the 

polynomials Bn(a, b, d, e) defined in Section 3.7; they are the polynomials Bn(a, b, d, e)
in disguise:

Theorem 3.12 (Second master J-fraction for set partitions). The polynomials
B

(2)
n (a, b, d, e) defined in (3.58) are identical to the polynomials Bn(a, b, d, e) defined 

in (3.28). In particular, their ordinary generating function has the same J-fraction 
(3.29)/(3.30).

Indeed, we will prove this theorem in Section 7.3 by showing that the polynomials 
B

(2)
n (a, b, d, e) have the J-fraction (3.29)/(3.30). It is an interesting open problem to 

find a natural bijection Πn → Πn that proves Bn(a, b, d, e) = B
(2)
n (a, b, d, e) by mapping 

directly the relevant statistics. (One possibility, of course, is to use the bijection obtained 
by composing the two bijections to labeled Motzkin paths that will be constructed in 
Sections 7.2 and 7.3. But we do not know, at present, how to give a simple and explicit
definition of this bijection.)

Let us now show how to recover B(2)
n (x1, x2, y1, y2, v1, v2, p1, p2, q1, q2, r) defined in 

(3.17) as a specialization of B(2)
n (a, b, d, e), and thus obtain the J-fraction corresponding 

to Theorem 3.5 as a special case of Theorem 3.12. The needed specialization is precisely 
(3.32), and the reasoning is very similar to that used in deriving (3.32). The only differ-
ence is that we now use overlaps and coverings in place of crossings and nestings, and 
block-records in place of exclusive records. We have defined block-records in such a way 
that j is a block-record if and only if it is an opener or insider and cov(j, π) = 0; so the 
reasoning used in deriving (3.32) applies verbatim, with nestings replaced by coverings.

3.10. Third and fourth master J-fractions

We now introduce some polynomials that mix the statistics that were used in the 
first and second master J-fractions (Sections 3.7 and 3.9). So introduce indeterminates 
a = (a�,�′)�,�′≥0, b = (b�)�≥0, d = (d�,�′)�,�′≥0, e = (e�)�≥0 as before, and define the 
polynomials B(3)

n (a, b, d, e) and B(4)
n (a, b, d, e) by

B(3)
n (a,b,d, e) =∑ ∏

aov(i,π), cov(i,π)
∏

bqne(i,π)

π∈Πn i∈openers i∈closers
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×
∏

i∈insiders
dcr(i,π), ne(i,π)

∏
i∈singletons

eqne(i,π) (3.59)

B(4)
n (a,b,d, e) =

∑
π∈Πn

∏
i∈openers

acr(i,π), ne(i,π)
∏

i∈closers
bqne(i,π)

×
∏

i∈insiders
dov(i,π), cov(i,π)

∏
i∈singletons

eqne(i,π) (3.60)

So B(3) employs overlaps and coverings for openers, and crossings and nestings for in-
siders, while B(4) does the reverse.

It turns out that the polynomials B(3) and B(4) are, like B(2), identical to the poly-
nomials Bn defined in Section 3.7:

Theorem 3.13 (Third and fourth master J-fractions for set partitions). The polynomials 
B

(3)
n (a, b, d, e) and B(4)

n (a, b, d, e) defined in (3.59)/(3.60) are identical to the polynomi-
als Bn(a, b, d, e) defined in (3.28). In particular, their ordinary generating function has 
the same J-fraction (3.29)/(3.30).

Indeed, we will prove this theorem in Section 7.4 by showing that the polynomials 
B

(3)
n (a, b, d, e) and B(4)

n (a, b, d, e) have the J-fraction (3.29)/(3.30).
The polynomials defined in Theorem 3.8(iii,iv) are then obtained from B(3,4)

n (a, b, d, e)
by the same specialization (3.32) that was used for Bn and B(2)

n in Sections 3.7 and 3.9, 
respectively; the reasoning is identical to that used there.

3.11. A remark on the Wachs–White statistics and inversion statistics

Wachs and White [111] have introduced four statistics on set partitions, which can be 
defined as follows23:

lb(π) = #{(B1, B2, k) : minB1 < minB2 < k ∈ B1} (3.61a)

ls(π) = #{(B1, B2, k) : minB1 < minB2 ≤ k ∈ B2} (3.61b)

rb(π) = #{(B1, B2, k) : minB1 < minB2 with k ∈ B1 and k < maxB2}
(3.61c)

rs(π) = #{(B1, B2, k) : minB1 < minB2 ≤ k < maxB1 with k ∈ B2} (3.61d)

23 Wachs and White [111] actually defined their statistics on words w = w1 · · ·wn ∈ [k]n. Now, words 
w ∈ [k]n satisfying wi ≤ max

1≤j<i
wj + 1 and max

1≤i≤n
wi = k — termed restricted growth functions of length 

n and maximum k — are in bijection with partitions of [n] with k blocks: we write π = {B1, . . . , Bk}
where minB1 < minB2 < . . . < minBk, and set wi = r if i ∈ Br. The statistics (3.61a–d) then arise by 
restricting the Wachs–White statistics to restricted growth functions and mapping them to set partitions 
via the bijection.
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We can also modify the definition of ls to make it more closely analogous to that of lb, 
by removing the case minB2 = k:

ls′(π) def= #{(B1, B2, k) : minB1 < minB2 < k ∈ B2} (3.62a)

= ls(π) −
(
|π|
2

)
. (3.62b)

The statistics lb and ls had been introduced earlier by Milne [82, Remark 4.13]: a triplet 
(B1, B2, k) contributing to lb (resp. ls) is called an inversion (resp. dual inversion) of π, 
and we also write inv(π) = lb(π) and ĩnv(π) = ls(π). See e.g. [115, section 3].

Wachs and White [111] called lb and ls the “easy” statistics, because it is straightfor-
ward to show that the coefficient array

Sp,q(n, k) def=
∑

π∈Πn,k

qlb(π)pls(π) (3.63)

(where Πn,k denotes the partitions of [n] with k blocks) satisfies the recurrence

Sp,q(n, k) = pk−1Sp,q(n− 1, k − 1) + [k]p,qSp,q(n− 1, k) . (3.64)

Equivalently, the coefficient array

S′
p,q(n, k) def=

∑
π∈Πn,k

qlb(π)pls′(π) = p−(k2) Sp,q(n, k) (3.65)

satisfies the recurrence

S′
p,q(n, k) = S′

p,q(n− 1, k − 1) + [k]p,qS′
p,q(n− 1, k) , (3.66)

which shows in particular that the pair (lb, ls′) has a symmetric distribution on Πn,k.
By contrast with the “easy” statistics lb and ls, Wachs and White [111] called rb and 

rs the “hard” statistics, because there is no obvious way to prove a recurrence for them. 
Wachs and White nevertheless showed, by a nontrivial bijection, that the pair (rs, rb) is 
equidistributed on Πn,k with (lb, ls).

Here we will show that, curiously, one of the “hard” statistics — namely, rs — has a 
simple interpretation in terms of our overlap and covering statistics:

Proposition 3.14. For partitions π ∈ Πn, we have

rs(π) = ov(π̃) + 2 cov(π̃) + covin(π̃) + pscov(π̃) (3.67)

where π̃ denotes the reversal of π, i.e. the image of π under the map i 	→ ĩ
def= n + 1 − i.
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We remark that ov, cov and pscov are manifestly reversal-invariant [i.e. ov(π̃) = ov(π), 
etc.]. By contrast, ovin and covin are not reversal-invariant for n ≥ 5, but their sum 
ovin + covin is reversal-invariant by (3.53).

As preparation for the proof of Proposition 3.14, we define reversals of the statistics 
(3.47):

õv(k, π) def= ov(k̃, π̃)

= #{(B1, B2) : k ∈ B1 and minB1 < minB2 < k < maxB2} (3.68a)

c̃ov(k, π) def= cov(k̃, π̃)

= #{(B1, B2) : k ∈ B2 and minB1 < minB2 < k < maxB1} (3.68b)

q̃cov(k, π) def= qcov(k̃, π̃)

= #{B : B /� k and minB < k < maxB} (3.68c)

[The definition of qcov is in fact reversal-invariant, so that q̃cov(k, π) = qcov(k, π).]

Proof of Proposition 3.14. In the definition of rs(π), we separate the cases with minB2 <

k from those with minB2 = k:

rs(π) =
∑

k∈insiders∪ closers

c̃ov(k, π) +
∑

k∈openers∪ singletons

q̃cov(k, π) (3.69a)

=
∑

k∈insiders∪ openers

cov(k, π̃) +
∑

k∈closers∪ singletons

qcov(k, π̃) (3.69b)

= covin(π̃) + cov(π̃) + [ov(π̃) + cov(π̃)] + pscov(π̃) (3.69c)

by (3.68b,c), (3.48b), (3.49b), (3.51) and (3.54). �
Remark. Straightforward computation shows that lb, ls and rb — in contrast to rs — 
cannot be written as a linear combination of ov, cov, ovin, covin, ovinrev, covinrev, 

(|π|
2
)
, 

n|π| and 
(
n
2
)

[where ovinrev(π) = ovin(π̃) and covinrev(π) = covin(π̃)]. In fact, a linear 
combination a1lb+a2ls+a3rb+a4rs can be written in this way only if a1 = a2 = a3 = 0. 
To see this, for ls and rb it suffices to consider n = 3, while for lb and general linear 
combinations it suffices to consider n = 4. �

We can now rederive an S-fraction for the generating polynomials associated to the 
q-Stirling numbers

Sq(n, k) def= S1,q(n, k) = S′
1,q(n, k) =

∑
qlb(π) , (3.70)
π∈Πn,k
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which was obtained some years ago by one of us [115, eq. (2.1)]. Indeed, using the Wachs–
White equidistribution result lb ∼ rs together with the involution π 	→ π̃ and the identity 
(3.67), and then applying the definition (3.17) and Theorem 3.5, we see that

n∑
k=0

Sq(n, k)xk def=
∑
π∈Πn

x|π|qlb(π) =
∑
π∈Πn

x|π|qrs(π) =
∑
π∈Πn

x|π|qrs(π̃)

= B(2)
n (x, x, 1, 1, 1, 1, 1, q, q, q2, q) = Bn(x, x, 1, 1, 1, 1, 1, q, q, q2, q) . (3.71)

Specializing Corollary 3.4 to y = v = 1, p = 1 and r = q, we recover the S-fraction of 
[115, eq. (2.1)]:

∞∑
n=0

n∑
k=0

Sq(n, k)xk tn = 1

1 − xt

1 − t

1 − qxt

1 − (1 + q)t

1 − q2xt

1 − (1 + q + q2)t
1 − · · ·

(3.72)

with coefficients

α2k−1 = qk−1x (3.73a)

α2k = [k]q (3.73b)

On the other hand, in the same paper Zeng also obtained [115, eqn. (2.2)] an S-fraction 
for the generating polynomials associated to the modified q-Stirling numbers

S̃q(n, k) def= q(
k
2)S1,q(n, k) = Sq,1(n, k) =

∑
π∈Πn,k

qls(π) . (3.74)

Namely,24

24 The formula following [115, eqn. (2.2)] has a typographical error: it should read λ2n−1 = aq2n−2, not 
aq2n. Note that the correct formula is given in [115, eqn. (2.11)].

Also, the definition [115, eqn. (1.2)] has a typographical error: the coefficient should be qk, not qk−1.
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∞∑
n=0

n∑
k=0

S̃q(n, k)xk tn = 1

1 − xt

1 − (1 + (q − 1)x)t

1 − q2xt

1 − (1 + q(q − 1)x)t

1 − q4xt

1 − (1 + q2(q − 1)x)t
1 − · · ·

(3.75)

with coefficients

α2k−1 = q2k−2x (3.76a)

α2k = (1 + qk−1(q − 1)x) [k]q (3.76b)

Unfortunately, we do not know how to obtain this S-fraction as a special case of our 
results here; its combinatorial meaning remains quite mysterious (at least to us). We 
leave it as an open problem to understand (3.75)/(3.76) as a special case of some more 
general result. Please note that (3.75)/(3.76) differs from all of the other continued 
fractions in this paper in that the coefficient (3.76b) contains a term with a minus sign; 
this may be an indication of its combinatorial subtlety.

3.12. A remark on the Ehrenborg–Readdy intertwining statistic

Ehrenborg and Readdy [45, section 6] have introduced a statistic on set partitions 
that can be defined as follows: For i, j ∈ Z, let int(i, j) denote the open interval

int(i, j) = {m ∈ Z : min(i, j) < m < max(i, j)} . (3.77)

By definition int(i, j) = int(j, i). Then, for two disjoint nonempty finite subsets B, C ⊂ Z, 
define the intertwining number

ι(B,C) = #{(b, c) ∈ B × C : int(b, c) ∩ (B ∪ C) = ∅} . (3.78)

Of course ι(B, C) = ι(C, B). This intertwining number can be interpreted graphically as 
follows: Draw solid (resp. dashed) arcs between consecutive elements of B (resp. C) as 
in the usual graphical representation of a set partition; but now also draw a solid (resp. 
dashed) arc from the smallest element of B (resp. C) to −∞, and a solid (resp. dashed) 
arc from the largest element of B (resp. C) to +∞. Then ι(B, C) is the total number 
of crossings between solid and dashed arcs, with the understanding that the arcs are 
drawn so that two arcs to −∞, or two arcs to +∞, never cross (see Fig. 8). Indeed, if 
b ∈ B and c ∈ C (let’s say for concreteness that b < c) and there is no point of B or C
between b and c, then the arc upwards from b (whether to the next element of B or to 
+∞) necessarily intersects the arc downwards from c (whether to the previous element 
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Fig. 8. Computation of the interwining number of the partition π = {{1, 3, 6}, {2, 4, 5}}: we have ι(π) = 4.

of C or to −∞); but if there is an element of B and/or C between b and c, then these 
arcs will not intersect. It is now easy to see that ι(B, C) ≥ 1.

Now, for a partition π = {B1, . . . , Bk} of [n], define the intertwining number

ι(π) =
∑

1≤i<j≤k

ι(Bi, Bj) (3.79)

(of course this quantity does not depend on how the blocks of π are ordered). Since 
ι(Bi, Bj) ≥ 1 for all i �= j, we have ι(π) ≥

(|π|
2
)
; we therefore define the reduced inter-

twining number

ι′(π) def= ι(π) −
(
|π|
2

)
≥ 0 . (3.80)

Ehrenborg and Readdy showed [45, Proposition 6.3] that

Sq(n, k) =
∑

π∈Πn,k

qι
′(π) (3.81a)

S̃q(n, k) =
∑

π∈Πn,k

qι(π) (3.81b)

(Note that their q-Stirling numbers S[n, k] correspond to our S̃q(n, k).) Here we would 
like to observe that their intertwining number can be written as a combination of our 
crossing, nesting, overlap and covering statistics:

Proposition 3.15. For partitions π ∈ Πn, we have

ι′(π) = cr(π) + ov(π) + cov(π) + pscov(π) (3.82a)

= crin(π) + 2 crop(π) + neop(π) + psne(π) . (3.82b)

Proof. Consider a pair of blocks B, C contributing to the sum (3.79), and let us fix the 
order by assuming that minB < minC. For each block, there are three types of arcs: 
internal arcs, the arc to −∞, and the arc to +∞. So there are nine types of possible 
crossings:

1,2,3) The arc from −∞ to minB cannot intersect any arc of C.
4,5) The arc from −∞ to minC will always intersect an arc of B (namely, an internal 

arc of B in case minB < minC < maxB, and the arc from maxB to +∞ in case 
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minB ≤ maxB < minC). So there are 
(|π|

2
)

intersections of this type, which compensates 
the term subtracted in (3.80).

6) The arc from maxB to +∞ will intersect an internal arc of C in case minC <

maxB < maxC, or in other words minB < minC < maxB < maxC, i.e. blocks B and 
C form an overlap.

7) The arc from maxB to +∞ cannot intersect the arc from maxC to +∞.
8) The arc from maxC to +∞ will intersect an internal arc of B in case minB <

maxC < maxB, or in other words minB < minC ≤ maxC < maxB i.e. blocks B and 
C form a covering or a pseudo-covering.

9) Finally, the intersections between internal arcs of different blocks give (when 
summed over pairs B, C) the contribution cr(π).

Putting this all together proves (3.82a).
Then (3.82b) follows by using the trivial identity cr = crop + crin along with the 

identities ov + cov = crop + neop [cf. (3.20a)] and pscov = psne [cf. before (3.16)]. �
Applying now (3.81) and (3.82b) together with the definition (3.11), we see that

n∑
k=0

Sq(n, k)xk =
∑
π∈Πn

x|π|qι
′(π) = Bn(x, x, 1, 1, 1, 1, 1, q, q2, 1, q, q) , (3.83)

which differs from (3.71) by interchanging (p1, p2) ↔ (q1, q2). Since the S-fraction of 
Corollary 3.4 is invariant under p ↔ q when y = v = 1, we re-obtain the S-fraction 
(3.72)/(3.73).

Remarks. 1. It would be interesting to try to find a statistic “dual” to ι′ that would give 
the two-variable polynomials Sp,q(n, k) or S′

p,q(n, k).
2. Sagan [93] has defined statistics maj and m̂aj for set partitions, which have the 

distributions Sq(n, k) and S̃q(n, k), respectively. He also discussed the joint distribu-
tions (inv, maj), (inv, m̂aj) and (maj, m̂aj), each of which satisfies a different (p, q)-
generalization of the Stirling recurrence: (inv, m̂aj) corresponds to (3.64), while the other 
two are new. It does not seem that any of the three have nice continued fractions, except 
when p = 1 or q = 1. �

3.13. Counting connected components; indecomposable set partitions

Let us now show how to extend our set-partition polynomials to count also the con-
nected components of a set partition. As a corollary, we will obtain continued fractions 
for indecomposable set partitions. The method is identical, mutatis mutandis, to the one 
used in Section 2.13 to count connected components in permutations.

A divider of a set partition π ∈ Πn is an index i ∈ [n] such that the interval [1, i]
is a union of blocks of π; equivalently, the complementary interval [i + 1, n] is a union 
of blocks of π. Clearly, when n = 0 (hence π = ∅) there are no dividers; when n ≥ 1, 
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the index n is always a divider, and there may or may not be others. A connected 
component (or atomic part) of π ∈ Πn [83, A127743] is a minimal nonempty interval 
[i, j] ⊆ [n] such that the intervals [1, i − 1], [i, j] and [j + 1, n] are all unions of blocks 
of π. If 1 ≤ i1 < i2 < . . . < ik = n are the dividers of π, then [1, i1], [i1 + 1, i2], . . . , 
[ik−1 + 1, ik] are its connected components. So the number of connected components 
equals the number of dividers; we write it as cc(π). Thus cc(∅) = 0; for n ≥ 1 we have 
1 ≤ cc(π) ≤ n, with cc(π) = n if and only if π is the partition into singletons. A set 
partition π is called indecomposable (or atomic) if cc(π) = 1 [83, A087903/A074664].25

In any of the set-partition polynomials studied thus far, we can insert an additional 
factor ζcc(π). This affects the continued fractions as follows:

Theorem 3.16 (Counting connected components in set partitions). Consider any of the 
polynomials (3.4), (3.6), (3.11), (3.17), (3.28), (3.58), (3.59), or (3.60), and insert an 
additional factor ζcc(π). Then the continued fractions associated to the ordinary gener-
ating functions are modified as follows: in each S-fraction, multiply α1 by ζ; in each 
J-fraction, multiply γ0 and β1 by ζ.

This result has an easy proof in our labeled-Motzkin-paths formalism, as we shall 
remark in Section 7.2. But it also has a simple “renewal theory” explanation, as follows: 
Given set partitions π = {B1, . . . , Bk} ∈ Πm and π′ = {B′

1, . . . , B
′
l} ∈ Πn, let us 

define their concatenation π|π′ ∈ Πm+n as {B1, . . . , Bk, B′
1 + m, . . . , B′

l + m}. Multiple 
concatenations are defined in the obvious way. Then every set partition can be written 
uniquely as a concatenation of (zero or more) indecomposable set partitions (namely, π
restricted to its connected components, with indices relabeled to start at 1). Now let Pn

be any set-partition polynomial based on statistics that are additive under concatenation, 
and include also a factor ζcc(π); and let P ind

n be the corresponding polynomial with the 
sum restricted to indecomposable set partitions (without the factor ζ). Now define the 
ordinary generating functions

f(t) =
∞∑

n=0
Pnt

n (3.84a)

g(t) =
∞∑

n=1
P ind
n tn (3.84b)

Then it is immediate from the foregoing that

25 Warning: We were tempted to use here the term “irreducible”, but we felt obliged to avoid it because 
this term has been used previously for at least two distinct other classes of partitions! Several authors 
[10,13] [80, p. 16] call a set partition “irreducible” if no proper subinterval of [1, n] is a union of blocks [83, 
A099947]; this is more restrictive than our condition that no initial subinterval [1, i] with i ≤ n −1 is a union 
of blocks. On the other hand, the term “irreducible” is sometimes used [83, A055105] to denote yet another 
class of partitions (also called “unsplittable”). This latter class is equinumerous with the indecomposable 
partitions as defined here [23] but gives rise to a different triangular array when refined according to the 
number of blocks.
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f(t) = 1
1 − ζg(t) . (3.85)

Moreover, all of the statistics that have been considered here are indeed additive under 
concatenation: it is easy to see that this holds for statistics based on counting blocks by 
size, on classifying elements as opener/closer/insider/singleton, on the record or block-
record structure, on crossings and nestings, or on overlaps and coverings. Theorem 3.16
is an immediate consequence.

These considerations also allow us to deduce continued fractions for the ordinary 
generating functions of the polynomials P ind

n associated to indecomposable set partitions. 
Indeed, it follows immediately from (3.85) that if f(t) is the ordinary generating function 
associated to all set partitions (without factors ζcc(π)), then g(t) = 1 − 1/f(t) is the 
ordinary generating function associated to indecomposable set partitions. The continued 
fractions transform according to the same formulae (2.111)–(2.114) as for indecomposable 
permutations.

4. Perfect matchings

4.1. S-fraction

Euler showed [51, section 29] that the generating function of the odd semifactorials 
can be represented as an S-type continued fraction

∞∑
n=0

(2n− 1)!! tn = 1

1 − 1t

1 − 2t

1 − 3t
1 − · · ·

(4.1)

with coefficients αn = n.26 Since (2n −1)!! enumerates perfect matchings of a 2n-element 
set, it is natural to seek polynomial refinements of this sequence that enumerate perfect 
matchings of [2n] according to some natural statistic(s). Note that we can regard a perfect 
matching either as a special type of set partition (namely, one in which all blocks are of 
size 2) or as a special type of permutation (namely, one in which all cycles are of length 2, 
i.e. a fixed-point-free involution). We write these two interpretations as π ∈ M2n ⊆ Π2n

and σ ∈ I2n ⊆ S2n, respectively.
Inspired by (4.1), let us introduce the polynomials Mn(x, y, u, v) defined by the con-

tinued fraction

26 See also [20, Section 2.6] for a combinatorial proof of (4.1) based on a counting of height-labeled Dyck 
paths.
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∞∑
n=0

Mn(x, y, u, v) tn = 1

1 − xt

1 − (y + v)t

1 − (x + 2u)t

1 − (y + 3v)t

1 − (x + 4u)t

1 − (y + 5v)t
1 − · · ·

(4.2)

with coefficients

α2k−1 = x + (2k − 2)u (4.3a)

α2k = y + (2k − 1)v (4.3b)

Clearly Mn(x, y, u, v) is a homogeneous polynomial of degree n. Since Mn(1, 1, 1, 1) =
(2n − 1)!!, it is plausible to expect that Mn(x, y, u, v) enumerates perfect matchings of 
[2n] according to some natural trivariate statistic.

To show this, let us adopt the interpretation of perfect matchings as fixed-point-free-
involutions. We recall the classification of indices i of a permutation σ into cycle peaks, 
cycle valleys, cycle double rises, cycle double falls, and fixed points. Note that if σ is 
an involution, then it has no cycle double rises or cycle double falls; moreover, i is a 
cycle peak (resp. cycle valley) if and only if it is the largest (resp. smallest) element of a 
2-element cycle.

Now let σ be a fixed-point-free involution on [2n], so that it consists of n 2-element 
cycles. For each cycle, we look at its largest element (i.e. the cycle peak) and classify it 
into four types:

• even cycle-peak antirecord (ecpar) [i.e. i is even and is an antirecord];
• odd cycle-peak antirecord (ocpar) [i.e. i is odd and is an antirecord];
• even cycle-peak non-antirecord (ecpnar) [i.e. i is even and is not an antirecord];
• odd cycle-peak non-antirecord (ocpnar) [i.e. i is odd and is not an antirecord].

(Note that a cycle peak cannot be a record, but that it can be an antirecord.) Similarly, 
we classify the smallest element of each cycle (i.e. the cycle valley) into four types:

• even cycle-valley record (ecvr) [i.e. i is even and is a record];
• odd cycle-valley record (ocvr) [i.e. i is odd and is a record];
• even cycle-valley non-record (ecvnr) [i.e. i is even and is not a record];
• odd cycle-valley non-record (ocvnr) [i.e. i is odd and is not a record].

(Note that a cycle valley cannot be an antirecord, but that it can be a record.)
This classification of indices also has an easy translation into the interpretation of 

perfect matchings as set partitions in which every block has size 2. Obviously “cycle 
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valley” is equivalent to “opener”, and “cycle peak” to “closer”. Moreover, an opener is a 
record if and only if it is an exclusive record in the sense defined in Section 3.1: that is, 
an opener j that is paired with a closer k (> j) is a record if and only if there does not 
exist an opener i < j that is paired with a closer l > k. In terms of the nesting statistic 
(3.23b), an opener j is a record if and only if ne(j, π) = 0. Similarly, a closer k that is 
paired with an opener j (< k) is an antirecord if and only if there does not exist a closer 
l > k that is paired with an opener i < j; or in other words ne(j, π) = 0. (Note that this 
latter equation involves j, not k.)

With these preliminaries, we can now state our result:

Theorem 4.1 (S-fraction for perfect matchings). The polynomials Mn(x, y, u, v) defined 
by (4.2)/(4.3) have the combinatorial interpretation

Mn(x, y, u, v) =
∑

σ∈I2n

xecpar(σ)yocpar(σ)uecpnar(σ)vocpnar(σ) (4.4a)

=
∑

σ∈I2n

xocvr(σ)yecvr(σ)uocvnr(σ)vecvnr(σ) , (4.4b)

where the sums run over fixed-point-free involutions of [2n].

The interpretations (4.4a) and (4.4b) are of course trivially equivalent under the 
bijection σ 	→ R ◦ σ ◦ R with R(i) = 2n + 1 − i, which preserves the cycle structure 
of a permutation but interchanges even with odd, peak with valley, and record with 
antirecord.

Comparing the definitions (2.2)/(2.3) and (4.2)/(4.3), we see immediately that

Mn(x, y, u, v) = Pn(x, y + v, 2u, 2v) . (4.5)

We leave it as an open problem to give a bijective proof of this identity based on the 
combinatorial interpretations (2.4) [or (2.5)] and (4.4).

Some special cases of Theorem 4.1 were previously known, notably:

• The polynomials [41, Proposition 7] [89, Corollaire 15] [76–79,95] [18, Project 6.6.1]
[83, A185411/A185410/A156919]

Mn(x, y, x, y) =
∑

σ∈I2n

xecp(σ)yocp(σ) , (4.6)

which count perfect matchings of [2n] according to the number of pairs that have 
even or odd largest entries.

• The polynomials [83, A127160]

Mn(x, x, u, u) =
∑

xarec(σ)un−arec(σ) , (4.7)

σ∈I2n
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which count fixed-point-free involutions of [2n] according to the number of an-
tirecords (or records). These polynomials arise in several contexts:
– Mn(c, c, 1, 1) are the even moments μ2n of the so-called Askey–Wimp–Kerov dis-

tribution [6,70], which is the orthogonality measure for the associated Hermite 
polynomials Hn(x; c) [38].

– Mn(γ+1, γ+1, 1, 1) are the even moments μ2n of the limiting distribution for the 
Gaussian β ensemble when N → ∞, β → 0 with βN → 2γ: see [4,11,12,44].27

– xMn(x + 1, x + 1, 1, 1) counts rooted maps embeddable on an orientable surface 
(of arbitrary genus), with n edges, with respect to the number of vertices [5, 
Theorem 3] [83, A053979].

– Similarly, 2nxMn(x2 +1, x2 +1, 1, 1) counts rooted maps embeddable on an arbitrary 
(orientable or non-orientable) surface (of arbitrary genus), with n edges, with 
respect to the number of vertices [72, Theorem 2].

– xMn(x + 1, x + 1, 1, 1) also arises in a problem concerning extreme-value distribu-
tions in probability theory [3].

Note that in this case the continued-fraction coefficients simplify to

αn = x + (n− 1)u , (4.8)

as we are no longer distinguishing between even and odd. This special case of The-
orem 4.1 can also be deduced from Theorem 2.21: since a fixed-point-free involution 
is simply a cycle-alternating permutation in which each cycle has exactly one cycle 
valley, we set λ = 1/y1 and take y1 → 0; then (2.133) becomes (4.8).

27 The statistic roof(π) defined in [11, section 4.1] equals the number of openers j such that cr(j, π) = 0. 
By Theorem 4.5 below, the weight xroof(π) gives rise to the S-fraction (4.2) for Mn(x, x, 1, 1). The roof 
statistic is in some sense “dual” to the record statistic: compare Lemma 4.2(b) below.

Indeed, we can say more. It can be checked that the Kasraoui–Zeng [69] involution on set partitions, 
fKZ : ΠN → ΠN — which interchanges crossings and nestings — in fact interchanges the numbers of 
crossings and nestings that use any particular index k in third position (that is, i < j < k < l); here k must 
be an insider or a closer. On the other hand, in (3.23) we defined cr(j, π) and ne(j, π) using a specified index 
j in second position (so that j must be an insider or an opener). It follows that the map f ′

KZ
def= R◦fKZ ◦R, 

where R(i) = N+1 −i, is an involution on ΠN that interchanges cr(j, π) and ne(j, π) for each index j ∈ [N ]. 
Restricting to perfect matchings of [2n], we see that f ′

KZ interchanges cr(j, π) and ne(j, π) for each j ∈ [2n]; 
in particular, it interchanges roofs with records. For example, f ′

KZ maps π = {{1, 8}, {2, 4}, {3, 5}, {6, 7}}
onto π′ = {{1, 4}, {2, 7}, {3, 5}, {6, 8}}, with

cr(2, π) = 0 = ne(2, π′)

cr(6, π) = 0 = ne(6, π′)

ne(2, π) = 1 = cr(2, π′)

ne(6, π) = 1 = cr(6, π′)

so that the indices 2 and 6 are roofs (but not records) in π, and records (but not roofs) in π′.
We thank Bishal Deb and Vadim Gorin for discussions on this.
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We can prove Theorem 4.1 as a corollary of our master J-fraction for set partitions 
(Theorem 3.9) by specializing variables; the reasoning is similar to our treatment of 
cycle-alternating permutations in Section 2.15. We need a simple combinatorial lemma:

Lemma 4.2 (Openers in perfect matchings). Let π ∈ M2n ⊆ Π2n be a perfect matching 
of [2n], and let j ∈ [2n] be an opener of π. Then:

(a) j has opposite parity to cr(j, π) + ne(j, π).
(b) j is a record if and only if ne(j, π) = 0.

Proof. (a) By (3.27) and (3.25) we have

cr(j, π) + ne(j, π) = qne(j, π) = #{i < j < l : (i, l) ∈ Gπ} . (4.9)

Let m ≥ 0 be the number of pairs (i, i′) ∈ Gπ with both i, i′ < j. Since j is an opener, it 
is paired with some element j′ > j. Therefore, every element i < j is either paired with 
another element i′ < j or else with some element l > j. Hence

j − 1 = #{i : i < j} = cr(j, π) + ne(j, π) + 2m , (4.10)

which proves (a).
(b) was already observed in the paragraph preceding Theorem 4.1. �

Proof of Theorem 4.1. In (3.28) we set d = e = 0 to force π to be a perfect matching. 
We also set b� = 1 for all � ≥ 0 (i.e. we do not weight closers). So the weight is simply ∏
i∈openers

acr(i,π), ne(i,π). By Lemma 4.2(a,b) we obtain the polynomial (4.4b) if we set

a�,�′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x if �′ = 0 and � is even
y if �′ = 0 and � is odd
u if �′ ≥ 1 and � + �′ is even
v if �′ ≥ 1 and � + �′ is odd

(4.11)

Then

a�n−1
def=

n−1∑
�=0

a�,n−1−� =
{
x + (n− 1)u if n is odd
y + (n− 1)v if n is even

(4.12)

With these specializations, the J-fraction (3.29) becomes the S-fraction (4.2) if we identify 
B2n = Mn and replace t2 by t. This proves (4.4b); and (4.4a) then follows by the trivial 
bijection noted earlier. �
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We can alternatively prove Theorem 4.1 as a corollary of our second master S-fraction 
for cycle-alternating permutations (Theorem 2.23). Here we use the interpretation of 
perfect matchings as fixed-point-free involutions (i.e. permutations in which every cycle 
is of length 2); and we observe that a fixed-point-free involution of [2n] is simply a cycle-
alternating permutation of [2n] in which the number of cycles is maximal (namely, n). 
So we can obtain perfect matchings from Theorem 2.23 by replacing t → t/λ and then 
taking λ → ∞. The details are as follows. We begin with a simple combinatorial lemma, 
which is a close analogue of Lemma 4.2:

Lemma 4.3. Let σ ∈ I2n ⊆ S2n be a fixed-point-free involution of [2n]. If i ∈ [2n] is a 
cycle peak of σ, then:

(a) i has the same parity as lcross(i, σ) + lnest(i, σ).
(b) i is an antirecord if and only if lnest(i, σ) = 0.

If i ∈ [2n] is a cycle valley of σ, then:

(c) i has the opposite parity from ucross(i, σ) + unest(i, σ).
(d) i is a record if and only if unest(i, σ) = 0.

Proof. (a) Let k ∈ [2n] be a cycle peak of σ, so that σ(k) < k. Then the set {j : j < k}, 
which has cardinality k − 1, can be partitioned as

{σ(k)} ∪ {j < k : σ(j) < k} ∪ {j < σ(k) : σ(j) > k} ∪ {σ(k) < j < k : σ(j) > k} .

(4.13)
The first of these sets has cardinality 1; the second has even cardinality; the third has 
cardinality lnest(k, σ); and the fourth has cardinality lcross(k, σ).

(b) Again let k ∈ [2n] be a cycle peak, so that σ(k) < k. Then k fails to be an 
antirecord in case there exists an index l > k such that σ(l) < σ(k). But this is precisely 
the statement that lnest(k, σ) > 0.

(c,d) The proofs are similar. �
Second proof of Theorem 4.1. We start from the polynomial (2.137) for cycle-alternating 
permutations, multiply by λ−n, and take λ → ∞: this restricts the sum to fixed-point-
free involutions. We also set a� = 1 for all � ≥ 0 (i.e. we do not weight cycle valleys). 
The result is

lim
λ→∞

λ−n Q̂2n(1,b,0,0,0, λ) =
∑

σ∈I2n

∏
i∈cpeak

blcross(i,σ), lnest(i,σ) . (4.14)

By Lemma 4.3(a,b) we obtain the polynomial (4.4a) if we set
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b�,�′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x if �′ = 0 and � is even
y if �′ = 0 and � is odd
u if �′ ≥ 1 and � + �′ is even
v if �′ ≥ 1 and � + �′ is odd

(4.15)

Then

b�n−1 =
n−1∑
�=0

b�,n−1−� =
{
x + (n− 1)u if n is odd
y + (n− 1)v if n is even

(4.16)

From (2.139) we have

lim
λ→∞

λ−1 αn = b�n−1 , (4.17)

which completes the proof. �
Remarks. 1. It is natural to try amalgamating (4.4a,b) into an eight-variable polynomial

M̂n(x, y, u, v, x̄, ȳ, ū, v̄) =
∑

σ∈I2n

xecpar(σ)yocpar(σ)uecpnar(σ)vocpnar(σ) ×

x̄ocvr(σ)ȳecvr(σ)ūocvnr(σ)v̄ecvnr(σ) , (4.18)

so that M̂n(x, y, u, v, 1, 1, 1, 1) = Mn(x, y, u, v) and M̂n(1, 1, 1, 1, ̄x, ȳ, ̄u, ̄v) =
Mn(x̄, ȳ, ̄u, ̄v). But it seems that we can get a J-fraction with polynomial coefficients 
only if we specialize to six variables: either u = x and v = y, or ū = x̄ and v̄ = ȳ. And 
in these cases we get an S-fraction: for instance,

∞∑
n=0

M̂n(x, y, u, v, x̄, ȳ, x̄, ȳ) tn = 1

1 − xx̄t

1 − (y + v)ȳt

1 − (x + 2u)x̄t

1 − (y + 3v)ȳt
1 − · · ·

(4.19)

with coefficients

α2k−1 = [x + (2k − 2)u] x̄ (4.20a)

α2k = [y + (2k − 1)v] ȳ (4.20b)

But this is actually an immediate consequence of Theorem 4.1, once we realize that the 
number of odd (resp. even) cycle valleys is equal to the number of even (resp. odd) cycle 
peaks; so if we count cycle valleys only by parity and not by record status, then x̄ simply 
multiplies x and u, and ȳ multiplies y and v.
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2. One could try to go farther, by introducing the disjoint classification of each 2-
element cycle into 16 categories according to the status of its cycle peak (ecpar, ocpar, 
ecpnar, ocpnar) and its cycle valley (ecvr, ocvr, ecvnr, ocvnr), and then defining a 
homogeneous 16-variable polynomial. We do not know whether any interesting continued 
fractions can be obtained from this polynomial. �

4.2. p,q-generalizations

Let us now generalize the four-variable polynomial Mn(x, y, u, v) by adding weights 
for crossings and nestings as in Section 2.5. Note that if σ ∈ Sn is an involution (not 
necessarily fixed-point-free), we trivially have ucross(σ) = lcross(σ) and unest(σ) =
lnest(σ); so we write them simply as cr(σ) and ne(σ), respectively. These quantities of 
course coincide with cr(π) and ne(π) as defined in Section 3.3 for the matching (not 
necessarily perfect) π ∈ Πn that corresponds to the involution σ ∈ Sn; and we here have 
cr(π) = crop(π) and ne(π) = neop(π) since a matching has no insiders. We now define

Mn(x, y, u, v, p, q) =
∑

σ∈I2n

xecpar(σ)yocpar(σ)uecpnar(σ)vocpnar(σ)pcr(σ)qne(σ) (4.21a)

=
∑

σ∈I2n

xocvr(σ)yecvr(σ)uocvnr(σ)vecvnr(σ)pcr(σ)qne(σ) , (4.21b)

where the sums run over fixed-point-free involutions of [2n], and the equality of (4.21a)
and (4.21b) again follows from the bijection σ 	→ R ◦σ ◦R (which preserves the numbers 
of crossings and nestings).

In fact, we can go farther, by distinguishing crossings and nestings according to 
whether the element in second position is even or odd. That is, let us say that a crossing 
or nesting i < j < k < l is even (resp. odd) if j is even (resp. odd). We denote by ecr(σ), 
ocr(σ), ene(σ), one(σ) the numbers of even crossings, odd crossings, even nestings and 
odd nestings, respectively. We then define

Mn(x, y, u, v, p+, p−, q+, q−)

=
∑

σ∈I2n

xecpar(σ)yocpar(σ)uecpnar(σ)vocpnar(σ)p
ocr(σ)
+ p

ecr(σ)
− q

one(σ)
+ q

ene(σ)
− (4.22a)

=
∑

σ∈I2n

xocvr(σ)yecvr(σ)uocvnr(σ)vecvnr(σ)p
ecr(σ)
+ p

ocr(σ)
− q

ene(σ)
+ q

one(σ)
− , (4.22b)

where the two formulae are again related by σ 	→ R ◦ σ ◦R. We find:

Theorem 4.4 (S-fraction for perfect matchings, p, q-generalization). The ordinary gener-
ating function of the polynomials Mn(x, y, u, v, p+, p−, q+, q−) has the S-type continued 
fraction
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∞∑
n=0

Mn(x, y, u, v, p+, p−, q+, q−) tn = 1

1 − xt

1 − (p+y + q+v)t

1 − (p2
−x + q− [2]p−,q−u)t

1 − (p3
+y + q+ [3]p+,q+v)t

1 − · · ·

(4.23)

with coefficients

α2k−1 = p2k−2
− x + q− [2k − 2]p−,q−u (4.24a)

α2k = p2k−1
+ y + q+ [2k − 1]p+,q+v (4.24b)

Note that if u = x and/or v = y, then the weights (4.24) simplify to α2k−1 =
[2k − 1]p−,q− x and α2k = [2k]p+,q+ y, respectively. For the special case x = y = u = v, 
p+ = p− and q+ = q−, the S-fraction (4.23) was obtained previously by Kasraoui and 
Zeng [69] (see also [15, p. 3280]).

The proof of Theorem 4.4 is a straightforward extension of the method used for 
Theorem 4.1:

Proof of Theorem 4.4. In (3.28) we set d = e = 0 to force π to be a perfect matching. 
We also set b� = 1 for all � ≥ 0 (i.e. we do not weight closers). So the weight is simply ∏
i∈openers

acr(i,π), ne(i,π). By Lemma 4.2(a,b) we obtain the polynomial (4.22b) if we set

a�,�′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p�−q

�′
−x if �′ = 0 and � is even

p�+q
�′
+y if �′ = 0 and � is odd

p�−q
�′
−u if �′ ≥ 1 and � + �′ is even

p�+q
�′
+v if �′ ≥ 1 and � + �′ is odd

(4.25)

Then

a�n−1
def=

n−1∑
�=0

a�,n−1−� =

⎧⎨⎩pn−1
− x + q−[n− 1]p−,q−u if n is odd

pn−1
+ y + q+[n− 1]p+,q+v if n is even

(4.26)

With these specializations, the J-fraction (3.29) becomes the S-fraction (4.23) if we iden-
tify B2n = Mn and replace t2 by t. �
Remarks. 1. Comparing the continued fractions (2.60)/(2.61) and (4.23)/(4.24), we see 
that

Mn(x, y, u, v, p+, p−, q+, q−)

= Pn(x, p+y + q+v, (p− + q−)u/q−, (p+ + q+)v, p2
+, p

2
−, q

2
+, q

2
−) , (4.27)
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which generalizes (4.5). We leave it as an open problem to find a bijective proof of (4.27).
Let us observe a curious fact about (4.27). One might think that the appearance of 

the squares of p±, q± on the right-hand side of (4.27) comes from the fact that each 
crossing or nesting in a perfect matching corresponds to two crossings or nestings — one 
upper and one lower — in the corresponding permutation. But this does not seem to be 
the correct explanation, since the meaning of the subscripts + and − is different on the 
two sides of (4.27): in Mn it distinguishes even from odd, while in Pn it distinguishes 
upper from lower. So we really do not understand the combinatorial meaning of (4.27).

2. An explicit expression for Mn(1, 1, 1, 1, p, 1) — which counts perfect matchings of 
[2n] by the number of crossings (or nestings) — was found implicitly by Touchard [107]
and explicitly by Riordan [91] (see also [15,66,84,86,90]):

Mn(1, 1, 1, 1, p, 1) = (1 − p)−n
n∑

k=0

(−1)k tn,k pk(k+1)/2 (4.28)

where

tn,k =
(

2n
n + k

)
−

(
2n

n + k + 1

)
= 2k + 1

n + k + 1

(
2n

n + k

)
= 2k + 1

2n + 1

(
2n + 1

n + k + 1

)
(4.29)

are a variant of the ballot numbers. No explicit expression for Mn(1, 1, 1, 1, p, q) seems 
to be known. �

4.3. Master S-fraction

Finally, we can get a master S-fraction for perfect matchings by specializing the first 
master J-fraction for set partitions (Theorem 3.9). We introduce two infinite families of 
indeterminates a = (a�,�′)�,�′≥0 and b = (b�)�≥0, and define the polynomials Mn(a, b) by

Mn(a,b) =
∑

π∈M2n

∏
i∈openers

acr(i,π), ne(i,π)
∏

i∈closers
bqne(i,π) , (4.30)

where cr(i, π), ne(i, π) and qne(i, π) are as defined in (3.23a,b) and (3.25). Of course, 
Mn(a, b) = B2n(a, b, 0, 0) since setting d = e = 0 in (3.28) is precisely what is needed to 
restrict the summation to perfect matchings. From Theorem 3.9 we immediately deduce:

Theorem 4.5 (Master S-fraction for perfect matchings). The ordinary generating function 
of the polynomials Mn(a, b) has the S-type continued fraction

∞∑
n=0

Mn(a,b) tn = 1

1 − a00b0t

1 − (a01 + a10)b1t

1 − (a02 + a11 + a20)b2t

(4.31)
1 − · · ·
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with coefficients

αn = a�n−1 bn−1 (4.32)

where a�n−1
def=

n−1∑
�=0

a�,n−1−�.

Alternatively, we can prove Theorem 4.5 as a corollary of our second master S-fraction 
for cycle-alternating permutations (Theorem 2.23), using the interpretation of perfect 
matchings as fixed-point-free involutions:

Second proof of Theorem 4.5. We start by applying the bijection σ 	→ R ◦ σ ◦ R to 
(2.137): this interchanges valleys with peaks, and upper with lower, yielding

Q̂2n(a,b,0,0,0, λ)

=
∑

σ∈Sca
2n

λcyc(σ)
∏

i∈cpeak
alcross(i,σ)+lnest(i,σ)

∏
i∈cval

bucross(i,σ), unest(i,σ) . (4.33)

We then multiply by λ−n and take λ → ∞: this restricts the sum to fixed-point-free 
involutions. We have cr(j, π) = ucross(j, σ) and ne(j, π) = unest(j, σ) since in both cases 
the distinguished index is in second position [compare (3.23a,b) to (2.74a,b)]. And we 
have qne(k, π) = lcross(k, σ) + lnest(k, σ) since in both cases the distinguished index is 
in third position [compare (3.25) to (2.74c,d)]. So (4.33) corresponds to (4.30) with the 
interchange of letters a ↔ b. Then from (2.139) we have

lim
λ→∞

λ−1 αn = an−1 b�n−1 , (4.34)

which corresponds to (4.32) with a ↔ b. �
Remark. It is unfortunate that Theorem 4.5 treats openers and closers asymmetrically. 
But we do not know how to avoid this. If we consider perfect matchings as a special case 
of set partitions, this asymmetry is imposed by (3.28) and Theorem 3.9, as remarked 
already in Section 3.7. If we consider perfect matchings as a limiting case of cycle-
alternating permutations, we are obliged to use the second master S-fraction — that is, 
Theorem 2.23 instead of Theorem 2.20 — in order to get access to the statistic cyc(σ); 
and Theorem 2.23 treats cycle valleys differently from cycle peaks. �

4.4. Counting connected components; indecomposable perfect matchings

We can extend our polynomials to count also the connected components of a per-
fect matching. Since the method is essentially identical to the one used previously for 
permutations (Section 2.13) and set partitions (Section 3.13), we will be brief.
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We can consider a perfect matching either as a permutation in which all cycles are 
of length 2, or as a set partition in which all blocks are of size 2. We then specialize 
the definitions of “divider”, “connected component” and “indecomposable” from either 
permutations (Section 2.13) or set partitions (Section 3.13); both methods give the same 
notions for perfect matchings. We denote the number of connected components in a per-
fect matching by cc(σ) = cc(π). The enumeration of indecomposable perfect matchings 
can be found in [83, A000698]. The enumeration of perfect matchings by number of 
connected components is (to our surprise) not in [83] at present; it begins as

n \ k 0 1 2 3 4 5 6 7 8 Row sums
0 1 1
1 0 1 1
2 0 2 1 3
3 0 10 4 1 15
4 0 74 24 6 1 105
5 0 706 188 42 8 1 945
6 0 8162 1808 350 64 10 1 10395
7 0 110410 20628 3426 568 90 12 1 135135
8 0 1708394 273064 38886 5696 850 120 14 1 2027025

In any of the set-partition polynomials studied thus far, we can insert an additional 
factor ζcc(σ). We then have:

Theorem 4.6 (Counting connected components in perfect matchings). Consider any of the 
polynomials (4.4), (4.21) or (4.30), and insert an additional factor ζcc(σ) = ζcc(π). Then 
the S-fractions associated to the ordinary generating functions are modified by multiplying 
α1 by ζ.

The reasoning is identical to that in Sections 2.13 and 3.13.

5. Preliminaries for the proofs

Our proofs are based on Flajolet’s [53] combinatorial interpretation of continued 
fractions in terms of Dyck and Motzkin paths, together with some bijections mapping 
combinatorial objects (permutations, set partitions or perfect matchings) to labeled Dyck 
or Motzkin paths. We begin by reviewing briefly these two ingredients.

5.1. Combinatorial interpretation of continued fractions

Recall that a Motzkin path of length n ≥ 0 is a path ω = (ω0, . . . , ωn) in the right 
quadrant N × N, starting at ω0 = (0, 0) and ending at ωn = (n, 0), whose steps sj =
ωj −ωj−1 are (1, 1) [“rise”], (1, −1) [“fall”] or (1, 0) [“level”]. We write Mn for the set of 
Motzkin paths of length n, and M =

⋃∞
n=0 Mn. A Motzkin path is called a Dyck path

if it has no level steps. A Dyck path always has even length; we write D2n for the set of 
Dyck paths of length 2n, and D =

⋃∞
n=0 D2n.
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Let a = (ak)k≥0, b = (bk)k≥1 and c = (ck)k≥0 be indeterminates; we will work in the 
ring Z[[a, b, c]] of formal power series in these indeterminates. To each Motzkin path ω
we assign a weight W (ω) ∈ Z[a, b, c] that is the product of the weights for the individual 
steps, where a rise starting at height k gets weight ak, a fall starting at height k gets 
weight bk, and a level step at height k gets weight ck. Flajolet [53] showed that the 
generating function of Motzkin paths can be expressed as a continued fraction:

Theorem 5.1 (Flajolet’s master theorem). We have∑
ω∈M

W (ω) = 1

1 − c0 −
a0b1

1 − c1 −
a1b2

1 − c2 −
a2b3

1 − · · ·

(5.1)

as an identity in Z[[a, b, c]]. Equivalently, we have

∞∑
n=0

tn
∑

ω∈Mn

W (ω) = 1

1 − c0t−
a0b1t

2

1 − c1t−
a1b2t

2

1 − · · ·

(5.2)

as an identity in Z[a, b, c][[t]], i.e. a J-fraction (1.2) with coefficients γn = cn and 
βn = an−1bn.

Specializing (5.2) to c = 0 and replacing t2 by t, we obtain:

Corollary 5.2 (Flajolet’s master theorem for Dyck paths). We have

∞∑
n=0

tn
∑

ω∈D2n

W (ω) = 1

1 − a0b1t

1 − a1b2t

1 − · · ·

(5.3)

as an identity in Z[a, b][[t]], i.e. an S-fraction (1.1) with coefficients αn = an−1bn.

5.2. Labeled Dyck and Motzkin paths

Let A = (Ak)k≥0, B = (Bk)k≥1 and C = (Ck)k≥0 be sequences of nonnegative inte-
gers. An (A, B, C)-labeled Motzkin path of length n is a pair (ω, ξ) where ω = (ω0, . . . , ωn)
is a Motzkin path of length n, and ξ = (ξ1, . . . , ξn) is a sequence of integers satisfying

1 ≤ ξi ≤

⎧⎪⎪⎨⎪⎪⎩
A(hi−1) if hi = hi−1 + 1 (i.e. step i is a rise)
B(hi−1) if hi = hi−1 − 1 (i.e. step i is a fall)

C(h ) if h = h (i.e. step i is a level step)

(5.4)
i−1 i i−1
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where hi is the height of the Motzkin path after step i, i.e. ωi = (i, hi). [For typographical 
clarity we have here written A(k) as a synonym for Ak, etc.] We call the pair (ω, ξ) an 
(A, B)-labeled Dyck path if ω is a Dyck path (in this case C plays no role). We denote by 
Mn(A, B, C) the set of (A, B, C)-labeled Motzkin paths of length n, and by D2n(A, B)
the set of (A, B)-labeled Dyck paths of length 2n.

Let us stress that the numbers Ak, Bk and Ck are allowed to take the value 0. When-
ever this happens, the path ω is forbidden to take a step of the specified kind at the 
specified height.

We shall also make use of multicolored Motzkin paths. An �-colored Motzkin path
is simply a Motzkin path in which each level step has been given a “color” from the 
set {1, 2, . . . , �}. In other words, we distinguish � different types of level steps. An 
(A, B, C(1), . . . , C(�))-labeled �-colored Motzkin path of length n is then defined in the 
obvious way, where we use the sequence C(j) to bound the label ξi when step i is a level 
step of type j. We denote by Mn(A, B, C(1), . . . , C(�)) the set of (A, B, C(1), . . . , C(�))-
labeled �-colored Motzkin paths of length n.

Remark. What we have called an (A, B, C)-labeled Motzkin path is (up to small changes 
in notation) called a path diagramme by Flajolet [53, p. 136] and a history by Viennot 
[110, p. II-9]. The triplet (A, B, C) is called a possibility function. �

Following Flajolet [53, Proposition 7A], we can state a “master J-fraction” for 
(A, B, C)-labeled Motzkin paths. Let a = (ak,ξ)k≥0, 1≤ξ≤A(k), b = (bk,ξ)k≥1, 1≤ξ≤B(k)
and c = (ck,ξ)k≥0, 1≤ξ≤C(k) be indeterminates; we give an (A, B, C)-labeled Motzkin 
path (ω, ξ) a weight W (ω, ξ) that is the product of the weights for the individual steps, 
where a rise starting at height k with label ξ gets weight ak,ξ, a fall starting at height k
with label ξ gets weight bk,ξ, and a level step at height k with label ξ gets weight ck,ξ. 
Then:

Theorem 5.3 (Flajolet’s master theorem for labeled Motzkin paths). We have

∞∑
n=0

tn
∑

(ω,ξ)∈Mn(A,B,C)

W (ω) = 1

1 − c0t−
a0b1t

2

1 − c1t−
a1b2t

2

1 − c2t−
a2b3t

2

1 − · · ·

(5.5)

as an identity in Z[a, b, c][[t]], where

ak =
A(k)∑

ak,ξ , bk =
B(k)∑

bk,ξ , ck =
C(k)∑

ck,ξ . (5.6)

ξ=1 ξ=1 ξ=1
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This is an immediate consequence of Theorem 5.1 together with the definitions. There 
is obviously also a similar theorem for (A, B, C(1), . . . , C(�))-labeled �-colored Motzkin 
paths, in which ck involves a sum over the colors of the level steps.

By specializing to c = 0 and replacing t2 by t, we obtain the corresponding theorem 
for (A, B)-labeled Dyck paths:

Corollary 5.4 (Flajolet’s master theorem for labeled Dyck paths). We have

∞∑
n=0

tn
∑

(ω,ξ)∈D2n(A,B)

W (ω) = 1

1 − a0b1t

1 − a1b2t

1 − a2b3t

1 − · · ·

(5.7)

as an identity in Z[a, b][[t]], where ak and bk are defined by (5.6).

We will also use (following Biane [14]) doubly labeled Motzkin paths. Let A′ =
(A′

k)k≥0, A′′ = (A′′
k)k≥0, B′ = (B′

k)k≥1 B′′ = (B′′
k )k≥1, C′ = (C ′

k)k≥0, C′′ = (C ′′
k )k≥0

be sequences of nonnegative integers. An (A′, A′′, B′, B′′, C′, C′′)-doubly labeled Motzkin 
path of length n is a pair (ω, ξ) where ω = (ω0, . . . , ωn) is a Motzkin path of length n, 
and ξ =

(
(ξ′1, ξ′′1 ), . . . , (ξ′n, ξ′′n)

)
is a sequence of pairs of integers satisfying

1 ≤ ξ′i ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A′(hi−1) if hi = hi−1 + 1 (i.e. step i is a rise)

B′(hi−1) if hi = hi−1 − 1 (i.e. step i is a fall)

C ′(hi−1) if hi = hi−1 (i.e. step i is a level step)

(5.8)

and likewise for ξ′′i . Of course, doubly labeled paths can be mapped bijectively onto 
singly labeled paths with Ak = A′

kA
′′
k etc.; but this bijection is in most cases unnatural, 

so we prefer to work with doubly labeled paths whenever they express a combinatorially 
natural construction. We also define �-colored doubly labeled Motzkin paths in the obvious 
way. Theorem 5.3 has an obvious extension to doubly labeled Motzkin paths (and to �-
colored doubly labeled Motzkin paths), which we refrain from writing out.

6. Permutations: Proofs

6.1. First master J-fraction: Proof of Theorems 2.1(a), 2.2, 2.5, 2.7 and 2.9

In this section we will prove the first master J-fraction for permutations (Theorem 2.9). 
As a corollary we will also obtain Theorem 2.7, which is obtained from Theorem 2.9 by 
the specialization (2.81); and from this we will in turn obtain Theorems 2.2 and 2.5, 
which are special cases of Theorem 2.7, as well as Theorem 2.1(a), which is linked by 
contraction (1.3) to the specialization (2.26) of Theorem 2.2.
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To prove Theorem 2.9, we will employ a variant of the Foata–Zeilberger [58] bijection. 
More precisely, we will construct a bijection from Sn to the set of (A, B, C(1), C(2), C(3))-
labeled 3-colored Motzkin paths of length n, where

Ak = k + 1 for k ≥ 0 (6.1a)

Bk = k for k ≥ 1 (6.1b)

C
(1)
k = k for k ≥ 0 (6.1c)

C
(2)
k = k for k ≥ 0 (6.1d)

C
(3)
k = 1 for k ≥ 0 (6.1e)

We will begin by explaining how the Motzkin path ω is defined; then we will explain 
how the labels ξ are defined; next we will prove that the mapping is indeed a bijection; 
next we will translate the various statistics from Sn to our labeled Motzkin paths; and 
finally we will sum over labels ξ to obtain the weight W (ω) associated to a Motzkin path 
ω, which upon applying (5.2) will yield Theorem 2.9.

Step 1: Definition of the Motzkin path. Given a permutation σ ∈ Sn, we classify the 
indices i ∈ [n] in the usual way as cycle peak, cycle valley, cycle double rise, cycle double 
fall or fixed point. We then define a path ω = (ω0, . . . , ωn) starting at ω0 = (0, 0) and 
ending at ωn = (n, 0), with steps s1, . . . , sn, as follows:

• If i is a cycle valley, then si is a rise.
• If i is a cycle peak, then si is a fall.
• If i is a cycle double fall, then si is a level step of type 1.
• If i is a cycle double rise, then si is a level step of type 2.
• If i is a fixed point, then si is a level step of type 3.

Of course we need to prove that this is indeed a Motzkin path, i.e. that all the heights 
hi are nonnegative and that hn = 0. We do this by obtaining a precise interpretation of 
the height hi:

Lemma 6.1. For i ∈ [n + 1] we have

hi−1 = #{j < i : σ(j) ≥ i} (6.2a)

= #{j < i : σ−1(j) ≥ i} (6.2b)

In particular, if i is a fixed point, then by comparing (6.2a) with (2.20) we see that the 
height of the Motzkin path after (or before) step i equals the level of the fixed point:

hi−1 = hi = lev(i, σ) . (6.3)
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Fig. 9. (a) Bipartite digraph representing the permutation σ = 5614273 = (152673) (4) ∈ S7. Arrows run 
from the top row to the bottom row and are suppressed for clarity. (b) Motzkin path corresponding to 
the same permutation σ, with the types (1,2,3) of the level steps indicated. (c) The five possibilities for a 
column ii′. The dotted edges are those which are not yet “seen” at step i.

Proof of Lemma 6.1. We shall prove (6.2) in the equivalent form

hi = #{j ≤ i : σ(j) > i} (6.4a)

= #{j ≤ i : σ−1(j) > i} (6.4b)

for 0 ≤ i ≤ n (which implies in particular that h0 = hn = 0). To prove (6.4), we represent 
a permutation σ ∈ Sn by a bipartite digraph in which the top row of vertices is labeled 
1, . . . , n and the bottom row 1′, . . . , n′, and we draw an arrow from i to j′ in case σ(i) = j

(see Fig. 9a). We then “read” this diagram from left to right, adding one column at each 
step and taking account of all arrows that have been “completely seen” at the given 
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stage: namely, after i steps we include all arrows a → b′ for which both a and b are ≤ i. 
We now claim that the height of the Motzkin path (Fig. 9b) after i steps equals the 
number of unconnected dots in the top row after i steps, and also equals the number of 
unconnected dots in the bottom row after i steps; these claims are, respectively, (6.4a)
and (6.4b). We prove these claims by induction on i, by considering the five possibilities 
for what can happen when we include the new column ii′ (see Fig. 9c):

• If i is a fixed point, we have added an arrow i → i′, and have thus added one 
connected dot to each row; the number of unconnected dots in each row remains 
unchanged from the previous step. This agrees with hi = hi−1, since si is a level 
step.

• If i is a cycle double fall, we have added an arrow i → j′ with j < i. This means that 
we have added the connected dot i to the top row; in the bottom row we have added 
the unconnected dot i′ but have also changed j′ from unconnected to connected. 
Therefore the number of unconnected dots in each row remains unchanged from the 
previous step; and this agrees with hi = hi−1, since si is a level step.

• If i is a cycle double rise, we have added an arrow j → i′ with j < i. This means that 
we have added the connected dot i′ to the bottom row; in the top row we have added 
the unconnected dot i but have also changed j from unconnected to connected. Once 
again hi = hi−1, with si being a level step.

• If i is a cycle valley, then no new arrows are added; we have therefore added the 
unconnected dot i to the top row and the unconnected dot i′ to the bottom row. 
This agrees with hi = hi−1 + 1, since si is a rise.

• If i is a cycle peak, then two new arrows are added: i → j′ with j = σ(i) < i, and 
k → i′ with k = σ−1(i) < i. Therefore, in each row we have added one connected 
dot (i or i′) and also changed one dot from unconnected to connected; therefore, 
the number of unconnected dots in each row decreases by 1. This agrees with hi =
hi−1 − 1, since si is a fall. �

Remark. It follows from the definition of the mapping σ 	→ ω that the permutations σ
and σ−1 map onto the same Motzkin path, except that the level steps of types 1 and 2 
are interchanged. This explains why (6.2a) equals (6.2b). �

Step 2: Definition of the labels ξi. We now define

ξi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + #{j : j < i and σ(j) > σ(i)} if σ(i) > i (cval, cdrise)

1 + #{j : j > i and σ(j) < σ(i)} if σ(i) < i (cpeak, cdfall)

1 if σ(i) = i (fix)

(6.5)

These definitions have a simple interpretation in terms of the nesting statistics defined 
in (2.74b,d):
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ξi − 1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
unest(i, σ) if σ(i) > i (cval, cdrise)

lnest(i, σ) if σ(i) < i (cpeak, cdfall)

0 if σ(i) = i (fix)

(6.6)

Of course, we must verify that the inequalities (5.4)/(6.1) are satisfied; to do this, we 
interpret hi−1 − ξi in terms of the crossing statistics defined in (2.74a,c):

Lemma 6.2 (Crossing statistics). We have

hi−1 + 1 − ξi = ucross(i, σ) if i ∈ cval (6.7)

hi−1 − ξi = ucross(i, σ) if i ∈ cdrise (6.8)

hi−1 − ξi = lcross(i, σ) if i ∈ cpeak ∪ cdfall (6.9)

Proof. (a) If i is a cycle valley (so that σ(i) > i and σ−1(i) > i), then

hi−1 + 1 − ξi = #{j < i : σ(j) ≥ i} − #{j < i : σ(j) > σ(i)} (6.10a)

= #{j < i : σ(i) ≥ σ(j) ≥ i} (6.10b)

= #{j < i : σ(i) > σ(j) > i} (6.10c)

= ucross(i, σ) . (6.10d)

(b) If i is a cycle double rise (so that σ(i) > i and σ−1(i) < i), then

hi−1 − ξi = #{j < i : σ(j) ≥ i} − 1 − #{j < i : σ(j) > σ(i)} (6.11a)

= #{j < i : σ(j) > i} − #{j < i : σ(j) > σ(i)} (6.11b)

= #{j < i : σ(i) ≥ σ(j) > i} (6.11c)

= #{j < i : σ(i) > σ(j) > i} (6.11d)

= ucross(i, σ) . (6.11e)

(c) If i is a cycle peak or a cycle double fall (so that σ(i) < i), then

hi−1 − ξi = #{j : j < i and σ−1(j) ≥ i} − 1 − #{j : σ(j) < σ(i) and j > i}
(6.12a)

= #{j : σ(j) < i and j ≥ i} − 1 − #{j : σ(j) < σ(i) and j > i} (6.12b)

= #{j : σ(j) < i and j > i} − #{j : σ(j) < σ(i) and j > i} (6.12c)

= #{j > i : σ(i) ≤ σ(j) < i} (6.12d)

= #{j > i : σ(i) < σ(j) < i} (6.12e)

= lcross(i, σ) . � (6.12f)
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Since the quantities (6.7)–(6.9) are manifestly nonnegative, it follows immediately 
that the inequalities (5.4)/(6.1) are satisfied.

For future use, let us also (partially) interpret the labels ξi in terms of the bipartite 
digraph employed in the proof of Lemma 6.1 (Fig. 9). First recall that hi−1 equals the 
number of unconnected dots in the top row after i − 1 steps, and also equals the number 
of unconnected dots in the bottom row after i − 1 steps. Now, if i is a cycle double fall, 
then at stage i we add an arrow from i on the top row to an unconnected dot j′ on the 
bottom row, where j = σ(i) < i; and if i is a cycle peak, then we add the just-mentioned 
arrow and also add an arrow from an unconnected dot k on the top row to i′, where 
k = σ−1(i) < i. We now claim that, in these two cases, ξi is the index of the unconnected 
dot j′ among all the unconnected dots on the bottom row: that is, ξi = r if and only if 
j′ is the rth unconnected dot on the bottom row, reading from left to right. Indeed, by 
definition ξi − 1 equals #{k : k > i and σ(k) < σ(i)}, which is precisely the number of 
unconnected dots on the bottom row to the left of j′ = σ(i)′.

For cycle double rises and cycle valleys, by contrast, the labels ξi do not have any 
simple interpretation in terms of the bipartite digraph when read from left to right, as 
they depend on the value of σ(i), which is > i and hence unknown at time i. (See also 
the Remark after Step 2 in Section 6.2.)

Step 3: Proof of bijection. We prove that the mapping σ 	→ (ω, ξ) is a bijection by 
explicitly describing the inverse map.

First, some preliminaries: Given a permutation σ ∈ Sn, we define five subsets of [n]:

F = {i : σ(i) > i} = positions of excedances (6.13a)

F ′ = {i : i > σ−1(i)} = values of excedances (6.13b)

G = {i : σ(i) < i} = positions of anti-excedances (6.13c)

G′ = {i : i < σ−1(i)} = values of anti-excedances (6.13d)

H = {i : σ(i) = i} = fixed points (6.13e)

Let us observe that

F ∩ F ′ = cycle double rises (6.14a)

G ∩G′ = cycle double falls (6.14b)

F ∩G′ = cycle valleys (6.14c)

F ′ ∩G = cycle peaks (6.14d)

F ∩G = ∅ (6.14e)

F ′ ∩G′ = ∅ (6.14f)

and of course H is disjoint from F, F ′, G, G′.
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Let us also recall the notion of an inversion table: Let S be a totally ordered set 
of cardinality k, and let x = (x1, . . . , xk) be an enumeration of S; then the (left-to-
right) inversion table corresponding to x is the sequence p = (p1, . . . , pk) of nonnegative 
integers defined by pα = #{β < α : xβ > xα}. Note that 0 ≤ pα ≤ α − 1 for all 
α ∈ [k], so there are exactly k! possible inversion tables. Given the inversion table p, we 
can reconstruct the sequence x by working from right to left, as follows: There are pk
elements of S larger than xk, so xk must be the (pk + 1)th largest element of S. Then 
there are pk−1 elements of S \ {xk} larger than xk−1, so xk−1 must be the (pk−1 + 1)th 
largest element of S \ {xk}. And so forth. [Analogously, the right-to-left inversion table 
corresponding to x is the sequence p = (p1, . . . , pk) of nonnegative integers defined by 
pα = #{β > α : xβ < xα}.]

With these preliminaries out of the way, we can now describe the map (ω, ξ) 	→ σ. 
Given the 3-colored Motzkin path ω, we read off which indices i correspond to cycle 
valleys, cycle peaks, cycle double falls, cycle double rises, and fixed points; this allows 
us to reconstruct the sets F, F ′, G, G′, H. We now use the labels ξ to reconstruct the 
maps σ � F : F → F ′ and σ � G : G → G′, as follows: Let i1, . . . , ik be the elements of 
F written in increasing order; then the sequence j1, . . . , jk defined by jα = σ(iα) is a 
listing of F ′ whose inversion table is given by pα = ξiα − 1: this is the content of (6.5) in 
the case σ(i) > i. So we can use ξ � F to reconstruct σ � F . In a similar way we can use 
ξ � G to reconstruct σ � G, but now we must use the right-to-left inversion table because 
of how (6.5) is written in the case σ(i) < i.

Step 4: Translation of the statistics. We have already translated the crossing and nest-
ing statistics (2.74) in terms of the heights hi−1 and labels ξi: see (6.6) and Lemma 6.2. 
And we have also translated the level of a fixed point in terms of the height hi−1 = hi: 
see (6.3). These are all the statistics arising in Theorem 2.9.

Step 5: Computation of the weights (2.79). Using the bijection, we transfer the weights 
(2.77) from σ to (ω, ξ) and then sum over ξ to obtain the weight W (ω). This weight is 
factorized over the individual steps si, as follows:

• If si is a rise starting at height hi−1 = k (so that i is a cycle valley), then from (6.7)
and (6.6) the weight is

ak =
k+1∑
ξi=1

ak+1−ξi, ξi−1 = a�k (6.15)

where a�k was defined in (2.80).
• If si is a fall starting at height hi−1 = k (so that i is a cycle peak and k ≥ 1), then 

from (6.9) and (6.6) the weight is

bk =
k∑

bk−ξi, ξi−1 = b�k−1 . (6.16)

ξi=1
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• If si is a level step of type 1 at height hi−1 = k (so that i is a cycle double fall and 
k ≥ 1), then from (6.9) and (6.6) the weight is

c
(1)
k =

k∑
ξi=1

ck−ξi, ξi−1 = c�k−1 . (6.17)

• If si is a level step of type 2 at height hi−1 = k (so that i is a cycle double rise and 
k ≥ 1), then from (6.8) and (6.6) the weight is

c
(2)
k =

k∑
ξi=1

dk−ξi, ξi−1 = d�k−1 . (6.18)

• If si is a level step of type 3 at height hi−1 = k (so that i is a fixed point), then from 
(6.3) the weight is

c
(3)
k = ek . (6.19)

Setting γk = c
(1)
k + c

(2)
k + c

(3)
k and βk = ak−1bk as instructed in (5.2), we obtain the 

weights (2.79). This completes the proof of Theorem 2.9. �
Remark. Theorem 2.16 on counting connected components in permutations, as applied 
to Theorem 2.9, has an easy proof in our labeled-Motzkin-paths formalism. From (6.4)
we see that i is a divider (see Section 2.13) if and only if hi = 0. And this happens if and 
only if step si is either a fall starting at height hi−1 = 1 or a level step of type 3 at height 
hi−1 = 0. So, giving each connected component a weight ζ amounts to multiplying b�0
and e0 by ζ. In the J-fraction coefficients (2.79) this multiplies γ0 and β1 by ζ, exactly 
as asserted in Theorem 2.16. �

Let us conclude by giving a formula for the inversion statistic (2.140) in terms of the 
Foata–Zeilberger heights and labels:

Lemma 6.3 (Inversion statistic). We have

inv(σ) =
∑
i

(hi−1 + ξi − 1) +
∑
i∈fix

hi−1 . (6.20)

Proof. We use Proposition 2.24 to write inv(σ) in terms of our crossing and nesting 
statistics, then (6.3), (6.6) and (6.7)–(6.9) to translate the crossing and nesting statistics 
to heights and labels. We get

cval + ucrosscval + 2 unestcval =
∑

(hi−1 + ξi) (6.21a)

i∈cval



102 A.D. Sokal, J. Zeng / Advances in Applied Mathematics 138 (2022) 102341
cdrise + ucrosscdrise + 2 unestcdrise =
∑

i∈cdrise
(hi−1 + ξi − 1) (6.21b)

cdfall + lcrosscdfall + 2 lnestcdfall =
∑

i∈cdfall
(hi−1 + ξi − 1) (6.21c)

lcrosscpeak + 2 lnestcpeak =
∑

i∈cpeak
(hi−1 + ξi − 2) (6.21d)

2 psnest = 2
∑
i∈fix

hi−1 = 2
∑
i∈fix

(hi−1 + ξi − 1) (6.21e)

and hence

inv = (cval − cpeak) +
∑
i

(hi−1 + ξi − 1) +
∑
i∈fix

hi−1 . (6.22)

Since cval = cpeak, this proves (6.20). �
A formula equivalent to (6.20) was given, in a different notation, in [28, eqn. (8)].

Final remarks. 1. Our definition of the Motzkin path ω is essentially the same as that used 
by Foata and Zeilberger [58], Randrianarivony [88, Section 2], Corteel [33, Section 3.1], 
and Shin and Zeng [96, Section 4] [97, Section 5]; the only difference is that we have 
used three rather than two types of level steps, for conceptual clarity. Our definition of 
the labels ξ is different from the ones in these papers, but similar in spirit.

2. Other variants (and other presentations) of the Foata–Zeilberger bijection can be 
found in [14,28,35,47,58,87,88,98]. �

6.2. Second master J-fraction: Proof of Theorems 2.1(b), 2.4, 2.12 and 2.14

In this section we will prove the second master J-fraction for permutations (Theo-
rem 2.14). As a corollary we will also obtain Theorem 2.12, which is obtained from The-
orem 2.14 by the specialization (2.104); and from this we will in turn obtain Theorem 2.4, 
as well as Theorem 2.1(b), which is linked by contraction (1.3) to the specialization (2.34)
of Theorem 2.4.

Here we need to construct a bijection that will allow us to count the number of cycles 
(cyc), which is a global variable. To do this, we will employ (a slight variant of) the 
Biane [14] bijection; it is very similar in spirit to the Foata–Zeilberger bijection used in 
Section 6.1, but organized slightly differently. The Biane bijection (in our version) maps 
Sn to the set of (A′, A′′, B′, B′′, C(1)′, C(1)′′, C(2)′, C(2)′′, C(3)′, C(3)′′)-doubly labeled 
3-colored Motzkin paths of length n, where

(A′
k, A

′′
k) = (1, 1) for k ≥ 0 (6.23a)

(B′
k, B

′′
k ) = (k, k) for k ≥ 1 (6.23b)



A.D. Sokal, J. Zeng / Advances in Applied Mathematics 138 (2022) 102341 103
(C(1)′
k , C

(1)′′
k ) = (1, k) for k ≥ 0 (6.23c)

(C(2)′
k , C

(2)′′
k ) = (k, 1) for k ≥ 0 (6.23d)

(C(3)′
k , C

(3)′′
k ) = (1, 1) for k ≥ 0 (6.23e)

Our presentation of this bijection will follow the same steps as in Section 6.1.

Step 1: Definition of the Motzkin path. The Motzkin path ω associated to a permu-
tation σ ∈ Sn is identical to the one employed in the Foata–Zeilberger bijection. That 
is:

• If i is a cycle valley, then si is a rise.
• If i is a cycle peak, then si is a fall.
• If i is a cycle double fall, then si is a level step of type 1.
• If i is a cycle double rise, then si is a level step of type 2.
• If i is a fixed point, then si is a level step of type 3.

The interpretation of the heights hi is thus exactly as in Lemma 6.1.

Step 2: Definition of the labels ξi = (ξ′i,ξ
′′
i ).

• If i is a cycle valley, then ξ′i = ξ′′i = 1.
• If i is a cycle double fall, then ξ′i = 1 and ξ′′i = 1 + #{k : k > i and σ(k) < σ(i)}.
• If i is a cycle double rise, then ξ′′i = 1 and ξ′i = 1 + #{k : k < σ−1(i) and σ(k) > i}.
• If i is a cycle peak, then ξ′i = 1 + #{k : k < σ−1(i) and σ(k) > i} and ξ′′i =

1 + #{k : k > i and σ(k) < σ(i)}.
• If i is a fixed point, then ξ′i = ξ′′i = 1.

These labels have a nice interpretation in terms of the bipartite digraph employed in 
the proof of Lemma 6.1 (Fig. 9). First recall that hi−1 equals the number of unconnected 
dots in the top row after i − 1 steps, and also equals the number of unconnected dots in 
the bottom row after i − 1 steps. We then look at what happens at stage i:

• If i is a cycle valley, then at stage i we add no arrows. Since no choices are being 
made at this stage, we set ξ′i = ξ′′i = 1.

• If i is a cycle double fall, then at stage i we add an arrow from i on the top row to 
an unconnected dot j′ on the bottom row, where j = σ(i) < i; then ξ′′i is the index 
of the unconnected dot j′ among all the unconnected dots on the bottom row. Since 
no unconnected dot on the top row was touched, we set ξ′i = 1.

• Similarly, if i is a cycle double rise, then at stage i we add an arrow from an uncon-
nected dot j on the top row to i′ on the bottom row, where j = σ−1(i) < i; then 
ξ′i is the index of the unconnected dot j among all the unconnected dots on the top 
row. Since no unconnected dot on the bottom row was touched, we set ξ′′i = 1.
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• If i is a cycle peak, then we add two arrows: from i on the top row to the unconnected 
dot j′ on the bottom row, where j = σ(i) < i; and also from the unconnected dot k
on the top row to i′ on the bottom row, where k = σ−1(i) < i. Then ξ′i (resp. ξ′′i ) is 
the index of k (resp. j′) among the unconnected dots on the top (resp. bottom) row.

• If i is a fixed point, then at stage i we add an arrow i → i′. Since no choices are 
being made at this stage, we set ξ′i = ξ′′i = 1.

This interpretation shows in particular that the inequalities (5.4)/(6.23) are satisfied.

Remark. The Biane labels (ξ′i, ξ′′i ) are related to the Foata–Zeilberger labels ξi [defined 
in (6.5)] as follows:

i ∈ cdfall ∪ cpeak : ξ′′i (Biane) = ξi(FZ) (6.24a)

i ∈ cdrise ∪ cpeak : ξ′i(Biane) = ξσ−1(i)(FZ) or equivalently ξi(FZ) = ξ′σ(i)(Biane)

(6.24b)

since if i is a cycle double fall or cycle peak, then σ(i) < i, while if i is a cycle double 
rise or cycle peak, then σ−1(i) < i. �

Step 3: Proof of bijection. The foregoing interpretation shows how to build the bipar-
tite digraph, and hence reconstruct the permutation σ, by successively reading the steps 
si and labels ξi. Specifically, at stage i one proceeds as follows [14, p. 280]:

• If si is a rise (corresponding to i being a cycle valley), then we add no arrows. [In 
this case we necessarily have ξi = (1, 1).]

• If si is a level step of type 1 (corresponding to i being a cycle double fall), then 
ξi = (1, m) for some m ∈ [hi−1], and we add an arrow from i on the top row to the 
mth (from left to right) unconnected dot on the bottom row.

• If si is a level step of type 2 (corresponding to i being a cycle double rise), then 
ξi = (l, 1) for some l ∈ [hi−1], and we add an arrow from the lth (from left to right) 
unconnected dot on the top row to i′ on the bottom row.

• If si is a fall (corresponding to i being a cycle peak), then ξi = (l, m) for some 
l, m ∈ [hi−1], and we add two arrows: one going from i on the top row to the mth 
(from left to right) unconnected dot on the bottom row; and the other going from 
the lth (from left to right) unconnected dot on the top row to i′ on the bottom row.

• If si is a level step of type 3 (corresponding to i being a fixed point), we add an 
arrow from i on the top row to i′ on the bottom row. [In this case we necessarily 
have ξi = (1, 1).]

Clearly, once a dot becomes the source or sink of an arrow, it plays no further role in 
the construction and in particular receives no further arrows. Moreover, since hn = 0, 
at the end of the construction there are no unconnected dots. The final result of the 
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construction thus corresponds to a bijection between {1, . . . , n} and {1′, . . . , n′}, or in 
other words to a permutation σ ∈ Sn.

Step 4: Translation of the statistics.

Lemma 6.4 (Crossing and nesting statistics). We have

hi−1 − ξ′′i = lcross(i, σ) if i ∈ cpeak ∪ cdfall (6.25)

ξ′′i − 1 = lnest(i, σ) if i ∈ cpeak ∪ cdfall (6.26)

hi − 1 = ucross(i, σ) + unest(i, σ) if i ∈ cval ∪ cdrise (6.27)

ξ′i − 1 = unest(σ−1(i), σ) if i ∈ cpeak ∪ cdrise (6.28)

hi−1 = hi = lev(i, σ) if i ∈ fix (6.29)

Note that (6.27) is written in terms of hi, while (6.25) is written in terms of hi−1.

Proof. (a) If i is a cycle peak or a cycle double fall, then hi−1 − ξ′′i = lcross(i, σ) exactly 
as in (6.12), and ξ′′i − 1 = lnest(i, σ) exactly as in (6.6).

(b) If i is a cycle valley or a cycle double rise, then hi − 1 = ucross(i, σ) + unest(i, σ)
is an immediate consequence of (6.4a) and the definitions (2.74a,b).

(c) If i is a cycle peak or a cycle double rise, then ξ′i − 1 = unest(σ−1(i), σ) is an 
immediate consequence of the definition of ξ′i and the definition (2.74b).

(d) If i is a fixed point, then hi−1 = hi = lev(i, σ) was proven in (6.3). �
It is instructive to compare this result with Lemma 6.2. For cycle peaks and cycle 

double falls, the results here for lcross and lnest are identical to (6.9) and (6.6) but 
with ξi replaced by ξ′′i ; this is, of course, an immediate consequence of (6.24a). For cycle 
valleys and cycle double rises, by contrast, here we do not learn about ucross and unest
individually, but only about their sum. And finally, for cycle peaks and cycle double 
rises, we obtain unest, but evaluated at σ−1(i) rather than at i; this is an immediate 
consequence of (6.24b).

Finally, we come to the counting of cycles (cyc). We use the term cycle closer to 
denote the largest element in a non-singleton cycle. Obviously every non-singleton cycle 
has precisely one cycle closer. A cycle closer is always a cycle peak, but not conversely: 
for instance, in the cycle (1324), both 3 and 4 are cycle peaks, but only 4 is a cycle 
closer. So we need to know which cycle peaks are cycle closers, or at least how many of 
the former are the latter. The answer is as follows:

Lemma 6.5 (Counting of cycles). Fix i ∈ [n], and fix (s1, . . . , si−1) and (ξ1, . . . , ξi−1). 
Consider all permutations σ ∈ Sn that have those given values for the first i − 1 steps 
and labels and for which i is a cycle peak. Then:

(a) The value of ξi = (ξ′i, ξ′′i ) completely determines whether i is a cycle closer or not.
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(b) For each value ξ′i ∈ [hi−1] there is precisely one value ξ′′i ∈ [hi−1] that makes i a cycle 
closer, and conversely.

Proof. We use once again the bipartite digraph of Fig. 9(a), and let us also draw a 
vertical dotted line (with an upwards arrow) to connect each pair j′ → j. Now consider 
the restriction of this digraph to the vertex set {1, . . . , i− 1, 1′, . . . , (i− 1)′}: as discussed 
in Step 3, this restriction can be reconstructed from the steps (s1, . . . , si−1) and the labels 
(ξ1, . . . , ξi−1). The connected components of this restriction are of two types: complete 
directed cycles and directed open chains; they correspond to cycles of σ whose cycle 
closers are, respectively, ≤ i − 1 and > i − 1. Each directed open chain runs from an 
unconnected dot on the bottom row to an unconnected dot on the top row.

Now suppose that i is a cycle peak. Then at stage i we add two arrows: from i on the 
top row to an unconnected dot j′ on the bottom row; and also from an unconnected dot 
k on the top row to i′ on the bottom row. Here ξ′i (resp. ξ′′i ) is the index of k (resp. j′) 
among the unconnected dots on the top (resp. bottom) row.

Now the point is simply this: i is a cycle closer if and only if j′ and k belong to the 
same directed open chain (with j′ being its starting point and k being its ending point). 
So for each value ξ′i ∈ [hi−1] there is precisely one value ξ′′i ∈ [hi−1] that makes i a cycle 
closer, and conversely. �

Step 5: Computation of the weights (2.102). Using the bijection, we transfer the 
weights (2.100) from σ to (ω, ξ) and then sum over ξ to obtain the weight W (ω). This 
weight is factorized over the individual steps si, as follows:

• If si is a rise starting at height hi−1 = hi − 1 = k (so that i is a cycle valley), then 
necessarily ξi = (1, 1), and it follows from (6.27) that the weight is

ak = ak . (6.30)

• If si is a fall starting at height hi−1 = k (so that i is a cycle peak and k ≥ 1), then 
for each choice of ξ′′i ∈ [k] there are k possible choices of ξ′i, of which one closes a 
cycle and the rest don’t (Lemma 6.5). Therefore, using (6.25) and (6.26), the weight 
is

bk = (λ + k − 1)
k∑

ξ′′i =1

bk−ξ′′i , ξ′′i −1 = (λ + k − 1) b�k−1 . (6.31)

• If si is a level step of type 1 at height hi−1 = k (so that i is a cycle double fall and 
k ≥ 1), then from (6.25) and (6.26) the weight is

c
(1)
k =

k∑
′′

ck−ξ′′i , ξ′′i −1 = c�k−1 . (6.32)

ξi =1
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• If si is a level step of type 2 at height hi−1 = hi = k (so that i is a cycle double rise 
and k ≥ 1), then from (6.27) and (6.28) the weight is

c
(2)
k =

k∑
ξ′i=1

dk−1, ξ′i−1 = d�k−1 . (6.33)

• If si is a level step of type 3 at height hi−1 = k (so that i is a fixed point), then from 
(6.29) the weight is

c
(3)
k = λek . (6.34)

Setting γk = c
(1)
k + c

(2)
k + c

(3)
k and βk = ak−1bk as instructed in (5.2), we obtain the 

weights (2.102). This completes the proof of Theorem 2.14. �
Remark. Theorem 2.16 on counting connected components in permutations, as applied to 
Theorem 2.14, has an easy proof in our labeled-Motzkin-paths formalism; the argument 
is identical to the one presented in Section 6.1 for the first master J-fraction. �

Let us also observe that Biane [14, eqn. (3.2.6)] has given a formula, in terms of his 
heights and labels, for the inversion statistic (2.140); in our notation it is:

Lemma 6.6 (Inversion statistic). We have

inv(σ) = 2
∑
i∈fix

hi−1 +
∑

i∈cdrise
(hi−1 + ξ′i − 1) +

∑
i∈cdfall

(hi−1 + ξ′′i − 1)

+
∑

i∈cpeak
(2hi−1 + ξ′i + ξ′′i − 3) (6.35a)

=
∑
i

(hi−1 + ξ′i + ξ′′i − 2) +
∑
i∈fix

hi−1 . (6.35b)

Since Biane’s proof of this formula is a bit complicated (by induction on n), let us 
give a simple proof, following ideas of Elizalde [47, p. 6, item (v)]:

Proof. The number of inversions is the number of crossings of lines in the bipartite 
digraph of Fig. 9(a). We now count the crossings of lines (L, L′) according to the stage 
i at which the first of the two lines L, L′ appears in the “reading” of the digraph from 
left to right, as shown in Fig. 9(c):

1) A fixed point i corresponds to a vertical line i → i′ in the bipartite digraph; and 
since at stage i there are hi−1 = hi unconnected dots j < i in the top row and also 
hi−1 = hi unconnected dots j′ with j < i in the bottom row, each of these unconnected 
dots will later connect to a vertex k′ (resp. k) with k > i, thereby crossing the vertical 
line i → i′. This gives the term 2 

∑
hi−1.
i∈fix
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2) A cycle double rise i corresponds to a line j → i′ where j < i (and there is not yet 
any line emanating from i). The line j → i′ will later be crossed by lines emanating from 
ξ′i− 1 unconnected dots < j on the top row, and lines arriving at hi−1 unconnected dots 
< i′ on the bottom row. This gives the term 

∑
i∈cdrise

(hi−1 + ξ′i − 1).

3) Similarly, a cycle double fall i corresponds to a line i → j′ where j < i (and there 
is not yet any line arriving at i′). The line i → j′ will later be crossed by lines emanating 
from hi−1 unconnected dots < i on the top row, and lines arriving at ξ′′i −1 unconnected 
dots < j′ on the bottom row. This gives the term 

∑
i∈cdfall

(hi−1 + ξ′′i − 1).

4) A cycle peak i corresponds to a pair of lines i → j′ and k → i′, where j, k < i. 
The line i → j′ will later be crossed by lines emanating from hi−1 unconnected dots < i

on the top row, and lines arriving at ξ′′i − 1 unconnected dots < j′ on the bottom row. 
Similarly, the line k → i′ will later be crossed by lines emanating from ξ′i−1 unconnected 
dots < k on the top row, and lines arriving at hi−1 unconnected dots < i′ on the bottom 
row. However, this double-counts the crossing between the lines i → j′ and k → i′, so 
we need to subtract 1. This gives the term 

∑
i∈cpeak

(2hi−1 + ξ′i + ξ′′i − 3).

5) A cycle valley i does not correspond to any line at stage i.
Putting this all together gives (6.35a). This can be rewritten as (6.35b) once we 

observe that ∑
i∈cval

hi−1 =
∑

i∈cpeak
(hi−1 − 1) (6.36)

(by pairing rises with falls on the Motzkin path) and recall that the “null” values of ξ′i
or ξ′′i are 1. �
Remarks. 1. A formula equivalent to (6.35b) was given, in a different notation, in [28, 
after eqn. (8)].

2. The result of Lemma 6.6 can also be used to give an alternate proof of Proposi-
tion 2.24, as follows: Start from (6.35a) and rewrite it slightly by using∑

i∈cpeak
hi−1 =

∑
i∈cval

hi . (6.37)

Then translate the heights and labels back to crossing and nesting statistics, using 
(6.25)–(6.29); this yields

inv = cval + cdrise + cdfall + ucross + lcross + 2 lnest + 2 psnest + unest

+
∑

i∈cdrise∪cpeak
unest(σ−1(i), σ) . (6.38)

But i ∈ cdrise ∪ cpeak ⇐⇒ σ−1(i) < i ⇐⇒ σ−1(i) ∈ cdrise ∪ cval, so
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∑
i∈cdrise∪cpeak

unest(σ−1(i), σ) =
∑

j∈cdrise∪cval
unest(j, σ) = unest(σ) . (6.39)

Combining this with (6.38) proves (2.141).
3. Note the close similarity between the Foata–Zeilberger formula (6.20) and the Biane 

formula (6.35b). Indeed, by using (6.24) and (6.39) together with (6.6), it is straightfor-
ward to show that the right-hand sides of (6.20) and (6.35b) are equal. �

Let us explain, finally, why it is not possible to use the Biane bijection to combine 
the counting of cycles with the counting of inversions. The trouble is that the last term 
in (6.35a) — that is, the sum over cpeak — involves both ξ′i and ξ′′i . By Lemma 6.5 we 
know that for each possible value of ξ′i there is exactly one value of ξ′′i that makes i a 
cycle closer — but we don’t know which one it is. Therefore, we are unable to evaluate 
the sum over ξ′i, ξ′′i ∈ [k] of (for instance) a weight qξ′i+ξ′′i times a weight λ for each cycle 
closer. For instance, suppose that the cycle closer occurs when ξ′i = ξ′′i : then the sum is

( k∑
j=1

qj
)2

+ (λ− 1)
k∑

j=1
q2j . (6.40)

But if we suppose, by contrast, that the cycle closer occurs when ξ′i = k + 1 − ξ′′i , then 
the sum is

( k∑
j=1

qj
)2

+ (λ− 1)kqk+1 . (6.41)

Of course, as explained in Section 2.16, this inability to combine the counting of cycles 
with the counting of inversions is not merely a limitation of our method of proof, but is 
inherent in the problem: the weight qinv(σ)λcyc(σ) gives rise to a J-fraction with coefficients 
that are rational functions rather than polynomials.

7. Set partitions: Proofs

7.1. S-fraction: Proof of Theorem 3.1

It is immediate from the definitions (2.2) and (3.2) that Bn(x, y, v) = Pn(x, y, 0, v). 
We shall prove Theorem 3.1 by translating the interpretation (2.5) of Pn(x, y, 0, v) to 
set partitions via a suitable bijection.

We define a mapping from set partitions to permutations as follows: Given a set 
partition π ∈ Πn, we define the permutation σ ∈ Sn such that the disjoint cycles of σ
are the blocks of π, each traversed in increasing order (with the largest element of course 
followed by the smallest element). The mapping π 	→ σ is clearly a bijection of Πn

onto S�
n, where S�

n denotes the subset of Sn consisting of permutations in which each 
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cycle of length � ≥ 2 contains precisely one cycle peak (namely, the cycle maximum), 
one cycle valley (namely, the cycle minimum), � − 2 cycle double rises, and no cycle 
double falls. Observe now that these are precisely the permutations in which each cycle 
has exactly one non-excedance, i.e. in which exc(σ) + cyc(σ) = n. So setting u = 0 in 
(2.5) corresponds to restricting the sum to S�

n, which we can then pull back to Πn via 
the bijection. We clearly have cyc(σ) = |π|. To finish the proof, we need only interpret 
erec(σ) in terms of π.

But this is easy. By definition, σ(i) is the next-larger element of the block Bπ(i) after 
i, in case i is not the largest element of Bπ(i), and is the smallest element of Bπ(i), in 
case i is the largest element of Bπ(i). So σ(i) = i if and only if i is a singleton; σ(i) < i

if and only if i is the largest element of a non-singleton block; and σ(i) > i if and only 
if i is a non-largest element of a (necessarily non-singleton) block.

When is an index i an exclusive record of σ? An exclusive record is simply a record 
that is not a fixed point, or equivalently a record that is an excedance. So we eliminate 
the non-excedances by defining

σ′(i) =

⎧⎨⎩σ(i) if σ(i) > i

0 if σ(i) ≤ i
(7.1)

Then the exclusive records of the permutation σ are the same as the nonzero records of 
the word σ′, i.e. the indices i such that σ′(i) �= 0 and σ′(j) < σ′(i) for all j < i. [Note 
that the only repeated elements of σ′ are 0, so there is no need to distinguish between 
records and strict records.] But this is exactly how we have defined “exclusive record” 
for a set partition π. �
Remark. It would be nicer if we could use the interpretation (2.4) instead of (2.5) on 
the permutation side, i.e. employing arec instead of cyc, since we have available better 
refinements for the permutation polynomials that do not include the statistic cyc: com-
pare Theorem 2.2 with 2.4, or 2.7 with 2.12, or 2.9 with 2.14. So we would like to find an 
injection of partitions of [n] into permutations of [n] in which blocks map to antirecords, 
and in which the image permutations are precisely those in which every index is either 
an excedance or an antirecord (that is, in which there are no nrcpeak, nrcdfall or nrfix). 
But we have been unable to find such a mapping. �

7.2. First master J-fraction: Proof of Theorems 3.2, 3.3 and 3.9

In this section we will prove the first master J-fraction for set partitions (Theorem 3.9). 
As a consequence we will also obtain Theorem 3.3, which is obtained from Theorem 3.9
by the specialization (3.32); and Theorem 3.2, which is a special case of Theorem 3.3. 
We will also obtain a second proof of Theorem 3.1, which is linked by contraction (1.3)
to the specialization x1 = x2, y1 = y2, v1 = v2 of Theorem 3.2.
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To prove Theorem 3.9, we will employ the Kasraoui–Zeng [69] bijection, which is a 
variant of one proposed earlier by Flajolet [53]. (We will discuss the Flajolet bijection in 
the next subsection.) However, before introducing this bijection we need first to reinter-
pret the polynomial Bn(a, b, d, e) defined in (3.28) by reversing the order of the vertices 
1, . . . , n. (The reason for this somewhat embarrassing reversal will be discussed after the 
proof.) So, given any set partition π ∈ Πn, we define π̃ ∈ Πn to be the reversal of π, 
i.e. the image of π under the map i 	→ ĩ

def= n + 1 − i. We then define reversals of the 
statistics (3.23) employed in (3.28):

c̃r(k, π) def= cr(k̃, π̃) = #{i < j < k < l : (i, k) ∈ Gπ and (j, l) ∈ Gπ} (7.2a)

ñe(k, π) def= ne(k̃, π̃) = #{i < j < k < l : (i, l) ∈ Gπ and (j, k) ∈ Gπ} (7.2b)

q̃ne(k, π) def= qne(k̃, π̃) = #{i < k < l : (i, l) ∈ Gπ} (7.2c)

Thus, c̃r and ñe are like cr and ne but put the distinguished index in third rather than 
second position. On the other hand, the definition of qne is reversal-invariant, so that 
in fact q̃ne(k, π) = qne(k, π). Now summing over π ∈ Πn is of course equivalent to 
summing over π̃ ∈ Πn; and reversal interchanges openers with closers. It follows that the 
polynomial Bn(a, b, d, e) defined in (3.28) can equivalently be written as

Bn(a,b,d, e) =∑
π∈Πn

∏
i∈closers

ac̃r(i,π), ñe(i,π)
∏

i∈openers
bqne(i,π)

×
∏

i∈insiders
dc̃r(i,π), ñe(i,π)

∏
i∈singletons

eqne(i,π) . (7.3)

We will employ the reinterpretation (7.3) in our proof, because its groupings of closers-
and-insiders and openers-and-singletons are better adapted to the Kasraoui–Zeng bijec-
tion than the groupings of openers-and-insiders and closers-and-singletons employed in 
our original (and in our opinion more natural) definition (3.28).

Let us now define the Kasraoui–Zeng [69] bijection, which is a bijection from Πn to 
the set of (A, B, C(1), C(2))-labeled 2-colored Motzkin paths of length n, where

Ak = 1 for k ≥ 0 (7.4a)

Bk = k for k ≥ 1 (7.4b)

C
(1)
k = k for k ≥ 0 (7.4c)

C
(2)
k = 1 for k ≥ 0 (7.4d)

As before, we will begin by explaining how the Motzkin path ω is defined; then we will 
explain how the labels ξ are defined; next we will prove that the mapping is indeed a 
bijection; next we will translate the various statistics from Πn to our labeled Motzkin 
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paths; and finally we will sum over labels ξ to obtain the weight W (ω) associated to a 
Motzkin path ω, which upon applying (5.2) will yield Theorem 3.9.

Step 1: Definition of the Motzkin path. Given a set partition π ∈ Πn, we classify the 
indices i ∈ [n] in the usual way as opener, closer, insider or singleton. We then define 
a path ω = (ω0, . . . , ωn) starting at ω0 = (0, 0) and ending at ωn = (n, 0), with steps 
s1, . . . , sn, as follows:

• If i is an opener, then si is a rise.
• If i is a closer, then si is a fall.
• If i is an insider, then si is a level step of type 1.
• If i is a singleton, then si is a level step of type 2.

The interpretation of the heights hi is almost immediate from this definition:

Lemma 7.1. For i ∈ {0, . . . , n}, hi is the number of blocks that are “started but unfinished” 
after stage i, i.e.

hi = #{B ∈ π : minB ≤ i < maxB} . (7.5)

In particular, it follows that ω is indeed a Motzkin path, i.e. all the heights hi are 
nonnegative and hn = 0.

Step 2: Definition of the labels ξi. If i is an opener or a singleton, we set ξi = 1 as 
required by (7.4). If i is an insider or a closer, we look at the hi−1 blocks B1, . . . , Bhi−1

that are “started but unfinished” after stage i − 1 (note that we must have hi−1 ≥ 1). 
For each j ∈ [hi−1], let yj be the maximal element of Bj ∩ [i − 1]; it is necessarily an 
opener or insider in Bj , and its successor in Bj will be ≥ i. (Kasraoui and Zeng [69] call 
yj the “vacant vertex”.) We order the blocks Bj so that y1 < y2 < . . . < yhi−1 . Then 
the vertex i belongs to precisely one of these blocks Bj (and is thus the successor of yj
within this block); we set ξi = j.

Step 3: Proof of bijection. It is easy to describe the inverse map to σ 	→ (ω, ξ). 
Successively for i = 1, . . . , n, we use the 2-colored Motzkin path ω to read off the type 
of the vertex i (opener, closer, insider or singleton); and if i is an insider or closer, we 
use the label ξi to decide to which “started but unfinished” block the vertex i should be 
attached.

Step 4: Translation of the statistics. This too is straightforward:

Lemma 7.2.

(a) If i is an insider or a closer, then

c̃r(i, π) = hi−1 − ξi (7.6a)
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ñe(i, π) = ξi − 1 (7.6b)

(b) If i is a singleton or an opener, then

qne(i, π) = hi−1 . (7.7)

Proof. (a) This is [69, Proposition 3.3], but for completeness we give the proof. By 
definition, c̃r(i, π) is the number of quadruplets r < s < i < l such that (r, i) ∈ Gπ and 
(s, l) ∈ Gπ. But this means that, of the hi−1 vacant vertices existing at the beginning of 
stage i, r is the ξith vacant vertex and s is a later vacant vertex. The number of such 
vertices s is therefore c̃r(i, π) = hi−1−ξi. Similarly, ñe(i, π) is the number of quadruplets 
r < s < i < l such that (r, l) ∈ Gπ and (s, i) ∈ Gπ. But this means that s is the ξith 
vacant vertex and that r is an earlier vacant vertex. Therefore the number of such vertices 
r is ñe(i, π) = ξi − 1.

(b) Let B1, . . . , Bhi−1 be the blocks that are “started but unfinished” after stage i −1, 
and let yj be the maximal element of Bj∩[i −1]. If i is a singleton or an opener, then each 
of the vertices yj is the initial point of an arc that ends at a vertex > i; and these are the 
only vertices that do so. So qne(i, π) = hi−1. [If, by contrast, i is an insider or a closer, 
then one of the yj is the initial point of an arc that ends at i, so qne(i, π) = hi−1 − 1, in 
agreement with (3.27) and part (a).] �

Step 5: Computation of the weights (3.30). Using the bijection, we transfer the weights 
(7.3) from π to (ω, ξ) and then sum over ξ to obtain the weight W (ω). This weight is 
factorized over the individual steps si, as follows:

• If si is a rise starting at height hi−1 = k (so that i is an opener), then from (7.7) the 
weight is

ak = bk . (7.8)

• If si is a fall starting at height hi−1 = k (so that i is a closer and k ≥ 1), then from 
(7.6) the weight is

bk =
k∑

ξi=1

ak−ξi, ξi−1 = a�k−1 (7.9)

where a�k−1 was defined in (3.31).
• If si is a level step of type 1 at height hi−1 = k (so that i is an insider and k ≥ 1), 

then from (7.6) the weight is

c
(1)
k =

k∑
dk−ξi, ξi−1 = d�k−1 . (7.10)
ξi=1
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• If si is a level step of type 2 at height hi−1 = k (so that i is a singleton), then from 
(7.7) the weight is

c
(2)
k = ek . (7.11)

Setting γk = c
(1)
k + c

(2)
k and βk = ak−1bk as instructed in (5.2), we obtain the weights 

(3.30). This completes the proof of Theorem 3.9. �
Remark. Theorem 3.16 on counting connected components in set partitions, as applied to 
Theorem 3.9, has an easy proof in our labeled-Motzkin-paths formalism. From Lemma 7.1
we see that i is a divider (see Section 3.13) if and only if hi = 0. And this happens if and 
only if step si is either a fall starting at height hi−1 = 1 or a level step of type 2 at height 
hi−1 = 0. So, giving each connected component a weight ζ amounts to multiplying b0

and e0 by ζ. In the J-fraction coefficients (3.30) this multiplies γ0 and β1 by ζ, exactly 
as asserted in Theorem 3.16. �

Let us now explain why the reversal π 	→ π̃ seems to be needed in our proof. One reason 
was already explained: the Kasraoui–Zeng bijection naturally treats closers and insiders 
on the same footing, and openers and singletons on the same footing (cf. Lemma 7.2), 
whereas our original definition (3.28) interchanged closers with openers in this regard. 
So we need to pass to the reversed definition (7.3) in order to apply the bijection. (Al-
ternatively, we could have applied the Kasraoui–Zeng bijection to the reversed partition 
π̃, but that strikes us as even more unnatural.)

Here is another perspective on the problem: In Section 3.7 we defined the poly-
nomial Bn(a, b, d, e) [cf. (3.28)] by close analogy with the permutation polynomial 
Qn(a, b, c, d, e) defined in (2.77), when a set partition π ∈ Πn is mapped onto a per-
mutation σ ∈ Sn by specifying that the disjoint cycles of σ are the blocks of π, each 
traversed in increasing order. In particular, openers correspond to cycle valleys, closers 
to cycle peaks, insiders to cycle double rises, and singletons to fixed points; cycle dou-
ble falls are forbidden. But the Foata–Zeilberger bijection employed in our permutation 
proof (Section 6.1) does not correspond nicely to the Kasraoui–Zeng bijection used here 
in our set-partition proof. Both bijections “read” the input object (permutation or set 
partition) from left to right, but they employ very different senses of “reading”. In the 
Foata–Zeilberger bijection, at stage i we employ the entire permutation σ — not just 
its restriction σ(1) · · ·σ(i) — in defining both the Motzkin path and the labels. In the 
Kasraoui–Zeng bijection, by contrast, at stage i we know only the restriction of π to 
[1, i], together with the status of vertex i as opener, closer, insider or singleton; but if i
is an opener or insider, we do not know anything about the part of its block to its right 
(except that it is nonempty). So the definition (3.28) of the polynomial Bn(a, b, d, e) does 
not correspond nicely to what is needed in the proof; it turns out that the reformulation 
(7.3) is more appropriate.
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7.3. Second master J-fraction: Proof of Theorems 3.5 and 3.12

In this section we will prove the second master J-fraction for set partitions (The-
orem 3.12). As a consequence we will also obtain Theorem 3.5, which is obtained by 
comparing the specialization (3.32) of Theorem 3.9 with the same specialization of The-
orem 3.12.

To prove Theorem 3.12, we will employ the Flajolet [53] bijection, which is a very 
slight variant of the Kasraoui–Zeng [69] bijection employed in the previous subsection. 
We will therefore be brief in our description.

Analogously to what was done in the preceding subsection, we need to use reversals 
of the statistics (3.47) employed in (3.58). These were already defined in (3.68):

õv(k, π) def= ov(k̃, π̃)

= #{(B1, B2) : k ∈ B1 and minB1 < minB2 < k < maxB2} (7.12a)

c̃ov(k, π) def= cov(k̃, π̃)

= #{(B1, B2) : k ∈ B2 and minB1 < minB2 < k < maxB1} (7.12b)

q̃cov(k, π) def= qcov(k̃, π̃)

= #{B : B /� k and minB < k < maxB} (7.12c)

But the definition of qcov is reversal-invariant, so that in fact q̃cov(k, π) = qcov(k, π). 
The polynomial B(2)

n (a, b, d, e) defined in (3.58) can then equivalently be written as

B(2)
n (a,b,d, e) =∑

π∈Πn

∏
i∈closers

aõv(i,π), c̃ov(i,π)
∏

i∈openers
bqcov(i,π)

×
∏

i∈insiders
dõv(i,π), c̃ov(i,π)

∏
i∈singletons

eqcov(i,π) . (7.13)

The Flajolet bijection — just like the Kasraoui–Zeng bijection — takes Πn to the set 
of (A, B, C(1), C(2))-labeled 2-colored Motzkin paths of length n, where A, B, C(1), C(2)

are given by (7.4). The details are as follows:

Step 1: Definition of the Motzkin path. This is identical to the Kasraoui–Zeng bijec-
tion.

Step 2: Definition of the labels ξi. If i is an opener or a singleton, we set ξi = 1 as 
required by (7.4). If i is an insider or a closer, we look at the hi−1 blocks B1, . . . , Bhi−1

that are “started but unfinished” after stage i −1 (note that we must have hi−1 ≥ 1). For 
each j ∈ [hi−1], let xj be the minimal element of Bj∩ [i −1], or in other words the opener 
of Bj . (This use of the minimal rather than maximal element of Bj ∩ [i − 1] is the only
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change from Kasraoui–Zeng.) We order the blocks Bj so that x1 < x2 < . . . < xhi−1 . 
Then the vertex i belongs to precisely one of these blocks Bj ; we set ξi = j.

Step 3: Proof of bijection. Exactly as in Kasraoui–Zeng.

Step 4: Translation of the statistics. This too is straightforward, and is a direct ana-
logue of Lemma 7.2:

Lemma 7.3.

(a) If i is an insider or a closer, then

õv(i, π) = hi−1 − ξi (7.14a)

c̃ov(i, π) = ξi − 1 (7.14b)

(b) If i is a singleton or an opener, then

qcov(i, π) = hi−1 . (7.15)

Proof. (a) By definition, õv(i, π) is the number of blocks B′ such that minB < minB′ <

i < maxB′, where B is the block containing i. But this is exactly the definition of 
hi−1−ξi. Similarly, c̃ov(i, π) is the number of blocks B′ such that minB′ < minB < i <
maxB′, where B is the block containing i. But this is exactly the definition of ξi − 1.

(b) By definition, qcov(i, π) is the number of blocks B /� i such that minB < i <
maxB. If i is a singleton or an opener, then this equals hi−1. [If, by contrast, i is an insider 
or a closer, then one of the blocks B1, . . . , Bhi−1 contains i, so qcov(i, π) = hi−1 − 1, in 
agreement with (3.52) and part (a).] �

Step 5: Computation of the weights. Identical to Section 7.2, with the obvious substi-
tutions c̃r → õv, ñe → c̃ov, qne → qcov. This completes the proof of Theorem 3.12. �
7.4. Third and fourth master J-fractions: Proof of Theorems 3.8 and 3.13

In this section we will prove the third and fourth master J-fractions for set partitions 
(Theorem 3.13). As a consequence we will also obtain Theorem 3.8, which is obtained 
by comparing the specialization (3.32) of Theorems 3.9, 3.12 and 3.13.

To prove Theorem 3.13, we will employ a bizarre amalgam of the Flajolet and 
Kasraoui–Zeng bijections, in which the labels for insiders are given by Flajolet and those 
for closers by Kasraoui–Zeng, or vice versa. We will again be brief in our description.

Once again we begin by defining the reversed statistics (7.2) and (7.12). We then 
rewrite the polynomials B(3)

n (a, b, d, e) and B(4)
n (a, b, d, e) in terms of these reversed 

statistics:
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B(3)
n (a,b,d, e) =∑

π∈Πn

∏
i∈closers

aõv(i,π), c̃ov(i,π)
∏

i∈openers
bqne(i,π)

×
∏

i∈insiders
dc̃r(i,π), ñe(i,π)

∏
i∈singletons

eqne(i,π) . (7.16)

B(4)
n (a,b,d, e) =∑

π∈Πn

∏
i∈closers

ac̃r(i,π), ñe(i,π)
∏

i∈openers
bqne(i,π)

×
∏

i∈insiders
dõv(i,π), c̃ov(i,π)

∏
i∈singletons

eqne(i,π) . (7.17)

Then the bijections — call them #3 and #4 — are defined as follows:

Step 1: Definition of the Motzkin path. Exactly as in the Kasraoui–Zeng and Flajolet 
bijections.

Step 2: Definition of the labels ξi. In both bijections #3 and #4, if i is an opener or 
a singleton, we set ξi = 1. Then, in bijection #3:

• If i is an insider, we define ξi as in the Kasraoui–Zeng bijection.
• If i is a closer, we define ξi as in the Flajolet bijection.

Bijection #4 is defined by the reverse scheme:

• If i is an insider, we define ξi as in the Flajolet bijection.
• If i is a closer, we define ξi as in the Kasraoui–Zeng bijection.

Step 3: Proof of bijection. Exactly as in Kasraoui–Zeng.

Step 4: Translation of the statistics.

Lemma 7.4. In bijection #3:

(a) If i is an insider, then

c̃r(i, π) = hi−1 − ξi (7.18a)

ñe(i, π) = ξi − 1 (7.18b)

(b) If i is a closer, then

õv(i, π) = hi−1 − ξi (7.19a)

c̃ov(i, π) = ξi − 1 (7.19b)
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In bijection #4:

(c) If i is an insider, then

õv(i, π) = hi−1 − ξi (7.20a)

c̃ov(i, π) = ξi − 1 (7.20b)

(d) If i is a closer, then

c̃r(i, π) = hi−1 − ξi (7.21a)

ñe(i, π) = ξi − 1 (7.21b)

In both bijections:

(e) If i is a singleton or an opener, then

qne(i, π) = qcov(i, π) = hi−1 . (7.22)

Proof. This is an immediate consequence of Lemmas 7.2 and 7.3 together with (3.55). �
Step 5: Computation of the weights. Identical to Sections 7.2 and 7.3, with the obvious 

substitutions. This completes the proof of Theorem 3.13. �
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