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Linked Gaussian Process Emulation for Systems of Computer Models Using
Mat\'ern Kernels and Adaptive Design\ast 

Deyu Ming\dagger and Serge Guillas\ddagger 

Abstract. The state-of-the-art linked Gaussian process offers a way to build analytical emulators for systems of
computer models. We generalize the closed form expressions for the linked Gaussian process under
the squared exponential kernel to a class of Mat\'ern kernels that are essential in advanced applica-
tions. An iterative procedure to construct linked Gaussian processes as surrogate models for any
feed-forward systems of computer models is presented and illustrated on a feed-back coupled satellite
system. We also introduce an adaptive design algorithm that could increase the approximation ac-
curacy of linked Gaussian process surrogates with reduced computational costs on running expensive
computer systems, by allocating runs and refining emulators of individual submodels based on their
heterogeneous functional complexity.
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1. Introduction. Systems of computer models constitute the new frontier of many scien-
tific and engineering simulations. These can be multiphysics systems of computer simulators
such as coupled tsunami simulators with earthquake and landslide sources [23, 32], coupled
multiphysics model of the human heart [26], and multidisciplinary systems such as automo-
tive and aerospace systems [7, 16, 34]. Other examples include climate models where climate
variability arises from atmospheric, oceanic, land, and cryospheric processes and their coupled
interactions [12, 15], or highly multidisciplinary future biodiversity models [31] using combi-
nations of species distribution models, dispersal strategies, climate models, and representative
concentration pathways. The number and complexity of computer models involved can hinder
the analysis of such systems. For instance, the engineering design optimization of an aerospace
system typically requires hundreds of thousands of system evaluations. When the system has
feed-backs across computer models, the number of simulations becomes computationally pro-
hibitive [4]. Therefore, building and using a surrogate model is crucial: the system outputs
can be predicted at little computational cost, and subsequent sensitivity analysis, uncertainty
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propagation, or inverse modeling can be conducted in a computationally efficient manner.
Gaussian Stochastic process or Gaussian process (GaSP or GP) emulators have gained

popularity as surrogate models of systems of computer models in fields including environmen-
tal science, biology, and geophysics because of their attractive statistical properties. However,
many studies [13, 14, 23, 28, 30] construct global GaSP emulators (named as composite emu-
lators hereinafter) of such systems based on global inputs and outputs without consideration
of system structures. One major drawback of such a structural ignorance is that designing
experiments can be expensive because system structures may induce high nonlinearity be-
tween global inputs and outputs [25]. Furthermore, runs of the whole system are required
to produce new training points, even though the overall functional complexity global inputs
and outputs originates from a few computer models. This pitfall is particularly undesirable
because modern engineering and physical systems can include multiple computer models.

To overcome the disadvantages of the composite emulator, one could construct the surro-
gate for a system of computer models by integrating GaSP emulators of individual computer
models. The idea of integrating GaSP emulators has been explored by [25] in a feed-forward
system, but only using the Monte Carlo simulation to approximate the predictive mean and
variance of the system output. The Monte Carlo method suffers from a low convergence rate
and heavy computational cost, especially when the number of layers in a system is high [20]
and the number of new input positions to be evaluated is large, making it prohibitive for
complex systems.

Recently, [18] presents a nested emulator that works for systems of two computer models,
while [17] derived a more flexible emulator, called linked GaSP, for two-layered feed-forward
systems of computer models in analytical form (i.e., closed form expressions for mean and
variance of the predicted output of the system at an unexplored input position). However,
both of the works are carried out under the assumption that every computer model in the
system is represented by a GaSP with a product of one-dimenional (1-D) squared exponential
kernels over different input dimensions. Indeed, the squared exponential kernel has been
criticized for its oversmoothness [29] and associated ill-conditioned problem [5, 11]. Thus, the
generalization of the kernel assumption is necessary. In this study, we generalize the linked
GaSP to a class of Mat\'ern kernels for its wider applications in practice. We also demonstrate
an iterative procedure, by which the linked GaSP can be constructed for any feed-forward
computer systems.

Careful experimental design is important to construct an efficient linked GaSP surrogate
under limited computational resources. Poor designs can cause inaccurate linked GaSP with
excessive designing cost, and numerical instabilities in training GaSP emulators of individ-
ual computer models. Particularly, the linked GaSP is more prone to the latter issue than
the composite emulator because the design (e.g., the Latin hypercube design) of the global
input can produce poor designs for GaSP emulators of internal computer models. Therefore,
we discuss in this work several possible design strategies that can be used for linked GaSP
emulation, and introduce an adaptive design algorithm that has the potential to effectively
enhance the approximation accuracy of the linked GaSP with improved designs and reduced
overall simulation cost.

The remainder of the manuscript is organized as follows. In section 2, we review basics of
the GaSP emulator and the linked GaSP. The extension of linked GaSP to Mat\'ern kernels is
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then formulated with a synthetic experiment in section 3. An iterative procedure to produce
linked GaSPs for any feed-forward computer system is demonstrated with a feed-back coupled
satellite model in section 4. In section 5, we introduce an adaptive design strategy for the
linked GaSP emulation and discuss its advantages and disadvantages in relating to other
alternative designs. Limitations of the linked GaSP are discussed in section 6. We conclude
in section 7. Key closed form expressions for the linked GaSP under different kernels and
associated proofs are contained in the appendices and supplementary materials, respectively.

2. Review of GaSP emulator and linked GaSP. In this section, we first give a brief
description of GaSP emulators for individual computer models in a computer system. Then
the linked GaSP introduced in [17] is reviewed. Note that we present the linked GaSP using
our own notation for the benefit of deriving kernel extensions in section 3.

2.1. GaSP emulators for individual computer models. The GaSP emulator of a com-
puter model considered in this work is itself a collection of GaSP emulators, approximating the
functional dependence between the inputs of the computer model and its 1-D outputs. Each
1-D output emulator is constructed independently without the consideration of cross-output
dependence, as in [10, 17].

Let X \in \BbbR p be a p-dimensional vector of inputs of a computer model, and let Y (X) be the
corresponding scalar-valued output. Then, given m sets of inputs \{ X1, . . . ,Xm\} , the GaSP
model is defined by

Y (Xi) = t(Xi, b) + \varepsilon i, i = 1, . . . ,m,

where t(Xi, b) = h(Xi)
\top b is the trend function with q basis functions h(Xi) = [h1(Xi), . . . , hq

(Xi)]
\top and b = [b1, . . . , bq]

\top ; (\varepsilon 1, . . . , \varepsilon m)\top \sim \scrN (0, \sigma 2R) with ijth element of the correlation
matrix R given by Rij = c(Xi, Xj) + \eta 1\{ \bfX i=\bfX j\} , where c(\cdot , \cdot ) is a given kernel function; \eta is
the nugget term; and 1\{ \cdot \} is the indicator function.

The specification of the kernel function c(\cdot , \cdot ) plays an important role in GaSP emulation
as it characterizes the sample paths of a GaSP model [29]. In this study we consider the kernel
function with the following multiplicative form:

c(Xi, Xj) =

p\prod 
k=1

ck(Xik, Xjk),

where ck(\cdot , \cdot ) is a 1-D kernel function for the kth input dimension. Popular candidates for
ck(\cdot , \cdot ) are summarized in Table 1. In section 3, we will show that the linked GaSP is applicable
to all these aforementioned choices. In the proofs of the supplementary materials, we also
consider the additive form of c(\cdot , \cdot ).

Assume that the GaSP model parameters \sigma 2, \eta , and \bfitgamma = (\gamma 1, . . . , \gamma p)
\top are known but b

is a random vector that has a Gaussian distribution with mean b0 and variance \tau 2V0. Then,
given m inputs x\scrT = (x\scrT 

1 , . . . ,x
\scrT 
m)\top and the corresponding outputs y\scrT = (y\scrT 1 , . . . , y

\scrT 
m)\top , the

GaSP emulator of the computer model is defined by the predictive distribution of Y (x0) (i.e.,
conditional distribution of Y (x0) given y\scrT ) at a new input position x0 [27], which is

(2.1) Y (x0)| y\scrT \sim \scrN (\mu 0(x0), \sigma 
2
0(x0))
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Table 1
Choices of ck(\cdot , \cdot ). \gamma k > 0 is the range parameter for the kth input dimension.

\bfE \bfx \bfp \bfo \bfn \bfe \bfn \bft \bfi \bfa \bfl ck(\cdot , \cdot ) = exp
\Bigl\{ 
 - | Xik - Xjk| 

\gamma k

\Bigr\} 
,

\bfS \bfq \bfu \bfa \bfr \bfe \bfd 
\bfE \bfx \bfp \bfo \bfn \bfe \bfn \bft \bfi \bfa \bfl 

ck(\cdot , \cdot ) = exp
\Bigl\{ 
 - (Xik - Xjk)

2

\gamma 2
k

\Bigr\} 
,

\bfM \bfa \bft \'\bfe \bfr \bfn -\bfone .\bffive ck(\cdot , \cdot ) =
\Bigl( 
1 +

\surd 
3| Xik - Xjk| 

\gamma k

\Bigr) 
exp

\Bigl\{ 
 - 

\surd 
3| Xik - Xjk| 

\gamma k

\Bigr\} 
,

\bfM \bfa \bft \'\bfe \bfr \bfn -\bftwo .\bffive ck(\cdot , \cdot ) =
\Bigl( 
1 +

\surd 
5| Xik - Xjk| 

\gamma k
+

5(Xik - Xjk)
2

3\gamma 2
k

\Bigr) 
exp

\Bigl\{ 
 - 

\surd 
5| Xik - Xjk| 

\gamma k

\Bigr\} 

with

\mu 0(x0) = h(x0)
\top \widehat b+ r(x0)

\top R - 1
\Bigl( 
y\scrT  - H(x\scrT )\widehat b\Bigr) ,(2.2)

\sigma 20(x0) = \sigma 2
\Bigl[ 
1 + \eta  - r(x0)

\top R - 1r(x0) +
\Bigl( 
h(x0) - H(x\scrT )\top R - 1r(x0)

\Bigr) \top 
(2.3)

\times 
\biggl( 
H(x\scrT )\top R - 1H(x\scrT ) +

\sigma 2

\tau 2
V - 1

0

\biggr)  - 1 \Bigl( 
h(x0) - H(x\scrT )\top R - 1r(x0)

\Bigr) \Bigr] 
,

where r(x0) = [c(x0,x
\scrT 
1 ), . . . , c(x0,x

\scrT 
m)]\top , H(x\scrT ) = [h(x\scrT 

1 ), . . . ,h(x
\scrT 
m)]\top and

\widehat b \mathrm{d}\mathrm{e}\mathrm{f}
==

\biggl( 
H(x\scrT )\top R - 1H(x\scrT ) +

\sigma 2

\tau 2
V - 1

0

\biggr)  - 1\biggl( 
H(x\scrT )\top R - 1y\scrT +

\sigma 2

\tau 2
V - 1

0 b0

\biggr) 
.

Let \tau 2 \rightarrow \infty (i.e., the Gaussian distribution of b gets more and more noninformative), then
all terms associated with b0 and V0 in (2.2) and (2.3) become increasingly insignificant and
thus we obtain the GaSP emulator defined by the predictive distribution of Y (x0) with its
mean and variance given by

\mu 0(x0) =h(x0)
\top \widehat b+ r(x0)

\top R - 1
\Bigl( 
y\scrT  - H(x\scrT )\widehat b\Bigr) ,(2.4)

\sigma 20(x0) =\sigma 2
\Bigl[ 
1 + \eta  - r(x0)

\top R - 1r(x0) +
\Bigl( 
h(x0) - H(x\scrT )\top R - 1r(x0)

\Bigr) \top 
(2.5)

\times 
\Bigl( 
H(x\scrT )\top R - 1H(x\scrT )

\Bigr)  - 1 \Bigl( 
h(x0) - H(x\scrT )\top R - 1r(x0)

\Bigr) \Bigr] 
with \widehat b \mathrm{d}\mathrm{e}\mathrm{f}

==
\bigl[ 
H(x\scrT )\top R - 1H(x\scrT )

\bigr]  - 1
H(x\scrT )\top R - 1y\scrT , where \mu 0(x0) and \sigma 

2
0(x0) match the best

linear unbiased predictor (BLUP) of Y (x0) and its mean squared error [29]. In the remainder
of the study we use the predictive distribution with mean and variance given in (2.4) and (2.5)
as the GaSP emulator of a computer model. Note that the GaSP model parameters \sigma 2, \eta ,
and \bfitgamma = (\gamma 1, . . . , \gamma p)

\top in (2.4) and (2.5) are typically unknown and need to be estimated. One
may estimate these parameters by solving the objective function

(\widehat \eta , \widehat \bfitgamma ) = argmax
\eta ,\bfitgamma 

\scrL (\widehat \sigma 2, \eta , \bfitgamma ),
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where

\scrL (\widehat \sigma 2, \eta , \bfitgamma ) = | R|  - 
1
2 | H(x\scrT )\top R - 1H(x\scrT )|  - 

1
2

(2\pi \widehat \sigma 2)m - q
2

\times exp

\biggl\{ 
 - 1

2\widehat \sigma 2
\Bigl( 
y\scrT  - H(x\scrT )\widehat b\Bigr) \top R - 1

\Bigl( 
y\scrT  - H(x\scrT )\widehat b\Bigr) \biggr\} 

is the marginal likelihood obtained by integrating out b from the full likelihood function
\scrL (b, \sigma 2, \eta , \bfitgamma ) and have \sigma 2 replaced by its maximum likelihood estimator

(2.6) \widehat \sigma 2 = 1

m - q

\Bigl( 
y\scrT  - H(x\scrT )\widehat b\Bigr) \top R - 1

\Bigl( 
y\scrT  - H(x\scrT )\widehat b\Bigr) 

with \widehat b \mathrm{d}\mathrm{e}\mathrm{f}
==

\bigl[ 
H(x\scrT )\top R - 1H(x\scrT )

\bigr]  - 1
H(x\scrT )\top R - 1y\scrT . Alternatively, the maximum a posterior

(MAP) method is a more robust estimation technique [11]. It maximizes the marginal posterior
mode with respect to the objective function

(2.7) (\widehat \eta , \widehat \bfitgamma ) = argmax
\eta ,\bfitgamma 

\scrL (\widehat \sigma 2, \eta , \bfitgamma )\pi (\eta , \bfitgamma ),
where \pi (\eta , \bfitgamma ) is the reference prior; see [11] for different choices and parameterizations.

After the estimates of \sigma 2, \eta , and \bfitgamma are obtained, they are plugged into the predictive
distribution mean (2.4) and variance (2.5), forming the empirical GaSP emulator of a computer
model. In the remainder of the study, all GaSP models of individual computer models are
estimated using the MAP method via the R package RobustGaSP. Note that RobustGaSP in
fact estimates \eta and \bfitgamma with the marginal likelihood obtained by integrating out both b and \sigma 2.
However, as demonstrated in [1] the estimates of \eta and \bfitgamma are not influenced by the integration
of \sigma 2. As a result, we can implement RobustGaSP to obtain the estimates of \eta and \bfitgamma produced
by the discussed MAP method and then have them plugged into (2.6) to obtain the estimate
of \sigma 2.

2.2. Linked GaSP. Consider a two-layered system of computer models, where the com-
puter models in the first layer produce collectively d-dimensional output that feeds into a
computer model in the second layer. Let W = [W1(x1), . . . ,Wd(xd)]

\top be the collection of the

d-dimensional output produced by d GaSP emulators \widehat f1, . . . , \widehat fd of computer models in the first
layer given the input positions x1, . . . ,xd. Denote \widehat g as the GaSP emulator of the computer
model g in the second layer, producing Y (W, z) that approximates a scalar-valued output of
g at inputs W from \widehat f1, . . . , \widehat fd and exogenous inputs z = (z1, . . . , zp)

\top . Then the emulation
of the two-layered system aims to link GaSP emulators connected as shown in Figure 1.

Perhaps the most straightforward way to build an emulator of the system is to obtain the
predictive distribution of Y (x1, . . . ,xd, z), given the global inputs x1, . . . ,xd and z. This pre-
dictive distribution, named as linked emulator by [17], is naturally defined by the probability
density function

(2.8) p(y| x1, . . . ,xd, z) =

\int 
\bfw 
p(y| w, z) p(w| x1, . . . ,xd) dw,
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\widehat f1x1

\widehat f2x2

\widehat fdxd

\widehat g Y

z

W
1

W2

Wd

...

...

...

Figure 1. The connections of emulators to be linked for emulating a two-layered computer system.\widehat f1, \widehat f2 . . . , \widehat fd are 1-D emulators approximating d outputs from computer models in the first layer; \widehat g is a 1-
D GaSP emulator approximating a scalar-valued output of the computer model g in the second layer of the
system.

where w = (w1, . . . , wd)
\top . However, p(y| x1, . . . ,xd, z) is neither analytically tractable nor

Gaussian in general. One might compute the integral in (2.8) numerically or simply generate
realizations of Y (x1, . . . ,xd, z) by sampling sequentially from Gaussian densities p(y| w, z)
and p(w| x1, . . . ,xd), and then use the resulting density or sampled realizations as the linked
emulator. However, such approaches are computationally expensive and can soon become
prohibitive for many uncertainty analysis as the dimensions of xi=1,...,d and w increase. For-
tunately, [17] shows that under some mild conditions, the mean, and variance of the linked
emulator can be calculated analytically, and its Gaussian approximation, called linked GaSP,
is a Gaussian distribution with matching mean and variance. One of the key conditions
that [17] makes for the closed form mean and variance of the inked emulator is that the GaSP
emulator \widehat g is constructed under the squared exponential kernel. However, it is well known
that the squared exponential kernel can have computational difficulties both in theory and
practice [29, 5, 11], limiting broader applications of the linked GaSP. In section 3, we relax
this kernel limitation and show that there exists closed form expressions for the mean and
variance of the linked emulator under a class of Mat\'ern kernels.

3. Generalization of linked GaSP to Mat\'ern kernels. Assume that the GaSP emulator\widehat g is built with m training points w\scrT = (w\scrT 
1 , . . . ,w

\scrT 
m)\top , z\scrT = (z\scrT 1 , . . . , z

\scrT 
m)\top , and y\scrT =

(y\scrT 1 , . . . , y
\scrT 
m)\top , where w\scrT 

i = (w\scrT 
i1, . . . , w

\scrT 
id)

\top and z\scrT i = (z\scrT i1, . . . , z
\scrT 
ip)

\top for all i = 1, . . . ,m. We
further make the following two assumptions.

Assumption 3.1. The trend function t(W, z, \bfittheta , \bfitbeta ) in the GaSP model for the computer
model g is specified by t(W, z, \bfittheta , \bfitbeta ) = W\top \bfittheta + h(z)\top \bfitbeta , where

\bullet \bfittheta = (\theta 1, . . . , \theta d)
\top and \bfitbeta = (\beta 1, . . . , \beta q)

\top ;
\bullet h(z) = [h1(z), . . . , hq(z)]

\top are basis functions of z.

Assumption 3.2. Wk(xk)
ind\sim \scrN (\mu k(xk), \sigma 

2
k(xk)) for k = 1, . . . , d.

We can then derive in closed form the mean and variance of linked emulator subject to
the choice of 1-D kernel functions used in GaSP emulator \widehat g.

Theorem 3.3. Under Assumptions 3.1 and 3.2, the output Y (x1, . . . ,xd, z) of the linked
emulator at the input positions x1, . . . ,xd and z has analytical mean \mu L and variance \sigma 2L
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given by

\mu L =\bfitmu \top \widehat \bfittheta + h(z)\top \widehat \bfitbeta + I\top A,(3.1)

\sigma 2L =A\top 
\Bigl( 
J - II\top 

\Bigr) 
A+ 2\widehat \bfittheta \top \Bigl( 

B - \bfitmu I\top 
\Bigr) 
A+ tr

\Bigl\{ \widehat \bfittheta \widehat \bfittheta \top 
\Omega 
\Bigr\} 

(3.2)

+ \sigma 2
\Bigl( 
1 + \eta + tr \{ QJ\} +G\top CG+ tr

\Bigl\{ 
CP - 2C \widetilde H\top R - 1K

\Bigr\} \Bigr) 
,

where

\bullet \bfitmu = [\mu 1(x1), . . . , \mu d(xd)]
\top and

\Bigl[ \widehat \bfittheta \top 
, \widehat \bfitbeta \top \Bigr] \top \mathrm{d}\mathrm{e}\mathrm{f}

==
\Bigl( \widetilde H\top R - 1 \widetilde H\Bigr)  - 1 \widetilde H\top R - 1y\scrT ;

\bullet \Omega = diag(\sigma 21(x1), . . . , \sigma 
2
d(xd)) and P = blkdiag(\Omega , 0);

\bullet A = R - 1
\Bigl( 
y\scrT  - w\scrT \widehat \bfittheta  - H(z\scrT )\widehat \bfitbeta \Bigr) with H(z\scrT ) = [h(z\scrT 1 ), . . . ,h(z

\scrT 
m)]\top ;

\bullet Q = R - 1 \widetilde H\Bigl( \widetilde H\top R - 1 \widetilde H\Bigr)  - 1 \widetilde H\top R - 1  - R - 1 with \widetilde H =
\bigl[ 
w\scrT ,H(z\scrT )

\bigr] 
;

\bullet G = [\bfitmu \top , h(z)\top ]\top , C =
\Bigl( \widetilde H\top R - 1 \widetilde H\Bigr)  - 1

and K =
\bigl[ 
B\top , Ih(z)\top 

\bigr] 
;

\bullet I is a m\times 1 column vector with the ith element given by

Ii =

p\prod 
k=1

ck(zk, z
\scrT 
ik)

d\prod 
k=1

\xi ik,

where \xi ik
\mathrm{d}\mathrm{e}\mathrm{f}
== \BbbE 

\bigl[ 
ck(Wk(xk), w

\scrT 
ik)
\bigr] 
;

\bullet J is a m\times m matrix with the ijth element given by

Jij =

p\prod 
k=1

ck(zk, z
\scrT 
ik) ck(zk, z

\scrT 
jk)

d\prod 
k=1

\zeta ijk,

where \zeta ijk
\mathrm{d}\mathrm{e}\mathrm{f}
== \BbbE 

\Bigl[ 
ck(Wk(xk), w

\scrT 
ik) ck(Wk(xk), w

\scrT 
jk)
\Bigr] 
;

\bullet B is a d\times m matrix with the ljth element given by

Blj = \psi jl

d\prod 
k=1
k \not =l

\xi jk

p\prod 
k=1

ck(zk, z
\scrT 
jk),

where \psi jl
\mathrm{d}\mathrm{e}\mathrm{f}
== \BbbE 

\Bigl[ 
Wl(xl) cl(Wl(xl), w

\scrT 
jl)
\Bigr] 
.

Proof. The proof is in section SM4 of the supplementary materials.

Proposition 3.4. The three expectations \xi ik, \zeta ijk, and \psi jl defined in Theorem 3.3 have closed
form expressions for the squared exponential kernel and a class of Mat\'ern kernels [21] defined
by

(3.3) ck(dij,k) = exp

\biggl( 
 - 
\surd 
2p+ 1 dij,k

\gamma k

\biggr) 
p!

(2p)!

p\sum 
i=0

(p+ i)!

i!(p - i)!

\biggl( 
2dij,k

\surd 
2p+ 1

\gamma k

\biggr) p - i

,

where dij,k = Xik  - Xjk and p is a nonnegative integer.
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Proof. Derivations for the squared exponential kernel, Mat\'ern kernels (3.3) with p = 0
(exponential), p = 1 (Mat\'ern-1.5), and p = 2 (Mat\'ern-2.5) are detailed in section SM5 of the
supplementary materials. The corresponding closed form expressions are summarized in Ap-
pendices A to D. The closed form expressions for Mat\'ern kernels with p \geq 3 can be obtained
straightforwardly by invoking Lemma SM5.1 of the supplementary materials and using same
arguments in proofs of Mat\'ern-1.5 and Mat\'ern-2.5. Note that we reproduce the result for the
squared exponential kernel given in [17] using our own notation for completeness.

3.1. A synthetic experiment. Consider the computer system shown in Figure 2, which
consists three computer models with the following analytical functional forms:

f1 = 30 + 5x1 sin(5x1), f2 = 4 + exp( - 5x2), and f3 = (w1w2  - 100)/6

with x1 \in [0, 2] and x2 \in [0, 2].

f1x1

f2x2

f3 y
w1

w2

Layer 1 Layer 2

Figure 2. The computer system in the synthetic experiment where f1 and f2 are two computer models with
1-D input and output, and f3 is a computer model with two-dimensional (2-D) input and 1-D output.

We generate ten training points from the maximin Latin hypercube and construct the
composite emulator (Figure 3a) and linked GaSP (Figure 3b) of the system with Mat\'ern-2.5
kernel. Figure 3b indicates that the Mat\'ern extension to the linked GaSP is valid because
the constructed linked GaSP interpolates training points with sensible predictive mean and
bounds.

We further compare the linked GaSP with composite emulator with Mat\'ern-2.5 kernel
at different training sizes in Figure 4a. At each selected training set size, normalized root
mean squared error of prediction (NRMSEP) of both composite emulator and linked GaSP
are calculated, where

(3.4) NRMSEP =

\sqrt{} 
1
nT

\sum T
t=1

\sum n
i=1(y(xi) - \mu tY (xi))2

max\{ y(xi)i=1,...,n\}  - min\{ y(xi)i=1,...,n\} 
,

in which y(xi) denotes the true global output of the system evaluated at the testing input
position xi for i = 1, . . . , n with n = 2500, which are equally spaced over the global input
domain [0, 2]\times [0, 2]; \mu tY (xi) is the mean prediction of the respective emulator built with the tth
design of total T = 100 designs sampled from the maximin Latin hypercube. Both Figures 3
and 4a show that the linked GaSP outperforms (in terms of mean predictions, prediction
bounds, NRMSEP, and training cost) the composite emulator under the Mat\'ern-2.5 kernel.

In Figure 4b, NRMSEP between linked GaSPs with squared exponential and Mat\'ern-2.5
kernels are compared under ten different training set sizes. At each selected training set size,
NRMSEPs are computed (without averaging over T in (3.4)) for T = 50 random designs drawn
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(a) Composite emulator (b) Linked GaSP

Figure 3. The composite emulator and linked GaSP of the system in Figure 2. The filled circles are training
points used to construct the emulators.

(a) Composite emulator versus Linked GaSP (b) Squared exponential versus Mat\'ern-2.5

Figure 4. Emulation results for the system in Figure 2. (a) NRMSEP of composite emulator and linked
GaSP with Mat\'ern-2.5 kernel; (b) NRMSEP of linked GaSPs with squared exponential and Mat\'ern-2.5 kernels,
both with a small nugget to handle ill-conditioned correlation matrices whenever necessary. NRMSEP in (b) is
shown under the log-scale.

from the maximin Latin hypercube. The NRMSEP of the linked GaSP with Mat\'ern-2.5 kernel
decays steadily as the training set size increases and its predictive performance is robust across
different designs. On the contrary, NRMSEP of the linked GaSP with squared exponential
kernel decreases with increasing oscillations over designs. Particularly, as the training set
size increases beyond 15, the linked GaSP with squared exponential kernel exhibits increasing
chances of NRMSEPs over 1.0\% with extreme NRMSEPs reaching 5--10\% for some designs,
whereas the linked GaSP with Mat\'ern-2.5 kernel consistently provides NRMSEPs lower than
0.5--1.0\%. The large fluctuations of NRMSEPs displayed in the squared exponential case
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are due to the GaSP emulator \widehat f3 that cannot capture adequately the true functional form
of f3 under some designs with the squared exponential kernel. It is also worth noting that
in constructing GaSP emulators of individual computer models we experience ill-conditioned
correlation matrices (which are subsequently addressed by enhancing their diagonal elements
with a small nugget term) more frequently with the squared exponential kernel than the
Mat\'ern-2.5 kernel. These results stress the importance of Mat\'ern extensions to the linked
GaSP, in agreement with [11, 9] that Mat\'ern kernels are less vulnerable to ill-conditioning
issues, provide reasonably adequate choices on the smoothness, and have both attractive
theoretical properties and good practical performance. Furthermore, in practice, Mat\'ern-1.5
and Mat\'ern-2.5 are included in several computer emulation packages, such as DiceKriging

and RobustGaSP, where Mat\'ern-2.5 is the default kernel choice. In the remainder of the study,
Mat\'ern-2.5 is thus used for all GaSP emulator constructions.

4. Construction of linked GaSP for multilayered computer systems. In this section,
we demonstrate how to construct linked GaSP for a multilayered system with feed-forward
hierarchy, in which the outputs of lower-layer computer models act as the inputs of higher-layer
ones.

It is a challenging analytical work to construct linked GaSP for a multilayered feed-forward
system in one-shot because there exists no closed form expressions for the mean and variance
of the linked emulator, whose density function involves integration of GaSP emulators across
a large number of layers. However, one could collapse a complex feed-forward system into
a sequence of two-layered computer systems, and then successively construct linked GaSPs
across two layers.

Consider a general feed-forward system of computer models, denoted by e1\rightarrow L, with L
layers. The system can be decomposed into a sequence of L  - 1 subsystems: e1\rightarrow (i+1) for
i = 1, . . . , L - 1. Then, the linked GaSP of the whole system (e1\rightarrow L) is built by the following
steps:

1. Construct the linked GaSP of e1\rightarrow 2 by applying Theorem 3.3 to GaSP emulators of
computer models in the first and second layers of e1\rightarrow L;

2. For i = 2, . . . , L  - 1, construct the linked GaSP of e1\rightarrow i+1 by applying Theorem 3.3 to
the linked GaSP of e1\rightarrow i and GaSP emulators of computer models in the (i+1)th layer
of e1\rightarrow L;

For example, the system in Figure 5 can be decomposed into three recursive systems:
e1\rightarrow 2, e1\rightarrow 3, and e1\rightarrow 4, and the linked GaSP of the whole system e1\rightarrow 4 takes three iterations
to be produced. It is noted that the above iterative procedure works because Assumption 3.2
only requires normality while it has no constraints on specific forms of corresponding mean
and variance.

4.1. Linked GaSP for a feed-back coupled satellite model. In this section, we show the
construction of the linked GaSP for a multilayered fire-detection satellite model studied in [24].
This satellite is designed to conduct near-real-time detection, identification, and monitoring
of forest fires. The satellite system consists of three submodels, namely the orbit analysis, the
attitude control, and power analysis. The satellite system is shown in Figure 6. It can be seen
from Figure 6 that there are nine global input variables H, Fs, \theta , Lsp, q, RD, La, Cd, Pother

and three global output variables of interest \tau tot, Ptot, Asa. The coupling variables are \Delta torbit,
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f1

f2

f3

f4

f5

f6

e\bfone \rightarrow \bftwo 
e\bfone \rightarrow \bfthree 

e\bfone \rightarrow \bffour 

Global
Input 1

Global
Input 2

Global
Input 3

Global
Output

Layer 2Layer 1 Layer 3 Layer 4

Figure 5. An illustration on the iterative procedure to construct linked GaSP for a 4-layered feed-forward
computer system.

\Delta teclipse, \nu , \theta slew, PACS , Imax, and Imin. Since \Delta torbit is the input to both power analysis
and attitude control, there are a total of eight coupling variables. Note that the system has
feed-back coupling because the coupling variables PACS , Imax, and Imin form an internal loop
between power analysis and attitude control. Therefore, to implement the iterative procedure
to build the linked GaSP of the system, we first convert the system to a feed-forward one by
applying the decoupling algorithm proposed in [2]. The decoupling algorithm identifies four
weakly coupled variables \Delta torbit (between orbit analysis and attitude control), \theta slew, Imax,
and Imin. Since the weakly coupled variables have insignificant impact on the accuracy of
global outputs, they are neglected from the interaction terms between submodels, producing
a feed-forward system (see Figure 6 without the dashed arrows). Table 2 gives the domains
of global inputs considered for the emulation.

Maximin Latin hypercube sampling is then used to generate inputs positions for seven
training sets, with sizes of 10, 15, 20, 25, 30, 35, and 40 respectively. The corresponding
output positions are consequently obtained by running the satellite model. For each of the
seven training sets and each of the three global output variables, we build the composite em-
ulator and linked GaSP. Leave-one-out cross-validation is utilized for assessing the predictive
performance of the two emulators. For example, in the case of the composite emulation of the
output variable Ptot with training set size of 10, we build ten composite emulators, each based
on nine training points by dropping one training point out of the set. The dropped training
point is then serves as the testing point to assess the associated composite emulator. The
performance of the emulator (composite emulator or linked GaSP) of a global output variable
given a certain training set is ultimately summarized by

NRMSEP =

\sqrt{} 
1
n

\sum n
i=1(f(xi) - \mu  - i(xi))2

max\{ f(xi)i=1,...,n\}  - min\{ f(xi)i=1,...,n\} 
,

where xi is the ith input position of a training set with size n, f(xi) is the value of the output
variable of interest produced by the satellite model at the input xi, the mean prediction
\mu  - i(xi) at input xi is provided by the corresponding emulator constructed using all n training
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Orbit
Analysis

H

Power
Analysis

Ptot, Asa

Attitude
Control

\tau tot

Fs, \theta , Lsp, q, RD, La, Cd

Pother, Fs

\Delta tor
bit
, \Delta te

clip
se

\Delta torbit , \theta slew

\nu 

Imax, IminPACS

Figure 6. Fire-detection satellite model from [24], where H is altitude; \Delta torbit is orbit period; \Delta teclipse
is eclipse period; \nu is satellite velocity; \theta slew is maximum slewing angel; Pother represents other sources of
power; PACS is power of attitude control system; Imax, Imin are maximum and minimum moment of inertia
respectively; Fs, \theta , Lsp, q, RD, La, Cd represent average solar flux, deviation of moment axis from vertical,
moment arm for the solar radiation torque, reflectance factor, residual dipole, moment arm for aerodynamic
torque, and drag coefficient respectively; Ptot is total power; Asa is area of solar array; and \tau tot is total torque.
The dashed arrows indicate the connections that can be decoupled between sub-models, according to the decoupling
algorithm from [2].

Table 2
Domains of the nine global input variables to be considered for the emulation.

Global input variable (unit) Symbol Domain

Altitude (m) H
\bigl[ 
1.50\times 1017, 2.10\times 1017

\bigr] 
Other sources of power (W ) Pother

\bigl[ 
8.50\times 102, 1.15\times 103

\bigr] 
Average solar flux (W/m2) Fs

\bigl[ 
1.34\times 103, 1.46\times 103

\bigr] 
Deviation of moment axis from vertical (\circ ) \theta [12.00, 18.00]

Moment arm for the solar radiation torque (m) Lsp [0.80, 3.20]

Reflectance factor q [0, 1]

Residual dipole (A \cdot m2) RD [2.00, 8.00]

Moment arm for aerodynamic torque (m) La [0.80, 3.20]

Drag coefficient Cd [0.10, 1, 90]

points except for xi.
The NRMSEP of the composite emulators and linked GaSPs of the three global output

variables \tau tot, Ptot, and Asa against seven different training sizes are presented on the top
row of Figure 7. It can be seen that for the output variable \tau tot, the linked GaSP is only
marginally better than the composite emulator. For the output variables Ptot and Asa, the
linked GaSPs present better predictive performance than the composite ones when the training
set size is small. The superiority of the linked GaSP soon vanishes when the training set size
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increases over 20. To investigate the possible cause for this quick depreciation, we construct
GaSP emulators for outputs produced by the three submodels. The NRMSEP of these GaSP
emulators across different training sizes are summarized on the bottom row of Figure 7. We
observe that the GaSP emulator of the attitude control with respect to \tau tot requires around
35 training points to reach a low NRMSEP, while the GaSP emulator of the orbit analysis
with respect to \nu can reach such a level with only 10 training points. This indicates that
the functional complexity between the global inputs and the output \tau tot is dominated by the
submodel attitude control, and thus the linked GaSP of \tau tot shows no obvious superiority
over the corresponding composite emulator. Although the attitude control still dominates the
functional complexity between the global inputs and Ptot and Asa (see Figure 7f), Ptot and Asa

are produced not only by the orbit analysis and attitude control, but also by the power analysis.
This extra submodel increases the input dimension that the composite emulators need to
explore, and thus cause the composite emulators slow to learn the functional dependence of
Ptot and Asa to the global inputs when training data size is small.

(a) \tau tot (b) Ptot (c) Asa

(d) Orbit analysis (e) Attitude control (f) Power analysis

Figure 7. (Top) NRMSEP of the composite emulators and linked GaSPs of the three global output variables
\tau tot, Ptot, and Asa against different training set sizes. (Bottom) NRMSEP of the GaSP emulators of outputs
produced by the three subsystems: orbit analysis, attitude control, and power analysis.
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5. Experimental designs for linked GaSP. The linked GaSP is so far constructed using
the Latin hypercube design (LHD) [27] in a sequential fashion. It means that a one-shot
LHD is applied only to the global inputs (i.e., the inputs to the computer models in the
first layer of the system) and designs for the inputs to the computer models in higher layers
are automatically determined by the outputs from the lower-layer computer models. This
design, called sequential LHD hereinafter, is a simple strategy and has the benefit that it only
explores input spaces of individual computer models that have impact on the global outputs.
However, the complexity of system structures and nonlinearity of individual computer models
can produce poor designs for submodels in higher layers when the LHD of the global input
is propagated through the system hierarchy. This issue can be seen from the sequential LHD
(see Figure 8) that we used for the synthetic experiment in subsection 3.1. Figure 8 shows that
although the LHD gives satisfactory input exploration for the global inputs x1 and x2, the
design for the computer model f3 is poor. This is because of the steep decrease of f2 over x2 \in 
[0, 0.5], which concentrates most of the design points for f3 on the border of its input w2 while
few of them locate over w2 \in [4.1, 5.0]. Indeed, such an issue could be alleviated by increasing
the size of the sequential LHD or implementing adaptive design strategies (e.g., [3]) over
the global inputs. However, these solutions can result in excessive design points that contain
similar information about the underlying computer model. In addition, such sequential designs
require full runs of entire systems, and thus can be computationally expensive and inefficient
when the designs for some submodels are already satisfactory and no further enhancements
are needed.

The work in [17] suggests an independent design strategy where the designs of submodels
are developed (by either one-shot LHD or adaptive designs) separately without considering
their structural dependence. This design strategy is useful because the construction of the
linked GaSP does not require realizations generated by running the whole system and thus
different computer models can be ran in parallel rather than in sequence; one can even use
existing realizations (with different sizes) from individual computer models to build the linked
GaSP; the experimental design can be tailor-made for each computer model and thus one
avoids issues related to the aforementioned sequential designs.

While it is desirable to construct accurate GaSP emulators of individual computer models
via the independent design and then integrate them to have a well-behaved linked GaSP,
ignoring the structure dependence can cause unnecessary refinements of GaSP emulators (and
thus excessive experimental costs) over input spaces of computer models that are insignificant
to the global output. Similarly, the ignorance of structural dependence may also cause GaSP
emulators to be accurate only in part of input spaces that are significant to the global output.
We illustrate such an issue in section SM1 of the supplementary materials. In subsection 5.1,
we introduce an adaptive design strategy for the linked GaSP that utilizes the analytical
variance decomposition of linked emulators. As we will show, this design not only takes
system structures into account but also shares some advantages of the independent design.

5.1. A variance-based adaptive design for linked GaSP. The adaptive design introduced
in this section extends the simulation-based Single Model Selection training strategy given
in [25]. At each iteration, the adaptive design conducts the follow three steps:

1. Select one submodel and determine the input position to run the model.
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Figure 8. The sequential LHD used to build the linked GaSP for the synthetic experiment in subsection 3.1.
The solid lines and surface represent the true functional forms of each computer model; the filled circles are
design points.

2. Run the selected submodel and refine its GaSP emulator given the new run.
3. Construct the linked GaSP of the system.
It can be seen that at each iteration the adaptive design only requires a single run of one

submodel. Therefore, one can save computational resources by avoiding runs of the whole
system and only refining the GaSP emulator of one submodel to improve the overall accuracy
of the linked GaSP. We select the target submodel at each iteration by searching for the
submodel whose GaSP emulator contributes the most to the variance of the linked GaSP.
We demonstrate the approach on a two-layered system whose submodels have their GaSP
emulators connected as in Figure 1. Note (see section SM4 of the supplementary materials)
that the variance of linked emulator in equation (3.2) of Theorem 3.3 can be written as

\sigma 2L = Var (\mu g(W, z)) + \BbbE 
\bigl[ 
\sigma 2g(W, z)

\bigr] 
,

where

Var (\mu g(W, z)) = A\top 
\Bigl( 
J - II\top 

\Bigr) 
A+ 2\widehat \bfittheta \top \Bigl( 

B - \bfitmu I\top 
\Bigr) 
A+ tr

\Bigl\{ \widehat \bfittheta \widehat \bfittheta \top 
\Omega 
\Bigr\} 
,

\BbbE 
\bigl[ 
\sigma 2g(W, z)

\bigr] 
= \sigma 2

\Bigl( 
1 + \eta + tr \{ QJ\} +G\top CG+ tr

\Bigl\{ 
CP - 2C \widetilde H\top R - 1K

\Bigr\} \Bigr) 
with \mu g(W, z) and \sigma 2g(W, z) being the mean and variance of \widehat g.

Define V1 = Var (\mu g(W, z)) and V2 = \BbbE 
\bigl[ 
\sigma 2g(W, z)

\bigr] 
, then V1 represents the overall con-

tribution of GaSP emulators \widehat f1, . . . , \widehat fd to \sigma 2L, and V2 represents the contribution of \widehat g to \sigma 2L.

Analogously, the variance contribution of GaSP emulators \widehat fk\in \BbbS for \BbbS \subseteq \{ 1, . . . , d\} can be
defined by V1(\BbbS ) = VarWk\in \BbbS 

\bigl( 
\BbbE Wk\in \BbbS c [\mu g(W, z)]

\bigr) 
, where \BbbS c is the complement of \BbbS . One can

compute V1(\BbbS ) analytically according to Proposition 5.1.

Proposition 5.1. Under the same conditions of Theorem 3.3, V1(\BbbS ) has the closed form
expression given by

V1(\BbbS ) = A\top 
\Bigl( \widetilde J - II\top 

\Bigr) 
A+ 2\widehat \bfittheta \top \Bigl( \widetilde B - \bfitmu I\top 

\Bigr) 
A+ tr

\Bigl\{ \widehat \bfittheta \widehat \bfittheta \top \widetilde \Omega \Bigr\} ,
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where
\bullet \widetilde \Omega is a d\times d diagonal matrix with kth diagonal element given by \sigma 2k(xk)1\{ k\in \BbbS \} ;

\bullet \widetilde J is a m\times m matrix with the ijth element given by

\widetilde Jij =\prod 
k\in \BbbS 

\zeta ijk
\prod 
k\in \BbbS c

\xi ik\xi jk

p\prod 
k=1

ck(zk, z
\scrT 
ik) ck(zk, z

\scrT 
jk);

\bullet \widetilde B is a d\times m matrix with the ljth element given by

\widetilde Blj =

\left\{               
\psi jl

d\prod 
k=1
k \not =l

\xi jk

p\prod 
k=1

ck(zk, z
\scrT 
jk), l \in \BbbS ,

\mu l

d\prod 
k=1

\xi jk

p\prod 
k=1

ck(zk, z
\scrT 
jk), l \in \BbbS c.

Proof. The proof is in section SM6 of the supplementary materials.

Thanks to the closed form expressions of V1, V2, and V1(\BbbS ), the adaptive design can
quickly locate the submodel and determine the input position to run the model. To show the
performance we implement the adaptive design on the synthetic example in subsection 3.1
via Algorithm 5.1, where the optimization problem in line 3 is done by grid search due to
the low global input dimension. The linked GaSP built by the adaptive design is summarized
in Figure 9. It can be observed from Figure 9 that the linked GaSP built via the adaptive
design can achieve lower NRMSEP than that built via the sequential LHD, with a smaller
number of computer model runs. This is because, in contrast to the poor design for f3 created
by the sequential LHD (see Figure 8), the adaptive design creates a satisfactory design by
adding extra design points to the input space of f3 that is not well explored by the sequential
LHD but still significant to the global output. It can also be seen that the adaptive design leads
to more runs of f1, whose functional form is more complex than other models and thus needs
to generate more realizations to be emulated adequately. Thus the adaptive design is able to
improve the emulation performance of the linked GaSP with reduced experimental costs by
allocating runs to computer models according to their heterogeneous functional complexity.
We also report in Figure 9 the NRMSEP of the linked GaSP trained with the independent
design, by which GaSP emulators of individual computer models are built separately with
their own training points independently generated from the LHD. Although the linked GaSP
with the independent design achieves a low NRMSEP, its accuracy is overestimated because
we assume that the input domain of f3 that is significant to the global output is perfectly
known or can be determined in a cost efficient way, e.g., we were able to determine the
important input domain of f3 by evaluating f1 and f2 exhaustively over the entire domain of
the global input thanks to the cheap cost of the synthetic models. However, in practice it is
rarely possible to gain perfect knowledge about the important input domain of a computer
model or feasible to evaluate models thoroughly without constraints.

Although the adaptive design is a desirable design strategy, it has its own limitations.
First, the adaptive design updates the GaSP emulator of one submodel iteratively. Therefore,
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Algorithm 5.1. Adaptive design for the synthetic system illustrated in subsection 3.1.

1: Choose K number of enrichment (i.e., iterations) to the initial design.
2: for k = 1, . . . ,K do
3: Find \widehat x and \widehat l such that (\widehat x, \widehat l) = argmax\bfx , l\in \{ 1, 2\} Vl(x), where x = (x1, x2), and V1(x)

and V2(x), respectively, are contributions of \widehat e1 (i.e., GaSP emulators \widehat f1 and \widehat f2 in the
first layer) and \widehat f3 to the variance of the linked GaSP;

4: if \widehat l = 1 then
5: Compute V1k(\widehat x) for k \in \{ 1, 2\} according to Proposition 5.1, where V1k(\widehat x) is the

contribution of \widehat fk to the variance of linked GaSP;
6: if V11(\widehat x) > V12(\widehat x) then
7: Enrich the training points for \widehat f1 by evaluating f1 at the input position \widehat x1;
8: else
9: Enrich the training points for \widehat f2 by evaluating f2 at the input position \widehat x2;

10: end if
11: else
12: Enrich the training points for \widehat f3 by evaluating f3 at the input position

(\mu 1(\widehat x1), \mu 2(\widehat x2)), obtained by evaluating the predictive mean \mu 1 and \mu 2 of \widehat f1 and\widehat f2 at the input position \widehat x1 and \widehat x2, respectively;
13: end if
14: Update the GaSP emulator \widehat f1, \widehat f2, or \widehat f3 and construct the linked GaSP.
15: end for

unlike the independent design, it does not allow submodels of a system to run simultaneously
during the experimental design. Beside, the adaptive design is still a sequential method
because the input location at which the selected submodel needs to run is determined by
propagating the determined global input location through the GaSP emulators of those sub-
models in lower layers. As a result, inaccurate GaSP emulators in lower layers may produce
suboptimal input positions to improve the GaSP emulators in higher layers. One thus need to
implement the adaptive design with more iterations, and in turn spend more computational
resources, to improve the linked GaSP sufficiently. Furthermore, the maximization problem
involved in the adaptive design to search for the submodel whose GaSP emulator needs to be
updated is a challenging task especially when the global input dimension is high. Therefore,
developing a fast and efficient searching algorithm is essential. Fortunately, the closed form
expressions for the variance decomposition given in Proposition 5.1 render the exact evaluation
of their derivatives respect to the input positions, thus many existing optimization algorithms
(e.g., gradient ascent) could be applied. We leave this aspect as a future development without
exploring further in this study.

6. Discussion. The development of Theorem 3.3 in section 3 depends on Assumption 3.2,
which asks for independence of input variables to the GaSP emulator of g in the second layer.
This independence assumption helps reduce analytical efforts in deriving the closed form mean
and variance of the linked emulator. In addition, the consideration of dependence between
input variables requires specification of their dependence structures, which can be a difficult
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Figure 9. The adaptive design for the synthetic experiment in subsection 3.1. (Top-left) GaSP emulator
of f1. (Top-middle) GaSP emulator of f2. (Top-right) GaSP emulator of f3. (Bottom-left) linked GaSP of
the system. (Bottom-right) Comparison of NRMSEP between the linked GaSP with the adaptive design, the
linked GaSP with the sequential LHD (sLHD), the linked GaSP with the independent LHD (indLHD), and the
composite emulator with the LHD. The linked GaSP with the sLHD and the composite emulator are trained
with 30 computer runs (i.e., 10 full runs of the entire system). The linked GaSP with the indLHD is trained
with 10 runs for each submodel. The linked GaSP with the adaptive design is trained with 21 initial computer
model runs determined by the sLHD (i.e., seven runs of the whole system, corresponding to the filled circles in
the top panels) and nine additional submodel runs (corresponding to the filled triangles in the top panels) over
nine iterations.

task as careful dependence modeling, model training, and predictions are needed. Neverthe-
less, ignoring the dependence structure between input variables feeding to the second layer
can cause biased mean and variance of the linked emulator if the dependence is nonnegligible.
The work in [17] explores the impact of such dependence ignorance and conclude that in the
case of Gaussian dependence under the squared exponential kernel, one could diagnose the
significance of dependence by calculating the following ratios rk = \widehat \gamma 2k/\sigma 2k for all k = 1, . . . , d,
where \widehat \gamma k is the estimated range parameter of the kth input to the GaSP emulator \widehat g. If rk is
large (e.g., in the order of hundreds or thousands) for all k, the difference between the linked
GaSPs with and without the dependence structure is then negligible. Note that given \widehat \gamma 2k ,
rk increases as predictive variance \sigma 2k decreases. Thus, one could safely neglect the impact
of dependence by improving GaSP emulators in the feeding layer. We review these results
in section SM2 of the supplementary materials. Since rk is calculated without the consider-
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ation of dependence and before invoking Theorem 3.3, it can be used as a measurement to
determine whether one should consider the dependence before explicitly incorporating it to
the emulation.

However, rk may not be a valid measurement when kernels other than the squared expo-
nential are used. It is also difficult in practice to have GaSP emulators producing sufficiently
small predictive variances at the evaluated input positions to rule out the impact of depen-
dence. Therefore, one may have to consider specifying the dependence structure between
outputs of GaSP emulators from the feeding layer. One option for the dependence spec-
ification is to build multivariate GaSP emulators [22, 8, 33]. However, existing literature
on multivariate GaSP only consider the dependence among outputs from a single computer
model, which means that in each layer of a system one has to treat all computer models,
whose outputs are correlated, as a single model for the multivariate GaSP emulation, This
is apparently an unpleasant feature because it reduces the benefit of system order reduction
(i.e., GaSP emulators are constructed for individual computer models) offered by the linked
GaSP emulation. A possible solution to this issue is to first build GaSP emulators ignoring
the dependence and then model dependence structure separately, e.g., utilizing copulas [6].
Nevertheless, one still need to conduct extra analytical efforts to derive more sophisticated
closed form expressions for the mean and variance of linked emulator under the multivariate
setting for different kernel choices.

Linked emulator gives the true distributional representation of coupled GaSP emulators
of computer models in a system. Linked GaSP then serves as a Gaussian approximation
to the analytically intractable linked emulator. The use of linked GaSP in replacement of
linked emulator can be justified from two aspects. First, with Gaussian distribution, one
can construct closed form linked GaSP successively via the iterative procedure in section 4.
Second, linked GaSP with its mean and variance matching to the linked emulator minimizes
the Kullback--Leibler (KL) divergence (i.e., information loss) between the linked emulator and
a Gaussian density [19].

The approximation accuracy of the linked GaSP to the linked emulator for a two-layered
system is explored in [17], which indicate that the linked GaSP converges to the linked emu-
lator when the predictive variances of GaSP emulators in the first layer reduce to zero. This
statement is intuitive because GaSP emulators tend to be deterministic as their predictive
variances drop. Consequently, the linked emulator decays to a Gaussian distribution that
is equivalent to the corresponding linked GaSP. However, it is often not possible to ensure
this condition for multilayered systems, especially when systems are complex and the com-
putational budget is limited. We explore provisionally the approximating performance of the
linked GaSP in a three-layered synthetic system with a fairly small number of training points
in section SM3 of the supplementary materials. We found, and we also conjecture for systems
with a moderate number of layers, that the linked GaSP approximates well the mean and
variance of the linked emulator, while is unable to reconstruct sufficiently the full probabilis-
tic distribution of the linked emulator. Therefore, the linked GaSP can be a good analytical
replacement of a linked emulator for analysis, such as the history matching, where mean and
variance are the key quantities of interest. However, if the full uncertainty description of an
emulator is of concern (e.g., if tails are of specific interest), the linked GaSP may not be a
fully adequate surrogate model.
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Like all data-driven emulators, the linked GaSP is a simplified approximation to the under-
lying computer system, which can be both high dimensional and extremely nonlinear. Thus,
careful plans and implementations, such as computational budget allocation, design consid-
eration, and model validation, are essential for efficient emulation on systems of computer
models. In addition, the accuracy of linked GaSPs is not only constrained by the assumptions
listed in section 3, but also limited by those (e.g., stationarity) made for GaSP emulators.
Therefore, further methodological and empirical advancements on both GaSP emulator and
linked GaSP are required for robust uncertainty quantification of sophisticated real-world
systems of computer models.

7. Conclusion. In this study, we generalize the linked GaSP to a class of Mat\'ern kernels.
The ability to use Mat\'ern kernels is essential for wider applications of the linked GaSP on
uncertainty quantification of systems of computer models. The linked GaSP emulation can
also be applied to any feed-forward systems with an iterative procedure. In combination with
decoupling techniques, the linked GaSP can even be utilized for systems with internal loops.

The linked GaSP emulation can be further enhanced, in terms of the approximating ac-
curacy and computational cost, via careful implementation of design strategies. We discuss
pros and cons of several alternative designs and introduce an adaptive design that improves
the accuracy of the linked GaSP with reduced computational by allocating runs to different
computer models in a system based on their heterogeneous functional complexity. The bene-
fits of the adaptive design are illustrated via a synthetic example. Further refinements of the
design and how it performs in real systems are directions worth exploring.

The linked GaSP outperforms the composite emulator by a ``divide-and-conquer"" strat-
egy [17], which converts the emulation of a bulky system into emulations of a number of
simpler elements. However, when a single computer model dominates the functional complex-
ity of the whole system the linked GaSP may not show a significant improvement over the
composite emulator. Particularly, if the dimension of input to individual computer models is
remarkably higher than that of global input, one might resort to dimension reduction tech-
niques to construct GaSP emulators of individual computer models. Whether the benefits
offered by the linked GaSP can overweight the approximation error induced by the dimension
reduction methods needs to be studied in the future. Since the uncertainty quantification is
now an integrated module in many research of multiphysics systems, one may consider split
processes during the system development to facilitate surrogate modeling.

Overall, we demonstrate both the effectiveness and efficiency of our new strategies to build
linked GaSPs for systems of computer models. Another ambitious, but needed, task would be
to investigate how our results can be exploited to emulate more complex feed-back coupled
systems, such as climate models, than the one considered in this study.

Appendix A. Exponential case. The three expectations \xi ik, \zeta ijk, and \psi jl defined in
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Theorem 3.3 are given by

\xi ik =exp

\Biggl\{ 
\sigma 2k + 2\gamma k

\bigl( 
w\scrT 
ik  - \mu k

\bigr) 
2\gamma 2k

\Biggr\} 
\Phi 

\biggl( 
\mu A  - w\scrT 

ik

\sigma k

\biggr) 

+ exp

\Biggl\{ 
\sigma 2k  - 2\gamma k

\bigl( 
w\scrT 
ik  - \mu k

\bigr) 
2\gamma 2k

\Biggr\} 
\Phi 

\biggl( 
w\scrT 
ik  - \mu B
\sigma k

\biggr) 
,

\zeta ijk =

\left\{   h\zeta 
\Bigl( 
w\scrT 
ik, w

\scrT 
jk

\Bigr) 
, w\scrT 

jk \geq w\scrT 
ik ,

h\zeta 

\Bigl( 
w\scrT 
jk, w

\scrT 
ik

\Bigr) 
, w\scrT 

jk < w\scrT 
ik ,

\psi jk =exp

\left\{   \sigma 
2
k + 2\gamma k

\Bigl( 
w\scrT 
jk  - \mu k

\Bigr) 
2\gamma 2k

\right\}   
\times 

\left[   \mu A\Phi \Biggl( \mu A  - w\scrT 
jk

\sigma k

\Biggr) 
+

\sigma k\surd 
2\pi 

exp

\left\{      - 

\Bigl( 
w\scrT 
jk  - \mu A

\Bigr) 2
2\sigma 2k

\right\}     
\right]   

 - exp

\left\{   \sigma 
2
k  - 2\gamma k

\Bigl( 
w\scrT 
jk  - \mu k

\Bigr) 
2\gamma 2k

\right\}   
\times 

\left[   \mu B\Phi \Biggl( w\scrT 
jk  - \mu B

\sigma k

\Biggr) 
 - \sigma k\surd 

2\pi 
exp

\left\{      - 

\Bigl( 
w\scrT 
jk  - \mu B

\Bigr) 2
2\sigma 2k

\right\}     
\right]   ,

where \Phi (\cdot ) denotes the cumulative density function of the standard normal distribution, and

h\zeta (x1, x2) = exp

\biggl\{ 
2\sigma 2k + \gamma k (x1 + x2  - 2\mu k)

\gamma 2k

\biggr\} 
\Phi 

\biggl( 
\mu C  - x2
\sigma k

\biggr) 
+ exp

\biggl\{ 
 - x2  - x1

\gamma k

\biggr\} \biggl[ 
\Phi 

\biggl( 
x2  - \mu k
\sigma k

\biggr) 
 - \Phi 

\biggl( 
x1  - \mu k
\sigma k

\biggr) \biggr] 
+ exp

\biggl\{ 
2\sigma 2k  - \gamma k (x1 + x2  - 2\mu k)

\gamma 2k

\biggr\} 
\Phi 

\biggl( 
x1  - \mu D
\sigma k

\biggr) 
,

and \mu A = \mu k  - \sigma 2k/\gamma k, \mu B = \mu k + \sigma 2k/\gamma k, \mu C = \mu k  - 2\sigma 2k/\gamma k, and \mu D = \mu k + 2\sigma 2k/\gamma k.
For notational convenience, in the above result we replace the index variable l in the

subscript of \psi jl by k, and \mu k(xk) and \sigma k(xk) by \mu k and \sigma k. This change of notation is also
applied in the rest of appendices and proofs of the supplementary materials.

Appendix B. Squared exponential case. The three expectations \xi ik, \zeta ijk, and \psi jl defined
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in Theorem 3.3 are given by

\xi ik =
1\sqrt{} 

1 + 2\sigma 2k/\gamma 
2
k

exp

\Biggl\{ 
 - 
\bigl( 
\mu k  - w\scrT 

ik

\bigr) 2
2\sigma 2k + \gamma 2k

\Biggr\} 
,

\zeta ijk =
1\sqrt{} 

1 + 4\sigma 2k/\gamma 
2
k

exp

\left\{          - 

\biggl( 
w\scrT 

ik+w\scrT 
jk

2  - \mu k

\biggr) 2

\gamma 2k/2 + 2\sigma 2k
 - 

\Bigl( 
w\scrT 
ik  - w\scrT 

jk

\Bigr) 2
2\gamma 2k

\right\}         ,

\psi jk =
1\sqrt{} 

1 + 2\sigma 2k/\gamma 
2
k

exp

\left\{      - 

\Bigl( 
\mu k  - w\scrT 

jk

\Bigr) 2
2\sigma 2k + \gamma 2k

\right\}     2\sigma 2kw
\scrT 
jk + \gamma 2k\mu k

2\sigma 2k + \gamma 2k
.

Appendix C. Mat\'ern-1.5 case. The three expectations \xi ik, \zeta ijk, and \psi jl defined in The-
orem 3.3 are given by

\xi ik =exp

\Biggl\{ 
3\sigma 2k + 2

\surd 
3\gamma k

\bigl( 
w\scrT 
ik  - \mu k

\bigr) 
2\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

1 \Lambda 11\Phi 

\biggl( 
\mu A  - w\scrT 

ik

\sigma k

\biggr) 
+E\top 

1 \Lambda 12
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - 
(w\scrT 

ik  - \mu A)
2

2\sigma 2k

\biggr\} \biggr] 
+ exp

\Biggl\{ 
3\sigma 2k  - 2

\surd 
3\gamma k

\bigl( 
w\scrT 
ik  - \mu k

\bigr) 
2\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

2 \Lambda 21\Phi 

\biggl( 
w\scrT 
ik  - \mu B
\sigma k

\biggr) 
+E\top 

2 \Lambda 22
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - 
(w\scrT 

ik  - \mu B)
2

2\sigma 2k

\biggr\} \biggr] 
,

\zeta ijk =

\left\{   h\zeta 
\Bigl( 
w\scrT 
ik, w

\scrT 
jk

\Bigr) 
, w\scrT 

jk \geq w\scrT 
ik ,

h\zeta 

\Bigl( 
w\scrT 
jk, w

\scrT 
ik

\Bigr) 
, w\scrT 

jk < w\scrT 
ik ,

\psi jk =exp

\left\{   3\sigma 2k + 2
\surd 
3\gamma k

\Bigl( 
w\scrT 
jk  - \mu k

\Bigr) 
2\gamma 2k

\right\}   
\times 

\Biggl[ 
E\top 

1 \Lambda 61\Phi 

\Biggl( 
\mu A  - w\scrT 

jk

\sigma k

\Biggr) 
+E\top 

1 \Lambda 62
\sigma k\surd 
2\pi 

exp

\Biggl\{ 
 - 
(w\scrT 

jk  - \mu A)
2

2\sigma 2k

\Biggr\} \Biggr] 

 - exp

\left\{   3\sigma 2k  - 2
\surd 
3\gamma k

\Bigl( 
w\scrT 
jk  - \mu k

\Bigr) 
2\gamma 2k

\right\}   
\times 

\Biggl[ 
E\top 

2 \Lambda 71\Phi 

\Biggl( 
w\scrT 
jk  - \mu B

\sigma k

\Biggr) 
+E\top 

2 \Lambda 72
\sigma k\surd 
2\pi 

exp

\Biggl\{ 
 - 
(w\scrT 

jk  - \mu B)
2

2\sigma 2k

\Biggr\} \Biggr] 
,
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where

h\zeta (x1, x2)

= exp

\Biggl\{ 
6\sigma 2k +

\surd 
3\gamma k (x1 + x2  - 2\mu k)

\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

3 \Lambda 31\Phi 

\biggl( 
\mu C  - x2
\sigma k

\biggr) 
+E\top 

3 \Lambda 32
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x2  - \mu C)

2

2\sigma 2k

\biggr\} \biggr] 
+ exp

\Biggl\{ 
 - 
\surd 
3 (x2  - x1)

\gamma k

\Biggr\} \Biggl[ 
E\top 

4 \Lambda 41

\biggl( 
\Phi 

\biggl( 
x2  - \mu k
\sigma k

\biggr) 
 - \Phi 

\biggl( 
x1  - \mu k
\sigma k

\biggr) \biggr) 

+E\top 
4 \Lambda 42

\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x1  - \mu k)

2

2\sigma 2k

\biggr\} 
 - E\top 

4 \Lambda 43
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x2  - \mu k)

2

2\sigma 2k

\biggr\} \Biggr] 

+ exp

\Biggl\{ 
6\sigma 2k  - 

\surd 
3\gamma k (x1 + x2  - 2\mu k)

\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

5 \Lambda 51\Phi 

\biggl( 
x1  - \mu D
\sigma k

\biggr) 
+E\top 

5 \Lambda 52
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x1  - \mu D)

2

2\sigma 2k

\biggr\} \biggr] 

and
\bullet \Lambda 11 = [1, \mu A]

\top , \Lambda 12 = [0, 1]\top , \Lambda 21 = [1,  - \mu B]\top , and \Lambda 22 = [0, 1]\top ;
\bullet \Lambda 31 = [1, \mu C , \mu 

2
C + \sigma 2k]

\top and \Lambda 32 = [0, 1, \mu C + x2]
\top ;

\bullet \Lambda 41 = [1, \mu k, \mu 
2
k + \sigma 2k]

\top , \Lambda 42 = [0, 1, \mu k + x1]
\top , and \Lambda 43 = [0, 1, \mu k + x2]

\top ;
\bullet \Lambda 51 = [1,  - \mu D, \mu 2D + \sigma 2k]

\top and \Lambda 52 = [0, 1,  - \mu D  - x1]
\top ;

\bullet \Lambda 61 = [\mu A, \mu 
2
A + \sigma 2k]

\top and \Lambda 62 = [1, \mu A + w\scrT 
jk]

\top ;

\bullet \Lambda 71 = [ - \mu B, \mu 2B + \sigma 2k]
\top and \Lambda 72 = [1,  - \mu B  - w\scrT 

jk]
\top ;

\bullet E1 =

\Biggl[ 
1 - 

\surd 
3w\scrT 

ik

\gamma k
,

\surd 
3

\gamma k

\Biggr] \top 
and E2 =

\Biggl[ 
1 +

\surd 
3w\scrT 

ik

\gamma k
,

\surd 
3

\gamma k

\Biggr] \top 
;

\bullet E3 =

\Biggl[ 
1 +

3x1x2  - 
\surd 
3\gamma k (x1 + x2)

\gamma 2k
,
2
\surd 
3\gamma k  - 3 (x1 + x2)

\gamma 2k
,
3

\gamma 2k

\Biggr] \top 
;

\bullet E4 =

\Biggl[ 
1 +

\surd 
3\gamma k (x2  - x1) - 3x1x2

\gamma 2k
,
3 (x1 + x2)

\gamma 2k
,  - 3

\gamma 2k

\Biggr] \top 
;

\bullet E5 =

\Biggl[ 
1 +

3x1x2 +
\surd 
3\gamma k (x1 + x2)

\gamma 2k
,
2
\surd 
3\gamma k + 3 (x1 + x2)

\gamma 2k
,
3

\gamma 2k

\Biggr] \top 
;

\bullet \mu A = \mu k  - 
\surd 
3\sigma 2k
\gamma k

, \mu B = \mu k +

\surd 
3\sigma 2k
\gamma k

, \mu C = \mu k  - 
2
\surd 
3\sigma 2k
\gamma k

, \mu D = \mu k +
2
\surd 
3\sigma 2k
\gamma k

.

Appendix D. Mat\'ern-2.5 case. The three expectations \xi ik, \zeta ijk, and \psi jl defined in
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Theorem 3.3 are given by

\xi ik =exp

\Biggl\{ 
5\sigma 2k + 2

\surd 
5\gamma k

\bigl( 
w\scrT 
ik  - \mu k

\bigr) 
2\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

1 \Lambda 11\Phi 

\biggl( 
\mu A  - w\scrT 

ik

\sigma k

\biggr) 
+E\top 

1 \Lambda 12
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - 
(w\scrT 

ik  - \mu A)
2

2\sigma 2k

\biggr\} \biggr] 
+ exp

\Biggl\{ 
5\sigma 2k  - 2

\surd 
5\gamma k

\bigl( 
w\scrT 
ik  - \mu k

\bigr) 
2\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

2 \Lambda 21\Phi 

\biggl( 
w\scrT 
ik  - \mu B
\sigma k

\biggr) 
+E\top 

2 \Lambda 22
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - 
(w\scrT 

ik  - \mu B)
2

2\sigma 2k

\biggr\} \biggr] 
,

\zeta ijk =

\left\{   h\zeta 
\Bigl( 
w\scrT 
ik, w

\scrT 
jk

\Bigr) 
, w\scrT 

jk \geq w\scrT 
ik ,

h\zeta 

\Bigl( 
w\scrT 
jk, w

\scrT 
ik

\Bigr) 
, w\scrT 

jk < w\scrT 
ik ,

and

\psi jk =exp

\left\{   5\sigma 2k + 2
\surd 
5\gamma k

\Bigl( 
w\scrT 
jk  - \mu k

\Bigr) 
2\gamma 2k

\right\}   
\times 

\Biggl[ 
E\top 

1 \Lambda 61\Phi 

\Biggl( 
\mu A  - w\scrT 

jk

\sigma k

\Biggr) 
+E\top 

1 \Lambda 62
\sigma k\surd 
2\pi 

exp

\Biggl\{ 
 - 
(w\scrT 

jk  - \mu A)
2

2\sigma 2k

\Biggr\} \Biggr] 

 - exp

\left\{   5\sigma 2k  - 2
\surd 
5\gamma k

\Bigl( 
w\scrT 
jk  - \mu k

\Bigr) 
2\gamma 2k

\right\}   
\times 

\Biggl[ 
E\top 

2 \Lambda 71\Phi 

\Biggl( 
w\scrT 
jk  - \mu B

\sigma k

\Biggr) 
+E\top 

2 \Lambda 72
\sigma k\surd 
2\pi 

exp

\Biggl\{ 
 - 
(w\scrT 

jk  - \mu B)
2

2\sigma 2k

\Biggr\} \Biggr] 
,
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where

h\zeta (x1, x2)

= exp

\Biggl\{ 
10\sigma 2k +

\surd 
5\gamma k (x1 + x2  - 2\mu k)

\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

3 \Lambda 31\Phi 

\biggl( 
\mu C  - x2
\sigma k

\biggr) 
+E\top 

3 \Lambda 32
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x2  - \mu C)

2

2\sigma 2k

\biggr\} \biggr] 
+ exp

\Biggl\{ 
 - 
\surd 
5 (x2  - x1)

\gamma k

\Biggr\} \Biggl[ 
E\top 

4 \Lambda 41

\biggl( 
\Phi 

\biggl( 
x2  - \mu k
\sigma k

\biggr) 
 - \Phi 

\biggl( 
x1  - \mu k
\sigma k

\biggr) \biggr) 

+E\top 
4 \Lambda 42

\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x1  - \mu k)

2

2\sigma 2k

\biggr\} 
 - E\top 

4 \Lambda 43
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x2  - \mu k)

2

2\sigma 2k

\biggr\} \Biggr] 

+ exp

\Biggl\{ 
10\sigma 2k  - 

\surd 
5\gamma k (x1 + x2  - 2\mu k)

\gamma 2k

\Biggr\} 

\times 
\biggl[ 
E\top 

5 \Lambda 51\Phi 

\biggl( 
x1  - \mu D
\sigma k

\biggr) 
+E\top 

5 \Lambda 52
\sigma k\surd 
2\pi 

exp

\biggl\{ 
 - (x1  - \mu D)

2

2\sigma 2k

\biggr\} \biggr] 

and
\bullet \Lambda 11 = [1, \mu A, \mu 

2
A + \sigma 2k]

\top and \Lambda 12 = [0, 1, \mu A + w\scrT 
ik]

\top ;
\bullet \Lambda 21 = [1,  - \mu B, \mu 2B + \sigma 2k]

\top and \Lambda 22 = [0, 1,  - \mu B  - w\scrT 
ik]

\top ;
\bullet \Lambda 31 = [1, \mu C , \mu 

2
C + \sigma 2k, \mu 

3
C + 3\sigma 2k\mu C , \mu 

4
C + 6\sigma 2k\mu 

2
C + 3\sigma 4k]

\top ;
\bullet \Lambda 32 = [0, 1, \mu C +x2, \mu 

2
C +2\sigma 2k+x

2
2+\mu Cx2, \mu 

3
C +x32+x2\mu 

2
C +\mu Cx

2
2+3\sigma 2kx2+5\sigma 2k\mu C ]

\top ;
\bullet \Lambda 41 = [1, \mu k, \mu 

2
k + \sigma 2k, \mu 

3
k + 3\sigma 2k\mu k, \mu 

4
k + 6\sigma 2k\mu 

2
k + 3\sigma 4k]

\top ;
\bullet \Lambda 42 = [0, 1, \mu k + x1, \mu 

2
k + 2\sigma 2k + x21 + \mu kx1, \mu 

3
k + x31 + x1\mu 

2
k + \mu kx

2
1 + 3\sigma 2kx1 + 5\sigma 2k\mu k]

\top ;
\bullet \Lambda 43 = [0, 1, \mu k + x2, \mu 

2
k + 2\sigma 2k + x22 + \mu kx2, \mu 

3
k + x32 + x2\mu 

2
k + \mu kx

2
2 + 3\sigma 2kx2 + 5\sigma 2k\mu k]

\top ;
\bullet \Lambda 51 = [1,  - \mu D, \mu 2D + \sigma 2k,  - \mu 3D  - 3\sigma 2k\mu D, \mu 

4
D + 6\sigma 2k\mu 

2
D + 3\sigma 4k]

\top ;
\bullet \Lambda 52 = [0, 1,  - \mu D - x1, \mu 2D+2\sigma 2k+x

2
1+\mu Dx1,  - \mu 3D - x31 - x1\mu 2D - \mu Dx21 - 3\sigma 2kx1 - 5\sigma 2k\mu D]

\top ;
\bullet \Lambda 61 = [\mu A, \mu 

2
A + \sigma 2k, \mu 

3
A + 3\sigma 2k\mu A]

\top ;

\bullet \Lambda 62 = [1, \mu A + w\scrT 
jk, \mu 

2
A + 2\sigma 2k +

\bigl( 
w\scrT 
jk

\bigr) 2
+ \mu Aw

\scrT 
jk]

\top ;

\bullet \Lambda 71 = [ - \mu B, \mu 2B + \sigma 2k,  - \mu 3B  - 3\sigma 2k\mu B]
\top ;

\bullet \Lambda 72 = [1,  - \mu B  - w\scrT 
jk, \mu 

2
B + 2\sigma 2k +

\bigl( 
w\scrT 
jk

\bigr) 2
+ \mu Bw

\scrT 
jk]

\top ;

\bullet E1 =

\Biggl[ 
1 - 

\surd 
5w\scrT 

ik

\gamma k
+

5
\bigl( 
w\scrT 
ik

\bigr) 2
3\gamma 2k

,

\surd 
5

\gamma k
 - 

10w\scrT 
ik

3\gamma 2k
,

5

3\gamma 2k

\Biggr] \top 
;

\bullet E2 =

\Biggl[ 
1 +

\surd 
5w\scrT 

ik

\gamma k
+

5
\bigl( 
w\scrT 
ik

\bigr) 2
3\gamma 2k

,

\surd 
5

\gamma k
+

10w\scrT 
ik

3\gamma 2k
,

5

3\gamma 2k

\Biggr] \top 
;

\bullet E3 = [E30, E31, E32, E33, E34]
\top ;

\bullet E4 = [E40, E41, E42, E43, E44]
\top ;

\bullet E5 = [E50, E51, E52, E53, E54]
\top ;
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\bullet E30 =1 +
25x21x

2
2  - 3

\surd 
5
\bigl( 
3\gamma 3k + 5\gamma kx1x2

\bigr) 
(x1 + x2) + 15\gamma 2k

\bigl( 
x21 + x22 + 3x1x2

\bigr) 
9\gamma 4k

,

E31 =
18
\surd 
5\gamma 3k + 15

\surd 
5\gamma k

\bigl( 
x21 + x22

\bigr) 
 - (75\gamma 2k + 50x1x2) (x1 + x2) + 60

\surd 
5\gamma kx1x2

9\gamma 4k
,

E32 =
5
\bigl[ 
5x21 + 5x22 + 15\gamma 2k  - 9

\surd 
5\gamma k (x1 + x2) + 20x1x2

\bigr] 
9\gamma 4k

,

E33 =
10
\bigl( 
3
\surd 
5\gamma k  - 5x1  - 5x2

\bigr) 
9\gamma 4k

, and E34 =
25

9\gamma 4k
;

\bullet E40 =1 +
25x21x

2
2 + 3

\surd 
5
\bigl( 
3\gamma 3k  - 5\gamma kx1x2

\bigr) 
(x2  - x1) + 15\gamma 2k

\bigl( 
x21 + x22  - 3x1x2

\bigr) 
9\gamma 4k

,

E41 =
5
\bigl[ 
3
\surd 
5\gamma k

\bigl( 
x22  - x21

\bigr) 
+ 3\gamma 2k (x1 + x2) - 10x1x2 (x1 + x2)

\bigr] 
9\gamma 4k

,

E42 =
5
\bigl[ 
5x21 + 5x22  - 3\gamma 2k  - 3

\surd 
5\gamma k (x2  - x1) + 20x1x2

\bigr] 
9\gamma 4k

,

E43 = - 50 (x1 + x2)

9\gamma 4k
, and E44 =

25

9\gamma 4k
;

\bullet E50 =1 +
25x21x

2
2 + 3

\surd 
5
\bigl( 
3\gamma 3k + 5\gamma kx1x2

\bigr) 
(x1 + x2) + 15\gamma 2k

\bigl( 
x21 + x22 + 3x1x2

\bigr) 
9\gamma 4k

,

E51 =
18
\surd 
5\gamma 3k + 15

\surd 
5\gamma k

\bigl( 
x21 + x22

\bigr) 
+ (75\gamma 2k + 50x1x2) (x1 + x2) + 60

\surd 
5\gamma kx1x2

9\gamma 4k
,

E52 =
5
\bigl[ 
5x21 + 5x22 + 15\gamma 2k + 9

\surd 
5\gamma k (x1 + x2) + 20x1x2

\bigr] 
9\gamma 4k

,

E53 =
10
\bigl( 
3
\surd 
5\gamma k + 5x1 + 5x2

\bigr) 
9\gamma 4k

, and E54 =
25

9\gamma 4k
;

\bullet \mu A = \mu k  - 
\surd 
5\sigma 2k
\gamma k

, \mu B = \mu k +

\surd 
5\sigma 2k
\gamma k

, \mu C = \mu k  - 
2
\surd 
5\sigma 2k
\gamma k

, \mu D = \mu k +
2
\surd 
5\sigma 2k
\gamma k

.
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