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REVIEW

RDH12 retinopathy: clinical features, biology, genetics and future directions
Malena Daich Varela a,b and Michel Michaelides a,b

aUCL Institute of Ophthalmology, University College London, London, UK; bMoorfields Eye Hospital, London, UK

ABSTRACT
Retinol dehydrogenase 12 (RDH12) is a small gene located on chromosome 14, encoding an enzyme 
capable of metabolizing retinoids. It is primarily located in photoreceptor inner segments and thereby is 
believed to have an important role in clearing excessive retinal and other toxic aldehydes produced by 
light exposure. Clinical features: RDH12-associated retinopathy has wide phenotypic variability; including 
early-onset severe retinal dystrophy/Leber Congenital Amaurosis (EOSRD/LCA; most frequent presenta
tion), retinitis pigmentosa, cone-rod dystrophy, and macular dystrophy. It can be inherited in an auto
somal recessive and dominant fashion. RDH12-EOSRD/LCA’s key features are early visual impairment, 
petal-shaped, coloboma-like macular atrophy with variegated watercolour-like pattern, peripapillary 
sparing, and often dense bone spicule pigmentation. Future directions: There is currently no treatment 
available for RDH12-retinopathy. However, extensive preclinical investigations and an ongoing prospec
tive natural history study are preparing the necessary foundation to design and establish forthcoming 
clinical trials. Herein, we will concisely review pathophysiology, molecular genetics, clinical features, and 
discuss therapeutic approaches.
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Introduction

Retinoids are photosensitive molecules of key importance in 
vision and cellular differentiation (1). Retinol dehydrogenase 
12 (RDH12) is one of the enzymes that metabolizes retinoids 
within photoreceptors. It belongs to the short-chain dehydro
genases/reductases superfamily and is highly expressed in 
photoreceptor inner segments (2,3).

Variants in RDH12 (MIM 608830) have been associated 
with autosomal recessive (AR) early onset severe retinal dys
trophy/Leber Congenital Amaurosis (EOSRD/LCA), cone/ 
cone-rod dystrophy, retinitis pigmentosa (RP), and macular 
dystrophy (MD); and autosomal dominant (AD) RP (4). 
Milder phenotypes have also been recently described in indi
viduals with an AR inheritance pattern (5,6). Biallelic variants 
in RDH12 account for 3.5–10.5% of all EOSRD/LCA cases, 
with a higher prevalence in East Asian population (7,8).

Role in vision

The visual cycle is the process that occurs in photoreceptors 
and retinal pigment epithelium (RPE), enabling perception of 
visual stimuli by recycling vitamin A (all-trans-retinol) (9). As 
this molecule is oxidized, esterified, reduced, and hydrolysed, it 
becomes a substrate to different enzymes such as RDHs. 
Among these, RDH8 and RDH12 are primarily responsible 
for the oxidation and reduction of all-trans-retinoids in the 
outer and inner segment, respectively, of rods and cones (2,10). 
The RDH12 enzyme has dual specificity, with both all-trans 
and 11-cis-retinoids being substrates (1).

RDH12 is usually depicted within the visual cycle loop, at 
the step where all-trans retinal becomes all-trans retinol (11). 
However, some discrepancies have appeared when elucidating 
RDH12 function. In vitro work has shown that the step in 
which RDH12 appears to be most efficient is in the reduction 
of all-trans and 11-cis-retinal, in the recovery phase of the 
visual cycle (12–15). It has been estimated that 98% of the all- 
trans-RDH activity is undertaken by RDH8 and RDH12 
together, 70% by RDH8 and 30% by RDH12 (16). Given that 
the reduction of all-trans retinal takes place primarily in photo
receptor outer segments and RDH12 is located in the inner 
segment, it has been postulated that its contribution in the 
visual cycle may be indirect or auxiliary (17). The potential 
roles include to reduce excessive all-trans retinal (18), A2E, 
and/or other aldehydes produced by light exposure-mediated 
lipid peroxidation, such as 4-HNE (Figure 1) (19). The accu
mulation of the latter is involved in stress signaling, free radical 
reactions, and in the activation of the apoptotic response (20). 
Maeda et al. also suggested that RDH12 may regulate the flow 
of retinoids in the eye, playing an important part against light- 
induced photoreceptor apoptosis during persistent illumina
tion (21). Recently, RDH12 metabolizing all-trans retinal has 
likewise been found to be key in protecting cells from oxidative 
and endoplasmic reticulum (ER) stress (22).

The phenotype of double knockout mouse models (Rdh8−/− 

Rdh12−/−) is mild, both histologically and with respect to 
retinoid homeostasis dysregulation, unlike other visual cycle 
enzyme animal models such as RPE65 or LRAT (3,21,23,24). 
Photoreceptors of Rdh12−/− mice were noted to have 
sufficient amounts of 11-cis retinal, yet they were more prone 
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to light-induced apoptosis than those of wild-type mice (21). 
This suggests that pathogenesis may indeed be due to increased 
cellular sensitivity to light-induced oxidative injury and the 
accumulation of toxic by-products, rather than a disruption 
in the cycling of vitamin A (16,17).

Genetics

RDH12 was the third recessive EOSRD/LCA gene (LCA3) to be 
characterized, described by Stockton in 1998 (25). It contains 
seven exons, spans approximately 13 kb, and encodes a 316- 
amino acid, 35 kD protein. RDH12 protein contains a cofactor 
binding site, a catalytic domain, and an amino terminal motif 
consisting of beta-strands and alpha-helixes (26). Little is 
known about RDH12 tertiary structure. Thompson et al. cre
ated an approximate model that depicts a globular form (15). It 
can interact both with nicotinamide adenine dinucleotide 
(NADH) to oxidise retinol to retinal, and -mainly- with nico
tinamide adenine dinucleotide phosphate (NADPH) to reduce 
retinal to retinol (10).

At present, ClinVar shows 39 pathogenic, 32 likely pathogenic 
and 45 variants of unknown significance in RDH12 (total 116, 
https://www.ncbi.nlm.nih.gov/clinvar, accessed December 2021). 
Of these, 79 (68%) were missense, 14 (12%) nonsense, nine (8%) 
frameshift, seven (6%) splice-site, and seven (6%) in untranslated 
regions (UTR). Ninety-nine were single-nucleotide changes and 
17 copy-number variations such as insertions, deletions and 
duplications. The most frequently reported homozygous 

genotypes, in order of frequency, were p.(T49M), p.(A126V), p. 
(Y226C), p.(C201R), p.(L274P), p.(S203R), and p.(L99I) (27). p. 
(V146D) was the most common variant in a Chinese cohort (8), 
p.(C201R) in patients of Indian descent, and p.(A269AfsX1) in 
white British patients (28). The carrier frequency of p.(A126V) 
among the Israeli population was found to be 0.62% (29). Of 
note, p.(T49M) and p.(L99I) have been associated with milder 
phenotypes (27).

Most carriers of null alleles are disease-free, which means 
that half the concentration of RDH12 protein is still well 
tolerated by the retina. Certain heterozygous variants, however, 
have been associated with a gain of function disease mechan
ism and a mild RP phenotype, inherited in an AD fashion (30). 
These variants are c.763delG, c.778delG and c.759delC, to date, 
all affecting the reading frame-specific C-terminal peptide (30– 
32). It is likely that these frameshift variants within this parti
cular region have a toxic effect that leads to photoreceptor 
death, such as was hypothesized for RGR-retinopathy (33). 
This phenomenon of a milder AD phenotype in an AR 
EOSRD/LCA gene has also been observed in GUCY2D and 
RPE65 (34–36).

Clinical phenotypes

RDH12-EOSRD/LCA can present with certain phenotypic fea
tures that aid the clinical diagnosis. Macular atrophy is com
mon, appearing also as disorganised retinal layers on optical 
coherence tomography (OCT) (28,37). These atrophic changes 

Figure 1. RDH12 role within photoreceptors. Once light changes the configuration of 11-cis retinal to all-trans retinal, it gets released from rhodopsin (or cone opsin) 
and transported from inside of the photoreceptor discs to the cytoplasm by ABCA4. RDH8 is located in this zone of the outer segment and reduces most all-trans retinal 
to all-trans-retinol, within the visual/retinoid cycle. Excessive all-trans retinal and conjugation products such as A2E and 4-HNE, produced by light exposure-mediated 
lipid peroxidation, migrate to the inner segment and become the substrate of RDH12. The accumulation of the latter, due a poorly functional RDH12, lead to increased 
oxidative and endoplasmic reticulum stress, enhanced cellular sensitivity to light-induced oxidative injury, and ultimately, apoptosis.
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may look like yellowish discoloration early on, followed by 
confluent pigment deposits, and finally a petal-shaped, colo
boma-like configuration (Figure 2a and b) (8). The macular 
atrophy has also been described as having gold foil-like reflec
tance and a variegated watercolour-like pattern, which some
times extends to the periphery and is readily identified by 
fundus autofluorescence (FAF) imaging (7,38). Progressive 
macular degeneration usually starts in early childhood and, 
although it is not pathognomonic for RDH12 and can also be 
seen in CRB1-, NMNAT1- and AIPL1-EOSRD/LCA, it cer
tainly helps to refine the possible genotypes (27,39–41). Other 
common features are early peripheral RPE atrophy with pig
mented deposits, including bone spicules, appearing in late 

childhood or early adulthood (42), and peripapillary sparing 
(best seen with FAF) (43). Functionally, it is a severe dystrophy 
with markedly reduced scotopic and photopic electroretino
gram (ERG) responses as early as 1 year of age, visual impair
ment in infancy/early childhood, and usually legal blindness 
before the third decade of life (7,8,42,44).

RDH12-RP has been reported to cause symptoms from 
the second or third decade, with maintained visual acuity, 
attenuated rod more than cone ERG responses, and driving 
capabilities until late adulthood (32). The mid-periphery is the 
most affected area and, in contrast to the EOSRD/LCA pre
sentation, macular structure tends to remain preserved 
(Figure 2c) (31). MD secondary to RDH12 biallelic variants 

Figure 2. RDH12-retinopathy fundus features. A) Ultrawide colour and autofluorescence fundus imaging of a 12-year-old boy with early onset severe retinal dystrophy 
(EOSRD). The macular atrophy presents the characteristic variegated watercolour-like pattern extending to the periphery. Peripheral retinal pigment epithelium (RPE) 
atrophy with minimal pigmented deposits, and peripapillary sparing, are also present. B) Macular Optical Coherence Tomography (OCT) from 8-, 18-, and 39-year-old 
individuals with EOSRD. We see loss of the outer layers with preserved overall retinal structure in the youngest patient, and a progressive loss of retinal architecture 
along with coloboma-like lesion formation in the older patients. C) Ultrawide fundus imaging from a 35-year-old individual with autosomal dominant retinitis 
pigmentosa. The mid-periphery appears mostly involved with pigmented bone spicules and RPE loss, while the macula and far periphery remains preserved. D) 
Ultrawide fundus imaging from a 13-year-old patient with macular dystrophy. We see a perifoveal area of atrophy with a hyperautofluorescent rim, preserved central 
and peripheral structure.

OPHTHALMIC GENETICS 3



can present as a fovea-sparing maculopathy with normal/mild- 
moderately reduced cone ERGs and normal rod function 
(Figure 2d) (45); while RDH12-CORD usually presents with 
broader compromise of the posterior pole, spreading beyond 
the arcades, with peripapillary sparing in younger patients 
(5,8). Onset of visual disturbance is variable but can be as late 
as in the 30s (depending on foveal involvement), with progres
sive loss of central and peripheral vision over time (5).

Therapeutic options

The inherited retinal dystrophy field has been in the spotlight 
due to the expansion of gene therapy approaches for multiple 
targets, with the approval of Luxturna being the proof of 
a successful gene supplementation approach in RPE65- 
EOSRD/LCA (46,47). RDH12 is attractive therapeutically for 
several reasons, including its small size. One of the main 
challenges has been the lack of informative animal models, as 
discussed earlier. However, the recent development of alterna
tive assays/models such as an in vitro human cell line expres
sing mutant RDH12, an in vivo mutant zebrafish model (22), 
and induced pluripotent stem cell-derived retinal models from 
patients with RDH12-retinopathy, provide promising plat
forms for further understanding the biology and delineating 
treatments (48).

Feathers et al. have developed a recombinant adeno- 
associated viral (rAAV) vector that packed the entire RDH12 
coding region, which they tested in Rdh12−/− mice (49). After 
a 1-year follow-up, they did not find evidence of retinal damage 
or disturbances in retinoid metabolism, suggesting that rAAV2/ 
5-hGRK1p.hRDH12 could be a therapeutic candidate. Bian et al. 
also recently published a model in which they induced retinal 
degeneration in Rdh12−/− mice by exposing them to bright light, 
and reported a delay in photoreceptor degeneration in mice 
treated with AAV2/8-mRdh12 (50). Thus, preclinical data on 
gene supplementation has shown promising results.

Antioxidants, retinal scavengers, and ER-stress lowering drugs 
have also been investigated as potentially less invasive approaches 
(22,51). Pregabalin, an FDA-approved drug for nerve pain, anxi
ety, and epilepsy treatment (52), was found to protect the retina 
from light-induced damage in Rdh12−/− mice and RDH12 mutant 
cell lines, capturing free all-trans retinal and decreasing its con
jugation products and ER stress markers (51). These types of 
approaches are also under investigation to treat Stargardt disease, 
caused by variants in another visual cycle gene, ABCA4. Its 
pathophysiology also entails the build-up of retinoids and its 
fusion products within the photoreceptors disc membranes/RPE 
(53). Treatments to decrease the formation of retinaldehyde 
(visual cycle modulator -emiustat-, NCT03772665; deuterated 
vitamin A -ALK-001-, NCT02230228), inhibit the inflammatory 
complement cascade (avacincaptad pegol, NCT03364153), and 
improve antioxidant activity (omega-3 fatty acids, NCT03297515; 
saffron, NCT01278277) are currently in clinical trial phase (54). If 
successful, these may also be effective for RDH12-retinopathy.

Regarding clinical research, necessary, prospective, natural 
history studies need to be undertaken in order to determine 
suitable outcome measures, characterize the disease rate of pro
gression, and define a window of opportunity for intervention. 

A multicentre prospective natural history study is on-going, 
recruiting both children and adults (USA and London, UK). 
This will lay the groundwork for future planned interventional 
studies.

In summary, there is on-going evaluation about 
RDH12ʹs role(s) in vision and how when aberrant it causes 
disease; currently believed to be primarily related to defec
tive clearance of toxic by-products and/or oxidative and ER 
stress. RDH12-retinopathy can be inherited both in AR 
and AD patterns and can be associated with wide-ranging 
severity, with EOSRD/LCA being the most frequently 
reported condition (44). RDH12-EOSRD/LCA is character
ized by early macular atrophy and often legal blindness 
before the third decade. The increasing knowledge about 
its molecular basis, the promising preclinical data on gene 
supplementation, and the ongoing natural history study, 
raise cautious optimism for patients and families.
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