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Abstract

Objectives: The Strategic Timing of AntiRetroviral Treatment (START) and Strategies for 

Management of Antiretroviral Therapy (SMART) trials demonstrated that ART can partly reverse 

clinically defined immune dysfunction induced by HIV replication. As control of HIV replication 

is influenced by the HLA region, we explored whether HLA alleles independently influence the 

risk of clinical events in HIV+ individuals.

Design: Cohort study.

Methods: In START and SMART participants, associations between imputed HLA alleles and 

AIDS, infection-related cancer, herpes virus-related AIDS events, chronic inflammation-related 
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conditions and bacterial pneumonia were assessed. Cox regression was used to estimate hazard 

ratios (HRs) for the risk of events among allele carriers versus non-carriers. Models were adjusted 

for sex, age, geography, race, time-updated CD4+ T-cell counts and HIV viral load (VL) and 

stratified by treatment group within trials. HLA class I and II alleles were analyzed separately. The 

Benjamini-Hochberg procedure was used to limit the false discovery rate to <5% (i.e. q-

value<0.05).

Results: Among 4,829 participants, there were 132 AIDS events, 136 chronic inflammation-

related conditions, 167 bacterial pneumonias, 45 infection-related cancers and 49 herpes virus-

related AIDS events. Several associations with q-value <0.05 were found: HLA-DQB1*06:04 and 

HLA-DRB1*13:02 with AIDS (adjusted HR [95%CI] 2.63 [1.5–4.6] and 2.25 [1.4–3.7], 

respectively), HLA-B*15:17 and HLA-DPB1*15:01 with bacterial pneumonia (4.93 [2.3–10.7] 

and 4.33 [2.0–9.3], respectively), and HLA-A*69:01 with infection-related cancer (15.26 [3.5–

66.7]). The carriage frequencies of these alleles were ≤10%.

Conclusions: This hypothesis-generating study suggests that certain HLA alleles may influence 

the risk of immune dysfunction-related events irrespective of VL and CD4+ T-cell count.
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Introduction

The interplay between pathogen and host genetic variation influences susceptibility and 

progression of infectious diseases. Playing a crucial role in the regulation of immune 

response, the human leukocyte antigen (HLA) region has consistently been associated with a 

wide range of cancer, autoimmune diseases and infections[3–8], including HIV-1 control. 

Several studies have identified associations between genetic variants in the HLA region and 

HIV-1 viral load (VL) and disease progression[5, 9–16]. Set-point VL (spVL) is a prognostic 

marker of disease progression in HIV-positive (HIV+) individuals[17], hence, reported 

variants associated with VL have also been associated with disease progression[5, 18–20]. 

However, these studies included only antiretroviral therapy (ART)-naive persons, whereas 

the current treatment guidelines[21] recommend initiation of ART upon HIV diagnosis 

regardless of CD4+ T-cell count.

The Strategic Timing of AntiRetroviral Treatment (START)[1] and The Strategies for 

Management of Antiretroviral Therapy (SMART)[2] trials demonstrated that ART partly 

reverses clinically defined immune dysfunction induced by HIV replication. In prior pooled 

analyses of these trials, participants treated with deferred/intermittent ART had higher risk 

of infectious complications compared to participants receiving immediate/continuous 

ART[22]. This HIV-induced immune dysfunction was observed even at relatively high CD4+ 

T-cell counts. Hence, predisposition for infectious complications among HIV+ individuals is 

currently only partly explained. Therefore, we explored whether HLA alleles influenced the 

risk of immune dysfunction-related clinical events independently of HIV replication in a 

pooled analysis of data from START and SMART.
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Methods

Study participants

Samples included in this study were derived from START (NCT00867048)[1] and SMART 

(NCT00027352)[2] participants consenting to genetic analyses. START and SMART were 

international, randomized controlled trials comparing different ART strategies in HIV+ 

individuals regarding serious morbidity and mortality[1, 2, 22].

Definition of clinical events

The following clinical events were ascertained in START and SMART with definitions 

standardized before analysis: (1) AIDS; (2) infection-related cancer; (3) herpes virus-related 

AIDS events; (4) bacterial pneumonia and (5) chronic inflammation-related conditions. 

Infection-related cancer was defined as cancer associated with human herpesvirus 8 (Kaposi 

sarcoma), Epstein-Barr virus (non-Hodgkin lymphoma, Hodgkin lymphoma), or human 

papilloma virus (anal cancer, cervical cancer). AIDS and chronic inflammation-related 

conditions were defined per Lifson et al[23] and Hart et al[24], respectively.

Imputation of HLA alleles

Following genotyping using a custom content Affymetrix Axiom SNP array, imputation of 

classical HLA alleles per locus (i.e. class I: HLA-A, HLA-B, HLA-C and class II: HLA-DP, 

HLA-DQ, HLA-DR) at four-digit resolution was performed with HIBAG[25]. The 

genotyping and HLA imputation have been described previously[15]. As part of the 

exploratory nature of these analyses, we aimed to explore associations with HLA alleles 

carried by ≥10 participants including those observed at low frequencies.

Statistics

Cox proportional hazards regression models were used to estimate hazard ratios (HRs) for 

the risk of clinical events among allele carriers versus non-carriers. Event-specific time-to-

event was computed as the time from trial enrollment until date of first event, death, 

withdrawal, last known alive date, or trial unblinding (START) or study closure (SMART), 

whichever occurred first. To assess the effect of HLA alleles on risk of clinical events 

independently of HIV-induced immune dysfunction, models were adjusted for time-updated 

HIV VL and CD4+ T-cell counts in addition to sex, age at trial entry, self-reported race and 

geographical region, and stratified by the two randomized treatment groups in SMART and 

START (4 strata in total). Since HLA homozygosity was rare in our population and HLA is 

co-dominantly expressed, HLA carriers carrying one or two alleles were combined (i.e. the 

dominant model). HLA class I and II alleles were analyzed separately. The Benjamini-

Hochberg procedure was used to limit the false discovery rate (FDR) to <5% (q-value 

<0.05).

Analyses were performed using Stata version 15.
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Results

Study participants

This analysis was comprised of 4,829 participants from START (n=2,546) and SMART 

(n=2,283) who consented to genetic analyses (characteristics in Table 1). Per design, START 

and SMART participants differed significantly regarding HIV-specific factors. There were 

also differences in demographics. Median follow-up time (IQR) was 3.4 years (2.3–4.5) for 

START participants, 3.3 years (2.3–4.5) for SMART participants and 3.4 years (2.4–4.5) for 

all participants.

Imputation of HLA alleles

The percentage of participants with predicted, high accuracy, alleles per locus were: HLA-A: 

4,598 (95.2%), HLA-B 3,963 (82.1%), HLA-C 4,659 (96.5%), HLA-DPB1 4,479 (92.8%), 

HLA-DQA1 4,607 (95.4%), HLA-DQB1 4,671 (96.7%), HLA-DRB1 3,800 (78.7%).

Following exclusion of HLA alleles present in <10 participants, 102 class I and 83 class II 

alleles were assessed.

Associations between HLA alleles and clinical events

There were 132 AIDS events, 136 chronic inflammation-related conditions, 167 bacterial 

pneumonias, 45 infection-related cancers and 49 herpes virus-related AIDS events during 

follow-up. We observed several associations with a q-value <0.05 between HLA alleles and 

immune dysfunction-related events (Table 2). HLA-DQB1*06:04 and HLA-DRB1*13:02 

were associated with AIDS (adjusted HRs [95%CI] 2.63 [1.5–4.6] and 2.25 [1.4–3.7], 

respectively). Among participants who were called for both alleles (n=3,734), 370 were 

carriers of HLA-DRB1*13:02 of whom 202 (55%) also carried the HLA-DQB1:06:04 

allele, whereas almost all (99.5%) HLA-DQB1*06:04 carriers (n=203) were also HLA-

DRB1*13:02 carriers (n=202). HLA-B*15:17 and HLA-DPB1*15:01 showed associations 

with bacterial pneumonia (4.93 [2.3–10.7] and 4.33 [2.0–9.3], respectively), while an 

association was also observed between HLA-A*69:01 and infection-related cancer (15.26 

[3.5–66.7]). No associations with herpes virus-related AIDS events or chronic inflammation-

related condition reached the threshold of a q-value <0.05. Several of the reported alleles 

with a q-value <0.05 were observed at low frequencies with carrier frequencies as low as 

0.3% among HLA predicted participants (Table 2). Kaplan-Meier plots of events according 

to allele carrier status are shown in Supplemental Figure S1.

Discussion

In this study, associations were detected between specific HLA alleles and AIDS, bacterial 

pneumonia and infection-related cancer, suggesting that HLA alleles may affect disease 

progression irrespective of the effect of HIV VL and CD4+ T-cell counts. Importantly, none 

of the identified HLA alleles have previously been associated with control of HIV 

replication, including a previous study of START participants[15], making the associations 

more likely due to a direct interaction with the pathology of the event per se.
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Studies on spVL and disease progression in ART-naïve cohorts have identified the HLA 

class I region as the major host determinant of HIV control[5, 9, 16, 18–20, 26, 27]. This is 

consistent with previous knowledge on antigen presentation with class I and II molecules 

primarily presenting endogenously and exogenously produced antigens, respectively[28]. As 

we assessed a broad variety of events and aimed to explore the role of HLA alleles 

independently of HIV-associated immune dysfunction, we included both class I and II alleles 

to capture associations with different pathways of antigen presentation.

To the best of our knowledge, this is the first study exploring associations between HLA 

alleles and various immune dysfunction-related events in HIV+ cohorts with varied 

treatment strategies. Several of the components of the composite outcomes included in this 

study have been investigated previously in the general population[3, 29, 30] and in HIV+ 

individuals[31–34], however, results have been divergent and are also inconsistent with our 

findings. We identified associations between AIDS and DQB1*06:04 and HLA-

DRB1*13:02 which have not previously been reported. AIDS is a composite outcome, 

including a variety of pathogens, making it difficult to delineate the exact components or 

pathogens driving the allele associations identified in our study. Investigation of specific 

AIDS events has revealed interesting HLA associations and underlined the complexities of 

genetic studies which could explain the discordant observations. Castro et al. found an 

association between HLA-B*14:01 and increased risk of Kaposi sarcoma in HIV+ 

individuals[33], but not in the control group of HIV-negative individuals with endemic 

Kaposi sarcoma, suggesting altered HLA function in the setting of HIV. This potential, HIV-

induced modification was also suggested in studies examining the role of HLA variation in 

tuberculosis/HIV-1 coinfection[32] and cervical cancer in HPV/HIV-1 coinfection[31]. Across 

HIV+ cohorts, divergent findings are likely to be caused by different racial and geographical 

composition of the study populations or different antiretroviral treatment regimens. In our 

study, we controlled for time-updated CD4+ T-cell counts and VL aiming to remove the 

HIV-induced immune dysfunction, however, our results showed that this adjustment did not 

change effect sizes markedly. Whether this could be due to a residual HIV-effect regardless 

of HIV-control has not been studied and remains uncertain.

Bacterial pneumonia was associated with HLA-B*15:17 and HLA-DPB1*15:01. A previous 

study[3] found an association between pneumonia and HLA-B in the general population, 

whereas the HLA region’s impact on risk of HIV-related bacterial pneumonia has not been 

investigated. The finding of both a class I and II association could be due to the diverse 

microbial etiology of the assessed bacterial pneumonias, or the events may represent 

secondary bacterial pneumonias succeeding viral respiratory infections.

Comparison of results across genetic studies remains challenging. Studies are often 

restricted to sub-populations, yielding population-specific associations due to varying allele 

frequencies across races and regions. As a result, certain associations cannot be replicated. 

We included and observed associations with alleles observed at low frequencies which may 

explain why these associations have not been reported previously. Moreover, statistical 

methodologies vary across studies with the primary method being logistic regression in a 

case-control design, whereas we used time-to-event methods.
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The exact mechanisms accounting for the associations observed in this study remain unclear, 

and additional studies investigating the functional amino acid variants are required. Previous 

studies have reported linkage between alleles of the HLA-DQ and HLA-DR loci[35–38], 

challenging the delineation of causal alleles. We observed a correlation between HLA-

DQB1*06:04 and HLA-DRB1*13:02 which were both associated with AIDS. As there was 

only one participant carrying HLA-DQB1*06:04 without the co-occurrence of HLA-

DRB1*13:02, we were not able to outline whether the observed associations were driven by 

the co-occurrence of the alleles or an individual allele.

A main strength of this study is the careful, standardized ascertainment of events across the 

studies. This study also has some limitations. We pooled data from two separate trials, 

however, due to careful ascertainment of clinical events in both trials, we could analyze 

harmonized event data justifying the data pooling. Despite event pooling, there were still 

relatively few clinical events, limiting the power to detect associations. We used imputed 

HLA alleles and did not have a reference population that was identical to the unique 

geographic and racial composition of our population. This may have reduced the imputation 

accuracy, particularly among individuals of non-European descent. Furthermore, the lower 

call rate at HLA-B and HLA-DRB1 would most likely reduce the ability to predict low-

frequency alleles at these loci compared with other loci. The study did not include HIV-1 

subtypes which influence disease progression independently of host factors[39]. However, we 

adjusted for race and geography which are likely to capture at least part of the viral diversity.

In conclusion, this hypothesis-generating study suggests that HLA alleles may affect disease 

progression independently of HIV-related immune dysfunction. The allele frequency of 

several of these alleles was low and with likely variation across race; validation of our 

findings in other demographically diverse cohorts is required.
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Table 1.

Characteristics at trial entry of study participants.

Characteristics START participants
n=2,546

SMART participants
n=2,283

All participants
n=4,829

Median age (IQR), years 36 (29–45) 44 (38–50) 41 (33–48)

Sex, n(%)

 Female 511 (20.1) 602 (26.4) 1,113 (23.1)

 Male 2,035 (79.9) 1,681 (73.6) 3,716 (77.0)

Race/ethnic group, n(%)

 Black 577 (22.7) 876 (38.4) 1,453 (30.1)

 Hispanic 498 (19.6) 396 (17.4) 894 (18.5)

 Asian 26 (1.0) 32 (1.4) 58 (1.2)

 White 1,404 (55.2) 948 (41.5) 2,352 (48.7)

 Other 41 (1.6) 31 (1.4) 72 (1.5)

Geographical region, n(%)

 Africa 343 (13.5) 56 (2.5) 399 (8.3)

 Asia 0 (0) 10 (0.4) 10 (0.2)

 Australia & New Zealand 96 (3.8) 132 (5.8) 228 (4.7)

 Europe and Israel 1,148 (45.1) 124 (5.4) 1,272 (26.3)

 Latin America 499 (19.6) 126 (5.5) 625 (12.9)

 United States & Canada 460 (18.1) 1,835 (80.4) 2,295 (47.5)

Mode of HIV-infection, n(%)

 Sexual contact

  Men having sex with men 1,633 (64.1) 1,096 (48.0) 2,729 (56.5)

  With person of opposite sex 751 (29.5) 813 (35.6) 1,564 (32.4)

 Injection-drug use 45 (1.8) 264 (11.6) 309 (6.4)

 Other 117 (4.6) 110 (4.8) 227 (4.7)

Median time since HIV diagnosis (IQR), years 1 (0–3) 8 (5–12) 3 (1–8)

On ART, n(%) 0 (0) 1,815 (79.5) 1,815 (37.6)

ART-naïve, n(%) 2,546 (100) 137 (6.0) 2,683 (55.6)

Median CD4+ T-cell count (IQR), cells/mm3 651 (585–759) 572 (455–773) 631 (540–762)

Median HIV viral load (IQR), copies/mL 14,833 (3,503–46,000) 400 (50–2,789) 3,810 (310–26,104)
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