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Pushing the envelope: Evaluating speech rhythm with different
envelope extraction techniques

Alexis Deighton MacIntyre,a) Ceci Qing Cai, and Sophie K. Scott
Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, United Kingdom

ABSTRACT:
The amplitude of the speech signal varies over time, and the speech envelope is an attempt to characterise this

variation in the form of an acoustic feature. Although tacitly assumed, the similarity between the speech envelope-

derived time series and that of phonetic objects (e.g., vowels) remains empirically unestablished. The current paper,

therefore, evaluates several speech envelope extraction techniques, such as the Hilbert transform, by comparing dif-

ferent acoustic landmarks (e.g., peaks in the speech envelope) with manual phonetic annotation in a naturalistic and

diverse dataset. Joint speech tasks are also introduced to determine which acoustic landmarks are most closely coor-

dinated when voices are aligned. Finally, the acoustic landmarks are evaluated as predictors for the temporal charac-

terisation of speaking style using classification tasks. The landmark that performed most closely to annotated vowel

onsets was peaks in the first derivative of a human audition-informed envelope, consistent with converging evidence

from neural and behavioural data. However, differences also emerged based on language and speaking style.

Overall, the results show that both the choice of speech envelope extraction technique and the form of speech under

study affect how sensitive an engineered feature is at capturing aspects of speech rhythm, such as the timing of vow-

els.VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0009844
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I. INTRODUCTION

Derived from an ancient Greek word meaning “to

flow,” rhythm can be literally defined as the “manner of

flowing” (Benveniste, 1971), but rhythm also means differ-

ent things to different people. Among speech scientists, for

example, there are probably as many definitions for rhythm

as there are research groups. This presents a nontrivial chal-

lenge to interdisciplinary dialogue, in part, because differing

definitions will naturally lead to differing methodologies.

For instance, whereas the concept of rhythm may extend to

any identifiable temporal pattern, other interpretations of

rhythm mean an isochronous, or regularly timed, time series

specifically. Within linguistics, this latter definition was

associated with the controversial idea, known as the rhythm

class hypothesis, that all languages can be grouped accord-

ing to an isochronous or near-isochronous organising rhyth-

mic unit, such as the syllable (Abercrombie, 1964). Theories

of speech rhythm that centre the syllable require that this

unit be well-defined, yet the formal characteristics of the

syllable are subject to debate among phoneticians

(Cummins, 2012b; Strau� and Schwartz, 2017; Zec, 2007),

and determining precise syllabic boundaries can be espe-

cially difficult in spontaneous speech (Schachtenhaufen,

2010; Schuppler, 2017; Schuppler et al., 2011). In any case,

rhythm typologies have received little support from empiri-

cal studies (Arvaniti, 2009, 2012; Nolan and Jeon, 2014),

and alternative metrics based on other linguistic constructs,

such as ratios between the durations of consonant and vowel

segments in speech (e.g., Grabe and Low, 2008; Ramus

et al., 1999), have also been shown to have poor predictive

power (Arvaniti, 2012; Wiget et al., 2010). Despite mixed

evidence for the syllable as the fundamental unit in speech

timing, let alone the ambiguity of the syllable itself, these

concepts draw increasing interest within speech psychology

and neuroscience. For example, recent advances in the anal-

ysis of the time-locked brain response to speech have

enabled researchers to correlate between components of the

acoustic stimulus and neural dynamics, leading to prominent

theories of cortical speech tracking. These theories propose

an oscillatory mechanism, meaning that some stimulus com-

ponent needs to recur periodically for neural dynamics to

track, align with, and even anticipate the speech time series

(Ghitza, 2011, 2013; Giraud and Poeppel, 2012; Peelle and

Davis, 2012). This component is often assumed to be the

syllable, bringing us back to the rhythm class hypothesis

and its implications concerning isochrony, the idea that

speech is formed from regularly timed units (Cummins,

2012b). An important distinction between linguistic and

neuropsychological studies of speech rhythm is that the

method primarily favoured in neuroscience is to automati-

cally extract acoustic features, usually some form of the

speech envelope, for the purposes of correlation with signals

recorded from a listener’s brain. The theoretical justification

for using acoustic features in speech perception experiments

relies on the tacit assumption that these automatically gener-

ated components are an adequate stand in for phonetic
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analysis. In some papers, conclusions are drawn concerning

the link between neural activity and the “syllabic rhythm” of

speech stimuli, yet the methods sections exclusively

describe acoustic feature extraction (e.g., Pefkou et al.,
2017; Vander Ghinst et al., 2019). Other authors are more

direct in stating that “vowels [correspond to] peaks in the

speech envelope” (Ding and Simon, 2014). Although this

substitution between linguistic concepts and acoustic fea-

tures may be common practice, the empirical equivalence of

phonetic tokens, such as syllables or vowels, and acousti-

cally derived events, like peaks in the speech envelope, is

not well established. To compound this uncertainty, the

techniques used to generate acoustic features vary and can-

not always be easily reproduced from the methods reported.

It is, therefore, often difficult to gauge what the conse-

quences of slightly differing algorithms or parameters may

be. Given that experimental data within both linguistics and

neuroscience are frequently measured at the time scale of

tens of milliseconds, even small variations could lead to dif-

ferent scientific conclusions.

The common goals shared across linguistics, neurosci-

ence, and other speech sciences should generate fruitful dis-

cussions. To encourage further dialogue and debate, it

would be helpful to have a joint understanding of the basic

aspects of terminology, for example, what is specifically

captured by the “speech envelope,” and how best to generate

it, given the research goals at hand. Furthermore, it is impor-

tant to establish how closely engineered features like the

speech envelope can reflect the time series of phonetically

defined concepts, such as vowels. Finally, differing auto-

matic methods abound in the literature and the unique

effects of these methods are largely unexplored. The aim of

the current paper is, thus, to empirically establish how simi-

lar the information captured by acoustic landmarks, such as

peaks in the speech envelope, is to that described via pho-

netic analysis. We also selected several different examples

of speech envelope extraction techniques from the literature,

including pipelines used in both linguistics (e.g., Tilsen and

Arvaniti, 2013) and brain sciences (e.g., Oganian and

Chang, 2019). By generating different versions of the

speech envelope from the same annotated speech corpus, we

attempt to quantify the extent to which methodological

choices can affect the resultant time series. In sum, this pro-

ject is motivated to characterise the similarities and discrep-

ancies between phonetic annotation and engineered features,

as well as evaluate the impact of specific techniques used to

extract such engineered features. Ideally, standardising

essential tools, like the speech envelope, will help research-

ers in one domain (e.g., neural speech perception) address

the predictions of another (e.g., the basis of syllable-based

timing), and vice versa. Although we cannot offer a defini-

tive explanation of what speech rhythm is nor how it should

be measured (Arvaniti, 2009; Kohler et al., 2009), it is clear
that disparate communities within speech rhythm research

have each engaged with the syllable in some way or another.

Whether or not these theories are ultimately proven or dis-

proven will depend on the accurate and robust estimation of

the syllabic time series. We, therefore, consider the precise

determination of syllable timing as important to these ques-

tions but remain agnostic as to the legitimacy of their premise.

In the current paper, we combine phonetic speech

rhythm transcription with different automatically extracted

acoustic features that are frequently employed in the speech

sciences. Using a purpose-bespoke corpus collected to

emphasise the different contexts of speech rhythm, we ask

what is commonly captured across these techniques.

Moreover, we additionally include co-operative speaking

conditions wherein two speakers read aloud in synchrony,

allowing us to identify acoustic landmarks that are closely

interpersonally coordinated but which may not have a direct

analog in traditional transcription techniques. Together,

these two tasks shed complementary light on the validity of

automatically detected acoustic landmarks for speech timing

research: on the one hand, we identify landmarks that most

closely emulate a target of phonetic annotation, the vowel

onset, which we have theoretical reasons to believe are

behaviourally relevant to the percept of speech rhythm

(Scott, 1998). On the other hand, the joint speech condition

allows us to detect the acoustic anchors or targets that best

facilitate interpersonal sensorimotor coordination during

speech production. We identify the acoustic landmarks, as

well as the specific parameters used to generate them, that

best fulfil these criteria. As a preliminary step toward assess-

ing their appropriateness for characterising aspects of

speech rhythm, we apply this subset of selected acoustic

landmarks in a proof of concept, a set of classification tasks

that uses the time series of landmarks to predict the identi-

ties of different speaking styles (e.g., reading versus sponta-

neous speech). We perform these tasks using partitioned

data from speakers unseen during the initial analyses, allow-

ing us to provisionally establish the predictive utility of the

parameters employed. This work, hence, contributes a

groundwork for making objective choices in place of arbi-

trary or guesswork-based estimates when extracting algo-

rithmically derived acoustic landmarks. The paper is

structured as follows: we give an overview of the techniques

for describing speech rhythm and its analysis across lan-

guage, brain, and behavioural sciences, highlighting some

methodological differences that impede comparisons across

disciplinary boundaries. We then lay out our experimental

approach, define the acoustic landmarks of interest, and state

our procedure and analysis. We report our interim results,

apply selected acoustic landmarks in a set of proof of con-

cept speech classification tasks, and, finally, discuss our

findings with particular emphasis toward its implications for

studies in cortical speech tracking and rhythmic entrainment

to speech more generally.

A. Background

1. Linguistic and behavioural analysis of speech
timing

In music and movement sciences, research into rhythm

has centred around the structure of regularly timed recurring
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intervals, such as the beat by which dancers pace their

steps. Although these behaviours can also encompass more

nuanced forms of timing, a temporally regular structure

underlies many musical and kinematic rhythms. For exam-

ple, musical melodies tend to unfold against a referent

musical pulse (i.e., the beat), and the temporal relationship

between respiratory and gait cycles can often be expressed

as a simple ratio, e.g., 2:1 (Bramble and Carrier, 1983). In

the case of speech, however, such regularities can be harder

to find; for example, there is no clear evidence for equally

timed intervals between stressed syllables. For more

exhaustive reviews of these efforts, readers are directed to

Arvaniti (2009, 2012) and Cummins et al. (2009), but a
rough consensus among linguists is that the syllabic time

series or any variation thereof is too irregular to be consid-

ered as a recurring rhythmic unit (Meyer et al., 2020).

Indeed, the considerable variability present in proposed

rhythmic units prompted the “iconoclastic view” that

speech itself may be “inherently antirhythmic” (Nolan and

Jeon, 2014). Alternative methods have been proposed for

capturing rhythmic variation between different languages,

for example, by contrasting the durations of voiced versus

unvoiced segments (Wiget et al., 2010). One method is the

normalised pairwise variability index (nPVI; Grabe and

Low, 2002), which is calculated by measuring the differ-

ence between successive pairs of vowel durations, divided

by the mean of those two durations. Similar to simple

interval-based speech rhythm metrics, the nPVI demon-

strates weak predictive power for classification (Arvaniti,

2012; Nolan and Asu, 2009). A drawback to speech rhythm

metrics is that they attempt to describe motor behaviour

that is both produced and perceived on the time scale of the

psychological present (i.e., <5 s; Fraisse, 1978) by using

aggregate statistical measures, which by nature require data

points to be temporally decontextualised and pooled to cal-

culate. Any global inferences that are drawn concerning

how speech rhythm operates without regard for its embod-

ied and temporal situatedness may, therefore, be mislead-

ing. Moreover, these metrics convey information about

durational timing, which may be neurally (Breska and Ivry,

2016; Teki et al., 2011; Teki et al., 2012) and behaviour-

ally (Pope and Studenka, 2019; Tierney and Kraus, 2015)

distinct from the form of timing more closely associated

with rhythm and motor sequencing, which is event timing

(see Leow and Grahn, 2014, for review). An intuitive

example of the difference between durational and event

timing can be borrowed from tennis, where you would use

durational timing to measure the length of time required to

perform a serve and event timing to describe the pattern of

recurring shots between two players engaged in a rally. The

latter form is anticipatory, meaning that the timing of pre-

vious events is informative of how future events will be

timed.

One behaviourally informed approach to speech

rhythm, which is also related to event timing, is the study of

perceptual centres, known as p-centres. p-centres are typi-

cally defined as the precise moment at which an event is

perceived to have occurred, although they are also relevant

to motor production, for instance, as temporal articulatory

targets (Marcus, 1981). The basic concept of p-centres is

agnostic to domain or modality, but p-centres in speech

have probably received the most scrutiny. Their location can

be inferred experimentally, for example, by asking partici-

pants to align two repeating syllable stimuli so that they

seem to be regularly spaced in time (e.g., Scott, 1998), or

synchronise their own finger tapping to a syllable that

repeats on loop (e.g., Vos et al., 1995). The acoustic corre-

lates of p-centres are not decisively modelled (Villing,

2010); however, experimental findings indicate consistent p-
centre placement in languages as diverse as Czech (�Sturm
and Volı́n, 2016), Bantu (Franich, 2018), Brasilian

Portuguese (Barbosa et al., 2005), and Japanese (Hoequist,

1983). Evidence from these studies suggests that p-centres
lie close to the vowel onset or within the transition between

a syllable-initial consonant and the vowel (Hoequist, 1983;

Patel et al., 1999; Scott, 1998; �Sturm and Volı́n, 2016),

although Cantonese speakers by contrast appear to place the

p-centre at the syllable rather than vowel onset (Chow et al.,
2015). A limitation to p-centre research is that most behav-

ioural paradigms make use of simple repeating, isolated syl-

lables, and, thus, the behavioural relevance for p-centres in
connected, naturalistic speech is unknown. Recently,

Rathcke et al. (2021) found that when asked to tap along to

complete utterances, participants were most likely to target

vowel onsets in comparison to several other linguistic and

acoustic landmarks that the authors measured. Although the

stimuli were cycled in this case and, therefore, still unrepre-

sentative of communicative speech in everyday life, this

work nonetheless demonstrates that the p-centre phenome-

non is not limited to single syllables or words, and individu-

als are consistent in their responses during sensorimotor

synchronisation to complex utterances (Rathcke et al.,
2021). These experimental data are also corroborated by

ecological findings from the Amazonian Bora language,

which suggest that the timings of vowels in the spoken form

shape temporal structure in its natural, drummed analog

(Seifart et al., 2018).

2. Neuroscientific accounts of timing in speech
perception

Thus far, we have touched on linguistic-phonetic and

psychophysical-behavioural approaches to understanding

speech rhythm. We, now, take the perspective of brain sci-

ences, especially the role of syllable timing in neural speech

processing. Despite the lack of consensus among linguists

with regard to basic rhythm units in speech, some research-

ers in the cognitive neuroscience community have identified

periodicity, usually that of the inter-syllable time series, as a

putative mechanism underlying speech perception (Ding

and Simon, 2014; Giraud and Poeppel, 2012; Gross et al.,
2013; Peelle and Davis, 2012). To simplify, it is hypothes-

ised that populations of neurons synchronise their activity at

the level or some harmonic of the so-called “speech rate.”

Known as neural entrainment, this theory proposes that the
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synchrony between a listener’s brain and slow components

of an incoming speech signal facilitate the anticipation,

tracking, chunking, and decoding of speech in real time

(Ding et al., 2016; Gross et al., 2013; Meyer and Gumbert,

2018; Meyer et al., 2017; Molinaro and Lizarazu, 2018).

Although neural entrainment as a mechanism underlying

speech perception was predicted as early as the 1970s

(Jones, 1976), there are some issues that have yet to be

resolved (Cummins, 2012a,b). Importantly, the speech stim-

uli used in many perception experiments have employed

synthetic syllables whose durational variabilities and timing

do not reflect natural speech (Meyer et al., 2020). Hence,
the supposed irregularity present in everyday speech chal-

lenges oscillatory theories of speech perception to account

for the flexibility of any interunit but especially inter-

syllable intervals (Doelling and Assaneo, 2021; Ghitza,

2013; Strau� and Schwartz, 2017).

Many experiments investigating the neural basis of

speech perception use some form of the speech envelope

(sometimes referred to as the amplitude envelope, temporal

envelope, or intensity contour), a smoothed signal convey-

ing the slow amplitude modulations within the speech

wave form (Ding et al., 2017). In the literature, this term

has become a catchall for similar acoustic features

extracted from speech recordings or used to synthesize

stimuli, which can then be tested for correspondences to

physiological signals that originate in the brain. These

responses are typically measured by electroencephalogra-

phy (EEG) or magnetoencephalography (MEG). The resul-

tant correlations, phase-locking, and/or peaks in the

frequency-domain that are common to both the stimuli and

brain response may be interpreted as evidence for neural

entrainment, whether as an oscillatory or time-locked stim-

ulus response. Indeed, these measures are not necessarily

informative of how entrainment is actually being driven;

for instance, the exact definition of entrainment and

whether or not entrainment necessarily entails oscillatory

activity, or rather can be considered as evoked, is subject to

debate (Doelling and Assaneo, 2021; Meyer et al., 2020;
Zoefel et al., 2018). In any case, when researchers use

speech envelopes to form conclusions about neural pro-

cesses during speech perception, they typically engage

with data and theory from linguistics, for example, by

drawing connections between the average inter-event tim-

ing of syllables or stressed syllables with generic EEG/

MEG frequency bins, such as the theta (�4–8Hz) or delta

(�1–3Hz) bands (e.g., Ghitza, 2013; Giraud and Poeppel,

2012; but see Keitel et al., 2018). As with the rhythm met-

rics identified in linguistics, these estimates often reflect

aggregate statistics that are calculated from many observa-

tions collapsed across time. Nonetheless, neuroscientific

experimental inferences that draw from linguistic theory

are only as valid as the measures on which they rest, in this

case, acoustic landmarks. What remains unclear is how

closely phonetic annotation and automatic techniques

resemble each other in practice and to what extent temporal

nuance is captured using the latter.

3. Acoustic landmarks for speech rhythm analysis

To better generate and test predictions concerning how

speech is processed in the brain and how we are able to

coordinate our speech together in everyday conversation,

linguistic, behavioural, and neuroscientific approaches to

speech rhythm research should be reconciled, but this will

require some synthesis of disparate theories and methods. In

particular, it is necessary to establish the effect of the spe-

cific pipeline and parameters used to produce commonly

used features, such as the speech envelope. The current

paper is, thus, motivated to quantify how phonetic annota-

tions compare with the automatically extracted features,

which are increasingly favoured both in psychology and

neuroscience, as well as across speech sciences more gener-

ally. There is currently little standardisation or consensus as

to how speech envelopes should be extracted. Biesmans

et al. (2017) compared among envelope extraction techni-

ques in the context of auditory attention decoding, and

report enhanced classification when listeners’ brain

responses were compared to envelopes calculated with

“auditory-inspired modifications,” such as gammatone filter-

banks, in contrast to simple half-wave rectification (e.g.,

Dellwo et al., 2015; Kolly and Dellwo, 2014) or by taking

the analytic signal via Hilbert transform (e.g., Gervain and

Geffen, 2019; Presacco et al., 2016), two commonly used

means to derive the envelope (Ding et al., 2017). The find-

ings by Biesmans et al. (2017) suggest that for the purposes
of investigating the cortical tracking of speech, engineered

features are not all built alike. Yet, different forms of pho-

netic annotation may also vary in their validity or relevance

for speech rhythm research not withstanding complexities

and unresolved debate concerning the form and boundaries

of the syllable (Goldsmith, 2011; Zec, 2007). The question,

therefore, arises as to what linguistic ground truth should

acoustic landmarks be compared?

Given the behavioural evidence, we covered previously,

p-centres present as an ideal candidate acoustic landmark by

which the brain response can become paired with or

entrained to the speech signal. In this respect, p-centres
remain largely unexplored, although previous work has indi-

cated the perceptual relevance of related features, deemed

“acoustic edges” (Ding and Simon, 2014). More recently,

evidence from electrocorticography (ECoG) demonstrates

that activity within a defined region of the superior temporal

gyrus (STG) may correspond to the p-centre time series

(Oganian and Chang, 2019). Specifically, the authors found

that the STG encodes the timing and magnitude of the

speech amplitude envelope rate of change, such that steeper

slopes (i.e., the most change in the least amount of time)

elicit greater cortical responses (Oganian and Chang, 2019;

Yi et al., 2019). Notably, this result held across English,

Spanish, and Mandarin stimuli, and the neural activity

between English and Spanish monolingual participants to

the same stimuli did not differ (Oganian and Chang, 2019).

Following the phonetic analysis of their stimuli corpus, the

authors showed that local maxima in the envelope rate of
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change closely correspond to vowel onsets, particularly

stressed vowel onsets in the case of English speech. In a

subsequent preprint, using naturalistic stimuli at slowed and

normal speeds, the authors observed that this same acoustic

marker explained neural phase alignment to the speech sig-

nal (Kojima et al., 2021). Taken together with the aforemen-

tioned behavioural accounts, these data potentially

constitute convergent neural evidence for the relevance of

p-centres to the analysis of speech rhythm. We, thus, focus

on vowel onsets as the phonetic target in this study (Rathcke

et al., 2021; Scott, 1998).
Hence, the objective of the current paper is to character-

ise the similarities between the time series of acoustic land-

marks, generated using engineered features, and the time

series of vowel onsets, phonetically identified events. In

doing so, we estimate the extent to which different envelope

extraction techniques actually correspond to each other.

Moreover, we can also gauge the impact of algorithmic

parameters in landmark detection (e.g., minimum height for

peak detection), as these specific steps are not often reported

in the literature. Although previous studies have explored

automated vowel onset annotation procedures (e.g., Adi

et al., 2016; Kumar et al., 2017), most work is derived from

relatively homogeneous corpuses consisting of read labora-

tory speech (e.g., TIMIT; Garofolo et al., 1993) or single

words or phonemes with little temporal variation (Schuppler,

2017). Moreover, even within read speech, the choice of text

materials within languages has been shown to influence mea-

sures of rhythm over and beyond supposed linguistic differ-

ences (Wiget et al., 2010). Here, we employ a multi-speaker,

multilingual data set featuring three forms of naturalistic,

connected speech that differ in rhythmic character. This cor-

pus was custom collected to test the performance of different

algorithms across diverse speech that was collected under

comparable speaking and acoustic recording conditions.

In the spirit of p-centre research, additionally, we take

an implicit approach to behavioural salience in speech

rhythm by including joint speech in our experimental cor-

pus. Joint speech entails two or more speakers joining their

voices together at the same time in close synchrony, which

is typically performed at a high level of precision without

practice or training (Cummins, 2014, 2019). It is unclear

exactly how this is achieved, but working under the assump-

tion that more perceptually salient landmarks will be more

closely coordinated than less perceptually salient landmarks,

we can follow the data to identify which acoustic speech

events are associated with the smallest asynchronies

between speakers. The joint speech analysis allows for other

acoustic landmarks to demonstrate potential utility in speech

rhythm research, especially those that do not necessarily

correspond to the selected a priori ground truth, vowel

onsets (i.e., the approximate phonetic correlate of p-centres;
Rathcke et al., 2021). This aspect of the current study is

motivated by the idea that linguistic constructs, such as

vowels, may not represent a 1:1 correspondence to the

acoustic features that support speech rhythm entrainment

from a neurobiological perspective (Cummins, 2012b;

Strau� and Schwartz, 2017), especially when we consider

that humans begin life without knowledge of any written

language system let alone what exactly constitutes a syllable

(R€as€anen et al., 2018). To produce a wider range of acoustic

landmarks for this more exploratory part of the study, we

also include a set of complementary auditory features, con-

sisting of gammatone cepstral coefficients.

In summary, we identify acoustic landmarks, generated

by automatically extracting signal events from engineered

features, that best estimate manually annotated vowel

onsets. Furthermore, we describe landmarks on a corre-

sponding time scale, which are closely coordinated between

speakers who are attempting to read aloud together in syn-

chrony. The predictive utility of these acoustic landmarks is

explored using a proof of concept, a set of classification

tasks comparing between the different forms of speech

included in the experimental corpus. Our goal is to provide

the speech sciences community with a quantitative compari-

son between different options for engineered features and

ultimately help bridge the gap between the brain-based,

behavioural, and linguistic approaches to understanding

speech rhythm.

II. THE CURRENT STUDY

A. Overview

1. Corpus

The corpus used to extract and compare features is a

balanced data set consisting of English and Mandarin

speech, which has been theorised to differ in temporal orga-

nisation (e.g., Lin and Wang, 2007). Each language has

seven speakers who were grouped into four dyad pairs per

language for the purposes of joint speech (with one speaker

per language performing in multiple dyads). The speakers

each contributed matching solo and joint speech trials that

included popular science articles adapted for length and

ease of reading, formally structured poetry typical of its

linguistic-cultural context, and spontaneously produced

speech that was seeded by a semi-structured interview for-

mat. Although they differ on a number of continua, these

speaking conditions were primarily selected to evoke

diverse forms of temporal organisation. Part of the corpus

(four of seven speakers per language) was manually anno-

tated by acoustic syllable onset, vowel onset, and stressed

vowel onset, resulting in >20 000 vowel/syllable and nearly

11 000 stressed vowel signal events recorded. Because p-
centres are roughly localised to the vowel onset (Scott,

1998; Villing, 2010), and the prosodic role of stress in

Mandarin remains unestablished (Duanmu, 2001; Lai et al.,
2010), we analyse only vowel onsets herein.

The speakers whose data were partially annotated

(n¼ 4 per language) formed the development set, 80% of

which was used to determine which acoustic landmarks

most closely emulated vowel onsets with 20% held out to

confirm the results. The remaining speakers (n¼ 3 per lan-

guage) were set aside as a test set to apply the chosen
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acoustic landmarks in a proof of concept speech analysis

using machine learning classification. Our acoustic analysis

can be summarised in three parts: (1) initial acoustic land-

mark identification and selection for estimation of manual

vowel onset annotations, (2) selection of landmarks with

smallest between-speaker asynchronies in joint speech trials,

and (3) application of all selected landmarks in a classifica-

tion task.

2. Acoustic feature extraction and landmark
identification

After partitioning our corpus into development and test-

ing sets, we first extracted, from the raw acoustic develop-

ment data, candidate features in which to search for signal

events that would be relevant to our research goals, namely,

signal events that mimic humanly produced annotations and

signal events that minimise the asynchronies between speak-

ers during joint speech. The candidate features consisted of

four different algorithms to calculate the speech amplitude

envelope plus a set of gammatone cepstral coefficients

(GTCCs), which were primarily included to produce a wider

range of acoustic landmarks that could be tested in the joint

speech analysis. Gammatone filters model the human audi-

tory response, specifically, the spectral analysis performed

by the cochlea; GTCCs can, therefore, be considered to be

“biologically inspired” modifications of feature extraction

techniques that decompose an input signal into the time-

frequency domain (e.g., mel frequency cepstral coefficients;

MFCCs), and which are highly popular in the audio process-

ing world for their representation of complex signals, such

as speech with substantially alleviated computational costs

(Shao and Wang, 2008; Valero and Alias, 2012; Zhao and

Wang, 2013). Cepstral coefficients remain widely unex-

plored in human behavioural research despite their ubiqui-

tous application in technological systems, for instance, in

voice recognition systems. Following feature extraction, we

then used different event-finding algorithms to determine

peaks and other acoustic landmarks, such as peaks in the

first derivative, within those features. For each feature and

landmark combination, we explored a variety of algorithmic

parameters (e.g., the minimum temporal interval between

peaks) that were narrowed down by an iterative, data-driven

approach.

3. Acoustic landmark selection and applications

Based on how well the generated landmarks approxi-

mated the manual vowel onset annotations, we chose a sub-

set of high-performing combinations of features and

landmarks combinations (“acoustic landmarks”) to carry

forward. In a subset of joint speech trials only, we also

extracted asynchronies in Euclidean distance between

acoustic landmarks of the speakers (for manual vowel onset

annotations as well as landmarks) using a mutual two-way

closest match pairing algorithm. This measure permits us to

compare among different types of discrete events in the

speech signals between two joint speakers and thereby

ascertain whether some acoustic landmarks are more closely

coordinated than others. We, again, selected a subset of

tightly synchronised acoustic landmarks from this joint

speech analysis to take forward. The results from both steps

were then confirmed in the 20% of development data that

were held out.

After choosing acoustic landmarks based on approxima-

tion of manual vowel onset annotations and coordination

between speakers in joint speech, we calculated various

descriptive statistics, including, for instance, median and

coefficient of quartile variation, from windowed inter-event

interval data in the hitherto unseen test set speakers and

applied these as predictors in a support-vector machine

(SVM) classification task to discriminate between different

types of speech rhythm, for example, solo versus joint read-

ing. Following these three stages of analysis, the results are

discussed in the context of speech rhythm, neural entrain-

ment, and advancing the dialogue concerning phonetic and

neurobiological theories of speech rhythm perception and

production.

B. Methods

1. Speech recording

Participants were tested at the Institute of Cognitive

Neuroscience. The acoustic speech signal was sampled at 44

100Hz using SM58 cardioid dynamic microphones (Shure

Inc., Niles, IL), positioned via a microphone stand in front

of the speaker’s mouth. In the case of joint speech, each par-

ticipant was recorded using either the left or right channel.

The first session was always the “solo speech” condition,

and the second session was always the “joint speech” condi-

tion. As joint speech is likely to be more cognitively

demanding than reading aloud alone, this order of trials was

chosen to improve performance in the dyadic condition via

a presumed practice effect. Stimuli texts consisted of adap-

tations of popular science articles matched for reading level,

content, and tone; two poems characterised as typical of

metred poetry according to the linguistic context (each read

twice to match the duration of the articles); and a variety of

prompts for spontaneous speech. The articles were edited to

avoid potentially unfamiliar or phonetically ambiguous

words or Chinese characters, and the order (articles; poems;

spontaneous) was held constant. The text materials are

available in Appendix D. Participants were verbally

prompted when to begin speaking, and read from large-type,

printed texts displayed on a stand at a comfortable reading

distance, approximately 75 cm. Dyads were positioned side

by side, reading from the same stand, separated by a dis-

tance of approximately 150 cm. We recorded during setup to

ensure there was minimal bleed between the speakers’

microphones, and re-positioned the speakers if necessary.

The experimenter was present in the room but did not face

the participants during recording. Extended instances of

complete discoordination (i.e., one speaker drops out for

longer than 1 s) were removed from the joint data set.
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2. Preprocessing and annotations

A portion of the acoustic recordings were exported as

*.wav files to be analysed in Praat (Boersma and Weenink,

2020). The speech data were annotated by A.D.M. and C.Q.

C. with help from English- and Mandarin-speaking under-

graduate volunteers. Vowel onsets were determined as the

early emergence of strong formants in the broadband spec-

trogram. In the case of approximants and nasal consonants,

the coincidence between the increase in intensity in the

wave form alongside the appearance of higher formants in

the spectrogram was chosen. The authors reviewed all anno-

tations, and a consensus was reached where disagreement

arose with A.D.M. performing a final inspection for consis-

tency. The resulting manual vowel onset annotation time

series, as well as the annotated and unannotated trials, were

imported to MATLAB (The MathWorks, Natick, MA). Prior to

feature extraction, silent periods (>500ms) were truncated,

and the acoustic data were windowed using a custom script

that searched for natural break-points in silent periods

(>100ms), optimised for finding windows of 4 s in length

but permissive within a range of 3–6 s. The mean duration

was 4.01 s (standard deviation, SD¼ 0.57). This duration

was determined to roughly balance the count of observations

within windows with the overall sample size of windows.

The data from four speakers per language were used for the

acoustic landmark selection process (development). The

development data were further partitioned with 20% held

out to confirm the results. The remaining data from the three

speakers from each language were used in evaluating the

final choice of landmarks in the speech rhythm classification

tasks (testing).

3. Acoustic feature extraction

The speech envelopes were calculated using four tech-

niques, each of which has been previously published in the

literature, from engineering to cognitive neuroscience to lin-

guistics. We summarise the differing methods here.

(1) We employ taking the moving max of the absolute values

of the signal using a 250ms moving window. This method

is most similar to simple signal rectification-based

approaches and is proposed to avoid the attenuation seen

when the Hilbert technique is applied to complex natural-

istic sounds, such as speech or music (Caetano and Rodet,

2011; Jarne, 2018);

(2) we compute the magnitude of the Hilbert transform,

which is used extensively across the speech entrainment

literature (e.g., Assaneo et al., 2019; Braiman et al.,
2018; O’Sullivan et al., 2015). We took the absolute val-

ues from the output of the Hilbert function in MATLAB

(The MathWorks, Natick, MA), but this algorithm is

also implemented in Praat (He and Dellwo, 2016);

(3) we adopt the method described by Oganian and Chang

(2019), adapted from Schotola (1984), which extracts

the envelope from critical bands in the speech signal

based on the Bark scale in an effort to emulate human

audition (Zwicker and Terhardt, 1980; Zwicker et al.,
1979). The signal is first rectified within each filter bank

and then averaged across all frequency bands; and

(4) we filter the speech signal using a fourth-order bandpass

Butterworth filter at [400,4000] Hz, the estimated locus

of vocalic energy (Tilsen and Arvaniti, 2013).

In each case, the resultant speech envelopes were

smoothed using zero-phase low-pass filters with a 10Hz cut-

off and rescaled to a common range to facilitate comparison.

Code to produce these speech envelopes is available for

download.1

To widen the variety of acoustic landmarks for the joint

speech analysis, we additionally extracted GTCC auditory

features using the MATLAB function gtcc( ) (The MathWorks,

Natick, MA). Initially, 13 coefficients were obtained

(Revathi et al., 2018). We then applied the feature selection

to reduce this number, using principal component analysis

to minimise computational costs and redundant information

in the signals (Xie et al., 2016). We found that, on average,

the first three principal components explained 89.3% (SD

1.8%) of the total variance, and the first three GTCC fea-

tures contributed the most to each of these components,

hence, we retained GTCC 1–3. On visual inspection, we

noticed that GTCC 1 also closely corresponded to the

speech envelopes and, therefore, included it as an acoustic

feature in the manual vowel estimation analysis. All of the

extracted features had a sampling rate of about 660Hz and

were detrended and rescaled to [�1,1]. Noise in the signal

floor was smoothed to avoid spurious peak detection using a

custom script with a moving minimum mechanism. The

pipeline used to produce the acoustic features is shown in

Fig. 1(A). An example of the acoustic features used for

vowel estimation (GTCC 1 and envelopes 1–4) alongside

manually annotated vowel onsets is given in Fig. 2.

4. Signal event detection

We identified five different candidate signal events in

each of the windowed features. In most of the cases, these

events require specific parameters, such as the prominence

of peaks. Here, we iterated over various parameter values

for each discrete event, selecting those combinations of

parameters that best solved the optimisation problem of

matching vowel onsets in the current data set. Although we

confirm the appropriateness and robustness of the final

parameters by holding data out, the values we report will

nonetheless be, to a certain extent, subject to the specifics of

the current corpus, recording conditions, and our method of

manual annotation. We enumerate the different signal

events tested as follows:

(1) Lower crossing. Treating the acoustic feature as a bi-

level signal consisting of a low and high phase, the

moment of lower crossing refers to the instant that the

positive-going signal crosses the lower state reference

level, which was arbitrarily chosen as 10%. Detecting

this transition from the low to high signal phase is
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subject to a tolerance threshold, which was optimised on

an iterative basis. We used the MATLAB (The

MathWorks, Natick, MA) function risetime to estimate

lower crossings.

(2) Mid-crossing. The mid-reference level crossing is calcu-

lated similarly to that in (1), except that the halfway or

50% point between the low and high signal phases rather

than the crossing of the lower state (10%) is calculated.

(3) Peaks. To identify peaks in the feature, we used the islo-

calmax( ) function, iterating over topographic prominen-

ces ranging between [0,1] in increments of 0.1 and

minimum inter-peak intervals ranging from [0,100]ms

in increments of 20ms.

(4) Base of peaks. The findchangepts( ) function, which

locates abrupt changes in a signal, was applied in con-

junction with islocalmax( ) to approximate the base of a

positive-going slope leading to a peak.

(5) Peaks in the first derivative (rate of change) of the sig-

nal. This landmark is produced in the same way as that

in (3), except that the input vector is the first derivative

of the signal.

In total, for vowel onset estimation, we evaluated 5 fea-

tures (4 speech envelopes and 1 GTCC)� 5 signal events,

resulting in 25 different acoustic landmarks. For the joint

speech analysis, there were 7 features (4 speech envelopes

and 3 GTCC)� 5 signal events, resulting in 35 different

acoustic landmarks. Figure 1(B) depicts example place-

ments of the five different signal events.

5. Evaluation of acoustic landmarks

a. Vowel onset estimation. We first quantified the sim-

ilarities between the linear acoustic features. If the results of

the distinct speech envelope extraction methods differ only

trivially, we should expect to see very high correlation

FIG. 1. (A) A block diagram of the process used to produce the acoustic features from the raw speech wave form and (B) example placements of the signal

events are shown.

FIG. 2. The four automatically extracted acoustic features employed in our

vowel onset estimation analysis, plotted against the raw speech wave form.

The timing of the manual vowel onset annotations are represented by trian-

gle markers.
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values between different speech envelopes generated from

the same speech. To test this possibility, we took the acous-

tic features that had been extracted from each speech win-

dow and calculated the Pearson’s r values between them.

We then pooled the r values from across the individual win-

dows and recorded the mean of these values as an indication

of the overall linear correspondence between the acoustic

features.

For each acoustic landmark, to determine which parame-

ters best estimated manual vowel onset annotations, first, we

compared the count of landmarks identified in each window

with the ground truth, which was the corresponding count of

manual vowel onset annotations. If the count of landmarks fell

within a threshold of 610% of ground truth, we awarded that

window a score of one (otherwise, zero). The score was

pooled first within speaking condition (articles, poems, or

spontaneous speech) and then combined as a mean to produce

a portion of matching counts. For each acoustic landmark (i.

e., each unique combination of feature and signal event), we

only took forward the highest scoring parameters (i.e., each

unique combination of algorithmic parameters, such as inter-

peak distance or peak prominence).

Following this first step, we then calculated the error

as the Euclidean distance between the retained landmarks

and annotations on a window by window basis via an in-

house, mutual two-way closest matching script. This

process produced three outcome variables: error values in

milliseconds; the percentage of unpaired landmarks per

total landmarks per window (i.e., false positives); and the

percentage of unpaired annotations per total annotations

per window (i.e., false negatives). Acoustic landmarks

associated with mean unpaired percentages >20% were

excluded outright.

We combined the outcome variables into a weighted

score such that

Vowel Estimation Score

¼ 0:3� ð1� w1Þ þ 0:25� ð1� w2Þ
þ 0:45� ð1� w3Þ; (1)

where w1 is the percentage of unpaired landmarks, w2 is

the percentage of unpaired annotations, and w3 is the

mean median error value. Weighting was determined with

the aim to err on the side of fewer landmarks as higher

counts of landmarks will likely produce smaller error

values. The weighted score was calculated, first, within

speaking condition (articles; poems; spontaneous) before

being aggregated by acoustic landmark. Based on the

mean weighted score, we identified three acoustic land-

marks per language to carry forward in our applied classi-

fication task.

We also compared the distributional parameters of

some of the selected inter-acoustic landmark intervals to

those of the inter-annotation intervals. This was accom-

plished by calculating descriptive statistics from the inter-

landmark and inter-annotation intervals for each speech

window. These statistics included count, mean, mean

absolute deviation, coefficient of variation, median, median

absolute deviation, and coefficient of quartile variation. We

then obtained r values by correlating between the statistics

generated from the landmarks and those generated from

annotations, allowing us to assess how closely the distribu-

tions of inter-acoustic landmarks follow those of annotations

across the windowed speech.

b. Joint speech. Recording our speakers in pairings as

they performed the reading tasks synchronously allowed us

to ask whether some acoustic speech landmarks were more

closely coordinated between participants (i.e., associated

with smaller asynchronies and fewer unpaired speech

events) than others, constituting an implicit, behavioural

means of measuring the temporal salience of acoustic land-

marks. To this end, we took the same acoustic landmarks

that formed the first selection in Sec. II B 5 a (based on simi-

lar counts of landmarks versus corresponding manual anno-

tations in windowed speech segments), but this time, we

calculated the Euclidean distance in milliseconds between

speakers (asynchrony) rather than between landmark and

manual vowel onset annotations (error). For reference, we

also calculated between-speaker asynchronies on the corre-

sponding manual vowel onset annotation data. We selected

the three most closely coordinated acoustic landmarks in

each language, according to

Joint Speech Score¼ 0:6� ð1�w1Þ þ 0:4� ð1�w2Þ; (2)

where w1 is the mean unmatched landmark value across

both speakers, and w2 is the mean median asynchrony (ms)

value between speakers.

In summary, a total of up to 12 unique acoustic landmarks

(6 best vowel onset estimation; 6 most closely coordinated

between speakers) could be selected based on the vowel onset

estimation analysis and the joint speech analysis.

c. SVM classification of speech rhythm. As a proof of

concept, we explored the application of the selected acoustic

landmarks in a set of machine learning classification tasks.

This investigation allowed us to compare between the pre-

dictive power of manual vowel onset annotations and acous-

tic landmarks, as well as ensure that the signal event

detection parameters (e.g., minimum inter-peak interval),

which were optimised using the development data set, have

utility in a data set consisting of unseen speakers’ data. To

produce predictors for the classification tasks, inter-

landmark and inter-vowel onset intervals (ms) were first cal-

culated. For each speech window, this gave us a vector from

which the following statistical parameters were derived:

count, mean, mean absolute deviation, coefficient of varia-

tion, median; median absolute deviation, and coefficient of

quartile variation. The binary speech rhythm classification

tasks were

(1) English versus Mandarin, using data from all speaking

conditions, with article/poem and solo/joint as addi-

tional predictors;
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(2) reading versus spontaneous, using data from article

reading and spontaneous speech trials, with language as
an additional predictor;

(3) solo versus joint, using data from article and poem read-

ing trials, with language and article/poem as additional

predictors; and

(4) articles versus poems, using data from article and poem

reading trials, with language and solo/joint as additional
predictors.

The classifications were performed using a SVM [func-

tion fitcsvm( ) in MATLAB (The MathWorks, Natick, MA)],

which is a type of supervised machine learning algorithm

that determines the optimum placement of a decision bound-

ary such that the margin or distance between observations

belonging to each class is maximised (Boser et al., 1992).
Well-suited to multidimensional datasets like the current

one, SVMs use a mapping function to transform data from

input space into data in feature space in search of between-

class linear separability. Here, each of the four tasks was

performed ten times using fivefold cross-validation on 80%

of the data with 20% held for testing predictions. Input fea-

tures were standardised and SVM hyperparameters were

automatically optimised in an iterative process. We report

average test accuracies across the ten runs.

III. RESULTS

A. Vowel onset estimation

First, to gain a sense of how similar the linear acoustic

features were to one another, we calculated their mean cor-

relation over the windowed speech. Given that the speech

envelopes were derived from the same speech data, we

should expect to see reasonably high mean r values if the

differences between algorithms are trivial. The closest linear

similarity was between envelope 1, a signal rectification

envelope, and envelope 2, the Hilbert transform envelope

(mean r¼ 0.94). By comparison, the correspondences

between these envelopes and envelope 3, which filters the

broadband signal into “loudness contours” based on a per-

ceptual scale (Oganian and Chang, 2019; Zwicker et al.,
1979), are much lower (envelope 1 mean r¼ 0.58, envelope

2 mean r¼ 0.54). Envelope 4, which bandpass filters the

broadband speech signal between [400,4000] Hz, has

slightly stronger statistical relationships with envelope 1

(mean r¼ 0.65) and envelope 2 (mean r¼ 0.60), but its clos-

est correlation is with envelope 4 (mean r¼ 0.81). The

GTCC 1 produced more moderate correlations with the

speech envelopes (mean r range ¼ [0.55 0.67]). A heat map

depicting these results is plotted in Fig. 3.

1. Portion of matching windowed counts between
manual annotations and acoustic landmarks

Turning to discrete events within the acoustic features,

acoustic landmarks, our first objective was to maximise the

portion of speech window data, where counts of landmarks

fell within 610% of corresponding counts of manual vowel

onset annotations, by iterating through different algorithmic

parameters. This was performed for each combination of

feature and signal event. We retained the optimised parame-

ters for each acoustic landmark. The results of this step are

plotted in Fig. 4. A table of abbreviated results, showing the

highest-ranked signal event for each feature, is given in

Appendix A, Table V. Portions of matching counts by

window varied substantially across acoustic landmarks and

by speaking context. The lowest average rate for English

was 0.21 (envelope 4/lower crossings) and 0.3 (envelope

4/mid-crossings) for Mandarin, and the highest average rates

were tied at 0.56 (envelope 1/peaks; envelope 2/peaks;

envelope 3/peaks) for English and 0.67 (envelope 3/peaks)

for Mandarin. This first step allowed us to prune the search

space as it were and focus only on acoustic landmarks with

counts that more closely matched those of manual

annotations.

2. Vowel estimation score

For each optimised acoustic landmark from the previ-

ous step, we calculated a weighted score that aggregated the

portions of unmatched annotations and unmatched land-

marks (i.e., false negatives and false positives, respectively)

with the median error (ms) between paired landmarks and

annotations. We calculated this vowel estimation score

within speaking condition and then ranked the acoustic land-

marks by their mean score across condition, within lan-

guage, choosing the best three for English and best three for

Mandarin to take forward. These results are shown in

Appendix A, Table VI, and their vowel estimation scores

and the algorithmic parameters used to find the signal events

are shown in Appendix A, Table VII. All but one of the six

selected acoustic landmarks was produced using envelope 3.

FIG. 3. (Color online) The mean Pearson’s r correlation values between

the acoustic features used for vowel onset estimation, averaged across

speech windows.
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For English and Mandarin, the overall highest ranked

acoustic landmark, according to the vowel estimation score,

is envelope 3/peaks in the first derivative, which is the same

landmark that is described by Oganian and Chang (2019),

confirming the findings reported from their experimental

corpus. Table I shows the current results, broken down into

speaking condition, for this landmark. The results are sepa-

rate for the 80% of development data used to select the land-

marks and the 20% of development data that were held out

to confirm. Examples of the overall best performing land-

mark, plotted with the relevant speech envelope and raw

wave form, are given for English and Mandarin in Figs. 5

and 6, respectively.

The plots displaying the individual components of the

vowel estimation score for the top-ranked acoustic land-

marks are shown in Appendix A, Figs. 11 and 12.

Irrespective of language, spontaneous speech is associ-

ated with larger median errors between manual annotations

and acoustic landmarks (mean¼ 9.6ms) in comparison to

articles and poem reading (mean¼ 7.5ms). Spontaneous

speech also generates a much higher rate of unpaired

annotations (mean¼ 14%) than articles and poem reading

(mean¼ 6%). Given the marked differences between read

and spontaneous speech, this is not surprising as spontane-

ous speech can be characterised by the shortening or out-

right dropping of vowels prescribed in the written form

(Howell and Kadi-Hanifi, 1991). Taken together, it appears

that diverse linguistic contexts elicit differing results from

automatically generated speech features and/or events, even

within the same speaker. As such, it may not be that the

“temporal envelope of speech […] corresponds to the syl-

labic rhythm of speech” (Ding and Simon, 2014) consis-

tently, at least not as far as syllables are defined by phonetic

theory (Cummins, 2012b).

3. Correlations between the statistics of the time
series derived from manual annotations and acoustic
landmarks

We also compared various inter-event interval statisti-

cal parameters between the selected landmarks and vowel

onset annotations on a window by window basis. The goal

of this analysis was to compare between distributions of

FIG. 4. (Color online) The acoustic landmarks, optimised with the aim of windowed counts falling within 610% of the corresponding counts of manual

vowel onset annotations. On the Y axis, unpaired acoustic landmarks refer to the portion of acoustic landmarks for which there was no mutual two-way clos-

est match with manual vowel onset annotations. On the X axis, unpaired vowel onset annotations refer to the portion of manual annotations for which there

was no mutual two-way closest match with acoustic landmarks. Each point represents the mean value taken over the three speaking conditions. The marker

shade indicates the mean window median error (ms) between paired acoustic landmarks and vowel onset annotations.
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acoustic landmarks and manual annotations calculated from

the same windowed speech, thereby permitting an objective

assessment of the similarity in time series between techni-

ques. As the same acoustic landmark was chosen first across

both languages, this meant there were a total of five unique

landmarks from which to calculate inter-event interval sta-

tistics to be correlated with those of manual annotations.

The complete results appear in Appendix A, Table VIII. In

general, Mandarin is associated with higher and less variable

mean r values than English. The overall highest average cor-
relation is between Mandarin annotations and envelope 3/

peaks in the first derivative (mean r¼ 0.59), which is also

the acoustic landmark with the highest vowel estimation

score across both languages. On the other hand, this same

landmark is relatively poorly correlated with English anno-

tations (mean r¼ 0.45). The highest values for English were

from envelope 3/peaks (mean r¼ 0.51). In any case, these

moderate mean r values suggest that although the

FIG. 5. (Color online) The highest-ranked acoustic landmark in English

based on the vowel estimation score, plotted against the acoustic feature

and raw speech wave form.

FIG. 6. (Color online) The highest-ranked acoustic landmark in Mandarin

based on the vowel estimation score, plotted against the acoustic feature

and raw speech wave form.

TABLE I. The single best annotation similarity scoring acoustic landmark for the estimation of manual vowel onset annotations in both English and

Mandarin was envelope 3/peaks in the first derivative. Presented here are the associated mean portions unpaired annotations and landmarks (i.e., annotations

for which there were no mutual two-way closest matching landmarks and vice versa) and mean median error (i.e., Euclidean distance between paired annota-

tions and landmarks) in milliseconds. The results are displayed separately for the 80% of the development dataset that was used to determine the vowel esti-

mation score and the 20% of the dataset that was used to confirm the findings.

English—Envelope 3/peaks in the first derivative

Development Held out

Mean portion unpaired Mean unpaired

Speaking condition Count paired Median error (ms) Landmarks Annotations Count paired Median error (ms) Landmarks Annotations

Articles 1819 8.16 0.06 0.1 447 7.32 0.09 0.08

Poems 1837 7.58 0.1 0.05 461 7.41 0.10 0.07

Spontaneous 2253 9.76 0.1 0.12 556 9.68 0.08 0.12

Mandarin—Envelope 3/peaks in the first derivative

Development Held out

Mean portion unpaired Mean unpaired

Speaking condition Count paired Median error (ms) Landmarks Annotations Count paired Median error (ms) Landmarks Annotations

Articles 2510 7.74 0.05 0.04 630 8.73 0.04 0.04

Poems 1573 6.62 0.04 0.06 404 6.63 0.03 0.05

Spontaneous 2580 9.52 0.05 0.16 626 9.93 0.06 0.17
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distributions of inter-landmark and inter-annotation intervals

do correspond within speech windows, there is also consid-

erable divergence.

Because nearly all of the landmarks selected by this

stage were produced using the same acoustic feature, which

was envelope 3, we reran the Pearson’s correlations using

the same signal event (peaks in the first derivative) but with

each of the different acoustic features (GTCC 1, envelopes

1–4). This allowed us to gain some sense of the conse-

quences of choice of envelope when all other parameters are

held constant. The results are shown in Fig. 7 and Appendix

A, Table IX. It is apparent that the different envelope techni-

ques produce heterogeneous distributions of inter-landmark

intervals, although the windowed counts of acoustic land-

marks generally correspond well to those of manual vowel

onset annotations across envelopes and languages. When

averaged across the different statistics, the overall lowest

mean r value was for envelope 2, which was the Hilbert

transform (0.26). The highest mean r for English was enve-

lope 3 (0.45). With regard to Mandarin speech, the lowest

mean r was also envelope 2 (0.43), and the highest mean r
was also envelope 3 (0.59).

B. The coordination of landmarks between speakers
during joint speech

A higher density of landmarks across time will inher-

ently bias toward smaller asynchronies, on average, between

speakers engaged in joint speech. We, therefore, first

selected for a vowel-like time scale by using the same

acoustic landmarks that best matched the count per window

of manual vowel onset annotations in the vowel onset esti-

mation analysis, in addition to the joint speech-specific

acoustic landmarks, consisting of each signal event com-

bined with the GTCC 2–3 acoustic features. The results

from this step are shown in Fig. 8. We searched for acoustic

landmarks that minimise both unpaired observations and

asynchrony (i.e., Euclidean distance in ms) between speak-

ers. To this end, again, we employed a weighted score, the

joint speech score, which accounted for mean median asyn-

chronies and mean percent unpaired landmarks averaged

across both speakers. The summary results for the highest

ranking acoustic landmarks according to the joint speech

score are shown in Appendix B, Table X. In both languages,

there were landmarks tied by the joint speech score, indicat-

ing a similar degree of coordination between speakers for

these acoustic landmarks. For brevity, we highlight envelope

3/peaks in the first derivative for English and GTCC 3/peaks

for Mandarin, although both of these landmarks were simi-

larly closely coordinated across both languages. Examples of

the highlighted landmarks plotted against speech are given

for English and Mandarin in Figs. 9 and 10, respectively. The

plots displaying the individual components of the joint

speech score for the top-ranked acoustic landmarks are

shown in Appendix B, Figs. 13 and 14.

A breakdown by speaking condition of the results asso-

ciated with these two landmarks is given in Table II.

Surprisingly, there did not appear to be differences related

to speaking condition despite poems being ostensibly rhyth-

mically constrained and, in theory, more predictable in com-

parison to articles. Mandarin was, however, more closely

FIG. 7. Pearson’s r correlation values between statistical parameters calcu-

lated from inter-acoustic landmark intervals and those calculated from cor-

responding manual vowel onset annotations in windowed speech. The same

signal event, peaks in the first derivative, is used in combination with each

of the different acoustic features used for manual vowel onset estimation.

CQV, coefficient of quartile variation; CV, coefficient of variation.

FIG. 8. The acoustic landmarks, optimised with the aim of windowed

counts falling within610% of corresponding counts of manual vowel onset

annotations. On the Y axis, unpaired acoustic landmarks refer to the portion

of acoustic landmarks for which there was no mutual two-way closest

match between speakers during joint speaking tasks. The X axis indicates

the mean window median asynchrony (ms) between acoustic landmarks

paired across speakers.
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coordinated than English both in terms of asynchrony as well

as the portion of landmarks that could not be paired between

speakers. Based on visual inspection of GTCC 3/peaks, its posi-

tion is also generally close to vowel onsets, although not as con-

sistently as envelope 3/peaks in the first derivative.

For reference, we also ran the same joint speech analy-

sis using manual vowel onset annotations, and the results

are shown in Table III. As with the acoustic landmark

results, there did not appear to be any substantial difference

between speaking conditions, but Mandarin vowel onsets

were more closely coordinated than those in English. The

inter-speaker asynchrony values for manual annotations

compared to acoustic landmarks were very similar overall,

for example, a median of about 35ms for acoustic land-

marks versus 32ms for annotations during English article

FIG. 9. (Color online) One of the tied highest-ranked acoustic landmarks in

English based on the joint speech score, plotted against the raw speech

wave form. The upper and lower panels depict each speaker’s individual

time series during the joint speaking task.
FIG. 10. (Color online) One of the tied highest-ranked acoustic landmarks

in Mandarin based on the joint speech score, plotted against the raw speech

wave form. The upper and lower panels depict each speaker’s individual

time series during the joint speaking task.

TABLE II. For both English and Mandarin, multiple acoustic landmarks tied for highest joint speech score. Presented here are a selection of results for

envelope 3/peaks in the first derivative for English and GTCC 3/peaks for Mandarin only. Mean median asynchrony refers to the Euclidean distance separat-

ing landmarks paired between speakers in milliseconds. Mean portion unpaired refers to landmarks for which there were no mutual two-way closest matches

between speakers. The results are displayed separately for the 80% of the development dataset that was used to determine the joint speech score and the

20% of the dataset that was used to confirm the findings.

English—Envelope 3/peaks in the first derivative

Development Held out

Asynchrony (ms) Portion unpaired Asynchrony (ms) Portion unpaired

Speaking condition Count paired Median Interquartile range Mean SD Count paired Median Interquartile range Mean SD

Articles 1652 34.81 49.31 0.08 0.04 373 31.86 40.96 0.08 0.04

Poems 974 32.3 48.38 0.08 0.04 234 36.01 42.45 0.09 0.05

Mandarin—GTCC 3/peaks

Development Held out

Asynchrony (ms) Portion unpaired Asynchrony (ms) Portion unpaired

Speaking condition Count paired Median Interquartile range Mean SD Count paired Median Interquartile range Mean SD

Articles 1970 22.73 31.19 0.06 0.04 485 21.22 32.24 0.07 0.03

Poems 861 22.77 30.18 0.06 0.04 234 21.92 31.48 0.05 0.03
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reading. The equivalent values for Mandarin were 23ms for

acoustic landmarks versus 25ms for annotations.

C. Application of acoustic landmarks in SVM
classification of speech rhythm

In Secs. III A and III B, we analysed acoustic land-

marks, first, from the perspective of trying to find the best

match for manual vowel onset annotations, and, second, in

terms of determining whether some acoustic landmarks are

more closely coordinated between speakers than others.

From each of these two steps, we selected three acoustic

landmarks per language to apply in a proof of concept series

of classification tasks using SVM. To this end, we calculated

distributional parameters derived from windowed inter-

landmark intervals as predictors, including count, median,

and coefficient of variation, among others. This analysis was

performed with the data from speakers who were held out

entirely up until this point (see Appendix C, Table XI for a

summary of observation counts by data set and task).

We report in Table IV the results for the SVM speech

rhythm classification tasks by manual vowel onset annotation

and selected acoustic landmarks. In general, mean classifica-

tion accuracy was well above chance in most of the tasks for

all of the selected acoustic landmarks, although inter-task per-

formance could be quite variable. As in the vowel onset esti-

mation and joint speech analyses, envelope 3/peaks in the first

derivative (mean accuracy¼ 66%) and GTCC 3/peaks (mean

accuracy¼ 65%) had the best average performance among

the acoustic landmarks. For comparison, envelope 1/peaks in

the first derivative produced a mean accuracy of 59%, a drop

in 7% by changing the form of speech envelope. Manual

vowel onset annotations were associated with superior classi-

fication performance (mean accuracy¼ 71%), indicating a

level of error, loss, or difference in information for automatic

techniques in comparison to manually estimated time series.

Nonetheless, these classification rates, produced using uncor-

rected automatic techniques, demonstrate that variation in the

speech timing series can be captured to an extent comparable

with phonetic annotation.

IV. DISCUSSION

In the speech sciences, analysis has traditionally relied

on expert knowledge and careful annotation by hand to

study linguistically defined phenomena, such as syllables.

More recently, some researchers, particularly those working

in psychology and neuroscience, have used a variety of

approaches to extract relevant features from the raw acoustic

speech signal to estimate the speech envelope. These differ-

ent signals can, in turn, be combined with various discrete

events identified within those features. Although neuro-

scientists typically invoke concepts taken from linguistics,

for example, when making claims about the brain’s ability

to track the syllabic time series, there is limited empirical

evidence to support the interchangeability of phonetic

ground truth with engineered acoustic features. Moreover,

despite the variability in methods reported across the litera-

ture, we found that the choice of pipeline can produce

diverse acoustic landmarks that vary in their similarity to

manual vowel onset annotations. Choosing the vowel onset,

a phonetic concept that is closely associated with p-centres,

TABLE III. The coordination of manual vowel onset annotations between

speakers for English and Mandarin. Mean median asynchrony refers to the

Euclidean distance separating annotations paired between speakers in milli-

seconds. Mean portion unpaired refers to annotations for which there were

no mutual two-way closest matches between speakers.

English

Asynchrony (ms) Portion unpaired

Speaking

condition

Counts

paired Median

Interquartile

range Mean SD

Articles 626 32 44 0.05 0.03

Poems 643 32 41 0.03 0.03

Mandarin

Asynchrony (ms) Portion unpaired

Speaking

condition

Counts

paired Median

Interquartile

range Mean SD

Articles 863 25 34 0.02 0.02

Poems 557 23 28.25 0.02 0.02

TABLE IV. The results for the SVM speech rhythm classification tasks by manual vowel onset annotation and acoustic landmark.

Acoustic landmark Accuracy

Feature Signal event

English versus

Mandarin

Reading versus

spontaneous

Solo versus

joint

Articles versus

poems Mean

Manual vowel onset annotations 0.70 0.72 0.72 0.68 0.71

Envelope 3 Peaks in the first derivative 0.61 0.69 0.65 0.69 0.66

Envelope 3 Mid-crossings 0.64 0.69 0.68 0.59 0.65

GTCC 3 Peaks 0.64 0.69 0.65 0.63 0.65

Envelope 3 Lower crossings 0.64 0.67 0.68 0.56 0.64

Envelope 3 Peaks 0.56 0.71 0.65 0.62 0.63

GTCC 3 Peaks in the first derivative 0.63 0.68 0.64 0.54 0.62

GTCC 1 Peaks in the first derivative 0.59 0.61 0.65 0.64 0.62

Envelope 1 Peaks in the first derivative 0.57 0.62 0.63 0.54 0.59
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as our ground truth, we systematically compared different

automatically generated acoustic landmarks with manual

annotations. We also explored how closely and consistently

speakers coordinated different acoustic landmarks when

speaking together during joint speech tasks. Finally, we used

a subset of acoustic landmarks in a proof of concept, which

was a set of speech type classification tasks. Using statistics

extracted from temporal information alone, we found reason-

ably good classification of diverse speaking styles, but the

accuracy of landmarks was reduced in comparison with man-

ual annotation. Our results indicate that acoustic landmarks

do not perfectly replicate the syllabic or inter-vowel time

series, and specific algorithmic and parametric choices pro-

duce quantifiably different results. Hence, researchers who

draw on phonetic theory in motivating behavioural or neural

experiments should bear this in mind when choosing whether

or not to manually annotate, and if not, when determining the

appropriate automatic technique. We cover these results in

more detail in the following discussion.

A. Vowel onset estimation

Our results show that any one algorithm can generate

varying results not only with regard to the particular lan-

guage under study but within languages as well. For

instance, vowel estimation was more successful in Mandarin

than in English overall, yet even the best overall acoustic

landmark left up to mean 16% of manual vowel annotations

unpaired in Mandarin spontaneous speech. In contrast, this

same landmark produced just 4% unpaired annotations in

Mandarin article reading. Our finding here speaks to the

work by Schuppler (2017), who found that machine phone-

mic classification is also hampered in spontaneous speech

due to larger acoustic overlap between classes in compari-

son to carefully read speech. Instead of thinking of sponta-

neous speech as the noisier version of read speech,

Schuppler (2017) argues that the unique properties of spon-

taneous speech be considered early in the development of

methodologies. Similarly, rather than ponder whether an

alternative algorithm might have done a better job, we pro-

pose that higher rates of “missed” or unpaired vowel onset

annotations may indicate that the map of the written system

is a poor fit to the territory of spontaneous speech. In other

words, phonetically determined units, such as syllables, may

be simply inappropriate for the analysis of rhythm in sponta-

neous speech. This complexity is compounded by the inher-

ent subjectivity of manual annotation; although we took

pain to ensure consistency across the current corpus, the

expert knowledge and judgment calls required in phonetic

analysis present considerable challenges when interpreting

results across studies and research groups. Moreover, there

remains controversy within linguistics concerning the exact

boundaries between consonants and vowels (Francis et al.,
2003) let alone syllables themselves (Goslin and

Frauenfelder, 2001; Zec, 2007). For this reason, choosing a

consistent acoustic landmark rather than linguistic token

may actually be of benefit to speech rhythm research more

broadly, especially in natural, coarticulated speech, where

phonetic truisms may be more liable to break down. That

stated, should a researcher nonetheless wish to emulate

vowel onsets specifically, it is possible that even a perfunc-

tory visual review of acoustic landmarks could be enough to

bring the current results closer in line to those of manual

annotations given that we did not apply any corrective pro-

cedure to the landmarks here.

Among the different engineered features that we tested,

the envelope-extracting method described in Oganian and

Chang (2019) and Schotola (1984), envelope 3, produced

results most similar to manual vowel onset annotations. This

psychoacoustically informed feature was robust in approxi-

mating vowel onsets across two unrelated languages and

diverse speaking contexts. In comparison, envelope 2, which

uses the Hilbert transform of the broadband speech signal,

performed more inconsistently. This technique has drawn

criticism for producing distorted or inaccurate modulation

frequencies (Schimmel and Atlas, 2005). It could be that

incorporating improvements proposed by Schimmel and

Atlas (2005) and others in the signal processing community

would have produced better results, but our intention here

was to emulate practices typical of the speech rhythm and

neuroscience literatures. In terms of the five discrete events

within the signals that we examined, peaks in the first deriv-

ative (or rate of change) of the signal tended to best approxi-

mate the location of manual vowel onset annotations. This

signal event, when combined with envelope 3, produces the

same acoustic landmark that was found by Oganian and

Chang (2019) to be specifically encoded by a defined region

of the STG during speech perception. Taken together, these

findings show that the choice of feature and discrete events

are nonarbitrary for approximating the location vowel onsets

within the signal despite the variety of reported procedures.

B. Joint speech

In comparison to manual annotations, landmarks were

associated with slightly higher rates of unpaired events

between speakers during joint speech, although median

asynchrony values were roughly on par. We found that the

acoustic landmark that performed best in vowel onset esti-

mation, envelope 3/peaks in the first derivative, was also

tightly synchronised between speakers of both English and

Mandarin, aligning with the behavioural research that

approximates p-centres to this same phonetic anchor

(Barbosa et al., 2005; Rathcke et al., 2021; Scott, 1998).
GTCC 3/peaks, however, was roughly equally well coordi-

nated in joint speech. It should be noted that we found

GTCC 3/peaks to mainly occur closely around envelope 3/

peaks in the first derivative in our corpus. GTCC 3/peaks

may, therefore, similarly channel vowel onsets, although we

did not test this particular acoustic landmark in the vowel

estimation analysis. Future work could examine these differ-

ent, GTCC-based acoustic landmarks in the context of more

in-depth phonetic analysis and behavioural rhythm percep-

tion and production experiments.
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C. Speech classification

Although the landmarks did not match the speech

rhythm classification performance of manual annotations

(mean¼ 71%), we were still able to achieve mean accuracy

as high as 66% in the held-out corpus with completely novel

speakers using temporal information alone. In light of the

time and resources required for manual annotations, our

results demonstrate that some—if not all—engineered fea-

tures have the capability to produce meaningful insight into

speech timing, they are not a perfect replication of phonetic

analysis. With regard to the individual classification tasks,

we noticed that the acoustic landmark closest to vowel

onsets, envelope 3/peaks in the first derivative, was less able

to discriminate between English and Mandarin speech

(accuracy¼ 61%) in comparison to annotations

(accuracy¼ 70%). We suspect this is related to vowel short-

ening and coarticulation effects in English, which are more

easily identified in the manual annotations rather than in

acoustic landmark data.

This discrepancy could indicate the impracticality or

trade-off in using automatic extraction techniques. On the

other hand, cross-linguistic similarity between acoustic

landmarks may tell us more about language-invariant

aspects of speech perception (R€as€anen et al., 2018). For

example, the variability of inter-vowel intervals in lan-

guages like English is often contrasted with the simpler syl-

labic structures of Mandarin (Lin and Wang, 2007). But this

seeming dichotomy may be amplified by expert knowledge

of written forms and linguistic theory. Indeed, Oganian and

Chang (2019) found similar neural responses to English and

Mandarin stimuli despite the differing linguistic back-

grounds of their participants. Future work should confirm

whether the acoustic landmarks examined in the current

study evoke comparable brain activity across speakers of

different languages.

D. Limitations

As we have discussed, an inherent limitation to the cur-

rent work is that manual annotation is ultimately subjective,

and we cannot exclude that the specific manner in which we

identified vowels and determined the precise moment of

onset has some impact on the generalisability of the current

results. That said, the acoustic landmark that we observed to

be most similar to vowel onsets (envelope 3/peaks in the

first derivative) is the same as that reported in Oganian and

Chang (2019), who confirmed their results in Mandarin and

Spanish speech data sets, in addition to the TIMIT corpus in

English (Garofolo et al., 1993). Although we similarly

TABLE V. The portion of matching counts, by window, between manual vowel onset annotations and acoustic landmarks. The single highest-ranked signal

event is presented for each feature by language. Portion matching counts refer to the portion of windows where the count of landmarks falls within610% of

the corresponding count of manual annotations for that window.

Acoustic landmark Portion matching counts

Language Feature Signal event Articles Poems Spontaneous Mean

English GTCC 1 Bases of peaks 0.53 0.58 0.44 0.52

English Envelope 1 Peaks 0.57 0.59 0.52 0.56

English Envelope 2 Bases of peaks 0.61 0.61 0.46 0.56

English Envelope 3 Peaks 0.55 0.67 0.45 0.56

English Envelope 4 Peaks 0.47 0.61 0.46 0.51

Mandarin GTCC 1 Bases of peaks 0.65 0.59 0.48 0.57

Mandarin Envelope 1 Peaks 0.74 0.72 0.43 0.63

Mandarin Envelope 2 Bases of peaks 0.71 0.72 0.38 0.6

Mandarin Envelope 3 Peaks 0.76 0.82 0.44 0.67

Mandarin Envelope 4 Peaks 0.77 0.83 0.39 0.67

TABLE VI. The best-scoring three acoustic landmarks for English and Mandarin according to the vowel estimation score and their associated mean portions

unpaired annotations and landmarks (i.e., annotations for which there were no mutual two-way closest matching landmarks and vice versa) and mean median

error (i.e., Euclidean distance between paired annotations and landmarks) in milliseconds.

Portion unpaired landmarks Portion unpaired annotations

Error (ms) 95% confidence intervals 95% confidence intervals

Language Feature Signal event Median Interquartile range Mean Lower Upper Mean Lower Upper

English Envelope 3 Peaks in the first derivative 8.48 12.61 0.1 0.09 0.11 0.1 0.09 0.11

English Envelope 1 Peaks in the first derivative 23.35 26.23 0.1 0.1 0.11 0.13 0.12 0.14

English Envelope 3 Peaks 39.3 36.7 0.08 0.07 0.09 0.11 0.1 0.12

Mandarin Envelope 3 Peaks in the first derivative 8.29 10.61 0.07 0.06 0.08 0.09 0.08 0.1

Mandarin Envelope 3 Lower crossings 7.59 10.89 0.07 0.07 0.08 0.12 0.11 0.13

Mandarin Envelope 3 Mid-crossings 7.55 10.92 0.07 0.06 0.08 0.12 0.11 0.13
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found this same landmark to be robust across language and

speaking style, it is important to replicate the results within a

wider variety of languages. On a related note, the algorithmic

parameters we report for signal event detection (e.g., peak

detection) were again optimised for vowel onsets specific to

the current data. We attempted to control over-fitting by split-

ting our corpuses into speaker-independent development and

testing data sets, including partitioning the former during

acoustic landmark selection to further confirm that our

choices were generalisable. However, we communicate these

“optimum” parameters with the caveat that they are likely

only trustworthy to a certain level of granularity, and further

work across many diverse speech corpuses is needed before

we can be satisfied of any universal best fit.

As we explained in the Introduction, we take no firm

stance regarding the meaning or measure of speech rhythm.

We have focused on syllable timing in the current work due

to the considerable theoretical and experimental attention it

has received, but there are many ways of expressing rhythm.

In the context of musicking (Small, 1998), for instance, pat-

terns in timing can emerge from dance steps, pitch groupings,

and variation in loudness, accent, articulation, and timbre, in

addition to other features. By comparison, in speech sciences

and especially neuroscience, the intense focus on timing and

intervals has possibly resulted in analogous qualities in

speech rhythm being overlooked. Although the current paper

does not break from this status quo, other aspects of prosody,

such as pitch, should be incorporated into temporal frame-

works (Teoh et al., 2019; Vicenik and Sundara, 2013).

Similarly, there is also no reason why speech rhythm

researchers cannot combine the speech envelope and/or sylla-

ble time series with phonetic annotations, as well as other

engineered features, such as the GTCC that we explored in

the current work. Increasingly, approaches like this have

been used to map the correspondence between acoustic stim-

uli and the neural response, for example, by combining the

envelope and its derivative (Drennan and Lalor, 2019) or

spectro-temporal acoustic features and phonetic information

(Di Liberto et al., 2018). Using band limited versions of the

speech envelope, Br€ohl and Kayser (2021) recently demon-

strated that listeners’ brains responded differently to rela-

tively lower and higher frequency components, revealing

spatial and functional nuances that could be distorted or even

lost when only the broadband speech envelope is used.

Hence, although we have primarily focused on vowel onsets

and automatic methods to characterise them, we acknowl-

edge that the richness of speech rhythm calls for holistic

methods that better reflect its complexity.

TABLE VIII. The results for the Pearson’s correlations between statistical

parameters calculated using inter-landmark intervals and inter-annotation

intervals on the same windowed speech data. The selection of acoustic land-

marks was determined according to the vowel estimation score. For each

parameter, r is first calculated by speaking condition and then aggregated

by language. Mean r is aggregated across all parameters.

Acoustic landmark

Language Feature Signal event Mean r

English Envelope 3 Peaks 0.51

English Envelope 3 Lower crossings 0.48

English Envelope 3 Mid-crossings 0.48

English Envelope 3 Peaks in the first derivative 0.45

English Envelope 1 Peaks in the first derivative 0.32

Mandarin Envelope 3 Peaks in the first derivative 0.59

Mandarin Envelope 3 Lower crossings 0.59

Mandarin Envelope 3 Mid-crossings 0.59

Mandarin Envelope 3 Peaks 0.59

Mandarin Envelope 1 Peaks in the first derivative 0.48

TABLE VII. The three highest ranked acoustic landmarks for English and Mandarin according to the vowel estimation score. This score combines the por-

tions of unpaired landmarks and annotations with the median error (ms). Prominence, inter-peak interval, and tolerance are algorithmic parameters used to

identify the signal events.

Language Feature Signal event Prominence Inter-peak interval (ms) Tolerance Vowel estimation score

English Envelope 3 Peaks in the first derivative 0.1 115 — 0.71

English Envelope 1 Peaks in the first derivative 0.1 120 — 0.61

English Envelope 3 Peaks 0.1 105 — 0.53

Mandarin Envelope 3 Peaks in the first derivative 0.1 115 — 0.78

Mandarin Envelope 3 Lower crossings — — 4 0.72

Mandarin Envelope 3 Mid-crossings — — 4 0.72

TABLE IX. The results for the Pearson’s correlations between statistical

parameters calculated using inter-landmark intervals and inter-annotation

intervals on the same windowed speech data. The acoustic landmarks con-

sist of the same signal event, peaks in the first derivative, coupled with each

different feature used in the vowel onset estimation. r is first calculated by

speaking condition and then aggregated by language. Mean r is aggregated
across all parameters. Note that the algorithmic parameters used to detect

signal events were held constant across the different envelopes for this anal-

ysis, and so the mean r may be slightly different from the equivalent acous-

tic landmark reported in Table VIII.

Acoustic landmark

Language Feature Signal event Mean r

English Envelope 1 0.32

English Envelope 2 0.31

English Envelope 3 0.45

English Envelope 4 0.44

English GTCC 1 Peaks in the first derivative 0.26

Mandarin Envelope 1 0.46

Mandarin Envelope 2 0.43

Mandarin Envelope 3 0.59

Mandarin Envelope 4 0.58

Mandarin GTCC 1 0.45
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E. Conclusion

The case for cortical speech entrainment rests on the

quality and specificity of experimental stimuli and the mate-

rials derived therefrom. It has been found that synthetic

vowels evoke a stronger envelope-following cortical

response than their natural counterparts, potentially due to

enhanced, stabler periodicity in the frequency domain (Van

Canneyt et al., 2020). Similarly, in the speech rhythm

domain, we should also expect to see differences in neural

responses between artificially periodic stimuli and naturalis-

tic speech, especially speech that is spontaneously produced.

Selecting the appropriate acoustic landmark to capture char-

acteristics of speech rhythm across a variety of speaking con-

texts, therefore, constitutes an important step toward the

greater task of improving ecological validity across the field

at large (Alexandrou et al., 2020). In light of the behavioural

literature on p-centres (Rathcke et al., 2021; Scott, 1998;

Seifart et al., 2018) and convergent data from neuroimaging

(Oganian and Chang, 2019), we suggest that researchers

interested in speech rhythm select envelope extraction tech-

niques that best convey information about vowels, especially

vowel onsets. Of the features that we examined in the current

study, we found this to be envelope 3, undermining the

assumption that different speech envelope techniques are

“similar in general” (Ding et al., 2017) or even “qualitatively
identical” in practice (Oganian and Chang, 2019); however,

we imagine that other approaches to envelope extraction that

emulate cochlear filtering of the broadband speech signal

may perform similarly, a speculation that should be empiri-

cally tested in future work. In the case that discrete events

are of interest, rather than the continuous signal, we addition-

ally recommend identifying peaks in the first derivative of

envelope 3. Comparing the discrete and continuous time

series may help answer the question of whether specific

instances within the speech envelope and not the speech

envelope uniformly drive the processing of speech rhythm

(Ding and Simon, 2014). If this were indeed the case, it is

particularly important for studies that investigate stimulus-

brain correlation; for instance, a continuous signal could,

FIG. 11. (Color online) Box plots depicting the three highest-ranked acoustic landmarks in English based on the vowel estimation score. Unpaired acoustic land-

marks refer to the portion of acoustic landmarks for which there was no mutual two-way closest match with manual vowel onset annotations. Unpaired vowel

onset annotations refer to the portion of manual annotations for which there was no mutual two-way closest match with acoustic landmarks. The median error

(ms) is the Euclidean distance between paired acoustic landmarks and vowel onset annotations. The notches indicate 95% confidence intervals for the median.
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on the whole, appear to correspond well with neural activ-

ity when, in fact, crucial events within the signal are rela-

tively poorly aligned with neural markers of interest or vice

versa. Additionally, the current study illustrates the need to

use varied and naturalistic stimuli as our results undermine

the simple reading that the speech envelope is equivalent to

phonetically defined syllables, which are themselves equiv-

alent to the time series that should drive neural entrain-

ment. At the least, it should not be assumed that different

approaches to engineered features are more or less the

same as phonetic annotation—nor to each other, for that

matter, particularly across diverse speaking contexts. As a

mechanism so central to human communication and cogni-

tion, more generally, rhythm has long deserved its due, and

cooperation across and within disciplinary boundaries is

required for progress to be made in elucidating its inner

workings.
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APPENDIX A: VOWEL ONSET ESTIMATION

See Tables V–IX for descriptive statistics concerning

the vowel onset estimation analysis and Figs. 11 and 12 for

box plots depicting the individual components of the vowel

estimation score.

APPENDIX B: JOINT SPEECH

See Table X for descriptive statistics concerning the joint

speech analysis and Figs. 13 and 14 for box plots depicting the

individual components of the joint speech score.

APPENDIX C: SVM CLASSIFICATION OF SPEECH
RHYTHM

See Table XI for class membership counts by classifica-

tion task.

APPENDIX D: EXCERPTS

1. English article A

The Great Pyramid of Giza is the oldest monument of

the seven wonders of the Ancient World. It is also the only

one left standing. The structure is a marvel of human engi-

neering, and its sheer size and scale rivals anything built

within the last few hundred years. Its creation, however, has

always been the subject of much debate among scholars

because of its massive size and near perfect proportions.

FIG. 12. (Color online) Box plots depicting the three highest-ranked acoustic landmarks in Mandarin based on the vowel estimation score. Unpaired acous-

tic landmarks refer to the portion of acoustic landmarks for which there was no mutual two-way closest match with manual vowel onset annotations.

Unpaired vowel onset annotations refer to the portion of manual annotations for which there was no mutual two-way closest match with acoustic landmarks.

The median error (ms) is the Euclidean distance between paired acoustic landmarks and vowel onset annotations. The notches indicate 95% confidence inter-

vals for the median.
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Evidence suggests that 20 000 workers contributed to

its construction and were even paid to do so. This would

have required a great deal of organisation, accounting, and

record keeping. The Egyptians were known for their excel-

lent documentation.

2. English article B

Sir Frederick William Herschel discovered infrared

light at the turn of the 19th century. Using a variety of col-

oured filters to view sunlight, he observed that some colours

TABLE X. The best-scoring three acoustic landmarks for English and Mandarin according to the joint speech score and their associated mean portions

unpaired landmarks (i.e., landmarks for which there were no mutual two-way closest matching landmarks between the two speakers) and mean median asyn-

chrony (i.e., Euclidean distance between the speakers’ paired landmarks) in milliseconds.

Portion unpaired landmarks

Acoustic landmark Asynchrony (ms) 95% confidence intervals

Language Feature Signal event Joint Speech score Count paired Median Interquartile range Mean Lower Upper SD

Mandarin GTCC 3 Peaks 0.80 2832 22.74 31.01 0.06 0.06 0.07 0.04

Mandarin GTCC 3 Peaks in the first derivative 0.80 2816 24.45 36.01 0.06 0.06 0.06 0.03

Mandarin Envelope 3 Peaks in the first derivative 0.80 2782 24.69 31.09 0.05 0.05 0.06 0.04

English Envelope 3 Peaks in the first derivative 0.74 2622 34.17 48.46 0.08 0.07 0.08 0.04

English GTCC 3 Peaks 0.74 2595 34.18 51.16 0.08 0.08 0.09 0.04

English GTCC 1 Peaks in the first derivative 0.73 2595 36.08 53.14 0.08 0.07 0.09 0.04

FIG. 13. (Color online) Box plots depicting the three highest-ranked acoustic landmarks in English based on the joint speech score. Unpaired acoustic land-

marks refer to the portion of acoustic landmarks for which there was no mutual two-way closest match between speakers. The mean median error (ms) is the

Euclidean distance between acoustic landmarks paired across speakers. For reference, the corresponding values for manual vowel onset annotations are also

shown. The notches indicate 95% confidence intervals for the median.
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allowed more heat to pass than others. Herschel hypothes-

ised that the colours themselves may have produced differ-

ent temperatures and set out to test his theory.

Directing sunlight through a glass prism to produce a

spectrum, he measured the temperature of each colour with

a thermometer. From the violet to red parts of the colour

spectrum, the temperature increased. Herschel then decided

to measure the temperature beyond the red-coloured light.

This area had the highest temperature reading of all despite

being invisible to the naked eye.

3. English article C

The North Wind and the Sun were disputing which was

the stronger, when a traveller came along wrapped in a

warm cloak. They agreed that the one who first succeeded in

making the traveller take his cloak off should be considered

stronger than the other. Then the North Wind blew as hard

as he could, but the more he blew, the more closely did the

traveller fold his cloak around him, and at last the North

Wind gave up the attempt. Then the Sun shone out warmly,

and immediately the traveller took off his cloak. And so, the

North Wind was obliged to confess that the Sun was the

stronger of the two.

4. English poem A. “Bed in Summer” by Robert Louis
Stevenson

In winter I get up at night

FIG. 14. (Color online) Box plots depicting the three highest-ranked acoustic landmarks in Mandarin based on the joint speech score. Unpaired acoustic

landmarks refer to the portion of acoustic landmarks for which there was no mutual two-way closest match between speakers. The mean median error (ms)

is the Euclidean distance between acoustic landmarks paired across speakers. For reference, the corresponding values for manual vowel onset annotations

are also shown. The notches indicate 95% confidence intervals for the median.

TABLE XI. Counts of windows from which statistical parameters were cal-

culated to use as predictors in the speech rhythm classification tasks. The

windowed data are from speakers whose recordings were entirely held out

during the vowel onset estimation and joint speech analyses.

English versus Mandarin Spontaneous versus reading

Count windows Count windows

English 237 Spontaneous 130

Mandarin 258 Reading 79

Solo versus joint Articles versus poems

Count windows Count windows

Solo 156 Articles 196

Joint 209 Poems 169
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And dress by yellow candle-light.

In summer, quite the other way,

I have to go to bed by day.

I have to go to bed and see

The birds still hopping on the tree,

Or hear the grown-up people’s feet

Still going past me in the street.

And does it not seem hard to you,

When all the sky is clear and blue,

And I should like so much to play,

To have to go to bed by day?

5. English poem B. “The Thing With Feathers”
by Emily Dickinson

“Hope” is the thing with feathers

That perches in the soul

And sings the tune without the words

And never stops – at all.
And sweetest in the gale is heard

And sore must be the storm

That could abash the little bird

That kept so many warm.

I’ve heard it in the coldest land

And on the strangest sea

Yet – never – in extremity,

It asked a crumb of me.

6. English prompts for spontaneous speech

What brings you to London?

What are some things you like about London?

What are some things you do not like about London?

Do you have a favourite restaurant or cuisine, and is it

available in London?

Have you been to any of the parks in London? Do you

have a favourite park?

If you met someone new to the city, what would you

recommend they go to see or do?

Have you been to any tourist attractions (for example,

the London Eye)? Did you enjoy it, or was it overrated?

Mandarin article A 吉萨金字塔是古代世界七大奇迹

中最为古老的纪念碑� 它也是唯一尚存的建筑物� 它的结

构是人类工程学的奇迹, 庞大的规模可与过去几百年来

建造的任何建筑相媲美� 然而, 正因为它庞大的规模和接

近完美的比例, 如何创造它一直是学者们争论的主题� 有

证据表明两万名工人为建设它做出了贡献, 并为劳动获

得了报酬� 这需要大量的组织, 会计和记录保存� 埃及人

以出色的文献记录而著称�

Mandarin article B 在19世纪初, 弗雷德里克�威廉�赫
歇尔爵士发现了红外光� 他使用各种彩色滤光片查看日

光, 观察到某些颜色相比其他颜色允许更多的热量通过�

赫歇尔假设颜色本身可能产生不同的温度, 并着手检验

他的理论� 他引导阳光通过玻璃棱镜产生光谱, 然后用温

度计测量每种颜色的温度� 温度从色谱的紫色到红色逐

渐升高� 然后, 赫歇尔决定测量超出红色光的温度� 尽管

肉眼不可见,但该区域的温度读数最高�

Mandarin article C 有一回, 北风跟太阳正在那儿争论

谁的本领大� 说着说着, 来了一个路人, 身上穿了一件厚

袍子� 他们俩就商量好了, 说, 谁能先让这个路人把他的

袍子脱下来, 就算他的本领大� 北风卯足了劲儿, 拼命的

吹� 可是, 他吹的越厉害, 那个人就把他的袍子裹得越紧�

到末了, 北风没辙了, 只好就算了� 一会儿, 太阳出来一晒,

那个人马上就把袍子脱了下来� 所以, 北风不得不承认,

还是太阳比他的本领大�

Mandarin poem A. 《梦与诗》胡适都是平常经验,

都是平常影象,

偶然涌到梦中来,

变幻出多少新奇花样!

都是平常情感,

都是平常言语,

偶然碰着个诗人,

变幻出多少新奇诗句!

醉过才知酒浓,

爱过才知情重;

你不能做我的诗,

正如我不能做你的梦�

Mandarin poem B. 《我不知道风是在哪一个方向

吹》徐志摩我不知道风

是在哪一个方向吹

我是在梦中,

甜美是梦里的光辉�

我不知道风

是在那一个方向吹

我是在梦中,

她的负心,我的伤悲�

我不知道风

是在哪一个方向吹

我是在梦中,

在梦的悲哀里心碎!

Mandarin prompts for spontaneous speech 是什么吸引

你来到伦敦的?

你喜欢伦敦的哪些方面呢?

你不喜欢伦敦的哪些方面呢?

你有喜欢的餐馆或者菜系吗? 它在伦敦有吗?

你有去过任何伦敦的公园吗? 你最喜欢的是哪一个?

如果你碰到了一个刚来伦敦的人, 你会建议他们去看

什么或者做什么?

你有去过任何伦敦的景点吗 (比如, 伦敦眼)? 你喜欢

那个景点吗? 还是觉得它没有想象的那么好?
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