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Urban growth modelling and social 
vulnerability assessment 
for a hazardous Kathmandu Valley
Carlos Mesta1*, Gemma Cremen2 & Carmine Galasso1,2

In our rapidly urbanizing world, many hazard-prone regions face significant challenges regarding 
risk-informed urban development. This study addresses this issue by investigating evolving spatial 
interactions between natural hazards, ever-increasing urban areas, and social vulnerability in 
Kathmandu Valley, Nepal. The methodology considers: (1) the characterization of flood hazard and 
liquefaction susceptibility using pre-existing global models; (2) the simulation of future urban built-up 
areas using the cellular-automata SLEUTH model; and (3) the assessment of social vulnerability, using 
a composite index tailored for the case-study area. Results show that built-up areas in Kathmandu 
Valley will increase to 352 km2 by 2050, effectively doubling the equivalent 2018 figure. The most 
socially vulnerable villages will account for 29% of built-up areas in 2050, 11% more than current 
levels. Built-up areas in the 100-year and 1000-year return period floodplains will respectively 
increase from 38 km2 and 49 km2 today to 83 km2 and 108 km2 in 2050. Additionally, built-up areas 
in liquefaction-susceptible zones will expand by 13 km2 to 47 km2. This study illustrates how, where, 
and to which extent risks from natural hazards can evolve in socially vulnerable regions. Ultimately, it 
emphasizes an urgent need to implement effective policy measures for reducing tomorrow’s natural-
hazard risks.

The world’s population continues to grow and is expected to reach 9.7 billion in 20501. By this time, 68% of 
the global population will be living in cities, with nearly 90% of urban growth occurring in the least developed 
regions of Asia and Africa. In addition, low-income and lower-middle-income countries are projected to experi-
ence the fastest urbanization rates in the coming decades2. The physical extent of urban areas is growing even at 
faster rates than the corresponding population3,4. By 2030, cities are expected to triple the amount of land used 
in 2000, with much of the increase occurring in relatively undisturbed biodiversity hotspots5. The spatial expan-
sion of urban areas will have severe implications for energy consumption, climate change, and environmental 
degradation. Therefore, there is an urgent need to develop appropriate strategies for managing urban growth 
in an informed way6.

Effective development planning for urban areas should pay particular attention to disaster risk manage-
ment and reduction, and climate change adaptation2. In 2018, 60% of cities with 500,000 or more inhabitants 
were highly exposed to at least one of six natural hazards (cyclones, floods, droughts, earthquakes, landslides, 
and volcanic eruptions), and this number is growing7. Moreover, it has been evidenced that poor people dispro-
portionally suffer the effects of natural-hazard-induced disasters due to lower socio-economic resilience (e.g., 
low-income levels, less support from financial instruments, such as insurance, and social protection schemes)8. 
These primary concerns have been formally remarked in international agreements such as the 2030 Agenda for 
Sustainable Development9, the Paris Agreement on Climate Change10, and the 2015-2030 Sendai Framework 
for Disaster Risk Reduction11.

Current natural-hazard risk assessments exhibit gaps that limit their ability to support policymaking and 
planning decisions to reduce disaster risk in tomorrow’s world12,13. Risk (defined as the convolution of hazard, 
exposure, and vulnerability) grows under natural and human influences. For instance, exposure is constantly 
evolving, driven by population growth and socio-economic development. Also, as population and economic 
activity increase, the proportion of urban land becomes larger14. Despite these facts, many disaster risk meth-
odologies still use a static view of exposure (i.e., unchanged exposed elements, for which physical vulnerability 
is not time-dependent)15. While some researchers have attempted to model natural-hazard risk from a future-
focused perspective16–19, most frameworks neglect the dynamics and interactions between risk components. 
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Traditional approaches examine the impact of single natural hazards, overlooking relationships/interactions 
between multiple hazards and human activity20,21. Additionally, in contrast with the large effort that is typically 
dedicated to modelling physical vulnerability in natural-hazard risk assessments, there is less focus on assessing 
social vulnerability and how communities respond to extreme events22,23. There is a necessity to address these 
methodological flaws in the literature and "move instead towards risk assessments that can guide decision-makers 
towards a resilient future"14.

This research contributes to the required effort by portraying a dynamic representation of risk from natural 
hazards that accounts for social vulnerability. In particular, this paper examines the relationships between natu-
ral hazards, urban growth, and social vulnerability in Kathmandu Valley, Nepal. Firstly, the footprints on flood 
hazard and liquefaction susceptibility are obtained from pre-existing global models24,25. Secondly, the cellular-
automata SLEUTH (an acronym for Slope, Land use, Excluded areas, Urban extent, Transportation, Hillshade)26 
model is applied to simulate Kathmandu Valley’s urban growth at 2050. And thirdly, the Social Vulnerability 
Index (SoVI)22, adapted to account for Nepal’s specific context, is employed to quantify social vulnerability in 
Kathmandu Valley. The results on spatially overlapping hazards, urban growth, and vulnerability help to identify 
critical locations where disaster risk is likely to increase drastically in the future. These locations require particular 
attention and should be prioritized in regional policy  on disaster risk management.

Materials and methods
Study area: Kathmandu Valley.  Nepal is among the least urbanized countries of Asia, but is projected 
to be one of the ten fastest urbanizing nations in the world over the 2018–2050 period2. Nepal’s rapid urban 
growth has resulted from multiple urban transitions (spatial, demographic and economic). While urbanization 
is gaining pace in various regions of Nepal, Kathmandu Valley represents the "hub" of urban development in the 
country27. Geographically, Kathmandu Valley is surrounded by the Himalayan mountains and lies within the 
Bagmati river watershed. The valley extends from 27°49′4″ to 27°31′42″ latitude and from 85°11′19″ to 85°33′57″ 
longitude, accounting for a total spatial extent of 721 km2. Administratively, Kathmandu Valley encloses the 
entire Bhaktapur and Kathmandu districts and approximately 50% of the Lalitpur district. The valley contains 
five municipal areas and several municipalities and rural municipalities (formerly named village development 
committees, or VDCs), Fig. 1. The current population in Kathmandu Valley is estimated  to be 3.3 million and 
is projected to reach 3.8 million by 203128.

Geological (e.g., earthquakes, landslides) and hydro-meteorological hazards (e.g., floods, droughts) continu-
ously threaten Nepal’s development gains. According to the Global Climate Risk Index29, Nepal was among the 
ten countries most affected by extreme weather events over the 2000–2019 period. In addition, Kathmandu 
Valley is considered to be the urban area that is most at risk from seismic activity, worldwide30. Some recent 
natural-hazard events have produced devastating losses in Nepal, underlining its high vulnerability. For example, 
the 2015 Gorkha Earthquake caused over USD 7 billion in economic losses, 9,000 deaths, and 22,300 injuries31. 

Figure 1.   Physical and administrative map of Kathmandu Valley.
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The earthquake also triggered several liquefaction events across Kathmandu Valley32. Two years later, the 2017 
monsoonal precipitation struck 80% of the Terai region and surrounding districts. The resulting flooding caused 
USD 584.7 million in damage, 160 deaths, and 45 injuries33,34. The intensity of hydro-metrological hazards is 
expected to increase in the future due to the impact of climate change. For instance, monsoonal precipitation for 
Nepal is projected to rise by 3–8% in the medium-term (2016–2045) and 9–14% in the long-term (2036–2065)35.

Hazard modelling.  We used two pre-existing global datasets to characterize flood hazard and liquefaction 
susceptibility in Kathmandu Valley. The flood maps (90 m resolution) and liquefaction map (1.2 km resolu-
tion) were resampled to 30 m using the nearest neighbor method36, to match the spatial resolution of SLEUTH 
outputs.

Flood hazard.  To represent flood hazard, we used the high-resolution Fathom-Global model24, which accounts 
for both fluvial (riverine) and pluvial (surface water) inundation. This model uses the Multi-Error-Removed 
Improved-Terrain (MERIT) digital elevation model37 and MERIT Hydro38 as topography and hydrography 
datasets, respectively. The modelling framework considers a 2D shallow-water formulation to explicitly sim-
ulate flood wave propagation and uses  a regionalized flood frequency analysis39 to estimate river discharge. 
The Fathom-Global model provides maps of flood extents and flood depths for multiple return periods (from 
1:5 year to 1:1000 year).

In this study, we characterized two cases of flooding occurrence. The first case  incorporates the undefended 
flood map with a 100-year return period (i.e., 1% probability of occurring in any given year) to represent today’s 
hazard condition. The 100-year return period map is the one most commonly used by decision-makers (e.g., to 
identify flood risk zones in the United States)40. The second flood-occurrence case reflects  a worst-case situation, 
approximately capturing the exacerbation of  flooding  due to climate change. We selected the undefended flood 
map for the 1000-year return period to represent this case. Note that urbanization effects on flood hazard (as a 
result of increased runoff during rainfall events) are not explicitly accounted for by the Fathom-Global model, 
and are therefore neglected in our analyses. Individual flood maps were combined (by taking the maximum depth 
from the individual maps) into aggregated hazard maps that represent fluvial-pluvial flooding for each return 
period, in line with the method of Tate et al.41. The combined-map flood hazard levels were then categorized 
according to ranges of water depth as none (0 m), medium (> 0–0.5 m), or high (> 0.5 m) (Fig. 2).

Figure 2.   Characterization of considered natural hazards (a) Fluvial-pluvial 100-year flood hazard map; (b) 
Fluvial-pluvial 1000-year flood map; (c) Liquefaction susceptibility map.
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Liquefaction susceptibility.  To represent liquefaction, we used a global liquefaction susceptibility map25. This 
dataset was created by adopting the geospatial prediction models for inland and coastal regions proposed by Zhu 
et al.42. These empirical models relate earthquake-induced ground-motion intensity measures (e.g., peak ground 
acceleration, or PGA) with geospatial parameters (i.e., 30 m averaged shear-wave velocity or VS30, rivers, ground 
water, precipitation, land mass) that contribute to liquefaction susceptibility. The models were calibrated on 27 
earthquake events and have demonstrated a reliable predictive capacity at high resolutions43. The map catego-
rizes liquefaction susceptibility into five classes: very low, low, moderate, high, and very high (Fig. 2). Very low 
susceptibility corresponds to locations with VS30 > 620 m/s44.

It is worth noting that liquefaction susceptibility does not equal liquefaction hazard. Liquefaction suscepti-
bility measures the degree to which a site may be potentially affected by liquefaction, based on the soil/geologic 
conditions and with no earthquake-specific information. Liquefaction hazard is usually defined as a combination 
of the triggering event (i.e., ground shaking from earthquakes with a specified return period) and susceptibility45, 
and is more consistent with our characterization of flooding. However, hazard-map ground-shaking intensities 
do not vary significantly across the relatively small area of Kathmandu Valley. For instance, according to the 
Global Earthquake Model (GEM) Global Mosaic of Hazard Modules46 (OpenQuake files available at https://​
github.​com/​nacke​rley/​indian-​subco​ntine​nt-​psha, last accessed October 2021), maximum variations across 
Kathmandu Valley are approximately 13% and 9% for PGA with 10% probability of exceedance in 50 years and 
PGA with 2% probability of exceedance in 50 years, respectively. For this reason, we considered liquefaction 
susceptibility instead of liquefaction hazard or, ultimately, seismic hazard.

Urban growth modelling with SLEUTH.  Substantial advances in remote sensing technologies and spa-
tial modelling have enabled the creation of worldwide spatial datasets on human settlements that can be used in 
natural-hazard risk modelling. These datasets are generally derived from satellite imagery and census data and 
vary in spatial resolution. For instance, the Global Human Settlement Layer (GHSL), produced by the European 
Joint Research Centre, is a global, fine-scale, and open dataset that depicts  built-up surfaces and population dis-
tributions for 1975, 1990, 2000, and 2014 epochs47. The potential of the GHSL for natural-hazard risk modelling 
and disaster risk reduction has been demonstrated within the Atlas of the Human Planet 2017: Global Exposure 
to Natural Hazards48, which reveals the changes of exposure to six natural hazards (earthquakes, volcanoes, 
tsunamis, floods, tropical cyclone winds, and sea-level surge) at continental and country levels. Other spatial 
datasets on human population distribution, including Landscan49, WorldPop50 or the High Resolution Settle-
ment Layer51, have been used for similar purposes and at various scales52–57.

Due to the availability of several land-use and land-cover (LULC) models, researchers have appropriate tools 
to make realistic future projections on land-use change and urban growth and investigate their various impacts 
(e.g., air pollution, soil degradation, food security)58. From many LULC modelling approaches identified in the 
literature (e.g., agent-based, artificial neural networks, cellular-automata, Markov chains)59, cellular-automata 
are among the most popular due to their simplicity, flexibility, and ability to integrate the spatial and temporal 
dimensions of urban growth60. In particular, SLEUTH is a mature cellular-automata model that uses historical 
maps to probabilistically determine future land-use. SLEUTH has been applied to simulate urban expansion 
in very heterogeneous areas at local, regional61–67 and global scale68. In addition, SLEUTH has been recently 
employed to assess future exposure to earthquakes in Jakarta, Metro Manila and Istanbul19 and future exposure to 
flooding in Helsinki69 and Shenzen70. LULC models have also been coupled with distinct modelling frameworks 
to identify other vulnerabilities (not related with natural-hazards occurrence) and suggest policies for tackling 
undesirable outcomes of urban sprawl development. Some examples include an urban growth scenario analysis 
to assess the impact of farmland preservation policies in Huangmei County, China71; the derivation of smart 
urban growth policy scenarios to mitigate the urban heat island effect in Brisbane, Australia72; and an urban 
growth scenario analysis to find optimal land-use strategies to improve ecosystem services (e.g., carbon stor-
age, water yield, nitrogen export, habitat quality, food supply) in the Atlanta Metropolitan area, United States73.

In this study, we modeled a business-as-usual scenario, which considers future urban expansion to be an 
extension of historical urban growth. Under this scenario, future urbanization in Kathmandu Valley is assumed 
to occur without restriction, apart from in some areas that impose environmental constraints (i.e., water bod-
ies, green areas, steep slopes). From a forward-looking risk perspective, the selected scenario represents the 
worst-case (i.e., most conservative, non-risk-informed) situation for investigating the consequences of coupling 
evolving exposure, natural hazards and vulnerability.

Data collection and processing.  SLEUTH is an acronym for the six inputs that the model requires in raster 
format: Slope, Land-use, Excluded areas, Urban extent, Transportation, and Hillshade. We obtained the slope 
map by calculating the percentage terrain slope from the Shuttle Radar Topography Mission (SRTM) 1 Arc-Sec-
ond Global (30 m resolution) digital elevation model (available at https://​earth​explo​rer.​usgs.​gov/, last accessed 
June 2021). Cells having slope values higher than 35% were prevented from becoming urbanized, according to 
observed land development in Kathmandu Valley and similar to previous studies74,75. We also derived the hill-
shade map from the SRTM 1 Arc-Second Global data. The hillshade map is only used to visualize the SLEUTH 
outputs, and it does not influence the urban growth calculations. Land-use inputs were not needed, because we 
only focused on estimating urban growth. We extracted the water bodies, the airport runway and small green 
areas from OpenStreetMap (available at https://​opens​treet​map.​org/, last accessed June 2021) to generate the 
excluded map (i.e., areas prohibited from urbanization).

The SLEUTH model calibration relies on at least four urban extents corresponding to different years (shown 
in Fig. 3), which are used as control points. For these inputs, we used the built-up areas of Kathmandu Valley in 
1975, 1990, 2000, and 2018 from the urban maps of the GHSL. The built-up areas reported by GHSL are "areas 

https://github.com/nackerley/indian-subcontinent-psha
https://github.com/nackerley/indian-subcontinent-psha
https://earthexplorer.usgs.gov/
https://openstreetmap.org/
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where buildings can be found"76, regardless of their permanency. This definition allows for the inclusion of 
informal settlements, slums, and other temporary settlements. The 1975–1990–2000 urban maps were obtained 
from the GHS-BUILT-R2018A dataset (30 m resolution)77, while the 2018 urban map was taken from the GHS-
BUILT-S2-R2020A dataset (10 m resolution)78. As the GHS-BUILT-S2-R2020A delineates the presence of built-
up areas in a probability grid, we binarized the map (i.e., converted the map to urban/non-urban classes) using 
the suggested probability threshold of 0.2 (i.e., land was deemed to be urban if the probability is equal or greater 
than 0.2, otherwise land was categorized as non-urban)79. Additionally, we modified the class of a few pixels 
for consistency with the excluded map (e.g., we relabelled pixels located in the airport runway as non-urban).

SLEUTH relies on at least two transportation maps corresponding to different periods (shown in Fig. 3). 
For these inputs, we used 2000 and 2018 road maps of Kathmandu Valley, which were generated as follows. We 
extracted the trunk, primary, secondary, and tertiary road classes of OpenStreetMap for the current year and 
then consulted high-resolution imagery from Google Earth to remove road segments not constructed by 2000 
and 2018. The changes were then digitized. We additionally used a road weighting scheme (i.e., weights for trunk, 
primary and secondary/tertiary roads were 100, 50, and 25 respectively) to reflect the varying degrees  to which 
different road classes attract urban growth in the SLEUTH algorithms; minor roads (e.g., secondary/tertiary) 
have a local effect on urbanization, while major roads (e.g., trunk) allow urbanization to occur further away 
from the road network. All data processing was conducted using the QGIS tool (available at https://​qgis.​org/).

Calibration and prediction.  SLEUTH uses the historical data input to calibrate a set of five coefficients (disper-
sion, breed, spread, slope resistance, and road gravity) that control the system’s behavior. All five coefficients are 
integers ranging from 0 to 100. The  magnitude of the coefficient values determines the extent to which each of 
four growth rules (spontaneous, new-spreading centers, edge, road-influenced) influence urban growth within 
the system. Additionally, a set of meta-level rules, named "self-modification" rules, respond to the overall growth 
rate and change the coefficient values during rapid or slow growth periods64. While some efforts (e.g., use of 
genetic algorithms) have been made to enhance the computational efficiency of SLEUTH model calibration, we 
employed the standard calibration process known as "brute force calibration". During this procedure, the values 
of the control coefficients are refined in three sequential phases (coarse, fine, final). Previous studies have used 
the Lee-Sallee statistic and the Optimal SLEUTH Metric (OSM)80 to determine the best-fit coefficients (i.e., 
those that produce a simulated map most closely resembling the control data) from calibration. In line with 
current practices, we employed the OSM metric to provide the most robust results. This metric is calculated as 
the product of seven statistics reported by SLEUTH (compare, population, edges, clusters, slope, X-mean, and 
Y-mean), each ranging from 0 to 1.

Figure 3.   Urban extent and Transportation input data for SLEUTH.

https://qgis.org/
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We resampled all the SLEUTH inputs to two spatial resolutions (60 m, 30 m), using the nearest neighbor 
method. The 60 m-resolution inputs were employed in the coarse calibration while the 30 m-resolution inputs 
were used in both the fine and the final calibration. During the coarse calibration, the five coefficients were set 
between 0 and 100, with a step value of 25. Based on these values, the model tried every possible permutation 
of the five coefficients (a total of 3,125)   in multiple runs. The three sets of best-fit coefficients (i.e., those with 
the highest OSM) from the coarse calibration were used to initiate the next sequences of permutations (a total 
of 4500) for the fine calibration, over a narrowed coefficient space and with a smaller step value. Similarly, the 
three best-fit coefficients from the fine calibration were used to begin the final calibration (2,500 permutations). 
The combination of best-fit coefficients from the final calibration phase was then used to run SLEUTH over the 
calibration period (1975–2018) and obtain updated coefficient values corresponding to the final year of model 
calibration. The updated coefficient values were averaged in a Monte Carlo process and the results were used 
to initiate urban growth forecasting to 2050. We used 100 Monte Carlo iterations for this process; average coef-
ficients do not vary significantly with more iterations.

The SLEUTH outputs consist of a series of annual probability-of-urbanization maps (30 m resolution), based 
on 100 Monte Carlo iterations (note that probabilities do not vary significantly with more iterations). As proposed 
by other studies19,62,63,70, we reclassified the probabilities into binary (i.e., urban/non-urban) outcomes using a 
probability-of-urbanization threshold of 50% to produce the final urbanization maps.

Validation.  To validate urban growth forecasting of the SLEUTH model, we conducted an accuracy assess-
ment of the predicted map for 2021, using two map comparison metrics: Ksimulation and its components (Ktransition, 
KTransloc)81, and quantity and allocation disagreements 82. A detailed description of the map comparison metrics 
is provided in the Appendix section. The validation was performed using the Map Comparison Kit tool83. We 
considered the observed map of 1975 (the earliest urban map) as the original map to compute Ksimulation and its 
components. In addition, we created the observed map of 2021 (against which the predicted map is compared) 
in the QGIS tool, by appropriately modifying the 2014 urban map (not used in the SLEUTH model) from 
the GHS-BUILT-R2018A dataset. The label (i.e., “urban/non-urban”) of each pixel in GHS-BUILT-R2018A was 
verified according to the presence of buildings in current-day high-resolution imagery from Google Earth. Some 
pixel labels were also edited for consistency with the excluded map.

Social vulnerability assessment with the SoVI.  Social vulnerability and resilience have emerged as 
core concepts to describe the capacity of social systems to prepare, absorb, adapt and recover from the effects of 
natural hazards22,84,85. The severity of these effects can be disproportionally larger for some population groups 
(e.g., certain communities within a region). In addition, the underlying socio-economic and demographic char-
acteristics (e.g., gender, age, income, access to education and health services) of a community influence their 
social vulnerability86. However, traditional risk-quantification methods often do not assess people vulnerability 
or assume a homogeneous vulnerability of the entire population87. The inclusion of social vulnerability in nat-
ural-hazard risk assessment can be beneficial for policymakers in developing tailored risk reduction strategies, 
particularly targeting the most vulnerable and marginalized.

Different methods can be employed to quantify social vulnerability to natural hazards. The most frequently 
used methods are based on composite indicators, such as the Human Development Index88, the Prevalent Vulner-
ability Index89, or the Social Vulnerability Index22. These indicators are quantitative metrics that enable places to 
be compared and their corresponding vulnerability trajectories to be tracked. Additionally, these indicators are 
relatively easy to interpret for non-experts. The aforementioned attributes make composite indicators attractive 
for policymaking and public risk communication90. For instance, the Global Social Vulnerability Map91 released 
by GEM uses a composite index to explain why some countries will experience adverse impacts from earthquakes 
differently. The social vulnerability index (SoVI) remains the leading conceptual framework to assess social 
vulnerability84,92. This method was formulated to evaluate the social vulnerability of United States’ counties to 
natural hazards. In its current configuration, the SoVI is calculated based on 29 socio-economic variables that 
are placed into a principal component analysis to derive a smaller set of statistically optimized components (e.g., 
wealth, race and social status, age).

Most resilience and social vulnerability frameworks were established in industrialized, high-income nations, 
which makes their application in other contexts (e.g., low-income countries) challenging or even infeasible. This 
has led many researchers to modify the standard conceptual frameworks to account for the specific characteristics 
of their study regions. The main modifications include adding new dimensions of social vulnerability or remov-
ing inappropriate ones, adapting the variables selected to represent dimensions, and placing various weights on 
the different dimensions84. In this way, the SoVI methodology has been modified by many scholars and applied 
in several geographical and social contexts23,93–99.

Selection of variables and indicators.  SoVI uses distinct variables to represent relevant social vulnerability 
indicators (or dimensions). We employed 11 variables collected from the most recent National Population and 
Housing Census 201128. Our analysis used Nepal’s former administrative division units (i.e., municipalities and 
VDCs), given the census date. The selected variables contain demographic and socio-economic attributes of 
Kathmandu Valley’s population that, according to the literature, influence their social vulnerability to natural 
hazards.  The variables were placed into one of five indicators—Population, Education, Economy, Habitat, and 
Infrastructure—and we calculated an average vulnerability score per indicator, following the approach proposed 
by Rodriquez et al.23. (Thus, we did not perform a principal component analysis given the narrow set of selected 
variables).
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Table 1 provides the list of variables and indicators used to construct the SoVI for Kathmandu Valley. The 
Population indicator is composed of three variables. Young children (under 14 years old), older adults (over 
60 years old), and individuals with physical or mental disabilities are commonly regarded as the most vulnerable 
members of the population. In addition, women are seen as more vulnerable than men due to their sector-specific 
employment, lower salaries and family care responsibilities22. The Education indicator is composed of a single 
variable. Education leads to a better-informed population and a higher level of preparedness for disasters. In 
contrast,  illiterate populations have more difficulties understanding warning information and accessing recov-
ery information22. The Economy indicator is composed of three variables. More wealth increases possibilities to 
absorb and recover from losses, through insurance, social safety nets, and government assistance22. As the census 
does not provide information on household income or consumption, we selected access to mobile/telephone 
services, mass media communication (TV, radio, internet) and means of transportation (motorcycle, cycle, 
others) as proxies for wealth. The lack of access to these services/assets indicates lower economic well-being. 
The Habitat indicator is composed of two variables. Urban areas with high population density can be more chal-
lenging to evacuate after a disaster. Also, households with large families often have limited resources and must 
balance work with family responsibilities22. Finally, the Infrastructure indicator is composed of two variables. 
Access to critical facilities can enhance emergency response after a disaster. In contrast, a lack of access to basic 
services, such as sanitary facilities and electricity, may compromise health and safety during disaster recovery.

Two previous applications of the SoVI in Nepal97,99 and one application in Nablus (Palestine)23 inspired our 
selection of variables and indicators. Note that both previous SoVI studies of Nepal differ significantly to our work 
in terms of scale; we conducted a detailed regional assessment (in Kathmandu Valley), whereas Gautam99 and 
Aksha et al.97 examined social vulnerability on a more coarse, national scale. We employed most variables used 
by Gautam99, excluding only two (i.e., percentage of female-headed households with no shared responsibility, 
population change 2000–2010) that describe similar information to other variables (i.e., percentage of women, 
population density). We used only a small sub-group of the variables leveraged in the study of Aksha et al.97. 
We excluded some of their variables on house construction materials (e.g., percentage of households without 
reinforced cement concrete foundation, percentage of population living in houses with low-quality external 
walls), which are more appropriate for assessing physical vulnerability. We also neglected some social dimensions 
(e.g., Ethnicity, Migration, Renters), given the more local context of our study, and characterized others (e.g., 
Education, Economy) with less variables. Due to limited data availability, we did not include three indicators 
(i.e., Health, Governance and Institutional Capacity, Awareness) proposed by Rodriquez et al.23 in our analysis.

Step‑by‑step calculation of the social vulnerability index.  The SoVI is a relative measure of the social vulner-
ability of one spatial unit compared to others. The SoVI of each municipality/village was calculated according to 
the following four steps.

Step 1: Each variable ( Vm ) value was converted to a normalized version ( NVm ) expressed in a standard scale, 
where 0 and 1 indicate the least and the most vulnerable values, respectively. The normalization procedure 
consisted of comparing each variable to the corresponding minimum ( minm ) and maximum values ( maxm ) of 
the total study area, as follows:

Step 2: The score per indicator ( In ) was computed as the arithmetic mean of the corresponding NVm values.
Step 3: The overall SoVI was calculated by summing each In , i.e.:

(1)NVm =
Vm −minm

maxm −minm

(2)SoVI = I1 + I2 + I3 + I4 + I5

Table 1.   Indicators and variables of the Social Vulnerability (SoVI) Index.

Indicator Variable

No. Name No. Description

1 Population

1 Percentage of people under age 14 and over age 60

2 Percentage of people with physical or mental disability

3 Percentage of women

2 Education 4 Percentage of illiterate population aged 5 and older

3 Economy

5 Percentage of households with no mobile phone or telephone service

6 Percentage of households with no access to at least one means of mass media communication (TV, radio, 
internet)

7 Percentage of households with no access to at least one means of transportation (motorcycle, cycle, others)

4 Habitat
8 Population density (hab/km2)

9 Average number of people per household

5 Infrastructure
10 Percentage of households with no toilet facility

11 Percentage of households with no electricity
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This implies that an equal weighting for all indicators was assumed, in line with typical applications of the 
SoVI90. In addition, we performed a sensitivity analysis that showed no significant variations in the results 
(reported in Table 4) for alternative weighting schemes.

Step 4: The SoVI scores were classified into five categories (very low, low, moderate, high, and very high) using 
a quantile classification (i.e., each category contains an equal number of values).

Results and discussion
Urban growth calculations.  Changes in built‑up areas over time.  Table 2 summarizes changes in Kath-
mandu Valley’s built-up areas from the past (1975) to the present (2018) and future (classified in three epochs 
up to 2050). It can be observed that the built-up areas in Kathmandu Valley have dramatically increased from 41 
km2 to 177 km2 between 1975 and 2018. This rapid urban growth is in good agreement with  land-use changes 
estimated by the local authorities100, which indicates that the historical urban maps are reasonably accurate. 
Moreover, built-up areas are predicted to reach 352 km2 by 2050, almost doubling their current size and covering 
about 50% of Kathmandu Valley’s land area. Additionally, the pace of urbanization observed from 2000 to 2018 
(annual growth rate of 6.9%) will remain intense until 2030 (annual growth rate of 4.5%). After 2030, urban ex-
pansion will gradually slow down, reflecting the typical S-curve growth of urbanization. The spatial distribution 
of existing built-up areas until 2018 and predicted built-up areas by 2050 are shown in Fig. 4.

Calibration and validation of SLEUTH.  The set of best-fit coefficients obtained during the calibration stage (at 
the start year of model calibration) was Diffusion = 22, Breed = 90, Spread = 27, Slope = 68, Road-gravity = 15. 
The goodness-of-fit statistics for this combination were compare = 0.88, population = 0.95, edges = 0.97, clus-
ters = 0.99, slope = 0.99, X-mean = 0.93, and Y-mean = 0.83. The product of the previous seven metrics results in 
an OSM of 0.62, which indicates a good performance of SLEUTH in capturing the urbanization trends in the 

Table 2.   Changes in Kathmandu Valley’s built-up areas over time. Annual growth rate =
(

Aj

Ai

)1/�t
− 1. 

Ai = built up areas at the starting year , Aj = built up areas at the end year , �t = number of years19.

Name 1975 1990 2000 2018 2030 2040 2050

Built-up area (km2) 41 46 53 177 301 342 352

Urban land percentage (%) 5.7 6.4 7.4 24.6 41.7 47.4 48.8

Annual growth rate (%) 0.8 1.4 6.9 4.5 1.3 0.3

Figure 4.   Existing built-up areas in Kathmandu Valley (as of 2018) and projected built-up areas by 2050.
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study area. This value is higher than that reported in other applications of SLEUTH for urban areas in the United 
States (0.25)61, Italy (0.40)65, China (0.48)63, and Iran (0.49)66. The high value of Breed shows that the emergence 
of new-spreading centers has been the major  source of urban growth in Kathmandu Valley over the past dec-
ades. The lower values of Diffusion, Spread and Road-gravity show less participation of spontaneous growth, 
edge growth and road-influenced growth in the dynamics of urban expansion. Moreover, the high value of Slope 
reflects that topography has played a key role in controlling urbanization across the valley.

The observed and predicted maps of 2021 used for the SLEUTH validation exercise are shown in Fig. 5. The 
Ksimulation was calculated as 0.62, which offers an acceptable level of total accuracy. To provide some context, a 
previous study that assessed the performance of four LULC models (including SLEUTH) in simulating future 
urban growth in Charlotte, North Carolina101 reported Ksimulation values below 0.51, while an application of 
SLEUTH for Gorizia, Italy67 produced Ksimulation values ranging between 0.71 and 0.91. We obtained a KTransition 
value of 0.83 and a KTransLoc value of 0.74 in this study, which indicate that the amount of urban area was slightly 
better predicted than its location across the landscape. This conclusion is also supported by the values of quantity 
disagreement and allocation disagreement, which were 5.1% and 7.3% respectively. Overall, the predicted map 
was found to overestimate the amount of urban area by 22%. This overestimation, however, does not depend 
solely on the performance of SLEUTH but is highly influenced by the seed map used to initiate the prediction. 
The 2018 seed urban map accounts for 177 km2 of urban area, which is larger than the 165 km2 depicted in the 
2021 observed map. This means that at least 7% of the 22% overestimation can be attributed to inaccuracies 
with the input data. Although the best available data on Kathmandu Valley’s urban cover was used, these issues 
underline the importance of selecting accurate data inputs when simulating urban growth. Furthermore, the 
reasonably high value of OSM suggests that the model can simulate future urban growth with some confidence.

Social vulnerability calculations.  We used socio-demographic data to calculate the SoVI in 104 munici-
palities/villages of Kathmandu Valley. Table 3 presents an overview of the values obtained for the 11 variables 
used in the analysis. We note that dispersion is considerable in some variables (e.g., 8: population density, 10: 
percentage of households with no toilet facility, 11: percentage of households with no electricity). These varia-
tions suggest that even though Kathmandu Valley is perceived as the most developed region in Nepal, inequali-
ties persist at local levels. Figure 6 displays the SoVI scores for each municipality/village based on percentile 

Figure 5.   (a) Observed; and (b) Predicted urbanization maps of Kathmandu Valley for 2021.

Table 3.   Descriptive statistics of variables used in the social vulnerability analysis.

Indicator Variable no. Mean St. dev MIN MAX Average In

Population

1 33.0 3.5 14.2 43.9 0.48

2 1.3 0.8 0.5 6.3

3 50.4 1.3 44.4 53.2

Education 4 21.9 6.9 10.8 48.9 0.29

Economy

5 17.0 8.4 6.6 47.7 0.40

6 23.3 9.6 6.6 53.3

7 73.7 8.8 41.6 97.4

Habitat
8 3055.4 4192.5 72.3 23,050.9 0.34

9 4.4 0.3 3.4 5.2

Infrastructure
10 8.9 14.5 0.0 73.0 0.13

11 3.4 2.9 0.9 19.1
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ranks. As shown in the map, the level of social vulnerability is not uniform. Most locations in the central, less 
elevated part of the valley have very low or low vulnerability. In contrast, many areas on the borders (especially 
the southern and north-eastern parts) have very high or high vulnerability. Figure 7 illustrates the social vul-
nerability per indicator (i.e., the In value computed in Step 2 from SoVI calculation). Population, Economy and 
Habitat are the vulnerability indicators that exhibit the lowest variability, with coefficients of variation of 20%, 

Figure 6.   SoVI map.

Figure 7.   Social vulnerability score per indicator ( In) : (a) Population; (b) Education; (c) Economy; (d) Habitat; 
and (e) Infrastructure.
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36% and 24%, respectively. Education and Infrastructure are the most variable vulnerability indicators, with 
coefficients of variation of 62% and 132%. These In values allow us to identify the main drivers of vulnerability 
for each municipality/village in the region.

Interactions between urban growth, hazard, and social vulnerability.  The maps of hazards, urban 
growth, and social vulnerability were overlaid to investigate their spatial relationships. The analyses focused on 
projected risk-related trends between the present (2018) and the future (2050). We assumed that current levels of 
social vulnerability in villages and municipalities will remain unchanged in the future, given the lack of available 
data to make confident projections. At the same time, past related research suggests that social vulnerability is 
not expected to vary significantly over time. For instance, Cutter and Finch102 reported that 85% of United States’ 
counties showed no statistically significant change in social vulnerability between 1960 and 2000, and only 3% 
experienced a statistically significant and clear (strong) increase/decrease in vulnerability. Zhou et al.103 indi-
cated that only 18% of China’s counties exhibited a significant increase/decrease in social vulnerability between 
1980 and 2010. Frigerio et al.104 found that the percentage of Italian municipalities per social vulnerability class 
(very low, low, medium, high, very high) showed only small variations (from 2.9% to 8.8%) between 1991 and 
2011.

Figure 8a and Table 4 (first row) summarize changes in built-up areas, disaggregated on the basis of SoVI 
category. Over the 2018–2050 period, built-up areas in villages with very low, low, and moderate vulnerability 
will increase from 145 km2 (82% of the total built-up area) to 250 km2 (71% of the total built-up area). Over the 
same period, built-up areas in villages with high and very high vulnerability will increase from 32 km2 (18% of 
the total built-up area) to 102 km2 (29% of the total built-up area). While the largest absolute increase in built-up 
areas (i.e., 105 km2) is observed in the less vulnerable (i.e., very low, low, moderate) villages, the contribution of 
the most vulnerable (i.e., high, very high) villages to the urban structure of Kathmandu Valley will increase by 
11%. In addition, urbanization will occur more rapidly in places with higher vulnerability. For instance, from 
2018 to 2030, villages with very high vulnerability will experience an annual growth rate of 7.6%, almost three 
times more than the annual growth rate of 2.7% for villages with very low vulnerability. The relative difference 

Figure 8.   Evolution in built-up areas disaggregated by (a) SoVI category; (b) 100-year flood hazard depth 
range; (c) 1000-year flood hazard depth range; and (d) Liquefaction susceptibility level.
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in growth rate is projected to be even more significant over the subsequent 2030–2040 and 2040–2050 periods 
(see Table 4).

Figure 8b and Table 4 (second row) provide the changes in built-up areas disaggregated by 100-year flood 
hazard depth range. By 2050, built-up areas exposed to each 100-year flood-depth range will nearly double their 
current size. Over the 2018–2050 period, built-up areas exposed to the lowest flood depth (i.e., non-inundated 
areas) will expand from 140 km2 (79% of total built-up area) to 269 km2 (77% of total built-up area). Also, 
built-up areas exposed to moderate and high 100-year flood-depth ranges (i.e., inundated areas) will increase 
from 38 km2 (21% of total built-up area) to 83 km2 (23% of total built-up area). Figure 8 (panel c) and Table 4 
(third row) present the changes in built-up areas disaggregated by 1000-year flood hazard depth range. Over the 
2018–2050 period, built-up areas in non-inundated regions will increase from 127 km2 (72% of total built-up 
area) to 245 km2 (70% of total built-up area). This means that built-up areas in inundated regions will increase 
from 49 km2 (28% of total built-up area) to 108 km2 (30% of total built-up area). Therefore by 2050, there is 
projected to be 25 km2 more built-up area in the inundated region of the 1000-year flood hazard map than in 
that of the 100-year hazard map. The projected annual urban growth rates for both flood hazard levels do not 
show significant differences.

Figure 8d and Table 4 (fourth row) provide changes in built-up areas per liquefaction susceptibility level. It is 
noticeable that urban growth will occur almost exclusively in areas with low levels of liquefaction susceptibility. 
Over the 2018–2050 period, built-up areas in locations with very low and low susceptibility will increase from 
143 km2 (81% of total built-up area) to 295 km2 (87% of total built-up area). Also, built-up areas in locations 
with moderate, high, and very high susceptibility will only increase from 34 km2 (19% of total built-up area) 
to 47 km2 (13% of total built-up area). These trends can be explained by the fact that the highest liquefaction 
susceptibility is predominantly associated with the central part of the valley, where there is minimum land avail-
able for urbanization.

Conclusions
This paper has examined spatial relationships between natural hazards, urban growth, and social vulnerability in 
Kathmandu Valley, Nepal. Two widely used methods, the cellular-automata SLEUTH model and the composite 
Social Vulnerability Index (SoVI), have been implemented to simulate future urban expansion and quantify social 
vulnerability, respectively. In addition, two pre-existing datasets have been employed to characterize the extent 
and severity of flooding and liquefaction in the region. The combination of urban growth estimates with hazard 
values and social vulnerability indicators provide evidence to support policymaking in disaster risk management.

Results show that Kathmandu Valley will continue expanding fast and intensively until 2030 and at a decreased 
pace until 2050. By the mid-century, the total extent of built-up areas will reach 352 km2, nearly doubling their 
current size and covering half the entire valley. In addition, 29% of the total built-up area in 2050 will be located 
in the most vulnerable villages, which is 11% more than the present proportion of urbanization associated with 

Table 4.   Changes in built-up areas disaggregated by SoVI category, flood hazard depth range, and liquefaction 
susceptibility level. Annual growth rate =

(

Aj

Ai

)1/�t
− 1. Ai = built up areas at the starting year , 

Aj = built up areas at the end year ,  �t = number of years19.

Vulnerability/hazard level

Built-up area (km2) Share of built-up area (%) Annual growth rate (%)

2018 2030 2040 2050 2018 2030 2040 2050 2018–2030 2030–2040 2040–2050

SoVI

Very low 85 116 121 122 47.7 38.7 35.4 34.6 2.7 0.4 0.1

Low 38 66 73 74 21.6 21.9 21.2 21.1 4.6 1.0 0.2

Moderate 22 44 52 54 12.3 14.6 15.3 15.3 6.0 1.7 0.3

High 21 46 57 60 11.6 15.3 16.7 17.0 7.0 2.2 0.5

Very high 12 29 39 42 6.8 9.5 11.4 11.9 7.6 3.1 0.7

100-year flood hazard

None (0 m) 140 233 262 269 78.8 77.4 76.7 76.4 4.4 1.2 0.2

Medium (> 0–0.5 m) 23 43 51 53 12.9 14.3 14.8 15.0 5.4 1.6 0.4

High (> 0.5 m) 15 25 29 30 8.3 8.3 8.5 8.6 4.5 1.5 0.5

1000-year flood hazard

None (0 m) 127 212 239 245 71.9 70.5 69.8 69.5 4.3 1.2 0.2

Medium (> 0–0.5 m) 28 53 62 65 16.0 17.8 18.2 18.3 5.4 1.5 0.4

High (> 0.5 m) 21 35 41 43 12.1 11.8 12.0 12.2 4.3 1.5 0.5

Liquefaction susceptibility

Very low 69 145 175 183 39.0 48.2 51.3 52.0 6.4 1.9 0.4

Low 74 111 120 122 42.0 36.9 35.1 34.6 3.4 0.8 0.2

Moderate 3 5 6 6 1.7 1.7 1.7 1.7 4.3 1.2 0.2

High 30 38 40 40 16.7 12.7 11.6 11.4 2.2 0.3 0.1

Very High 0.9 1 1 1 0.5 0.4 0.4 0.4 2.7 0.1 0.0
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these areas. Moreover, for a 100-year flood hazard, 83 km2 of the total urban area in 2050 will be distributed 
in potentially inundated zones, which is twice the current amount. For a more severe 1000-year flood hazard, 
the total built-up area flooded regions will reach 108 km2 by 2050. Furthermore, built-up areas susceptible to 
liquefaction will total 47 km2 by 2050, 13 km2 more than their current size.

The  notable increase in built-up areas projected to occur in the most vulnerable and hazardous regions 
of Kathmandu Valley emphasizes the critical importance of policymaking  for shaping a sustainable future. 
The enormous land available for urbanization suggests that land-use regulations can effectively control future 
exposure to natural hazards and limit potential disaster losses. For instance, urban development should be pre-
vented or tightly constrained in high-hazard areas, while new urbanization and relocation should be promoted 
in low-hazard zones. At the same time, it is interesting to note that  significant future expansion is predicted to 
take place away from the most hazardous locations of Kathmandu Valley: 129 km2 and 162 km2 of new urban 
area in 2050 will be respectively distributed in potentially non-inundated (for a 100-year flood hazard) and 
non-liquefiable areas. This spatial trend between natural hazards and urban expansion is not due to an implicit 
feature of the urban growth model used in this study. (One could even expect the opposite trend, since SLEUTH’s 
transition rules consider higher likelihood of urbanization for low-slope land that is indirectly related with high 
liquefaction susceptibility and high flood hazard.) Rather, the prediction of large future expansion away from 
hazardous areas is driven by the constraints of past planning decisions, which have already urbanized most land 
in the central (and most hazardous) part of the valley. In addition to encouraging risk-sensitive land-use plan-
ning, recognizing vulnerable groups and identifying the main drivers of social vulnerability can assist decision-
makers in designing individual soft (e.g., insurance) and hard policies (e.g., retrofitting schemes, building-code 
enhancement) for disaster risk reduction.

Finally, while this paper focuses on the interactions of urban growth with flooding and liquefaction in Kath-
mandu Valley, similar analyses can be conducted in other geographical regions to assess the impact of different 
natural hazards (e.g., landslides, wildfire) on future exposure and its spatial relationship with vulnerability. More-
over, updated census information and data improvements can be employed to adjust the estimations of social 
vulnerability used in this study and even to produce future projections of social vulnerability. While previous 
research suggests that social vulnerability is not expected to vary significantly over a relatively short timeframe 
(such as the one considered in this study), forecasting social vulnerability for disaster risk assessments remains 
a major challenge. Potential changes in social vulnerability could occur gradually (e.g., influenced by popula-
tion trends, such as demographic skewing toward the elderly or very young) or almost instantaneously (e.g., in 
response to natural-hazard events), and can affect the number of casualties, the loss or disruption sustained, and 
a community’s subsequent recovery time14. In addition to the valuable insights provided by social vulnerability 
analysis, the inclusion of physical vulnerability in the calculations is required to quantify the extent of losses 
sustained by built structures and more holistically measure the effectiveness of risk-reduction strategies. Further 
improvements can be made to consider the effects of urbanization on flood hazard (i.e., increased runoff during 
rainfall events), which were not accounted for in the hazard maps used in this study. Lastly, note that the results 
presented here are estimated assuming a business-as-usual scenario, which considers future urban expansion to 
be an extension of historical urban growth. The inclusion of environmental considerations (e.g., preventing forest 
area from future urbanization), plans for infrastructure development (e.g., new roads), or strategies for land-use 
management (e.g., zoning plans) in the analysis can result in alternative future urban growth pathways. Future 
research should focus on exploring these alternative scenarios and possibly examine the feasibility of incorporat-
ing a two-way feedback loop approach that would allow the risk associated with one urban scenario to be used to 
constrain more risk-informed urban growth pathways. Some attempts towards this aim have already been made 
in the literature105, but for more simplified urban growth scenarios. Moreover, despite the numerous advantages 
of cellular-automata models for urban growth modelling, there are also some drawbacks. The main limitations 
are the lack of a clear theoretical link between the transition rules and the actual agents of decision-making, and 
the models’ scale dependency (i.e., results can be sensitive to cell size and neighborhood configuration)59. Some 
current challenges for urban cellular-automata models include accounting for the multi-dimensional processes of 
urban change (e.g., urban regeneration, densification and gentrification, vertical urban growth), and benefitting 
from emergent sources of big data to calibrate/validate models and capture the role of individual human decision 
behaviour106. Integrating cellular-automata models with other techniques (e.g., multi-agent systems, Markov-
Chain algorithms, regression models) can help to provide more robust information for informed urban planning.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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