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Analysis of the accuracy of two programs widely-used for computing ro-vibrational spectra of diatomic
molecules, namely Duo and Level, is presented. Using model systems for which analytic results are available
it is shown that compared to Lever, Duo gives similar or usually higher accuracy for line intensities, and is
accurate for calculations of bound state energies and corresponding wavefunctions. Furthermore, Duo provides
matrix elements accurate to about 10~4~1073% relative to the analytic values, which is sufficient for developing
of accurate methods for experimental determination of some macroscopic gas features, such as pressure,
concentration, temperature, and so on; this level of accuracy can only be achieved with LeveL by significantly
increasing the number of grid points in the calculation.

1. Introduction

Spectroscopic measurements of transition frequencies (line posi-
tions) of gaseous molecules can provide, in favourable conditions, some
of the most accurate measurements in the whole of science, with
relative uncertainties as low as a few parts in 10712, Even leaving
aside such extreme accuracy, standard laboratory set-ups can routinely
provide line positions of rotation-vibrational lines in the infrared (IR),
microwave and optical region with relative uncertainties of a few parts
in 1072, a level of accuracy that at present can be matched by ab initio
theory only for diatomic molecules with two [1] or possibly three [2]
electrons.

The situation is very different for line intensities, for which the
level of accuracy achievable by both experiments and theory is much
lower, typically in the range 1%-20%. Nevertheless, over the past
twenty years or so it has become possible in some cases to obtain
line intensities with an accuracy better than 1% [3]. Such as accu-
racy is required for several applications including monitoring of the
Earth’s atmosphere [4] and might be necessary for the analysis of
the atmospheres of the exoplanets. Very recently agreement between
experiment and theory for some CO, lines to a level better than 0.01%
has been reported for the first time [5]. Very accurate line intensity
determination has a number of potential applications in metrology,
for example for new standards of temperature [6], pressure [7] and
isotopic composition [8], although these may requires accuracies one
or even two orders of magnitude higher than presently possible.

For calculations with sub-percent accuracy it has generally been
assumed that the existing variational nuclear motion programs used to
solve the Schrodinger equation for the rotation-vibration line positions
and intensities, such as [9], can compute line intensities to better than
0.1% accuracy. However, if we are aiming accuracies of 0.01% or even
0.001% for experiment and theory, the accuracy of the calculation
for a given potential energy surface (PES) and dipole moment surface
(DMS) has to be better than these thresholds. Only in this case will the
final accuracy of the calculations be determined by the accuracy of the
underlying PES and DMS, and unaffected by the nuclear motion cal-
culations. In such situations tests of the accuracy of existing programs
becomes necessary. Exactly solvable problems provide a natural basis
for testing the accuracy achievable in practical computations.

In this paper we consider diatomic molecules; there are two rea-
sons for this. Firstly, the analysis of exactly solvable one-dimensional
problems is much simpler, than the ones for polyatomic molecules. Sec-
ondly, such one-dimensional models can closely resemble real
molecules, such as for example CO; the CO molecule will be used in
metrological studies, such as the studies of the pressure standards [10,
11].

We present a careful analysis of the computational accuracy of
two diatomic program packages — the recently developed program
Duo [12], and the more mature code LeveL (version 16) [13]; both of
these packages are widely used for computing spectra and spectroscopic
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features of diatomic molecules. Indeed Lever has been used to build a
high accuracy model for H, [14]. Our analysis was performed using
three simple cases: (i) a quantum harmonic oscillator system; (ii) an
artificial Morse oscillator quantum system; and (iii) CO represented as
Morse oscillator. We call a system “artificial” if the parameters are not
based on those for an actual molecule and is considered just a simple
benchmark quantum problem, which can be solved analytically.

The intensity of an absorption line for a multipole transition opera-
tor depends on matrix elements of the form

n>, ¢))

where m, n are vibrational quantum numbers of the system, / is an
integer, and r — r, is the displacement from equilibrium separation

(r,). The transition intensity is proportional to the squared absolute
2
with / = 1 for an electric

Mr(ézl = <m |(r - rc)l

value of the matrix element: I ~ ‘M,(,f,l

dipole transition and / = 2 for an electric quadrupole, which is why
the accuracy of such matrix element calculations is important. Indeed
it has been established that particular care is needed when computing
the intensity of high overtones bands [15,16].

We show that for the three test cases listed above Duo gives similar
or even higher accuracy for transition intensities and corresponding
matrix elements than Lever, and a more than satisfactory accuracy of
calculations for bound state energies and corresponding wavefunctions.
This paper is organised as follows. In the next section we briefly discuss
the differences between the two codes considered here. Section 3
describes the analytic basis for calculations of bound state energies,
wavefunctions and matrix elements for the three quantum systems
considered. In Section 4 we perform a careful comparison of analytic re-
sults with the corresponding values computed with Duo and Lever, and
with the experimental values when possible. The Section 5 summarizes
our findings and concludes the paper.

2. General comparison of Duo and LeveL

LeveL is a widely-used program with a long and distinguished his-
tory, and one might wonder why there was a need for a new program
for the spectroscopy of diatomic molecules. It is therefore perhaps
worthwhile to spend a few words comparing some general differences
between LeveL [13] and Duo [12].

In terms of functionalities, the main difference between the two
programs is that LeveL is designed for computing rotational-vibrational
levels originating from isolated spin-singlet electronic states, while Duo
can deal with virtually any situation. Lever is written with a focus on
the usual ! Z* electronic terms, and it cannot deal with interactions
between different electronic states at all; as a result, LeveL is usually in-
adequate for describing the spectra of open-shell molecules. Conversely,
Duo is a very general program which allows for the inclusion many
kinds of couplings between different electronic terms [17] including
recently hyperfine interactions [18], and therefore can be used to treat
all types of diatomic molecules. Duo also implements rather sophisti-
cated strategies to fit curves (energy curves and coupling curves) to
experimental data, which LeveL does via an auxiliary program Drot-
Fir [19]. Lever can be used to treat long-lived, quasibound states, see
Doss et al. [20] for example; Duo has also been adapted to treat near-
dissociation continuum problems including quasibound states [21].
Duo has also been adapted to simulate bound-free (photodissociation)
spectra [22] and has been recently extended to compute quadrupole
transition intensities [23].

Next, we note that LeveL is written in FORTRAN77, while Duo uses
the much more modern Fortran2003. This fact may be considered irrel-
evant from the point of view of the final user, but from a developers’
point of view Duo is written in a way that reflects modern programming
best practices and, it is hoped, this fact makes Duo easier to read,
maintain and extend. Another technical difference is that, although
both programs use text-based input files, LeveL uses an old-fashioned
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column-based format, while Duo a more modern and user-friendly
one. All calculations were performed using standard double precision
arithmetic within the Intel Fortran compiler of version 19.1.3.304 using
the Intel Maths Kernel Library (MKL) on a workstation with an Intel
Xeon E5-4640 processor running CentOS Linux 7.

Importantly for the comparisons of this paper, LeveL and Duo are
based on different algorithms for solving the one-dimensional
Schrédinger equation, namely Numerov’s method and the sinc discrete
variable representation (DVR) method. Both algorithms have their pros
and cons, but the basic point, as demonstrated below, is that Duo’s
algorithm provides much faster convergence than Lever’s. We discuss
these difference in more detail in the next subsection.

2.1. Numerical method used for the vibrational Schrodinger equation

LeveL uses Numerov’s method, which has a long and distinguished
history in solving the one-dimensional Schrodinger equation, while Duo
is based on the sinc DVR approach. A useful general discussion which
introduces both the Numerov and sinc DVR approaches in a common
theoretical framework can be found in Refs. [24,25]. In the following
we only make a few remarks without any aim at completeness. The
Numerov method takes its name from the Russian astronomer Boris
Numerov, who introduced it in the 1920s for astronomical calcula-
tions [26,27]. Specifically, Numerov’s method is a convenient way to
discretise a second-order ordinary differential equations (ODEs) of the
form y”(x) = f(x,y), i.e. when the first-derivative term is not present.

The Numerov formula is a three-point recurrence relation which,
given the value of y at two adjacent points, predicts a value for y at the
successive (or preceding) grid point. The Schrodinger equation can be
written in the form

w"'(x0) = fw(x), with f(x)= % [V(x) - El, (2)

meaning that the Numerov method can be used to propagate the value
of w(x) from two initial values. Because the value of the energy E is
unknown, for solving the Schrédinger equation the Numerov method
has to be accompanied by a strategy to find E. This often consists of a
so-called “shooting” approach: an initial value for E is guessed, and the
function w(x) is computed for all grid points; then it is checked if the
guessed value of E is too high or too low, and a new, improved value
of E is generated, and so on. One particularly efficient strategy was
introduced in 1961 by Cooley [28] and then implemented in 1963 by
Cashion [29], so that the whole method is sometimes called Numerov-
Cooley or Numerov-Cooley-Cashion. In the same year Cashion and
Zare produced a document for internal use at the Lawrence Berkeley
National Laboratory, reporting not only a description of the method
but also the full listing of the Fortran code of the program [30]. This
program can be considered as the direct ancestor of today’s version
of Level, which is also based on the Numerov-Cooley method. One
advantage of the Numerov-Cooley method is that it requires very little
memory, which was probably a very important consideration in those
early years. The calculation of each eigenvalue/eigenvector pair can
be computed independently and the amount of memory needed is,
for a grid with N points, of the order of N units of floating-point
storage (typically 4 or 8 bytes). If one recomputes the value of the
potential whenever necessary without storing it in memory the memory
requirements can be reduced much further, down to a handful of bytes.
The error in the computed eigenvalues in Numerov-based approaches
is O(h*) (h being the grid step size), which is usually acceptably fast,
both in terms of computational effort and for containing the numerical
round-off error. To expand on this last point, in the Numerov formula
there are factors of the type y; — y;,_;, and for 4 — 0 the calculation of
these is subject to greater and greater round-off error. A more detailed
analysis shows that the round-off error increases as 42; as a result, when
working with finite precision, the error for Numerov-Cooley method
is given by the sum of two terms: A/h* + Bh?. This implies that,
when doing calculations with a fixed precision (e.g., double precision
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Fig. 1. Convergence of energy levels of a harmonic oscillator using Duo and a
uniform grid (r,;, and r,,, are kept fixed). The straight-line behaviour indicates that
the logarithm of error depends linearly on N2, which implies a convergence of the
exp(—a/h?) type.

numbers) there is an optimal minimal grid step size h,,, and using
a smaller grid size will result in greater error because of round-off.
Finally, the computational effort scales proportionally to the number
of points O(N).

The method used by Duo is the sinc DVR. This method is sometimes
also called Colbert-Miller DVR, because these two authors derived it
in a much-cited paper from 1992 [31]. However, essentially the same
method had been independently derived and applied to the Schrodinger
equation by Guardiola and Ros [24] and by Lund and Riley [32]
in 1984, and closely related methods were already known in the
mathematical literature [33]. A description of this method from the
point of view of the discrete-variable-representation (DVR) approach
can be found in the article by Littlejohn et al. [34] and in the book by
Tannor [35]. In this approach, the Schrédinger equation is transformed
into a standard matrix eigenvalue/eigenvector problem, with a real
symmetric matrix of size N X N. On the one hand this involves a much
larger memory usage of the order of N2, as the matrix has to be stored
(although one can reduce memory use by recomputing matrix elements
whenever needed). In practice this has ceased to be a problem for this
kind of applications in the late-1980s, as the typical memory usage
was of the order of 0.1 to 2 MB, which is totally negligible on any
modern machine. Typical algorithms to find the full spectrum of dense
matrices generally scale as N3, which is much steeper than the N of
the Numerov method. However, this is more than compensated by the
much faster rate of convergence of the sinc method, for which errors
are expected to scale at least as fast as exp(—a/h?), with « in the range
1-2, which is much faster than the A/h* of Numerov’s method. So for
high enough accuracy the sinc DVR method will always provide faster
convergence, both with respect to the number of grid points and to
compute time. As an example Fig. 1 reports convergence speed of Duo
for several levels of a harmonic oscillator, revealing super-exponential
convergence of the type exp(—a/h?).

3. Analytic calculations

As a benchmark for analyzing the computational accuracy of Duo
and LeveL, analytic calculations were performed for three cases simple
quantum systems. Their details are described below.

Journal of Molecular Spectroscopy 386 (2022) 111621
3.1. Quantum harmonic oscillator

As a specific example of a one-dimensional harmonic quantum
oscillator, we consider an artificial system with a harmonic potential

V) = k(=12 ®)

. )
with equilibrium distance r, = 3 A, force constant k, = 50000 cm™! /A",
and mass of each atom set to m, = 3.371525838831536 Da, which ensures

that the harmonic frequency v, = 2%(: is exactly 1000.0000cm~!, and

the bound state energies of the system are just half-integer numbers
multiplied by 1000.0000 cm~!: 500 cm™!, 1500 cm~!, 2500 cm™!, etc.
The expression for the corresponding wavefunctions is well-known:

2
S . (—X—>H,, (2). @
2a? a
Z"n!\/;a

where a = % ~ 0.14142 A in our case, w, is an angular harmonic
0 . .

frequency, w, = 27vy, x = r —r,, and H, are Hermite polynomials.

General expressions for the (m, n) matrix element of a potential function

x/ were obtained by Wilcox [36]:

a~jly/m!n!

{mln) :kz;’k!(m—k)!(n—k)!wa!' )

v, (x) =

where b is zero or %(m+n —j), whichever is larger, w = k+ %(j —m=—n),

and a = \/mywy/h = \/E/a ~ 10.0001°\_1. Here it is assumed that (i)
n > m as the operator is Hermitian so (m|x/|n) = (n|x/|m); (ii) m+n—j
must be even to assure that b is integer else the matrix element is zero;
and (iii) there is a well-known selection rule for the harmonic oscillator
system that (m|x/|n) vanishes unless j > n — m. From (ii) and (iii) one
can conclude that n — m must be even if j is even, and vice versa.

Assuming that m + n — j = 21, where [ is integer, and introducing
a summation index i = 0, 1, 2, 3, ...we obtain » = [ if /| > 0 and
0, otherwise; k = b+i =1 +ifor! > 0 and k = i for | < 0; and
w=b+i—-1l=ifor! >0and w =i -/, otherwise. To ensure that
condition (iii) is satisfied / must be < m.

Thus, we can rewrite the expression for {m|x/|n) as:

m! a i jI\ml (G + 21 — m)!

Jj+20—m) = —, 6
{mlx1j+21 = m) ;(l+i)!(m—1—i)!(j+l—m—i)!2'i! ©)
if 0 <! <m, and

) - a = jIN/m! (j + 20 — m)!

ij+20—m) = , 7
('l m) ;i!(m—i)!(j+21—m—i)!2i"(i—1)! 7)

if I < 0. From Eq. (6) one can obtain a simple expression for an
important special case, when n = m + j, and thus / = m > 0:

adjln/m! (m + j)!
m! j! (8)
=a 7\ (m+ D(m+2)..(m+j— D(m+ j).

<m|xj|m+j> =

For the matrix element (m — jlx |m> we can use the substitution r =
m — j to show that

(m—jlxim) = {t1x )t + ) = a7+ D +2).(t+j— D@ +))
a I /m(m = 1)..(m—j+2)(m—j+1).(9)

To compare Duo and LeveL calculations, we consider j = 1, 2 and 3.
Therefore, we need the following expressions for the non-zero matrix
elements:

+ j = 1; then n — m must be odd, too, and we have a single case
which satisfies the selection rule j > n —m, namely: n = m + 1, for
which we obtain:

(m|xlm+ 1) = (m+1|x|m) = a~ ' Vm + 1. (10)
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Fig. 2. Convergence of LeveL energy levels as a function of grid step for three systems: a — for the artificial harmonic oscillator, b — for the artificial Morse oscillator, and ¢ — for

the CO molecule.

* j = 2; here n — m must be even and can be equal to 0 or 2. For
n—m =2 we have:

<m|x2|m+2> = <m+2|x2|m> = a2\ (m+ D(m +2).

When n = m, we have | = m — 1, and for the case n = m = 0 the
value / = —1 < 0, so we should apply Eq. (7); it is easy to show
that in this case <O|x2|0> =a 2 Ifn=m>0,then !/ > 0, and
applying Eq. (6):

<m|x2|m> :i

i=0

1D

2a72m!

-2
= 2m+1);
mrioDid—pean o« @mth

combining both cases gives
(mlx?|m) = ™22 m+1). 12)

+ j = 3; here n — m must be odd and can be equal to 1 or 3. For
n=m+ 3 we have:

<m|x3|m+3> = <m+ 3|x3|m> = a_3\/(m+ Dm+2)(m+3). (13)

When n = m + 1, again / = m — 1. Acting as above for j = 2 gives
the final non-zero matrix elements:

<m|x3|m+ 1) = (m + l|x3|m> =3a(m+ 1)°/%. 14

3.2. Quantum Morse oscillator
The Morse potential is very popular for modeling simple anhar-
monic diatomic potentials and is expressed as [37]:

V(r) =D, (1 —exp(—a(r—r,))’, (15)

where r, is the equilibrium distance, D, is the dissociation energy, and
a is a scaling factor. Bound state energies of a diatomic can be predicted
with satisfactory accuracy using a Morse potential which gives a simple
well-known expression for its energy levels [37]:
1 1\?
E, = ho, n+§ - X, n+§ s
where n is the vibrational quantum number, w, is the harmonic fre-
quency, and x, is an anharmonicity factor, which can be expressed as
wl{

X, =7 D

The expression for the corresponding wavefunctions is also well-
known [371]:

w,(») = N, exp (=y/2) y*/* LE(y),

where y = Aexp(—a(r—r,)), A= 1/x,, f = A—2n— 1, the normalisation
constant is expressed through I" functions as:

1/2
e ()"

and L (y) are generalised Laguerre polynomials [38]:

oy=y
i=0

A general procedure for obtaining analytic (n, m) matrix elements of
function x/ for the Morse oscillator was derived by Rong et al. [39] on
the basis of calculations by Sage [40]. This procedure is carried out in
two steps. First, the matrix elements of y* are calculated as:

Ny N, «
A _ 04V
<v+m|y |m>——a ;
TA+A-m—v—i—-DI(—-A+DI(—A+v+1)
TFi+v+D)Im—i+ DI+ DI —-i4+wId—4i-v)’

(16)

a7

apn!
I'(A—-n)

) T@+n+l)
- T@+ith

18
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Fig. 3. Convergence of Duo energy levels as a function of the grid step for three quantum systems: a — for the artificial harmonic oscillator, b — for the artificial Morse oscillator,

and ¢ - for the CO diatomic.

where v = n—m > 0 and 4 is an integer parameter. In the second
step, the matrix elements of x/ = (r — r,)/ are calculated using the
relationship:
y 4
(%)

TGl VL
X = - rwerd
al  dAN
For comparison with calculations using Duo and LeveL, we consider
Morse potentials with 1 < j <6, m=0and n=v, 0 < n <9. In this case
we have the following expression for the matrix element of y*:
—DA-2n-1)n!

4
T(A)T(A—n)

TFTA+A-n—-DIrd-NDIrn+1-23
I'n+DId—iA+nml’(1—2A1-n)
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4=0

(nly*10) =
(20)
X

To obtain the matrix element of x/, we apply the derivative procedure

of Eq. (19):
( > =0

The resulting Eqgs. (20) and (21) are, however, rather computationally
expensive to evaluate. The equations for the matrix elements (nlx/ |O),
which are cheaper to compute, but also less compact, are given by Egs.
(33)-(47) of Rong et al. [39].

Below we consider two Morse oscillator systems with different
parameters:

(nly*10)
Al

Y d
i

(nlx/10) = @1n

al

1. An artificial Morse oscillator quantum system
For this case we chose the following parameters: the mass
of each atom m; = 1.00Da, the dissociation energy D, =

o—1
40000cm™!, the scaling factor ¢ = 1.0A , the equilibrium

distance r, = 2.0 A. The harmonic frequency can be obtained

from a simple expression: w, = 2a fn)—; ~ 2322.5942cm™!, the

Ze ~ 0.014516, and A = 1/x, ~

anharmonicity factor x, = 7
e

68.8885.

2. Vibrations of the CO molecule represented by a Morse oscillator
For CO we used parameters due to Nasser et al. [41]: the
reduced mass y = 6.8562086 Da, the dissociation energy D, =
90540.574cm™!, the scaling faoctor a = 2.299397 /DX_I, the equi-
librium distance r, 1.1283 A. Thus, the harmonic frequency

2D 2169.8111cm~!, the an-

~ 0.0059913, and A 1/x, =~

can be obtained as w, = a

— e

harmonicity factor x,
166.9096.

4. Comparison with computed data

Here we present the results of calculations using Duo and LeveL
for vibrational energies, wavefunctions and some matrix elements in
three cases considered above, and compare them with our results of
analytic calculations. In order to make such a comparison valid, the
fully converged calculations have to be performed by both programs.
The choice of the grids of both programs has been made in such a way,
that the further improvement had no influence on the value of highest
energy considered down to at least 10> cm~! or 7 to 8 significant
figures.

4.1. Quantum harmonic oscillator

The parameters chosen for the artificial harmonic oscillator system
we consider ensure that its bound state energies are just half-integer
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Fig. 4. Comparison of analytic wavefunctions with computed ones for an artificial harmonic oscillator. The upper plot shows computed and calculated wavefunctions for the three
lowest vibrational states as a function of an internuclear distance; the lower plot gives the absolute difference between the computed results from the analytic ones.

4.0

3.0

g
o
T

o
T

0.0

T
Analytics -------
DUO -

LEVEL -+ -

Wavefunction value, A~"2

tion from analytics, A2

S0k

L
1.2
r A

1.3

Fig. 5. Comparison of the analytic wavefunctions with the computed ones for CO represented by a Morse oscillator. The upper plot shows computed and calculated wavefunctions
for the three lowest vibrational states as a function of an internuclear distance; the lower plot gives the absolute difference between the computed results from the analytic ones.

numbers multiplied by 1000.0000 cm™': 500 cm~!, 1500 cm™!, 2500 cm™!,
etc. Our computations used equidistant grids spanning R, = 1 to
R =5 A: for Duo a step of h = 0.0404 A (100 grid points) was used,
while for Lever & = 0.001 A (4000 grid points) was used.

Comparison of energies

Figs. 2 and 3 show that the 20 lowest energies computed using
Duo coincide with the theoretical ones at least up to the sixth decimal
place, while LeveL shows this accuracy only up to 5500 cm™!; for higher
bound states its accuracy becomes worse gradually and reaches about
10~*cm™! for the energy level with the vibrational quantum number
n = 19. Besides, to achieve convergence with eigenvalue convergence
parameter 107% cm~!, we had to reduce the LeveL step size by a factor

of 40 compared with the one used in the Duo calculations, and to add
trial energies to Lever’s input data as we did not manage to calculate all
the bound states of the harmonic oscillator system using Lever without
this manual intervention.

Comparison of wavefunctions

The main goal of this work is to clarify if Duo or LeveL can provide an
accuracy of at least 0.0001% while computing of intensities for small
diatomics, that is of great importance for experimental needs at the
moment. From this point of view, all the comparisons of wavefunctions
performed in this work have rather an illustrative purpose, which
is needed to ensure that not only intensities, but eigenfunctions and
energies can be obtained with satisfactory accuracy, as well. That is
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Table 1
Comparison of analytic matrix harmonic oscillator elements (m|x|n) with ones computed
using Duo and LEVEL. Spuo/tn = ||m1X1npuostaves| = | (m1x1Yan ]| / [(mIxInan]| X 100, % is

the relative percentage deviation of the Duo/LeveL results from the analytic ones.

n m CED Spuos % Stevms %

1 0 0.1000000 0.0 1.6 x 1077
2 1 0.1414214 1.7x 1077 7.6x 1077
3 2 0.1732051 14 %1077 1.0x 107
4 3 0.2000000 0.0 1.0x 107
5 4 0.2236068 1.1x 1077 8.5x 1077
6 5 0.2449490 1.1x 1077 6.2x 1077
7 6 0.2645751 42x%x10°8 7.9x 1078
8 7 0.2828427 1.7x 1077 1.1x 1077
9 8 0.3000000 0.0 1.4x1077
10 9 0.3162278 6.3%x107° 1.8 %1077
11 10 0.3316625 12x108 22x 1077
12 11 0.3464102 1.4x1077 2.6x1077
13 12 0.3605551 1.2%x 1077 3.1%x 1077
14 13 0.3741657 8.6x 1078 3.7x 1077
15 14 0.3872983 9.8x 1078 42x1077
16 15 0.4000000 0.0 4.8x 1077
17 16 0.4123106 1.1x1077 55x 1077
18 17 0.4242641 6.8%x 1078 6.2x 1077
19 18 0.4358899 8.0x 1078 6.9 %1077
20 19 0.4472136 1.1x 1077 7.6 %1077

why we limit ourselves to only considering of a few lowest stable states
of the quantum systems.

Fig. 4 compares analytic and computed wavefunctions for the quan-
tum harmonic oscillator system. The analytic wavefunctions of the
three lowest vibrational states were calculated using Eq. (4). Their
computed versions were obtained using Duo and LEveL.

However, there is a difference in the treatment normalization be-
tween these two packages. The Duo eigenvectors are normalized so that
the sum of squares of the DVR points gives unity. Thus, to obtain the
data shown in the Figs. 4, 5 and the Fig. 1 from the Supplementary
material we had to multiply the Duo results by cp,, = 1/V/h, where h
is the step size. We also adjusted the sign of the Duo wavefunctions so
the overall phase coincided with the analytic ones.

Fig. 4 shows that all the computed wavefunctions coincide with
the analytic ones within 10-5 A~1/2, which is about 5 x 104 % of the
amplitudes. The accuracy of Duo is much better (up to six to seven
orders of magnitude) than Lever, and almost reaches the floating point
numerical accuracy. All the Duo and analytic results coincide within
107%% for almost all grids considered, while LeveL shows generally
much worse accuracy.

Comparison of matrix elements

A comparison between analytic and computed matrix elements
(m|x|n), {m|x*|n) and (m|x3|n) is shown in Tables 1, 2, and in Table
VIII of the Supplementary materials, respectively. These off-diagonal
matrix elements have a phase ambiguity due to the arbitrary overall
phase of the bra and ket wavefunctions. These signs do not effect
intensity calculations and we present only (unsigned) absolute values.
The tables contain data for the vibrational quantum numbers up to 20.
Our calculations show that the relative deviations of the Duo results
from the analytic ones is less than 5 x 1077 % for all matrix elements.
Meanwhile, the accuracy of the matrix elements obtained using LeveL is
often much worse, with the relative deviations &y, being up to 107* %
and in some cases larger than the ones of Duo by two to three orders
of magnitude.

4.2. Artificial Morse oscillator

Our computations used equidistant grids spanning 0.3 to 4.5 A with
h = 00424 A (100 grid points) in Duo and A = 0.0021 A (about
2000 grid points) in LeveL to solve for the Morse potential with the
parameters listed first in Section 3.2. As this case has appeared to
be rather similar to the one from the following section, the detailed
consideration of it one can find in the Supplementary material.
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Table 2
Comparison of analytic harmonic oscillator matrix elements <m|xz\n> with ones com-

- |<m|x2|n>an /'<m|x2|n>m| X

100, % is the relative percentage deviation of the Duo/LeveL results from the analytic
ones.

puted with Duo and LEVEL. 8pyo /e = ||<m|x2|n>DUO o

n m (ml)c2|n>an ,10\ Spyos %0 Seyms %0

0 0 0.01000000 0.0 2.9x%107°
2 0 0.01414214 1.4 x 1077 42x 1077
1 1 0.03000000 0.0 3.0x 107
3 1 0.02449490 1.2x 1077 9.5%x 107
2 2 0.05000000 0.0 2.7x 1070
4 2 0.03464102 1.4x 1077 1.3%x107°
3 3 0.07000000 0.0 2.0x 107
5 3 0.04472136 1.1x 1077 1.4x 1073
4 4 0.09000000 0.0 8.0x 1077
6 4 0.05477226 9.1x 1078 5.5%x107°
5 5 0.11000000 0.0 8.1x 1077
7 5 0.06480741 3.1x10°8 4.8x10°°
6 6 0.13000000 0.0 1.4x 1077
8 6 0.07483315 53%x1078 27%x1078
7 7 0.15000000 0.0 1.9x 1077
9 7 0.08485281 47x1078 35%x1078
8 8 0.17000000 0.0 2.5%x1077
10 8 0.09486833 1.1x 1078 63x 1078
9 9 0.19000000 0.0 32x 1077
11 9 0.10488088 1.7x 1077 7.6x 1078
10 10 0.21000000 0.0 4.0x 1077
12 10 0.11489125 6.1x 1078 9.6x 1078
11 11 0.23000000 0.0 49x 1077
13 11 0.12489996 24x1078 1.2x 1077
12 12 0.25000000 0.0 58 x 1077
14 12 0.13490738 2.7% 1077 1.4x 1077
13 13 0.27000000 0.0 6.8x 1077
15 13 0.14491377 3.2x1077 1.7%x 1077
14 14 0.29000000 0.0 7.9% 1077
16 14 0.15491933 9.7x 1078 2.0x 1077
15 15 0.31000000 0.0 9.1x 1077
17 15 0.16492423 12x 1078 23x 1077
16 16 0.33000000 0.0 1.0x 107
18 16 0.17492856 8.6x 1078 2.7%x 1077
17 17 0.35000000 0.0 1.2x 1070
19 17 0.18493242 49%x 1078 3.0x 1077
18 18 0.37000000 0.0 1.3%x107°
20 18 0.19493589 5.1x 1078 34x1077
19 19 0.39000000 0.0 1.5%x 107
20 20 0.41000000 0.0 1.6x 1070

4.3. CO as a Morse oscillator

As above, to achieve convergence in the LeveL calculations to 1076
cm~!, we had to reduce the grid step size by a factor of 20 compared
to the sinc DVR grid used by Duvo. Thus, during these computations,
equidistant grids between 0.8 and 3.79 A used & = 0.01 A(300 grid
points) in Duo and A = 0.0005 A (about 6000 grid points) in Lever; the
Morse potential (15) used a set of parameters given as the second list
in Section 3.2.

Comparison of energies

A comparison of the energies computed using Duo and LeveL with
the analytic energies and the available experimental data for the CO
diatomic is given in the Table 3. The table shows that both packages
obtain energies of the lowest 9 bound states for a CO diatomic with
a relative accuracy of about 2 X 107 % for each state. The devia-
tions of both Duo and LeveL results from the observed energies below
10500cm™~! are the same, as well, within 0.07 % which is a reflection
of the accuracy of the Morse potential curve used for this study.

Comparison of wavefunctions

Fig. 5 compares the analytic and computed wavefunctions for CO
and shows that all the computed wavefunctions coincide with the
analytic ones within 0.01 A~1/2, which is about 0.25% of amplitudes.
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Comparison of the computed using Duo and Leve. CO diatomic energies with the analytic ones E,, = E, — E, (bound state energies E, were calculated using Eq. (16)) and the
available experimental data E,,,. Here Af’“/ obs — E,p/0ps is the absolute difference between the computed and the calculated/observed energies, and §; = |E; — E,,| / E,, x 100, %
is the relative percentage deviation of the computed result from the analytic values. The absolute deviations from the experimental data are shown in the last column and are

almost equal for Duo and LeveL.

n E,, cm™! E,,, cm™! Egps, cm™! A% cm™! Spues % A L em”! Sreves % 4°% em™!
0 1081.6555
1 3225.4668 2143.8112 2143.2714 —0.0005 237 x 1073 —0.0005 2.43x 1073 —0.5393
2 5343.2782 4261.6226 4260.0625 —0.0010 2.35x 1073 —-0.0010 236 x 1073 —-1.5591
3 7435.0897 6353.4342 6350.4394 —-0.0015 2.34x 1073 —-0.0015 229 x 1073 —2.9933
4 9500.9014 8419.2459 8414.4698 —0.0020 2.32x 1073 —0.0020 2.34x 1073 —-4.7741
5 11540.7133 10459.0578 10452.2228 —0.0024 2.31x 1073 —-0.0025 2.35x 1073 —6.8325
6 13554.5253 12472.8698 —0.0029 229 x 1073 —-0.0029 2.32x 1073
7 15542.3376 14 460.6820 —0.0033 2.28x 1073 —-0.0033 2.29x 1073
8 17 504.1499 16422.4944 —0.0037 226 x 1073 —0.0038 2.30x 1073
9 19439.9625 18358.3069 —0.0041 2.25x 1073 —0.0042 2.30x 1073
Table 4 Comparison of Einstein A coefficients
Compar%son of analytic matrix eler‘nents of CO (n|x|0), calculated using Egs. (20) an-d Finally, we present a comparison of Einstein A coefficients and the
(21), with the ones computed using Duo and LeveL. 4, = |[{(n|x|0),| — |[(n]x|0),,|| is

the absolute difference between the computed and the calculated values, and §;, =
4,/ |(nx|0)4,| X 100, % is the relative percentage deviation of the computed results from

the analytic ones.

no (nx[0)y» A Apyor A Spuer % Ay A -

0 3.9254x1073 9.500x 10710 2.42x 1075 9.50x 10710 24201 x 1073
1 33763x1072 4.060 x 107° 1201075 4.06% 107° 1.2025 x 1073
2 —1.8590x 1073 4550x 10710 245x 107 455x10710  2.4475x 1073
3 16765x 107 6.180x 107" 3.69x 1075  518x 107" 3.0898 x 1075
4 —19700x 1075 9.600x 1072 487x10°  370x107'2  1.8782x 1073
5 27690 x 1076 1.696x 10712 6.12x 1075  1.80x 1072 6.4860 x 1075
6  —44549x1077  3288x 1071 7.38x107°  147x107'2 32948 x 10~
7 798701078 6902x 107 8.64x 1075  837x 1071 1.0482 x 1073
8  —1.5676x 108 1.544x 1074  991x 105  381x1073  24314x 1073
9  33253x107° 3.697 x 10715 L11x10™*  211x1078  6.3470x 1073

Table 5

Comparison of analytic CO matrix elements <n|x2|0>, calculated using Egs. (20) and

(21), with the ones computed using Duo and LeveL. 4, = ||<n|x2|0),| - |(n|x2|0>a“

is the absolute difference between the computed and calculated values, and &, =
A,/ |<n|x2|0>an| X 100, % is the relative percentage deviation of the computed results

from the analytic ones.

no a0y, A ap,. A Spuer % Ay A Srpve %

0 1.1588x1073 2.840x 10710 2.45x107% 2.84x 10710 24507 x 1073
1 44314x107* 1.617x 10710 3.65x107° 1.62x 10710 3.6489 x 1073
2 1.5827x1073 3760 x 10710 238 x 1073 3.76 x 10710 23757 x 1073
3 —21475x10*  7.740x 107" 3.60x 107 7.84x 1071 3.6508 x 1073
4 3.0840x 1075 1494 x 107" 4.84x107% 1.37x 1071 44553 x 1073
5 —49220x10° 2.995x 1072 6.08 x 107 1.89 x 10712 3.8501 x 1075
6 8.6693x 1077 6361 x 1073 7.34x 1075 461x 10718 53188 x 1073
7  —16657x 107  1427x10"3  8.57x107° 277 % 10713 1.6612 x 104
8 3.4553x1078 3406 x 1074 9.8572% 1075 1.7676x 10712 5.1156x 10~*
9  -7.6730x107°  8.535x 10715 1.1123x10™*  7.6745x 107  1.0002 x 103

Between 1.05 and 1.40 A the analytic and computed results coincide
within 0.1%, and within 1% for almost all grid points in the whole
range considered. The deviations of the LeveL and Duo results from the
calculated ones are close to each other.

Comparison of matrix elements

The comparison between the absolute values of analytic and com-
puted matrix elements (nlxj |0>, where 1 < j <6and 0 < n <9,
for the CO diatomic is shown in Tables 4, 5, and Tables IX-XII in the
Supplementary materials, respectively.

The Tables show that relative deviations of the Duo results from
the analytic ones are nearly independent of j and n, and are within
1.25 x 10~* %, and are less than 0.0001% for the majority of cases, while
for LeveL these deviations are similar or larger, with a maximum value
of about 0.006%. LeveL and Duo show similar results for most cases,
except for high vibrational quantum number, n, with j < 3, where the
accuracy of LeveL becomes worse.

corresponding transition frequencies v for CO computed with Duo and
Lever, which is given in Table XIII in the Supplementary materials
and Table 6. The computations for Table XIII used equidistant grids
between 0.8 and 1.8 A with 2~ = 0.005 Ain Duo (200 grid points)
and & = 0.0005 A in LEVEL (2000 grid points). The computations for
Table 6 were aimed to make the same comparison for some transitions
from the near-dissociation spectrum of the CO molecule and used
equidistant grids between 0.8 and 3.0 A with 2 = 0.0005 Ain Duo
(4400 grid points) and h = 0.0001 A in LeveL (22000 grid points). All
the calculations used the very accurate semi-empirical W1216 potential
of Coxon and Hajigeogiou [42] with quintic splines interpolation and
a dipole moment surface, which approximates a set of 7220 dipole
points with an average accuracy 0.0002 a.u. We note that the near-
dissociation comparison has rather an evaluative character because
it involves extrapolating the W1216 potential. To achieve good con-
vergence in the Lever calculations, with the eigenvalue convergence
parameter 107 cm~!, we had to reduce a grid step by a factor of 10
for Table XIII, and by a factor of 5 for Table 6 compared to the one
used in Duo.

Table XIII from the Supplementary materials shows that the tran-
sition frequencies computed using Duo agree with the ones obtained
using Lever within 0.1%, and in most cases much better, up to 4.4 x
10~7 %. Einstein A coefficients agree to within 0.02%. Thus, both
packages show close agreement for computed Einstein A coefficients.
This result also shows that the limited accuracy of the dipole moment fit
used in our calculations does not significantly influence the agreement
between the intensities computed by Duo and LeveL.

At the same time, Table 6 shows almost the same level of agree-
ment between the Duo and LeveL near-dissociation results for transition
frequencies; however, the Einstein A coefficients agree only to within
91 %, which still is not too bad for near-dissociation spectrum calcula-
tions, especially when one accounts for the extrapolation nature of the
underlying potential.

4.4. Convergence features of LEVEL

It is worth highlighting here some specific features of calculations
using LeveL we encountered during this work. First of all, to obtain
similar levels of convergence with Duo and LeveL, we had to use a grid
step h in Lever 5 to 40 times smaller than one used in Duo for all
three systems. The convergence for bound state energies using LeveL
and Duo as a function of the grid step is shown in Figs. 2 and 3,
respectively. While making Figs. 2 and 3, we first used the same step
size in Lever as in Duo, and then reduced it until convergence was
reached. Fig. 2 shows that the accuracy of LeveL results obtained with
the step size equal to Duo’s gives results up to six orders of magnitude
worse than the accuracy of the final calculation, and in the artificial
harmonic oscillator case the calculation of some bound state energies
even resulted in explicit divergence in LeverL with the Duo grid step.
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Comparison of Einstein coefficients A and corresponding transition frequencies v for some lines from the CO diatomic near-dissociation spectrum computed with the Duo and LeveL
packages. Here vibrational and rotational quantum numbers (n,J) and (n”,J") label the upper and lower levels, correspondingly, 4, = Ap,, — A, is the difference between the
computed A values, 4, = vp,, — Vi — the difference between the computed v values, 6, = |4,]/Apy, X 100, % is the relative deviation between the computed A coefficients in
percentage, and 6, = |4, /vp,, X 100, % is the analogous relative deviation between the computed v coefficients in percentage.

AT(J") n —n" Vpyos €M ™! Apgos 87! 4,, cm™ Ay, 57! 5,, % Sa, %
R(13) 61 -2 80001.903605 4.120x 1077 3.036 x 107! —1.406 x 1078 3.795 x 10~ 3.412 % 10°
P(23) 62 - 2 80100.546284 7.632x 1078 1.826 x 10° —4.545%x 1078 2.280 x 1073 5.955 % 10!
P(19) 62 -2 80301.024211 7.014 x 1078 1.274 x 10° 3.156 x 1078 1.587 x 1073 4.499 x 10!
R(18) 62 — 2 80401.217850 2.864 x 1077 1.438 x 10° 2.607 x 107° 1.788 x 1073 9.103 x 10!
P(14) 62 - 2 80500.265853 5.797 x 1077 5.059 x 107! 6.002 x 1078 6.284 x 107 1.035 x 10!
R(23) 63 -2 80700.076858 1.722 x 1077 4.387 x 10° 8.943 x 1078 5.436 x 1073 5.192 x 10!
R(12) 59 -1 80900.548577 1.112x 107 4.858 x 1072 —3.200 x 1078 6.005 x 107 2.876 x 10°
P(12) 63 -2 81105.082192 3.401 x 1076 6.122x 107! 2.563 x 1077 7.548 x 107 7.536 x 10°
P(23) 57 -0 81 200.999582 3.933x10°% 3.958 x 1072 4.540 x 10710 4.875x 107 1.154 x 10°
R(2) 63 -2 81 300.178064 3.481 x 107 —1.194 x 1072 —6.821 x 1078 1.468 x 107 1.959 x 10°
P(15) 60 -1 81400.368177 1.714 x 107® 1.482 % 107! -3.236x 1078 1.820x 10~ 1.888 x 10°
P(13) 57 -0 81603.230040 1.164 x 1077 4.000 x 1073 1.841x 107° 4.902 x 1078 1.582 x 10°
R(28) 58-0 81701.624491 4217%x 1078 7.449 x 1072 —1.819x 10710 9.117 x 107 4314 x 107!
P(28) 62 -1 81900.269509 1.396 x 1076 1.790 x 10° —-5.088 x 1078 2.185% 1073 3.644 x 10°
P(15) 61 -1 82005.167752 1.843 x 107¢ 3.078 x 107! -2.282x 1078 3.753x 1074 1.238 x 10°
P(16) 58-0 82200.477745 1.888 x 1077 3.774 x 1072 9.400 x 107! 4.592 x 10~ 4.979 x 1072
P(13) 58-0 82301.241575 2.061 x 1077 1.157 x 1072 9.300 x 10710 1.406 x 107 4.513%x 107!
P(32) 60 -0 82601.892908 1.843x 1077 2.629 x 107! -5.521x 1077 3.183x 1074 2.996 x 10°
P(7) 62 -1 82800.324410 1.665 x 10~° 1.441 x 1072 —1.617x 1078 1.740 x 10> 9.713 x 107!
R(19) 63 -1 83004.102892 1.303 x 107° 3.563 x 10° 3.000 x 10711 4292 x 1073 2.303x 1073
R(24) 60 -0 83202.499635 2.361 x 1077 4.396 x 107! -8.818 x 1079 5.284x 10~ 3.735 x 10°
P(9) 63 -1 83300.762986 1.225x 107° 1.830x 107! —1.900 x 10~1° 2.197 x 107+ 1.550 x 1072
P(3) 63 -1 83401.058078 1.329 x 107° -2.192 x 1072 —1.282x 1078 2.629 x 107 9.650 x 107!
P(26) 61 -0 83600.570540 2571 %1077 9.005 x 107! -1.626 x 1078 1.077 x 1073 6.327 x 10°
R(14) 64 -1 83700.961951 9.132x 1077 4.322x 10° 4.963 x 1078 5.164x 1073 5.435x 10°
R(22) 61 -0 83900.278168 2.340 x 1077 8.882 x 107! —1.507 x 1078 1.059 x 1073 6.441 x 10°
P(8) 65 -1 84304.844515 5.120 x 1077 9.245x 107! 3.445x 1078 1.097 x 1073 6.729 x 10°
R(2) 65 -1 84400.326604 3.707 x 1077 2.660 x 1072 3.604 x 1070 3.152%x 1073 9.722 x 107!
R(21) 62-0 84513.757607 1.681 x 1077 1.818 x 10° —2.009 x 10~% 2.151x 1073 1.195 x 10!
R(19) 62 -0 84606.507734 1.464 x 1077 1.588 x 10° —1.756 x 1078 1.877 x 1073 1.199 x 10!
R(27) 63 -0 84700.414030 1.714 x 1077 3.674 x 10° -3.181x 1078 4.338x 1073 1.856 x 10!
P(24) 63 -0 84814.477867 1.121 x 1077 4.298 x 10° —2.704 x 1078 5.067 x 103 2413 x 10!
P9) 62 -0 84900.030626 6.823x 1078 8.063 x 1072 -3.278 x 107° 9.497 x 107 4.804 x 10°
R(4) 62 -0 85002.712268 4.969 x 1078 2.268 x 1073 —1.042x 107° 2.668 x 107° 2.098 x 10°
P(16) 63 -0 85216.311809 3.800 x 1078 1.712x 10° -1.099 x 1078 2.009 x 1073 2.893 x 10!
R(15) 63 -0 85301.218107 4.007 x 1078 2.078 x 10° —1.188 x 1078 2436 x 1073 2.964 x 10!
P(10) 63 -0 85417.225372 1.519% 1078 2.954 % 107! -3.265x 107° 3.458 x 107 2.150 x 10!
P(6) 63 -0 85503.972031 9.186 x 1077 1.203 x 1072 -9.357 x 10710 1.407 x 1073 1.019 x 10!
P(5) 65 -0 86502.767930 4.014x 1078 9.793 x 1072 4.389 x 10~° 1.132x 10~ 1.093 x 10!
R(0) 65 -0 86548.314535 2481 x 1078 —1.547 x 1072 4.754 x 10710 1.787 x 107 1.916 x 10°

As a direct consequence, LeveL is significantly less computationally
efficient than Duo. For instance, while computing Einstein A coeffi-
cients, Duo obtained the results shown in the Table XIII of the Supple-
mentary materials data several times faster then Lever did (about 0.5 s.
versus about 1.6 s. on average) using the same parameters except for
the step size. In the case of near-dissociation calculations this difference
increases even more, reaching about 1 min. 49 s. versus about 16.5 s.
on average, i.e. Duo showed about 6.6 times better performance than
Lever did.

A second feature of the LeveL is the complexity of choosing input
parameters which lead to the converged results. Sometimes use of trial
energies or pointwise input type of potentials is necessary. Duo does
not have such problems making it easier to use.

As a short summary, our calculations do not show that Lever has
drastically worse accuracy in calculations for real molecules, in com-
parison with Duo. Actually, LeveL performs really badly only in the case
of the artificial harmonic oscillator, which is the least physical system
tested here. However, its accuracy improves when the system specified
becomes more complex. The main practical disadvantage of LeveL is its
poor performance due to use of the Numerov method; furthermore, Duo
is much more convenient and intuitive to use.

5. Conclusions

This paper addresses questions about the accuracy for which so-
lutions can be obtained for various parameters in diatomic nuclear

motion calculations. Such questions have become important because
of the need to perform rovibrational spectral calculations for diatomics
(and other molecules) allow with accuracies of 0.001% or better. In
particular, our comparisons show that Duo [12] can compute intensities
with an accuracy of about 1074-1073 % compared to analytic values for
a benchmark CO calculation; this accuracy is sufficient for experimental
needs for example for determining macroscopic gas properties. For the
artificial harmonic and Morse oscillators these deviations were typically
about 1077-10"% % and less than 0.0004%, respectively. The accuracy
of computed bound states energies and corresponding wavefunctions
using Duo is also very satisfactory. Moreover, for the case of a simple
harmonic oscillator, Duo can obtain results with accuracies close to the
floating point limit.

The older diatomic nuclear motion package, Lever [13], generally
has accuracy similar or (somewhat) worse than Duo for calculating
of matrix elements, Einstein A coefficients, bound state energies and
their corresponding wavefunctions. The accuracy of LeveL is notably
poorer for the harmonic oscillator, when matrix element calculations
give results which are sometimes by two to three orders of magnitude
less accurate than the corresponding Duo ones. Furthermore, to achieve
converged calculations using Lever, we had to reduce grids steps sizes
by factors of between 10 and 40 compared to the ones used in Duo, and
sometimes it was also necessary to make some additional adjustments
to the input parameters. Nevertheless, LeveL still provides good accu-
racy for the few lowest vibrational states of all systems, and in some
cases gives results that are even more accurate than Duo’s ones. This
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paper suggests that both LeveL and Duo can provide standard accuracy
(from 10% to 0.1%) for line intensity calculations. Line intensities for
molecules similar to those considered in this paper can be computed by
these two programs by solution of the Schrédinger equation for a given
DMS and PES with an accuracy of at least of 1072 %.

We plan to continue to go along the path outlined in this pa-
per in order to quantify the accuracy of existing polyatomic nuclear
motion codes, in particular DVR3D [9] for triatomic molecules and
WAVR4 [43] for tetratomic molecules for the calculation of line in-
tensities. DVR3D has already been extensively used for high accuracy
intensity predictions (eg [3,44]) and accuracy of these codes could
be an important factor on the road towards 0.01% and even 0.001%
accuracy of line intensities calculations and experiment, necessary for
metrological and possibly atmospheric applications.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

All results are presented as tables in the main text or the supple-
mentary material. Both LeveL and Duo are distributed as open source
codes. LeviL is available from http://scienide2.uwaterloo.ca/~rleroy/
LEVEL16. while Duo is available form https://github.com/ExoMol/
Duo.

Acknowledgements

We acknowledge support by State Project IAP RAS No. 0030-2021-
0016 and ERC Advanced Investigator Project 883830 for supporting
aspects of this project. O.L.P. acknowledges support from the Quantum
Pascal project 18SIB04, which is funded by the EMPIR programme co-
financed by the Participating States and from the European Union’s
Horizon 2020 research and innovation programme.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.jms.2022.111621. Extra tables of numerical
results and a detailed analysis for the artificial Morse oscillator case are
given as supplementary material.

References

[1] J. Komasa, M. Puchalski, P. Czachorowski, G. Lach, K. Pachucki, Rovibrational
energy levels of the hydrogen molecule through nonadiabatic perturbation
theory, Phys. Rev. A 100 (2019) 032519, http://dx.doi.org/10.1103/PhysRevA.
100032519.

D. Ferenc, V. Korobov, LE. Matyus, Nonadiabatic, relativistic, and leading-
order QED corrections for rovibrational intervals of He-4(2)+ (X-2 sigma(+)(u)),
Phys. Rev. Lett. 125 (2020) 213001, http://dx.doi.org/10.1103/PhysRevLett.
125213001.

O.L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N.F. Zobov, J.T. Hodges, J.
Tennyson, High accuracy CO, line intensities determined from theory and
experiment, Phys. Rev. Lett. 114 (2015) 243001, http://dx.doi.org/10.1103/
PhysRevLett.114243001.

C.E. Miller, D. Crisp, P.L. DeCola, S.C. Olsen, J.T. Randerson, A.M. Michalak, A.
Alkhaled, P. Rayner, D.J. Jacob, P. Suntharalingam, D.B.A. Jones, A.S. Denning,
M.E. Nicholls, S.C. Doney, S. Pawson, H. Boesch, B.J. Connor, LY. Fung, D.
O’Brien, R.J. Salawitch, S.P. Sander, B. Sen, P. Tans, G.C. Toon, P.O. Wennberg,
S.C. Wofsy, Y.L. Yung, R.M. Law, Precision requirements for space-based X-
CO2 data, J. Geophys. Res. 112 (2007) D10314, http://dx.doi.org/10.1029/
2006JD007659.

D.A. Long, Z.D. Reed, A.J. Fleisher, J. Mendonca, S. Roche, J.T. Hodges, High-
accuracy near-infrared carbon dioxide intensity measurements to support remote
sensing, Geophys. Res. Lett. 47 (e2019GL086344) (2020) €2019GL086344, http:
//dx.doi.org/10.1029/2019GL086344.

[2]

[3]

[4]

[5]

10

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Journal of Molecular Spectroscopy 386 (2022) 111621

Y. Shimizu, S. Okubo, A. Onae, K.M.T. Yamada, H. Inaba, Molecular gas
thermometry on acetylene using dual-comb spectroscopy: analysis of rotational
energy distribution, Appl. Phys. B 124 (2018) 71, http://dx.doi.org/10.1007/
s00340-018-6933-x.

C. Gaiser, B. Fellmuth, W. Sabuga, Primary gas-pressure standard from electrical
measurements and thermophysical ab initio calculations, Nat. Phys. 16 (2020)
177, http://dx.doi.org/10.1038/541567-019-0722-2.

A.J. Fleisher, H. Yi, A. Srivastava, O.L. Polyansky, N.F. Zobov, J.T. Hodges,
Absolute!®C/12C isotope amount ratio for vienna pee dee belemnite from infrared
absorption spectroscop, Nat. Phys. doi:.

J. Tennyson, M.A. Kostin, P. Barletta, G.J. Harris, O.L. Polyansky, J. Ramanlal,
N.F. Zobov, DVR3D: A program suite for the calculation of rotation-vibration
spectra of triatomic molecules, Comput. Phys. Comm. 163 (2004) 85-116.

K. Jousten, J. Hendricks, D. Barker, K. Douglas, S. Eckel, P. Egan, J. Fedchak,
J. Fliigge, C. Gaiser, D. Olson, J. Ricker, T. Rubin, W. Sabuga, J. Scherschligt,
R. Schodel, U. Sterr, J. Stone, G. Strouse, Perspectives for a new realisation of
the pascal by optical methods, Metrologia 54 (2017) S146, http://dx.doi.org/10.
1029/2006JD007659.

K. Jousten, private communication (Dec. 2021).

S.N. Yurchenko, L. Lodi, J. Tennyson, A.V. Stolyarov, Duo: a general program
for calculating spectra of diatomic molecules, Comput. Phys. Comm. 202 (2016)
262-275, http://dx.doi.org/10.1016/j.cpc.201512021.

R.J. Le Roy, Level: A computer program for solving the radial schrodinger
equation for bound and quasibound levels, J. Quant. Spectrosc. Radiat. Transfer
186 (2017) 167-178, http://dx.doi.org/10.1016/j.jqsrt.201605028.

C. Schwartz, R.J. Le Roy, Nonadiabtic eigenvalues and adiabatic matrix-elements
for all isotopes of diatomic hydrogen, J. Mol. Spectrosc. 121 (1987) 420-439,
http://dx.doi.org/10.1016,/0022-2852(87)90059- 2.

E.S. Medvedev, V.V. Meshkov, A.V. Stolyarov, L.E. Gordon, Peculiarities of high-
overtone transition probabilities in carbon monoxide revealed by high-precision
calculation, J. Chem. Phys. 143 (2015) 154301, http://dx.doi.org/10.1063/
14933136.

E.S. Medvedev, V.G. Ushakov, High sensitivity of the anomalies in the rotational
and ro-vibrational bands of carbon monoxide to small changes in the molecular
potential and dipole moment, J. Mol. Spectrosc. 349 (2018) 60-63, http://dx.
doi.org/10.1016/j.jms.201804008.

J. Tennyson, L. Lodi, L.K. McKemmish, S.N. Yurchenko, The ab initio calculation
of spectra of open shell diatomic molecules, J. Phys. B: At. Mol. Opt. Phys. 49
(2016) 102001.

Q. Qu, S.N. Yurchenko, J. Tennyson, Hyperfine-resolved variational nuclear
motion spectra of diatomic molecules, J. Chem. Theory Comput. http://dx.doi.
org/10.1021/acs.jctc.1c01244.

R.J. Le Roy, Dpotfit: a computer program to fit diatomic molecule spectral data
to potential energy functions, J. Quant. Spectrosc. Radiat. Transfer 186 (2017)
179-196, http://dx.doi.org/10.1016/].jqsrt.201606002.

N. Doss, J. Tennyson, A. Saenz, S. Jonsell, Molecular effects in investigations
of tritium molecule beta decay endpoint experiments, Phys. Rev. C 73 (2006)
025502.

T. Rivlin, LK. McKemmish, K.E. Spinlove, J. Tennyson, Low temperature
scattering with the R-matrix method: argon-argon scattering, Mol. Phys. 117
(21) (2019) 3158-3170, http://dx.doi.org/10.1080/0026897620191615143.

M. Pezzella, S.N. Yurchenko, J. Tennyson, A method for calculating temperature-
dependent photodissociaiton cross sections and rates, Phys. Chem. Chem. Phys.
23 (2021) 16390-16400, http://dx.doi.org/10.1039/D1CP02162A.

W. Somogyi, S.N. Yurchenko, A. Yachmenev, Calculation of electric quadrupole
linestrengths for diatomic molecules: Application to the h,, co, hf and o,
molecules, J. Chem. Phys. 155 (21) (2021) 214303, http://dx.doi.org/10.1063/
50063256.

R. Guardiola, J. Ros, On the numerical integration of the schrodinger equation
in the finite-difference schemes, J. Comput. Phys. 45 (1982) 374.

R. Guardiola, J. Ros, On the numerical integration of the schrodinger equation:
numerical tests, J. Comput. Phys. 45 (1982) 390.

B.V. Noumerov, A method of extrapolation of perturbations, Mon. Not. R. Astron.
Soc. 84 (1924) 592.

B. Numerov, Note on the numerical integration of d’x/d*> = f(x,y), Astron.
Nachr. 230 (1927) 359.

JW. Cooley, An improved eigenvalue corrector formula for solving the
Schrodinger equation for central fields, Math. Comp. 15 (1961) 363.

J.K. Cashion, Testing of diatomic potential energy functions by numerical
methods, J. Chem. Phys. 39 (1963) 1872.

J.K. Cashion, R.N. Zare, The IBM Share Program 02 Nu Schr 1072 for Solution
of the Schrodinger Radial Equation, By J.W. Cooley: Necessary and Useful
Modifications for Its Use on an IBM 7090, University of California, Lawrence
Radiation Laboratory Berkeley, California, 1963, pp. 1-22.

D.T. Colbert, W.H. Miller, A novel discrete variable representation for quantum-
mechanical reactive scattering via the s-matrix kohn method, J. Chem. Phys. 96
(1992) 1982-1991, http://dx.doi.org/10.1063/1462100.

J.R. Lund, B.V. Riley, A sinc-collocation method for the computation of the
eigenvalues of the radial schrodinger equation, IMA J. Numer. Anal. 4 (1984)
83.


http://scienide2.uwaterloo.ca/rleroy/LEVEL16
http://scienide2.uwaterloo.ca/rleroy/LEVEL16
http://scienide2.uwaterloo.ca/rleroy/LEVEL16
https://github.com/ExoMol/Duo
https://github.com/ExoMol/Duo
https://github.com/ExoMol/Duo
https://doi.org/10.1016/j.jms.2022.111621
http://dx.doi.org/10.1103/PhysRevA.100032519
http://dx.doi.org/10.1103/PhysRevA.100032519
http://dx.doi.org/10.1103/PhysRevA.100032519
http://dx.doi.org/10.1103/PhysRevLett.125213001
http://dx.doi.org/10.1103/PhysRevLett.125213001
http://dx.doi.org/10.1103/PhysRevLett.125213001
http://dx.doi.org/10.1103/PhysRevLett.114243001
http://dx.doi.org/10.1103/PhysRevLett.114243001
http://dx.doi.org/10.1103/PhysRevLett.114243001
http://dx.doi.org/10.1029/2006JD007659
http://dx.doi.org/10.1029/2006JD007659
http://dx.doi.org/10.1029/2006JD007659
http://dx.doi.org/10.1029/2019GL086344
http://dx.doi.org/10.1029/2019GL086344
http://dx.doi.org/10.1029/2019GL086344
http://dx.doi.org/10.1007/s00340-018-6933-x
http://dx.doi.org/10.1007/s00340-018-6933-x
http://dx.doi.org/10.1007/s00340-018-6933-x
http://dx.doi.org/10.1038/s41567-019-0722-2
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb8
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb8
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb8
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb8
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb8
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb9
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb9
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb9
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb9
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb9
http://dx.doi.org/10.1029/2006JD007659
http://dx.doi.org/10.1029/2006JD007659
http://dx.doi.org/10.1029/2006JD007659
http://dx.doi.org/10.1016/j.cpc.201512021
http://dx.doi.org/10.1016/j.jqsrt.201605028
http://dx.doi.org/10.1016/0022-2852(87)90059-2
http://dx.doi.org/10.1063/14933136
http://dx.doi.org/10.1063/14933136
http://dx.doi.org/10.1063/14933136
http://dx.doi.org/10.1016/j.jms.201804008
http://dx.doi.org/10.1016/j.jms.201804008
http://dx.doi.org/10.1016/j.jms.201804008
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb17
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb17
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb17
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb17
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb17
http://dx.doi.org/10.1021/acs.jctc.1c01244
http://dx.doi.org/10.1021/acs.jctc.1c01244
http://dx.doi.org/10.1021/acs.jctc.1c01244
http://dx.doi.org/10.1016/j.jqsrt.201606002
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb20
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb20
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb20
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb20
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb20
http://dx.doi.org/10.1080/0026897620191615143
http://dx.doi.org/10.1039/D1CP02162A
http://dx.doi.org/10.1063/50063256
http://dx.doi.org/10.1063/50063256
http://dx.doi.org/10.1063/50063256
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb24
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb24
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb24
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb25
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb25
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb25
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb26
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb26
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb26
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb27
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb27
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb27
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb28
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb28
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb28
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb29
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb29
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb29
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb30
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb30
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb30
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb30
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb30
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb30
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb30
http://dx.doi.org/10.1063/1462100
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb32
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb32
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb32
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb32
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb32

LI Mizus et al.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

F. Stenger, A sinc-galerkin method of solution of boundary value problems, Math.
Comp. 33 (1979) 85-109.

R.G. Littlejohn, M. Cargo, T. Carrington, K.A. Mitchell, B. Poirier, A general
framework for discrete variable representation basis sets, J. Chem. Phys. 116
(2002) 8691.

D.J. Tannor, Introduction to Quantum Mechanics — A Time Dependent
Perspective, University Science Books, 2007.

R.M. Wilcox, Exponential operators and parameter differentiation in quantum
physics, J. Math. Phys. 8 (1967) 962.

M. Morse, Singular points of vector fields under general boundary conditions,
Amer. J. Math. 51 (1929) 1-7.

I. Stegun M. Abramowitz (Ed.), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York,
1965.

Z. Rong, H. Kjaergaard, M. Sage, Comparison of the morse and deng-fan
potentials for x-h bonds in small molecules, Mol. Phys. 101 (1983) 2285-2294,
http://dx.doi.org/10.1080,/0026897031000137706.

11

[40]

[41]

[42]

[43]

[44]

Journal of Molecular Spectroscopy 386 (2022) 111621

M. Sage, Morse oscillator transtion-probabilities for molecular bond modes,
Chem. Phys. 35 (1978) 375-380, http://dx.doi.org/10.1016/S0301-0104(78)
85253-7.

1. Nasser, M.S. Abdelmonem, H. Bahlouli, A.D. Alhaidari, The rotating morse
potential model for diatomic molecules in the tridiagonal j-matrix representation:
I. bound states, J. Phys. B: At. Mol. Opt. Phys. 40 (2007) 4245-4257, http:
//dx.doi.org/10.1088/0953-4075/40/21/011.

J.A. Coxon, P.G. Hajigeorgiou, Direct potential fit analysis of the X' >* ground
state of CO, J. Chem. Phys. 121 (2004) 2992-3008, http://dx.doi.org/10.1063/
11768167.

LN. Kozin, M.M. Law, J. Tennyson, J.M. Hutson, New vibration-rotation code
for tetraatomic molecules WAVR4, Comput. Phys. Comm. 163 (2004) 117-131.
T. Odintsova, E. Fasci, L. Moretti, E.J. Zak, O.L. Polyansky, J. Tennyson, L.
Gianfrani, A. Castrillo, Highly-accurate intensity factors of pure co, lines near
2um, J. Chem. Phys. 146 (2017) 244309, http://dx.doi.org/10.1063/14989925.


http://refhub.elsevier.com/S0022-2852(22)00043-1/sb33
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb33
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb33
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb34
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb34
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb34
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb34
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb34
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb35
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb35
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb35
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb36
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb36
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb36
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb37
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb37
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb37
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb38
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb38
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb38
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb38
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb38
http://dx.doi.org/10.1080/0026897031000137706
http://dx.doi.org/10.1016/S0301-0104(78)85253-7
http://dx.doi.org/10.1016/S0301-0104(78)85253-7
http://dx.doi.org/10.1016/S0301-0104(78)85253-7
http://dx.doi.org/10.1088/0953-4075/40/21/011
http://dx.doi.org/10.1088/0953-4075/40/21/011
http://dx.doi.org/10.1088/0953-4075/40/21/011
http://dx.doi.org/10.1063/11768167
http://dx.doi.org/10.1063/11768167
http://dx.doi.org/10.1063/11768167
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb43
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb43
http://refhub.elsevier.com/S0022-2852(22)00043-1/sb43
http://dx.doi.org/10.1063/14989925

	Analysis of the accuracy of calculations using Duo and Level diatomic nuclear motion programs
	Introduction
	General comparison of Duo and Level
	Numerical method used for the vibrational Schrodinger equation

	Analytic calculations
	Quantum harmonic oscillator
	Quantum Morse oscillator

	Comparison with computed data
	Quantum harmonic oscillator
	Comparison of energies
	Comparison of wavefunctions
	Comparison of matrix elements

	Artificial Morse oscillator
	CO as a Morse oscillator
	Comparison of energies
	Comparison of wavefunctions
	Comparison of matrix elements
	Comparison of Einstein A coefficients

	Convergence features of Level

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References


