
Journal of Molecular Spectroscopy 386 (2022) 111621

A
0

Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/yjmsp

Article

Analysis of the accuracy of calculations usingDuo and Level diatomic nuclear
motion programs
Irina I. Mizus a,b, Lorenzo Lodi c,b, Jonathan Tennyson c, Nikolai F. Zobov b, Oleg L. Polyansky c,b,∗

a Holon Institute of Technology, Golomb Street, 52, Holon, 5810201, Israel
b Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod, 603950, Russia
c Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

A R T I C L E I N F O

Dataset link: http://scienide2.uwaterloo.ca/~r
leroy/LEVEL16, https://github.com/ExoMol/D
uo

Keywords:
Schrödinger equation
Numerical methods
Morse oscillator
Harmonic oscillator
CO

A B S T R A C T

Analysis of the accuracy of two programs widely-used for computing ro-vibrational spectra of diatomic
molecules, namely Duo and Level, is presented. Using model systems for which analytic results are available
it is shown that compared to Level, Duo gives similar or usually higher accuracy for line intensities, and is
accurate for calculations of bound state energies and corresponding wavefunctions. Furthermore, Duo provides
matrix elements accurate to about 10−4–10−5% relative to the analytic values, which is sufficient for developing
of accurate methods for experimental determination of some macroscopic gas features, such as pressure,
concentration, temperature, and so on; this level of accuracy can only be achieved with Level by significantly
increasing the number of grid points in the calculation.
1. Introduction

Spectroscopic measurements of transition frequencies (line posi-
tions) of gaseous molecules can provide, in favourable conditions, some
of the most accurate measurements in the whole of science, with
relative uncertainties as low as a few parts in 10−12. Even leaving
aside such extreme accuracy, standard laboratory set-ups can routinely
provide line positions of rotation-vibrational lines in the infrared (IR),
microwave and optical region with relative uncertainties of a few parts
in 10−9, a level of accuracy that at present can be matched by ab initio
theory only for diatomic molecules with two [1] or possibly three [2]
electrons.

The situation is very different for line intensities, for which the
level of accuracy achievable by both experiments and theory is much
lower, typically in the range 1%–20%. Nevertheless, over the past
twenty years or so it has become possible in some cases to obtain
line intensities with an accuracy better than 1% [3]. Such as accu-
racy is required for several applications including monitoring of the
Earth’s atmosphere [4] and might be necessary for the analysis of
the atmospheres of the exoplanets. Very recently agreement between
experiment and theory for some CO2 lines to a level better than 0.01%
has been reported for the first time [5]. Very accurate line intensity
determination has a number of potential applications in metrology,
for example for new standards of temperature [6], pressure [7] and
isotopic composition [8], although these may requires accuracies one
or even two orders of magnitude higher than presently possible.

∗ Corresponding author at: Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom.
E-mail address: o.polyansky@ucl.ac.uk (O.L. Polyansky).

For calculations with sub-percent accuracy it has generally been
assumed that the existing variational nuclear motion programs used to
solve the Schrödinger equation for the rotation-vibration line positions
and intensities, such as [9], can compute line intensities to better than
0.1% accuracy. However, if we are aiming accuracies of 0.01% or even
0.001% for experiment and theory, the accuracy of the calculation
for a given potential energy surface (PES) and dipole moment surface
(DMS) has to be better than these thresholds. Only in this case will the
final accuracy of the calculations be determined by the accuracy of the
underlying PES and DMS, and unaffected by the nuclear motion cal-
culations. In such situations tests of the accuracy of existing programs
becomes necessary. Exactly solvable problems provide a natural basis
for testing the accuracy achievable in practical computations.

In this paper we consider diatomic molecules; there are two rea-
sons for this. Firstly, the analysis of exactly solvable one-dimensional
problems is much simpler, than the ones for polyatomic molecules. Sec-
ondly, such one-dimensional models can closely resemble real
molecules, such as for example CO; the CO molecule will be used in
metrological studies, such as the studies of the pressure standards [10,
11].

We present a careful analysis of the computational accuracy of
two diatomic program packages – the recently developed program
Duo [12], and the more mature code Level (version 16) [13]; both of
these packages are widely used for computing spectra and spectroscopic
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features of diatomic molecules. Indeed Level has been used to build a
high accuracy model for H2 [14]. Our analysis was performed using
three simple cases: (i) a quantum harmonic oscillator system; (ii) an
artificial Morse oscillator quantum system; and (iii) CO represented as
Morse oscillator. We call a system ‘‘artificial’’ if the parameters are not
based on those for an actual molecule and is considered just a simple
benchmark quantum problem, which can be solved analytically.

The intensity of an absorption line for a multipole transition opera-
tor depends on matrix elements of the form

𝑀 (𝑙)
𝑚𝑛 =

⟨

𝑚 |

|

|

(𝑟 − 𝑟𝑒)𝑙
|

|

|

𝑛
⟩

, (1)

where 𝑚, 𝑛 are vibrational quantum numbers of the system, 𝑙 is an
integer, and 𝑟 − 𝑟𝑒 is the displacement from equilibrium separation
(𝑟𝑒). The transition intensity is proportional to the squared absolute
value of the matrix element: 𝐼 ∼ |

|

|

𝑀 (𝑙)
𝑚𝑛
|

|

|

2
with 𝑙 = 1 for an electric

dipole transition and 𝑙 = 2 for an electric quadrupole, which is why
the accuracy of such matrix element calculations is important. Indeed
it has been established that particular care is needed when computing
the intensity of high overtones bands [15,16].

We show that for the three test cases listed above Duo gives similar
or even higher accuracy for transition intensities and corresponding
matrix elements than Level, and a more than satisfactory accuracy of
calculations for bound state energies and corresponding wavefunctions.
This paper is organised as follows. In the next section we briefly discuss
the differences between the two codes considered here. Section 3
describes the analytic basis for calculations of bound state energies,
wavefunctions and matrix elements for the three quantum systems
considered. In Section 4 we perform a careful comparison of analytic re-
sults with the corresponding values computed with Duo and Level, and
with the experimental values when possible. The Section 5 summarizes
our findings and concludes the paper.

2. General comparison of Duo and Level

Level is a widely-used program with a long and distinguished his-
tory, and one might wonder why there was a need for a new program
for the spectroscopy of diatomic molecules. It is therefore perhaps
worthwhile to spend a few words comparing some general differences
between Level [13] and Duo [12].

In terms of functionalities, the main difference between the two
rograms is that Level is designed for computing rotational-vibrational
evels originating from isolated spin–singlet electronic states, while Duo

can deal with virtually any situation. Level is written with a focus on
the usual 1𝛴± electronic terms, and it cannot deal with interactions
between different electronic states at all; as a result, Level is usually in-
adequate for describing the spectra of open-shell molecules. Conversely,
Duo is a very general program which allows for the inclusion many
kinds of couplings between different electronic terms [17] including
recently hyperfine interactions [18], and therefore can be used to treat
all types of diatomic molecules. Duo also implements rather sophisti-
cated strategies to fit curves (energy curves and coupling curves) to
experimental data, which Level does via an auxiliary program Dpot-
fit [19]. Level can be used to treat long-lived, quasibound states, see
Doss et al. [20] for example; Duo has also been adapted to treat near-
dissociation continuum problems including quasibound states [21].
Duo has also been adapted to simulate bound–free (photodissociation)
spectra [22] and has been recently extended to compute quadrupole
transition intensities [23].

Next, we note that Level is written in FORTRAN77, while Duo uses
the much more modern Fortran2003. This fact may be considered irrel-
evant from the point of view of the final user, but from a developers’
point of view Duo is written in a way that reflects modern programming
best practices and, it is hoped, this fact makes Duo easier to read,
maintain and extend. Another technical difference is that, although
both programs use text-based input files, Level uses an old-fashioned
2

column-based format, while Duo a more modern and user-friendly
one. All calculations were performed using standard double precision
arithmetic within the Intel Fortran compiler of version 19.1.3.304 using
the Intel Maths Kernel Library (MKL) on a workstation with an Intel
Xeon E5-4640 processor running CentOS Linux 7.

Importantly for the comparisons of this paper, Level and Duo are
based on different algorithms for solving the one-dimensional
Schrödinger equation, namely Numerov’s method and the sinc discrete
variable representation (DVR) method. Both algorithms have their pros
and cons, but the basic point, as demonstrated below, is that Duo’s
algorithm provides much faster convergence than Level’s. We discuss
these difference in more detail in the next subsection.

2.1. Numerical method used for the vibrational Schrödinger equation

Level uses Numerov’s method, which has a long and distinguished
history in solving the one-dimensional Schrödinger equation, while Duo
is based on the sinc DVR approach. A useful general discussion which
introduces both the Numerov and sinc DVR approaches in a common
theoretical framework can be found in Refs. [24,25]. In the following
we only make a few remarks without any aim at completeness. The
Numerov method takes its name from the Russian astronomer Boris
Numerov, who introduced it in the 1920s for astronomical calcula-
tions [26,27]. Specifically, Numerov’s method is a convenient way to
discretise a second-order ordinary differential equations (ODEs) of the
form 𝑦′′(𝑥) = 𝑓 (𝑥, 𝑦), i.e. when the first-derivative term is not present.

The Numerov formula is a three-point recurrence relation which,
given the value of 𝑦 at two adjacent points, predicts a value for 𝑦 at the
successive (or preceding) grid point. The Schrödinger equation can be
written in the form

𝜓 ′′(𝑥) = 𝑓 (𝑥)𝜓(𝑥), with 𝑓 (𝑥) = 2𝑚
ℏ2

[𝑉 (𝑥) − 𝐸] , (2)

meaning that the Numerov method can be used to propagate the value
of 𝜓(𝑥) from two initial values. Because the value of the energy 𝐸 is
nknown, for solving the Schrödinger equation the Numerov method
as to be accompanied by a strategy to find 𝐸. This often consists of a

so-called ‘‘shooting’’ approach: an initial value for 𝐸 is guessed, and the
function 𝜓(𝑥) is computed for all grid points; then it is checked if the
guessed value of 𝐸 is too high or too low, and a new, improved value
of 𝐸 is generated, and so on. One particularly efficient strategy was
introduced in 1961 by Cooley [28] and then implemented in 1963 by
Cashion [29], so that the whole method is sometimes called Numerov-
Cooley or Numerov-Cooley-Cashion. In the same year Cashion and
Zare produced a document for internal use at the Lawrence Berkeley
National Laboratory, reporting not only a description of the method
but also the full listing of the Fortran code of the program [30]. This
program can be considered as the direct ancestor of today’s version
of Level, which is also based on the Numerov-Cooley method. One
advantage of the Numerov-Cooley method is that it requires very little
memory, which was probably a very important consideration in those
early years. The calculation of each eigenvalue/eigenvector pair can
be computed independently and the amount of memory needed is,
for a grid with 𝑁 points, of the order of 𝑁 units of floating-point
storage (typically 4 or 8 bytes). If one recomputes the value of the
potential whenever necessary without storing it in memory the memory
requirements can be reduced much further, down to a handful of bytes.
The error in the computed eigenvalues in Numerov-based approaches
is 𝑂(ℎ4) (ℎ being the grid step size), which is usually acceptably fast,
both in terms of computational effort and for containing the numerical
round-off error. To expand on this last point, in the Numerov formula
there are factors of the type 𝑦𝑖 − 𝑦𝑖−1, and for ℎ → 0 the calculation of
these is subject to greater and greater round-off error. A more detailed
analysis shows that the round-off error increases as ℎ2; as a result, when
working with finite precision, the error for Numerov-Cooley method
is given by the sum of two terms: 𝐴∕ℎ4 + 𝐵ℎ2. This implies that,
when doing calculations with a fixed precision (e.g., double precision
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Fig. 1. Convergence of energy levels of a harmonic oscillator using Duo and a
uniform grid (𝑟min and 𝑟max are kept fixed). The straight-line behaviour indicates that
the logarithm of error depends linearly on 𝑁2, which implies a convergence of the
exp(−𝛼∕ℎ2) type.

numbers) there is an optimal minimal grid step size ℎopt , and using
a smaller grid size will result in greater error because of round-off.
Finally, the computational effort scales proportionally to the number
of points 𝑂(𝑁).

The method used by Duo is the sinc DVR. This method is sometimes
also called Colbert-Miller DVR, because these two authors derived it
in a much-cited paper from 1992 [31]. However, essentially the same
method had been independently derived and applied to the Schrödinger
equation by Guardiola and Ros [24] and by Lund and Riley [32]
in 1984, and closely related methods were already known in the
mathematical literature [33]. A description of this method from the
point of view of the discrete-variable-representation (DVR) approach
can be found in the article by Littlejohn et al. [34] and in the book by
Tannor [35]. In this approach, the Schrödinger equation is transformed
into a standard matrix eigenvalue/eigenvector problem, with a real
symmetric matrix of size 𝑁 ×𝑁 . On the one hand this involves a much
larger memory usage of the order of 𝑁2, as the matrix has to be stored
(although one can reduce memory use by recomputing matrix elements
whenever needed). In practice this has ceased to be a problem for this
kind of applications in the late-1980s, as the typical memory usage
was of the order of 0.1 to 2 MB, which is totally negligible on any
modern machine. Typical algorithms to find the full spectrum of dense
matrices generally scale as 𝑁3, which is much steeper than the 𝑁 of
the Numerov method. However, this is more than compensated by the
much faster rate of convergence of the sinc method, for which errors
are expected to scale at least as fast as exp(−𝛼∕ℎ𝑎), with 𝛼 in the range
1–2, which is much faster than the 𝐴∕ℎ4 of Numerov’s method. So for
high enough accuracy the sinc DVR method will always provide faster
convergence, both with respect to the number of grid points and to
compute time. As an example Fig. 1 reports convergence speed of Duo
for several levels of a harmonic oscillator, revealing super-exponential
convergence of the type exp(−𝛼∕ℎ2).

3. Analytic calculations

As a benchmark for analyzing the computational accuracy of Duo
and Level, analytic calculations were performed for three cases simple
quantum systems. Their details are described below.
3

3.1. Quantum harmonic oscillator

As a specific example of a one-dimensional harmonic quantum
oscillator, we consider an artificial system with a harmonic potential

𝑉 (𝑟) = 1
2
𝑘𝑠(𝑟 − 𝑟𝑒)2, (3)

with equilibrium distance 𝑟𝑒 = 3Å, force constant 𝑘𝑠 = 50 000 cm−1∕Å2,
and mass of each atom set to 𝑚0 = 3.371525838831536Da, which ensures

that the harmonic frequency 𝜈0 =
√

2𝑘𝑠
𝑚0

is exactly 1000.0000 cm−1, and
the bound state energies of the system are just half-integer numbers
multiplied by 1000.0000 cm−1: 500 cm−1, 1500 cm−1, 2500 cm−1, etc.

The expression for the corresponding wavefunctions is well-known:

𝜓𝑛(𝑥) =
1

√

2𝑛 𝑛!
√

𝜋𝑎
exp

(

− 𝑥2

2𝑎2

)

𝐻𝑛

(𝑥
𝑎

)

, (4)

where 𝑎 =
√

2ℏ
𝑚0𝜔0

≈ 0.14142Å in our case, 𝜔0 is an angular harmonic
frequency, 𝜔0 = 2𝜋𝜈0, 𝑥 = 𝑟 − 𝑟𝑒, and 𝐻𝑛 are Hermite polynomials.
General expressions for the (𝑚, 𝑛) matrix element of a potential function
𝑥𝑗 were obtained by Wilcox [36]:

⟨

𝑚|𝑥𝑗 |𝑛
⟩

=
𝑚
∑

𝑘=𝑏

𝛼−𝑗𝑗!
√

𝑚! 𝑛!
𝑘!(𝑚 − 𝑘)!(𝑛 − 𝑘)! 2𝑤𝑤!

, (5)

where 𝑏 is zero or 1
2 (𝑚+𝑛− 𝑗), whichever is larger, 𝑤 = 𝑘+ 1

2 (𝑗−𝑚−𝑛),
and 𝛼 =

√

𝑚0𝜔0∕ℏ =
√

2∕𝑎 ≈ 10.000Å−1. Here it is assumed that (i)
𝑛 ≥ 𝑚 as the operator is Hermitian so

⟨

𝑚|𝑥𝑗 |𝑛
⟩

=
⟨

𝑛|𝑥𝑗 |𝑚
⟩

; (ii) 𝑚+𝑛−𝑗
must be even to assure that 𝑏 is integer else the matrix element is zero;
and (iii) there is a well-known selection rule for the harmonic oscillator
system that

⟨

𝑚|𝑥𝑗 |𝑛
⟩

vanishes unless 𝑗 ≥ 𝑛 − 𝑚. From (ii) and (iii) one
can conclude that 𝑛 − 𝑚 must be even if 𝑗 is even, and vice versa.

Assuming that 𝑚 + 𝑛 − 𝑗 = 2𝑙, where 𝑙 is integer, and introducing
a summation index 𝑖 = 0, 1, 2, 3, . . . we obtain 𝑏 = 𝑙 if 𝑙 > 0 and
0, otherwise; 𝑘 = 𝑏 + 𝑖 = 𝑙 + 𝑖 for 𝑙 > 0 and 𝑘 = 𝑖 for 𝑙 ≤ 0; and
𝑤 = 𝑏 + 𝑖 − 𝑙 = 𝑖 for 𝑙 ≥ 0 and 𝑤 = 𝑖 − 𝑙, otherwise. To ensure that
condition (iii) is satisfied 𝑙 must be ≤ 𝑚.

Thus, we can rewrite the expression for
⟨

𝑚|𝑥𝑗 |𝑛
⟩

as:

⟨

𝑚|𝑥𝑗 |𝑗 + 2𝑙 − 𝑚
⟩

=
𝑚−𝑙
∑

𝑖=0

𝛼−𝑗𝑗!
√

𝑚! (𝑗 + 2𝑙 − 𝑚)!
(𝑙 + 𝑖)! (𝑚 − 𝑙 − 𝑖)! (𝑗 + 𝑙 − 𝑚 − 𝑖)! 2𝑖 𝑖!

, (6)

if 0 ≤ 𝑙 ≤ 𝑚, and

⟨

𝑚|𝑥𝑗 |𝑗 + 2𝑙 − 𝑚
⟩

=
𝑚
∑

𝑖=0

𝛼−𝑗𝑗!
√

𝑚! (𝑗 + 2𝑙 − 𝑚)!
𝑖! (𝑚 − 𝑖)! (𝑗 + 2𝑙 − 𝑚 − 𝑖)! 2𝑖−𝑙 (𝑖 − 𝑙)!

, (7)

if 𝑙 < 0. From Eq. (6) one can obtain a simple expression for an
important special case, when 𝑛 = 𝑚 + 𝑗, and thus 𝑙 = 𝑚 ≥ 0:

⟨

𝑚|𝑥𝑗 |𝑚 + 𝑗
⟩

=
𝛼−𝑗𝑗!

√

𝑚! (𝑚 + 𝑗)!
𝑚! 𝑗!

= 𝛼−𝑗
√

(𝑚 + 1)(𝑚 + 2)...(𝑚 + 𝑗 − 1)(𝑚 + 𝑗).
(8)

For the matrix element
⟨

𝑚 − 𝑗|𝑥𝑗 |𝑚
⟩

we can use the substitution 𝑡 =
𝑚 − 𝑗 to show that
⟨

𝑚 − 𝑗|𝑥𝑗 |𝑚
⟩

=
⟨

𝑡|𝑥𝑗 |𝑡 + 𝑗
⟩

= 𝛼−𝑗
√

(𝑡 + 1)(𝑡 + 2)...(𝑡 + 𝑗 − 1)(𝑡 + 𝑗)

= 𝛼−𝑗
√

𝑚(𝑚 − 1)...(𝑚 − 𝑗 + 2)(𝑚 − 𝑗 + 1). (9)

To compare Duo and Level calculations, we consider 𝑗 = 1, 2 and 3.
Therefore, we need the following expressions for the non-zero matrix
elements:

• 𝑗 = 1; then 𝑛 − 𝑚 must be odd, too, and we have a single case
which satisfies the selection rule 𝑗 ≥ 𝑛−𝑚, namely: 𝑛 = 𝑚+ 1, for
which we obtain:

⟨𝑚|𝑥|𝑚 + 1⟩ = ⟨𝑚 + 1|𝑥|𝑚⟩ = 𝛼−1
√

𝑚 + 1. (10)
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• 𝑗 = 2; here 𝑛 − 𝑚 must be even and can be equal to 0 or 2. For
𝑛 − 𝑚 = 2 we have:
⟨

𝑚|𝑥2|𝑚 + 2
⟩

=
⟨

𝑚 + 2|𝑥2|𝑚
⟩

= 𝛼−2
√

(𝑚 + 1)(𝑚 + 2). (11)

When 𝑛 = 𝑚, we have 𝑙 = 𝑚 − 1, and for the case 𝑛 = 𝑚 = 0 the
value 𝑙 = −1 < 0, so we should apply Eq. (7); it is easy to show
that in this case

⟨

0|𝑥2|0
⟩

= 𝛼−2. If 𝑛 = 𝑚 > 0, then 𝑙 ≥ 0, and
applying Eq. (6):

⟨

𝑚|𝑥2|𝑚
⟩

=
1
∑

𝑖=0

2𝛼−2𝑚!
(𝑚 + 𝑖 − 1)! (1 − 𝑖)!2 2𝑖 𝑖!

= 𝛼−2(2 𝑚 + 1);

combining both cases gives
⟨

𝑚|𝑥2|𝑚
⟩

= 𝛼−2(2 𝑚 + 1). (12)

• 𝑗 = 3; here 𝑛 − 𝑚 must be odd and can be equal to 1 or 3. For
𝑛 = 𝑚 + 3 we have:
⟨

𝑚|𝑥3|𝑚 + 3
⟩

=
⟨

𝑚 + 3|𝑥3|𝑚
⟩

= 𝛼−3
√

(𝑚 + 1)(𝑚 + 2)(𝑚 + 3). (13)

When 𝑛 = 𝑚 + 1, again 𝑙 = 𝑚 − 1. Acting as above for 𝑗 = 2 gives
the final non-zero matrix elements:
⟨

𝑚|𝑥3|𝑚 + 1
⟩

=
⟨

𝑚 + 1|𝑥3|𝑚
⟩

= 3𝛼−3(𝑚 + 1)3∕2. (14)

.2. Quantum Morse oscillator

The Morse potential is very popular for modeling simple anhar-
onic diatomic potentials and is expressed as [37]:

(𝑟) = 𝐷
(

1 − exp (−𝑎(𝑟 − 𝑟 ))
)2 , (15)
4

𝑒 𝑒
here 𝑟𝑒 is the equilibrium distance, 𝐷𝑒 is the dissociation energy, and
is a scaling factor. Bound state energies of a diatomic can be predicted
ith satisfactory accuracy using a Morse potential which gives a simple
ell-known expression for its energy levels [37]:

𝑛 = ℏ𝜔𝑒

(

(

𝑛 + 1
2

)

− 𝑥𝑒
(

𝑛 + 1
2

)2)

, (16)

where 𝑛 is the vibrational quantum number, 𝜔𝑒 is the harmonic fre-
quency, and 𝑥𝑒 is an anharmonicity factor, which can be expressed as
𝑥𝑒 =

𝜔𝑒
4𝐷𝑒

.

The expression for the corresponding wavefunctions is also well-
known [37]:

𝜓𝑛(𝑦) = 𝑁𝑛 exp (−𝑦∕2) 𝑦𝛽∕2 𝐿𝛽𝑛 (𝑦), (17)

where 𝑦 = 𝐴 exp(−𝑎(𝑟− 𝑟𝑒)), 𝐴 = 1∕𝑥𝑒, 𝛽 = 𝐴− 2𝑛− 1, the normalisation
constant is expressed through 𝛤 functions as:

𝑁𝑛 =
(

𝑎 𝛽 𝑛!
𝛤 (𝐴 − 𝑛)

)1∕2
,

nd 𝐿𝛽𝑛 (𝑦) are generalised Laguerre polynomials [38]:

𝛽
𝑛 (𝑦) =

𝑛
∑

𝑖=0

(−1)𝑖 𝛤 (𝛽 + 𝑛 + 1)
𝑖! (𝑛 − 𝑖)!𝛤 (𝛽 + 𝑖 + 1)

𝑦𝑖.

A general procedure for obtaining analytic (𝑛, 𝑚) matrix elements of
unction 𝑥𝑗 for the Morse oscillator was derived by Rong et al. [39] on
he basis of calculations by Sage [40]. This procedure is carried out in
wo steps. First, the matrix elements of 𝑦𝜆 are calculated as:

⟨

𝜈 + 𝑚|𝑦𝜆|𝑚
⟩

=
𝑁0𝑁𝜈
𝑎

𝑚
∑

𝑖=0

×
𝛤 (𝐴 + 𝜆 − 𝑚 − 𝜈 − 𝑖 − 1)𝛤 (𝑖 − 𝜆 + 1)𝛤 (𝑖 − 𝜆 + 𝜈 + 1)

,

(18)
𝛤 (𝑖 + 𝜈 + 1)𝛤 (𝑚 − 𝑖 + 1)𝛤 (𝑖 + 1)𝛤 (1 − 𝜆 + 𝜈)𝛤 (1 − 𝜆 − 𝜈)
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here 𝜈 = 𝑛 − 𝑚 ≥ 0 and 𝜆 is an integer parameter. In the second
step, the matrix elements of 𝑥𝑗 = (𝑟 − 𝑟𝑒)𝑗 are calculated using the
relationship:

𝑥𝑗 =
(−1)𝑗

𝑎𝑗
𝑑𝑗

𝑑𝜆𝑗
( 𝑦
𝐴

)𝜆
|

|

|

|𝜆=0
. (19)

For comparison with calculations using Duo and Level, we consider
Morse potentials with 1 ≤ 𝑗 ≤ 6, 𝑚 = 0 and 𝑛 = 𝜈, 0 ≤ 𝑛 ≤ 9. In this case
we have the following expression for the matrix element of 𝑦𝜆:

⟨

𝑛|𝑦𝜆|0
⟩

=

√

(𝐴 − 1)(𝐴 − 2𝑛 − 1) 𝑛!
𝛤 (𝐴)𝛤 (𝐴 − 𝑛)

×
𝛤 (𝐴 + 𝜆 − 𝑛 − 1)𝛤 (1 − 𝜆)𝛤 (𝑛 + 1 − 𝜆)
𝛤 (𝑛 + 1)𝛤 (1 − 𝜆 + 𝑛)𝛤 (1 − 𝜆 − 𝑛)

.

(20)

To obtain the matrix element of 𝑥𝑗 , we apply the derivative procedure
of Eq. (19):

⟨

𝑛|𝑥𝑗 |0
⟩

=
(−1)𝑗

𝑎𝑗
𝑑𝑗

𝑑𝜆𝑗

(
⟨

𝑛|𝑦𝜆|0
⟩

𝐴𝜆

)

|

|

|

|

|

|𝜆=0

. (21)

The resulting Eqs. (20) and (21) are, however, rather computationally
expensive to evaluate. The equations for the matrix elements

⟨

𝑛|𝑥𝑗 |0
⟩

,
hich are cheaper to compute, but also less compact, are given by Eqs.

33)–(47) of Rong et al. [39].
Below we consider two Morse oscillator systems with different

arameters:

1. An artificial Morse oscillator quantum system
For this case we chose the following parameters: the mass
of each atom 𝑚0 = 1.00Da, the dissociation energy 𝐷𝑒 =

−1 −1
5

40 000 cm , the scaling factor 𝑎 = 1.0Å , the equilibrium w
distance 𝑟𝑒 = 2.0Å. The harmonic frequency can be obtained

from a simple expression: 𝜔𝑒 = 2𝑎
√

𝐷𝑒
𝑚0

≈ 2322.5942 cm−1, the

anharmonicity factor 𝑥𝑒 = 𝜔𝑒
4𝐷𝑒

≈ 0.014516, and 𝐴 = 1∕𝑥𝑒 ≈
68.8885.

2. Vibrations of the CO molecule represented by a Morse oscillator
For CO we used parameters due to Nasser et al. [41]: the
reduced mass 𝜇 = 6.8562086Da, the dissociation energy 𝐷𝑒 =
90 540.574 cm−1, the scaling factor 𝑎 = 2.299397Å−1, the equi-
librium distance 𝑟𝑒 = 1.1283Å. Thus, the harmonic frequency
can be obtained as 𝜔𝑒 = 𝑎

√

2𝐷𝑒
𝜇 ≈ 2169.8111 cm−1, the an-

harmonicity factor 𝑥𝑒 = 𝜔𝑒
4𝐷𝑒

≈ 0.0059913, and 𝐴 = 1∕𝑥𝑒 ≈
166.9096.

. Comparison with computed data

Here we present the results of calculations using Duo and Level
or vibrational energies, wavefunctions and some matrix elements in
hree cases considered above, and compare them with our results of
nalytic calculations. In order to make such a comparison valid, the
ully converged calculations have to be performed by both programs.
he choice of the grids of both programs has been made in such a way,
hat the further improvement had no influence on the value of highest
nergy considered down to at least 10−3 cm−1 or 7 to 8 significant
igures.

.1. Quantum harmonic oscillator

The parameters chosen for the artificial harmonic oscillator system
e consider ensure that its bound state energies are just half-integer
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Fig. 4. Comparison of analytic wavefunctions with computed ones for an artificial harmonic oscillator. The upper plot shows computed and calculated wavefunctions for the three
owest vibrational states as a function of an internuclear distance; the lower plot gives the absolute difference between the computed results from the analytic ones.
Fig. 5. Comparison of the analytic wavefunctions with the computed ones for CO represented by a Morse oscillator. The upper plot shows computed and calculated wavefunctions
for the three lowest vibrational states as a function of an internuclear distance; the lower plot gives the absolute difference between the computed results from the analytic ones.
numbers multiplied by 1000.0000 cm−1: 500 cm−1, 1500 cm−1, 2500 cm−1,
etc. Our computations used equidistant grids spanning 𝑅min = 1 to
𝑅max = 5 Å: for Duo a step of ℎ = 0.0404 Å (100 grid points) was used,
while for Level ℎ = 0.001 Å (4000 grid points) was used.

Comparison of energies
Figs. 2 and 3 show that the 20 lowest energies computed using

Duo coincide with the theoretical ones at least up to the sixth decimal
place, while Level shows this accuracy only up to 5500 cm−1; for higher
bound states its accuracy becomes worse gradually and reaches about
10−4 cm−1 for the energy level with the vibrational quantum number
𝑛 = 19. Besides, to achieve convergence with eigenvalue convergence

−6 −1
6

parameter 10 cm , we had to reduce the Level step size by a factor
of 40 compared with the one used in the Duo calculations, and to add
trial energies to Level’s input data as we did not manage to calculate all
the bound states of the harmonic oscillator system using Level without
this manual intervention.

Comparison of wavefunctions
The main goal of this work is to clarify if Duo or Level can provide an

accuracy of at least 0.0001% while computing of intensities for small
diatomics, that is of great importance for experimental needs at the
moment. From this point of view, all the comparisons of wavefunctions
performed in this work have rather an illustrative purpose, which
is needed to ensure that not only intensities, but eigenfunctions and

energies can be obtained with satisfactory accuracy, as well. That is
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Table 1
Comparison of analytic matrix harmonic oscillator elements ⟨𝑚|𝑥|𝑛⟩ with ones computed
using Duo and Level. 𝛿Duo/Level = |

|

|

|

⟨𝑚|𝑥|𝑛⟩Duo/Level|| − |

|

⟨𝑚|𝑥|𝑛⟩an
|

|

|

|

∕ |
|

⟨𝑚|𝑥|𝑛⟩an
|

|

× 100, % is
he relative percentage deviation of the Duo/Level results from the analytic ones.
𝑛 𝑚 ⟨𝑚|𝑥|𝑛⟩an ,Å 𝛿Duo, % 𝛿Level, %

1 0 0.1000000 0.0 1.6 × 10−7

2 1 0.1414214 1.7 × 10−7 7.6 × 10−7

3 2 0.1732051 1.4 × 10−7 1.0 × 10−6

4 3 0.2000000 0.0 1.0 × 10−6

5 4 0.2236068 1.1 × 10−7 8.5 × 10−7

6 5 0.2449490 1.1 × 10−7 6.2 × 10−7

7 6 0.2645751 4.2 × 10−8 7.9 × 10−8

8 7 0.2828427 1.7 × 10−7 1.1 × 10−7

9 8 0.3000000 0.0 1.4 × 10−7

10 9 0.3162278 6.3 × 10−9 1.8 × 10−7

11 10 0.3316625 1.2 × 10−8 2.2 × 10−7

12 11 0.3464102 1.4 × 10−7 2.6 × 10−7

13 12 0.3605551 1.2 × 10−7 3.1 × 10−7

14 13 0.3741657 8.6 × 10−8 3.7 × 10−7

15 14 0.3872983 9.8 × 10−8 4.2 × 10−7

16 15 0.4000000 0.0 4.8 × 10−7

17 16 0.4123106 1.1 × 10−7 5.5 × 10−7

18 17 0.4242641 6.8 × 10−8 6.2 × 10−7

19 18 0.4358899 8.0 × 10−8 6.9 × 10−7

20 19 0.4472136 1.1 × 10−7 7.6 × 10−7

why we limit ourselves to only considering of a few lowest stable states
of the quantum systems.

Fig. 4 compares analytic and computed wavefunctions for the quan-
tum harmonic oscillator system. The analytic wavefunctions of the
three lowest vibrational states were calculated using Eq. (4). Their
computed versions were obtained using Duo and Level.

However, there is a difference in the treatment normalization be-
tween these two packages. The Duo eigenvectors are normalized so that
the sum of squares of the DVR points gives unity. Thus, to obtain the
data shown in the Figs. 4, 5 and the Fig. 1 from the Supplementary
material we had to multiply the Duo results by 𝑐Duo = 1∕

√

ℎ, where ℎ
is the step size. We also adjusted the sign of the Duo wavefunctions so
the overall phase coincided with the analytic ones.

Fig. 4 shows that all the computed wavefunctions coincide with
the analytic ones within 10−5 Å−1∕2, which is about 5 × 10−4 % of the
amplitudes. The accuracy of Duo is much better (up to six to seven
orders of magnitude) than Level, and almost reaches the floating point
numerical accuracy. All the Duo and analytic results coincide within
10−6 % for almost all grids considered, while Level shows generally
much worse accuracy.

Comparison of matrix elements
A comparison between analytic and computed matrix elements

⟨𝑚|𝑥|𝑛⟩,
⟨

𝑚|𝑥2|𝑛
⟩

and
⟨

𝑚|𝑥3|𝑛
⟩

is shown in Tables 1, 2, and in Table
VIII of the Supplementary materials, respectively. These off-diagonal
matrix elements have a phase ambiguity due to the arbitrary overall
phase of the bra and ket wavefunctions. These signs do not effect
intensity calculations and we present only (unsigned) absolute values.
The tables contain data for the vibrational quantum numbers up to 20.
Our calculations show that the relative deviations of the Duo results
from the analytic ones is less than 5 × 10−7 % for all matrix elements.
Meanwhile, the accuracy of the matrix elements obtained using Level is
often much worse, with the relative deviations 𝛿Level being up to 10−4 %
and in some cases larger than the ones of Duo by two to three orders
of magnitude.

4.2. Artificial Morse oscillator

Our computations used equidistant grids spanning 0.3 to 4.5 Å with
ℎ = 0.0424 Å (100 grid points) in Duo and ℎ = 0.0021 Å (about
2000 grid points) in Level to solve for the Morse potential with the
parameters listed first in Section 3.2. As this case has appeared to
be rather similar to the one from the following section, the detailed
consideration of it one can find in the Supplementary material.
7

a

Table 2
Comparison of analytic harmonic oscillator matrix elements

⟨

𝑚|𝑥2|𝑛
⟩

with ones com-
puted with Duo and Level. 𝛿Duo/Level =

|

|

|

|

|

|

⟨

𝑚|𝑥2|𝑛
⟩

Duo/Level
|

|

|

− |

|

|

⟨

𝑚|𝑥2|𝑛
⟩

an
|

|

|

|

|

|

∕ ||
|

⟨

𝑚|𝑥2|𝑛
⟩

an
|

|

|

×

100, % is the relative percentage deviation of the Duo/Level results from the analytic
ones.
𝑛 𝑚

⟨

𝑚|𝑥2|𝑛
⟩

an ,Å 𝛿Duo, % 𝛿Level, %

0 0 0.01000000 0.0 2.9 × 10−6

2 0 0.01414214 1.4 × 10−7 4.2 × 10−7

1 1 0.03000000 0.0 3.0 × 10−6

3 1 0.02449490 1.2 × 10−7 9.5 × 10−6

2 2 0.05000000 0.0 2.7 × 10−6

4 2 0.03464102 1.4 × 10−7 1.3 × 10−5

3 3 0.07000000 0.0 2.0 × 10−6

5 3 0.04472136 1.1 × 10−7 1.4 × 10−5

4 4 0.09000000 0.0 8.0 × 10−7

6 4 0.05477226 9.1 × 10−8 5.5 × 10−6

5 5 0.11000000 0.0 8.1 × 10−7

7 5 0.06480741 3.1 × 10−8 4.8 × 10−6

6 6 0.13000000 0.0 1.4 × 10−7

8 6 0.07483315 5.3 × 10−8 2.7 × 10−8

7 7 0.15000000 0.0 1.9 × 10−7

9 7 0.08485281 4.7 × 10−8 3.5 × 10−8

8 8 0.17000000 0.0 2.5 × 10−7

10 8 0.09486833 1.1 × 10−8 6.3 × 10−8

9 9 0.19000000 0.0 3.2 × 10−7

11 9 0.10488088 1.7 × 10−7 7.6 × 10−8

10 10 0.21000000 0.0 4.0 × 10−7

12 10 0.11489125 6.1 × 10−8 9.6 × 10−8

11 11 0.23000000 0.0 4.9 × 10−7

13 11 0.12489996 2.4 × 10−8 1.2 × 10−7

12 12 0.25000000 0.0 5.8 × 10−7

14 12 0.13490738 2.7 × 10−7 1.4 × 10−7

13 13 0.27000000 0.0 6.8 × 10−7

15 13 0.14491377 3.2 × 10−7 1.7 × 10−7

14 14 0.29000000 0.0 7.9 × 10−7

16 14 0.15491933 9.7 × 10−8 2.0 × 10−7

15 15 0.31000000 0.0 9.1 × 10−7

17 15 0.16492423 1.2 × 10−8 2.3 × 10−7

16 16 0.33000000 0.0 1.0 × 10−6

18 16 0.17492856 8.6 × 10−8 2.7 × 10−7

17 17 0.35000000 0.0 1.2 × 10−6

19 17 0.18493242 4.9 × 10−8 3.0 × 10−7

18 18 0.37000000 0.0 1.3 × 10−6

20 18 0.19493589 5.1 × 10−8 3.4 × 10−7

19 19 0.39000000 0.0 1.5 × 10−6

20 20 0.41000000 0.0 1.6 × 10−6

4.3. CO as a Morse oscillator

As above, to achieve convergence in the Level calculations to 10−6

m−1, we had to reduce the grid step size by a factor of 20 compared
o the sinc DVR grid used by Duo. Thus, during these computations,
quidistant grids between 0.8 and 3.79 Å used ℎ = 0.01 Å (300 grid
oints) in Duo and ℎ = 0.0005 Å (about 6000 grid points) in Level; the
orse potential (15) used a set of parameters given as the second list

n Section 3.2.

omparison of energies
A comparison of the energies computed using Duo and Level with

he analytic energies and the available experimental data for the CO
iatomic is given in the Table 3. The table shows that both packages
btain energies of the lowest 9 bound states for a CO diatomic with
relative accuracy of about 2 × 10−5 % for each state. The devia-

ions of both Duo and Level results from the observed energies below
0 500 cm−1 are the same, as well, within 0.07 % which is a reflection
f the accuracy of the Morse potential curve used for this study.

omparison of wavefunctions
Fig. 5 compares the analytic and computed wavefunctions for CO

nd shows that all the computed wavefunctions coincide with the
−1∕2
nalytic ones within 0.01 Å , which is about 0.25% of amplitudes.
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Table 3
Comparison of the computed using Duo and Level CO diatomic energies with the analytic ones 𝐸an = 𝐸𝑛 − 𝐸0 (bound state energies 𝐸𝑛 were calculated using Eq. (16)) and the
available experimental data 𝐸obs. Here 𝛥an/obs

𝑖 = 𝐸𝑖 −𝐸an/obs is the absolute difference between the computed and the calculated/observed energies, and 𝛿𝑖 = |

|

𝐸𝑖 − 𝐸an
|

|

∕𝐸an ×100, %
is the relative percentage deviation of the computed result from the analytic values. The absolute deviations from the experimental data are shown in the last column and are
almost equal for Duo and Level.
𝑛 𝐸𝑛 , cm−1 𝐸an , cm−1 𝐸obs , cm−1 𝛥an

Duo , cm−1 𝛿Duo , % 𝛥an
Level , cm−1 𝛿Level , % 𝛥obs , cm−1

0 1081.6555
1 3225.4668 2143.8112 2143.2714 −0.0005 2.37 × 10−5 −0.0005 2.43 × 10−5 −0.5393
2 5343.2782 4261.6226 4260.0625 −0.0010 2.35 × 10−5 −0.0010 2.36 × 10−5 −1.5591
3 7435.0897 6353.4342 6350.4394 −0.0015 2.34 × 10−5 −0.0015 2.29 × 10−5 −2.9933
4 9500.9014 8419.2459 8414.4698 −0.0020 2.32 × 10−5 −0.0020 2.34 × 10−5 −4.7741
5 11 540.7133 10 459.0578 10 452.2228 −0.0024 2.31 × 10−5 −0.0025 2.35 × 10−5 −6.8325
6 13 554.5253 12 472.8698 −0.0029 2.29 × 10−5 −0.0029 2.32 × 10−5

7 15 542.3376 14 460.6820 −0.0033 2.28 × 10−5 −0.0033 2.29 × 10−5

8 17 504.1499 16 422.4944 −0.0037 2.26 × 10−5 −0.0038 2.30 × 10−5

9 19 439.9625 18 358.3069 −0.0041 2.25 × 10−5 −0.0042 2.30 × 10−5
Table 4
Comparison of analytic matrix elements of CO ⟨𝑛|𝑥|0⟩, calculated using Eqs. (20) and
(21), with the ones computed using Duo and Level. 𝛥𝑖 = |

|

|

|

⟨𝑛|𝑥|0⟩𝑖|| − |

|

⟨𝑛|𝑥|0⟩an
|

|

|

|

is
he absolute difference between the computed and the calculated values, and 𝛿𝑖 =
𝑖∕ ||⟨𝑛|𝑥|0⟩an

|

|

×100, % is the relative percentage deviation of the computed results from
he analytic ones.
𝑛 ⟨𝑛|𝑥|0⟩an , Å 𝛥Duo , Å 𝛿Duo , % 𝛥Level , Å 𝛿Level , %

0 3.9254 × 10−3 9.500 × 10−10 2.42 × 10−5 9.50 × 10−10 2.4201 × 10−5

1 3.3763 × 10−2 4.060 × 10−9 1.20 × 10−5 4.06 × 10−9 1.2025 × 10−5

2 −1.8590 × 10−3 4.550 × 10−10 2.45 × 10−5 4.55 × 10−10 2.4475 × 10−5

3 1.6765 × 10−4 6.180 × 10−11 3.69 × 10−5 5.18 × 10−11 3.0898 × 10−5

4 −1.9700 × 10−5 9.600 × 10−12 4.87 × 10−5 3.70 × 10−12 1.8782 × 10−5

5 2.7690 × 10−6 1.696 × 10−12 6.12 × 10−5 1.80 × 10−12 6.4860 × 10−5

6 −4.4549 × 10−7 3.288 × 10−13 7.38 × 10−5 1.47 × 10−12 3.2948 × 10−4

7 7.9870 × 10−8 6.902 × 10−14 8.64 × 10−5 8.37 × 10−13 1.0482 × 10−3

8 −1.5676 × 10−8 1.544 × 10−14 9.91 × 10−5 3.81 × 10−13 2.4314 × 10−3

9 3.3253 × 10−9 3.697 × 10−15 1.11 × 10−4 2.11 × 10−13 6.3470 × 10−3

Table 5
Comparison of analytic CO matrix elements

⟨

𝑛|𝑥2|0
⟩

, calculated using Eqs. (20) and
(21), with the ones computed using Duo and Level. 𝛥𝑖 = |

|

|

|

|

|

⟨

𝑛|𝑥2|0
⟩

𝑖
|

|

|

− |

|

|

⟨

𝑛|𝑥2|0
⟩

an
|

|

|

|

|

|

is the absolute difference between the computed and calculated values, and 𝛿𝑖 =
𝛥𝑖∕

|

|

|

⟨

𝑛|𝑥2|0
⟩

an
|

|

|

× 100, % is the relative percentage deviation of the computed results
from the analytic ones.
𝑛

⟨

𝑛|𝑥2|0
⟩

an , Å 𝛥Duo , Å 𝛿Duo , % 𝛥Level , Å 𝛿Level , %

0 1.1588 × 10−3 2.840 × 10−10 2.45 × 10−5 2.84 × 10−10 2.4507 × 10−5

1 4.4314 × 10−4 1.617 × 10−10 3.65 × 10−5 1.62 × 10−10 3.6489 × 10−5

2 1.5827 × 10−3 3.760 × 10−10 2.38 × 10−5 3.76 × 10−10 2.3757 × 10−5

3 −2.1475 × 10−4 7.740 × 10−11 3.60 × 10−5 7.84 × 10−11 3.6508 × 10−5

4 3.0840 × 10−5 1.494 × 10−11 4.84 × 10−5 1.37 × 10−11 4.4553 × 10−5

5 −4.9220 × 10−6 2.995 × 10−12 6.08 × 10−5 1.89 × 10−12 3.8501 × 10−5

6 8.6693 × 10−7 6.361 × 10−13 7.34 × 10−5 4.61 × 10−13 5.3188 × 10−5

7 −1.6657 × 10−7 1.427 × 10−13 8.57 × 10−5 2.77 × 10−13 1.6612 × 10−4

8 3.4553 × 10−8 3.406 × 10−14 9.8572 × 10−5 1.7676 × 10−13 5.1156 × 10−4

9 −7.6730 × 10−9 8.535 × 10−15 1.1123 × 10−4 7.6745 × 10−14 1.0002 × 10−3

Between 1.05 and 1.40 Å the analytic and computed results coincide
ithin 0.1%, and within 1% for almost all grid points in the whole

ange considered. The deviations of the Level and Duo results from the
calculated ones are close to each other.

Comparison of matrix elements
The comparison between the absolute values of analytic and com-

puted matrix elements
⟨

𝑛|𝑥𝑗 |0
⟩

, where 1 ≤ 𝑗 ≤ 6 and 0 ≤ 𝑛 ≤ 9,
for the CO diatomic is shown in Tables 4, 5, and Tables IX–XII in the
Supplementary materials, respectively.

The Tables show that relative deviations of the Duo results from
the analytic ones are nearly independent of 𝑗 and 𝑛, and are within
1.25 × 10−4 %, and are less than 0.0001% for the majority of cases, while
for Level these deviations are similar or larger, with a maximum value
of about 0.006%. Level and Duo show similar results for most cases,
except for high vibrational quantum number, 𝑛, with 𝑗 ≤ 3, where the
8

accuracy of Level becomes worse.
Comparison of Einstein 𝐴 coefficients
Finally, we present a comparison of Einstein 𝐴 coefficients and the

corresponding transition frequencies 𝜈 for CO computed with Duo and
Level, which is given in Table XIII in the Supplementary materials
and Table 6. The computations for Table XIII used equidistant grids
between 0.8 and 1.8 Å with ℎ = 0.005 Å in Duo (200 grid points)
and ℎ = 0.0005 Å in Level (2000 grid points). The computations for
Table 6 were aimed to make the same comparison for some transitions
from the near-dissociation spectrum of the CO molecule and used
equidistant grids between 0.8 and 3.0 Å with ℎ = 0.0005 Å in Duo
(4400 grid points) and ℎ = 0.0001 Å in Level (22 000 grid points). All
the calculations used the very accurate semi-empirical W1216 potential
of Coxon and Hajigeogiou [42] with quintic splines interpolation and
a dipole moment surface, which approximates a set of 7220 dipole
points with an average accuracy 0.0002 a.u. We note that the near-
dissociation comparison has rather an evaluative character because
it involves extrapolating the W1216 potential. To achieve good con-
vergence in the Level calculations, with the eigenvalue convergence
parameter 10−6 cm−1, we had to reduce a grid step by a factor of 10
for Table XIII, and by a factor of 5 for Table 6 compared to the one
used in Duo.

Table XIII from the Supplementary materials shows that the tran-
sition frequencies computed using Duo agree with the ones obtained
using Level within 0.1%, and in most cases much better, up to 4.4 ×
10−7 %. Einstein 𝐴 coefficients agree to within 0.02%. Thus, both
packages show close agreement for computed Einstein 𝐴 coefficients.
This result also shows that the limited accuracy of the dipole moment fit
used in our calculations does not significantly influence the agreement
between the intensities computed by Duo and Level.

At the same time, Table 6 shows almost the same level of agree-
ment between the Duo and Level near-dissociation results for transition
frequencies; however, the Einstein A coefficients agree only to within
91 %, which still is not too bad for near-dissociation spectrum calcula-
tions, especially when one accounts for the extrapolation nature of the
underlying potential.

4.4. Convergence features of Level

It is worth highlighting here some specific features of calculations
using Level we encountered during this work. First of all, to obtain
similar levels of convergence with Duo and Level, we had to use a grid
step ℎ in Level 5 to 40 times smaller than one used in Duo for all
three systems. The convergence for bound state energies using Level
and Duo as a function of the grid step is shown in Figs. 2 and 3,
respectively. While making Figs. 2 and 3, we first used the same step
size in Level as in Duo, and then reduced it until convergence was
reached. Fig. 2 shows that the accuracy of Level results obtained with
the step size equal to Duo’s gives results up to six orders of magnitude
worse than the accuracy of the final calculation, and in the artificial
harmonic oscillator case the calculation of some bound state energies
even resulted in explicit divergence in Level with the Duo grid step.
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Table 6
Comparison of Einstein coefficients 𝐴 and corresponding transition frequencies 𝜈 for some lines from the CO diatomic near-dissociation spectrum computed with the Duo and Level
packages. Here vibrational and rotational quantum numbers (𝑛, 𝐽 ) and (𝑛′′ , 𝐽 ′′) label the upper and lower levels, correspondingly, 𝛥A = 𝐴Duo − 𝐴Level is the difference between the
computed 𝐴 values, 𝛥𝜈 = 𝜈Duo − 𝜈Level – the difference between the computed 𝜈 values, 𝛿A = |

|

𝛥A
|

|

∕𝐴Duo × 100, % is the relative deviation between the computed 𝐴 coefficients in
percentage, and 𝛿𝜈 = |

|

𝛥𝜈 || ∕𝜈Duo × 100, % is the analogous relative deviation between the computed 𝜈 coefficients in percentage.
𝛥𝐽 (𝐽 ′′) 𝑛′ – 𝑛′′ 𝜈Duo , cm−1 𝐴Duo , s−1 𝛥𝜈 , cm−1 𝛥A , s−1 𝛿𝜈 , % 𝛿A, %

R(13) 61 – 2 80 001.903605 4.120 × 10−7 3.036 × 10−1 −1.406 × 10−8 3.795 × 10−4 3.412 × 100

P(23) 62 – 2 80 100.546284 7.632 × 10−8 1.826 × 100 −4.545 × 10−8 2.280 × 10−3 5.955 × 101

P(19) 62 – 2 80 301.024211 7.014 × 10−8 1.274 × 100 3.156 × 10−8 1.587 × 10−3 4.499 × 101

R(18) 62 – 2 80 401.217850 2.864 × 10−9 1.438 × 100 2.607 × 10−9 1.788 × 10−3 9.103 × 101

P(14) 62 – 2 80 500.265853 5.797 × 10−7 5.059 × 10−1 6.002 × 10−8 6.284 × 10−4 1.035 × 101

R(23) 63 – 2 80 700.076858 1.722 × 10−7 4.387 × 100 8.943 × 10−8 5.436 × 10−3 5.192 × 101

R(12) 59 – 1 80 900.548577 1.112 × 10−6 4.858 × 10−2 −3.200 × 10−8 6.005 × 10−5 2.876 × 100

P(12) 63 – 2 81 105.082192 3.401 × 10−6 6.122 × 10−1 2.563 × 10−7 7.548 × 10−4 7.536 × 100

P(23) 57 – 0 81 200.999582 3.933 × 10−8 3.958 × 10−2 4.540 × 10−10 4.875 × 10−5 1.154 × 100

R(2) 63 – 2 81 300.178064 3.481 × 10−6 −1.194 × 10−2 −6.821 × 10−8 1.468 × 10−5 1.959 × 100

P(15) 60 – 1 81 400.368177 1.714 × 10−6 1.482 × 10−1 −3.236 × 10−8 1.820 × 10−4 1.888 × 100

P(13) 57 – 0 81 603.230040 1.164 × 10−7 4.000 × 10−5 1.841 × 10−9 4.902 × 10−8 1.582 × 100

R(28) 58 – 0 81 701.624491 4.217 × 10−8 7.449 × 10−2 −1.819 × 10−10 9.117 × 10−5 4.314 × 10−1

P(28) 62 – 1 81 900.269509 1.396 × 10−6 1.790 × 100 −5.088 × 10−8 2.185 × 10−3 3.644 × 100

P(15) 61 – 1 82 005.167752 1.843 × 10−6 3.078 × 10−1 −2.282 × 10−8 3.753 × 10−4 1.238 × 100

P(16) 58 – 0 82 200.477745 1.888 × 10−7 3.774 × 10−2 9.400 × 10−11 4.592 × 10−5 4.979 × 10−2

P(13) 58 – 0 82 301.241575 2.061 × 10−7 1.157 × 10−2 9.300 × 10−10 1.406 × 10−5 4.513 × 10−1

P(32) 60 – 0 82 601.892908 1.843 × 10−7 2.629 × 10−1 −5.521 × 10−9 3.183 × 10−4 2.996 × 100

P(7) 62 – 1 82 800.324410 1.665 × 10−6 1.441 × 10−2 −1.617 × 10−8 1.740 × 10−5 9.713 × 10−1

R(19) 63 – 1 83 004.102892 1.303 × 10−6 3.563 × 100 3.000 × 10−11 4.292 × 10−3 2.303 × 10−3

R(24) 60 – 0 83 202.499635 2.361 × 10−7 4.396 × 10−1 −8.818 × 10−9 5.284 × 10−4 3.735 × 100

P(9) 63 – 1 83 300.762986 1.225 × 10−6 1.830 × 10−1 −1.900 × 10−10 2.197 × 10−4 1.550 × 10−2

P(3) 63 – 1 83 401.058078 1.329 × 10−6 −2.192 × 10−2 −1.282 × 10−8 2.629 × 10−5 9.650 × 10−1

P(26) 61 – 0 83 600.570540 2.571 × 10−7 9.005 × 10−1 −1.626 × 10−8 1.077 × 10−3 6.327 × 100

R(14) 64 – 1 83 700.961951 9.132 × 10−7 4.322 × 100 4.963 × 10−8 5.164 × 10−3 5.435 × 100

R(22) 61 – 0 83 900.278168 2.340 × 10−7 8.882 × 10−1 −1.507 × 10−8 1.059 × 10−3 6.441 × 100

P(8) 65 – 1 84 304.844515 5.120 × 10−7 9.245 × 10−1 3.445 × 10−8 1.097 × 10−3 6.729 × 100

R(2) 65 – 1 84 400.326604 3.707 × 10−7 2.660 × 10−2 3.604 × 10−9 3.152 × 10−5 9.722 × 10−1

R(21) 62 – 0 84 513.757607 1.681 × 10−7 1.818 × 100 −2.009 × 10−8 2.151 × 10−3 1.195 × 101

R(19) 62 – 0 84 606.507734 1.464 × 10−7 1.588 × 100 −1.756 × 10−8 1.877 × 10−3 1.199 × 101

R(27) 63 – 0 84 700.414030 1.714 × 10−7 3.674 × 100 −3.181 × 10−8 4.338 × 10−3 1.856 × 101

P(24) 63 – 0 84 814.477867 1.121 × 10−7 4.298 × 100 −2.704 × 10−8 5.067 × 10−3 2.413 × 101

P(9) 62 – 0 84 900.030626 6.823 × 10−8 8.063 × 10−2 −3.278 × 10−9 9.497 × 10−5 4.804 × 100

R(4) 62 – 0 85 002.712268 4.969 × 10−8 2.268 × 10−3 −1.042 × 10−9 2.668 × 10−6 2.098 × 100

P(16) 63 – 0 85 216.311809 3.800 × 10−8 1.712 × 100 −1.099 × 10−8 2.009 × 10−3 2.893 × 101

R(15) 63 – 0 85 301.218107 4.007 × 10−8 2.078 × 100 −1.188 × 10−8 2.436 × 10−3 2.964 × 101

P(10) 63 – 0 85 417.225372 1.519 × 10−8 2.954 × 10−1 −3.265 × 10−9 3.458 × 10−4 2.150 × 101

P(6) 63 – 0 85 503.972031 9.186 × 10−9 1.203 × 10−2 −9.357 × 10−10 1.407 × 10−5 1.019 × 101

P(5) 65 – 0 86 502.767930 4.014 × 10−8 9.793 × 10−2 4.389 × 10−9 1.132 × 10−4 1.093 × 101

R(0) 65 – 0 86 548.314535 2.481 × 10−8 −1.547 × 10−2 4.754 × 10−10 1.787 × 10−5 1.916 × 100
o
u
h
f

h

As a direct consequence, Level is significantly less computationally
efficient than Duo. For instance, while computing Einstein 𝐴 coeffi-
cients, Duo obtained the results shown in the Table XIII of the Supple-
mentary materials data several times faster then Level did (about 0.5 s.
versus about 1.6 s. on average) using the same parameters except for
the step size. In the case of near-dissociation calculations this difference
increases even more, reaching about 1 min. 49 s. versus about 16.5 s.
on average, i.e. Duo showed about 6.6 times better performance than
Level did.

A second feature of the Level is the complexity of choosing input
parameters which lead to the converged results. Sometimes use of trial
energies or pointwise input type of potentials is necessary. Duo does
not have such problems making it easier to use.

As a short summary, our calculations do not show that Level has
drastically worse accuracy in calculations for real molecules, in com-
parison with Duo. Actually, Level performs really badly only in the case
of the artificial harmonic oscillator, which is the least physical system
tested here. However, its accuracy improves when the system specified
becomes more complex. The main practical disadvantage of Level is its
poor performance due to use of the Numerov method; furthermore, Duo
is much more convenient and intuitive to use.

5. Conclusions

This paper addresses questions about the accuracy for which so-
9

lutions can be obtained for various parameters in diatomic nuclear
motion calculations. Such questions have become important because
of the need to perform rovibrational spectral calculations for diatomics
(and other molecules) allow with accuracies of 0.001% or better. In
particular, our comparisons show that Duo [12] can compute intensities
with an accuracy of about 10−4–10−5 % compared to analytic values for
a benchmark CO calculation; this accuracy is sufficient for experimental
needs for example for determining macroscopic gas properties. For the
artificial harmonic and Morse oscillators these deviations were typically
about 10−7–10−8 % and less than 0.0004%, respectively. The accuracy
f computed bound states energies and corresponding wavefunctions
sing Duo is also very satisfactory. Moreover, for the case of a simple
armonic oscillator, Duo can obtain results with accuracies close to the
loating point limit.

The older diatomic nuclear motion package, Level [13], generally
as accuracy similar or (somewhat) worse than Duo for calculating

of matrix elements, Einstein 𝐴 coefficients, bound state energies and
their corresponding wavefunctions. The accuracy of Level is notably
poorer for the harmonic oscillator, when matrix element calculations
give results which are sometimes by two to three orders of magnitude
less accurate than the corresponding Duo ones. Furthermore, to achieve
converged calculations using Level, we had to reduce grids steps sizes
by factors of between 10 and 40 compared to the ones used in Duo, and
sometimes it was also necessary to make some additional adjustments
to the input parameters. Nevertheless, Level still provides good accu-
racy for the few lowest vibrational states of all systems, and in some

cases gives results that are even more accurate than Duo’s ones. This
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paper suggests that both Level and Duo can provide standard accuracy
from 10% to 0.1%) for line intensity calculations. Line intensities for
olecules similar to those considered in this paper can be computed by

hese two programs by solution of the Schrödinger equation for a given
MS and PES with an accuracy of at least of 10−2 %.

We plan to continue to go along the path outlined in this pa-
er in order to quantify the accuracy of existing polyatomic nuclear
otion codes, in particular DVR3D [9] for triatomic molecules and
AVR4 [43] for tetratomic molecules for the calculation of line in-

ensities. DVR3D has already been extensively used for high accuracy
ntensity predictions (eg [3,44]) and accuracy of these codes could
e an important factor on the road towards 0.01% and even 0.001%
ccuracy of line intensities calculations and experiment, necessary for
etrological and possibly atmospheric applications.
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