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A B S T R A C T   

Exposure of school buildings to floods and earthquakes poses significant risk to the vulnerable 
population of students and their education process. In regions of high exposure, these hazards 
may often act concurrently, whereby yearly flood events weaken masonry school buildings, 
rendering them more vulnerable to frequent earthquake shaking. This recurring damage, com-
bined with other functional losses, ultimately result in disruption to education delivery. The 
socio-economic condition of the users-community also plays a role in the extent of such disrup-
tion. A complex problem of this nature demands consideration of a large number of dimensions, 
to estimate the impact to the school system infrastructure in a locality. To handle the qualitative 
and quantitative nature of these variables, a Bayesian network (BN) model is proposed repre-
senting multiple schools in a locality as a system. Three dimensions are considered to contribute 
to the system disruption, namely, schools’ physical functionality loss, accessibility and use loss, 
and social vulnerability. The impact is quantified through the probability of the system being in 
various states of disruption. The BN also explores mitigating measures, such as the mobility of 
students between schools in the system. The general methodology is illustrated by a case-study of 
school buildings in Guwahati, India, whereby the majority of buildings is constructed in confined 
masonry with varying level of seismic performance. The physical effects of combined flood and 
seismic action on confined masonry buildings is assessed by nonlinear numerical modelling, and 
their probabilistic occurrence is expressed in terms of fragility functions corresponding to varying 
flood depth and peak ground acceleration.   

1. Introduction 

Multi-hazard risk assessment for critical infrastructure is an integral part of disaster risk reduction from natural hazards. Increasing 
evidence from around the world highlights the necessity of considering concurrent or sequential hazards in the assessment of disaster 
risk [1], as the effects of a damaging event overlap with the effects of another in space and time windows. Hence, techniques for 
assessing the performance of school infrastructure under multiple hazards is highly encouraged by the Sendai Framework [2] to ensure 
continuity of education delivery. 

In the above context, this study proposes a framework for risk assessment of the school system in a district (a set of several schools of 
different capacity and schooling level) from sequential flood and seismic hazards, in terms of overall disruption to school education 
delivery to the community that it serves. The framework is based on Bayesian Networks (BN), and the methodology is illustrated by 

* Corresponding author. 
E-mail addresses: ahsana.vatteri.17@ucl.ac.uk (A.P. Vatteri), d.dayala@ucl.ac.uk (D. D’Ayala), p.gehl@brgm.fr (P. Gehl).  

Contents lists available at ScienceDirect 

International Journal of Disaster Risk Reduction 

journal homepage: www.elsevier.com/locate/ijdrr 

https://doi.org/10.1016/j.ijdrr.2022.102924 
Received 2 December 2021; Received in revised form 17 March 2022; Accepted 21 March 2022   

mailto:ahsana.vatteri.17@ucl.ac.uk
mailto:d.dayala@ucl.ac.uk
mailto:p.gehl@brgm.fr
www.sciencedirect.com/science/journal/22124209
https://www.elsevier.com/locate/ijdrr
https://doi.org/10.1016/j.ijdrr.2022.102924
https://doi.org/10.1016/j.ijdrr.2022.102924
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijdrr.2022.102924&domain=pdf
https://doi.org/10.1016/j.ijdrr.2022.102924
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Disaster Risk Reduction 74 (2022) 102924

2

application to a case-study of confined masonry school buildings in Guwahati, India. The case-study location, Guwahati city in Assam, 
is situated in India’s seismic zone V, the highest risk zone by Indian Standard 1893 [3], having witnessed 20 earthquakes of M ≥ 7 in 
the past 150 years [4–6]. The city is also affected by annual monsoonal and fluvial floods, making it a suitable choice for a multi-hazard 
risk study. A desk study of Guwahati city school infrastructure [7] and field visits identified 75% of the buildings being of masonry 
construction, of which more than 60% being confined to various extent, making this the predominant typology. Annual floods in the 
city are observed to be not large enough to cause structural collapse, nonetheless, repeated floods have a degrading effect on the 
masonry courses below flood depth. 

The following subsections introduce the four key areas of investigation, which underpin the methodology of this study, namely, 1) 
the issue of education disruption immediately after a major hazard event, 2) physical vulnerability of the confined masonry school 
buildings to flood and seismic hazards, 3) social vulnerability and 4) use of Bayesian networks to determine the causal links between 
the performance of the school system in delivering education and the three above domain variables. 

1.1. Disruption to education from earthquakes and floods 

Large earthquakes and frequent floods cause physical damage to school infrastructure and cause interruption to the education 
process, as frequently observed from past events. Evidence from the past 30 years (Spitak (1988) 6.8Ms to Indonesia (2018) 7.5Mw) 
reports seismic collapse and damage of school buildings, resulting in casualties and disruption to schooling for long periods [8–10]. 
School children are thus identified as the most vulnerable population in earthquakes [8], while it is recognised that school architecture 
renders school buildings prone to damage from earthquakes [11]. 

While disruptive earthquakes are rare events, floods are the most common natural hazard in the world [12], and their severity and 
frequency is increasing, amplified by climate change. Recurring floods disrupt education by causing physical damage to the school 
infrastructure, affecting the organisational structure, requiring the use of schools as temporary shelters and negatively affecting 
wellbeing of individuals and communities [13]. Persistent issues of disruption to education associated with flooding are reported 
worldwide, including Kenya [14], Zimbabwe [15] and Philippines [16]. During the South-Asian floods of 2017, more than 18,000 
schools were damaged in the north and north-east of India, Nepal and Bangladesh [17], affecting over 1.8 million children. Closure of 
schools for long periods often leads to high rates of education drop-out, especially in poor communities and when schools are used as 
shelters [18]. 

The period of disruption to education is found to vary widely after disasters, for example, it often takes many weeks and even 
months for the schools to resume full operation after a heavy flood event in India [19–21]. Even though many countries including 
India, Philippines, Japan, Fiji etc., use schools for immediate evacuation and sheltering of displaced people [22] such use is contro-
versial, and if prolonged, causes damage to buildings and service lines further delaying the education process and quality. 

It is therefore evident that education continuity is just as critical an indicator of school system performance to multiple hazards, as it 
is the robustness and resilience of the building forming such system. Development of tools to cater for multi-hazard risk assessment that 
incorporate structural and functional indicators of the school infrastructure system are therefore critically needed, and Bayesian 
networks (BN) provide the framework to integrate quantitative and qualitative information for a complex system model [23]. 

1.2. Physical vulnerability of masonry school buildings against seismic and flood hazards 

Acknowledging the need for vulnerability assessment in the specific context of school buildings, extensive analytical studies have 
been reported, especially in the context of structural vulnerability under seismic hazard. Seismic vulnerability assessment of schools 
generally involves a three-tier approach as follows: a first level of Rapid Visual Screening (RVS) on the building population, followed 
by simplified vulnerability assessment using vulnerability indices or scores, and finally a detailed analytical vulnerability analysis on 
chosen buildings [24,25]. While large scale studies conduct the vulnerability assessment at the first and second tiers [11,26–34], more 
in-depth studies extend the analysis to the third tier [35–40], by deriving complete load-deflection characteristics of the building by 
dynamic/time-history analysis, considering intensity measures such as peak ground acceleration [41]. In addition, post-disaster 
reconnaissance surveys [42–44] and empirical vulnerability assessment for school buildings based on damage data [45,46] are also 
reported in literature. In contrast to seismic vulnerability assessment, flood vulnerability studies on schools highlighted loss of 
accessibility, change of use as temporary shelters and influence of socio-economic status, as major contributors to loss of functionality 
of schools, in addition to the physical damage to school buildings [13,14,47–49]. 

When considering the impact of hazards at urban or regional scale, use is made of fragility and vulnerability functions, representing 
damage probabilities and associated costs, conditioned to hazard intensity. The current study focuses on confined masonry school 
buildings for physical vulnerability analysis. Extensive experimental and numerical work exists on seismic capacity assessment of 
confined masonry structures, (e.g. Refs. [50–55]). For a comprehensive review of methods for out-of-plane and in-plane assessment of 
confined masonry school structures, the reader is directed to Parammal Vatteri and D’Ayala (2021) [56], which details the numerical 
analysis -based procedure for fragility assessment of selected confined masonry typologies, which is adopted in the present study. 

Conversely, capacity and vulnerability assessment of masonry walls under lateral flood loading is an under-researched area, even 
though floods are common and frequently recurring. The lateral capacity of masonry walls under flood loading has been assessed using 
the yield line approach [57,58]. Kelman and Spence (2003) [57]concluded that the critical hydrostatic water depth is about 1–1.5 m 
for unreinforced masonry wall without opening, which can reduce to 0.5 m when realistic flow velocity is considered. Herbert et al. 
(2013) [58,59] conducted experimental and analytical studies on walls loaded by hydrostatic, hydrodynamic and uniform loads, 
considering both frictional and flexural strength, obtaining results comparable with Kelman and Spence (2003). While few numerical 
studies on the effect of uniform lateral pressure on masonry walls, using finite element approach are available in literature [60–62], 
physically based numerical analysis of masonry walls subjected to flood lateral loading has received little attention [63]. The present 
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study addresses this research gap by developing suitable numerical models in Applied Elements Analysis [64]. 
In the case of floods, the intensity measures considered for fragility and vulnerability assessment are depth and duration of 

inundation, velocity of floodwater flow, etc. [65], and their associated uncertainty [66]. Empirical flood fragility methods such as 
RiskScape [65], define correlation functions between flood depth and damage for various building typologies, based on past events. 
Index-based empirical vulnerability assessment tools, such as PARNASSUS V1.0 [67] and V3.0 [68] define a set of vulnerability in-
dicators to quantify the flood vulnerability of building typologies and determine the risk associated with specific flood return periods. 
Mebarki et al. (2012) [69] developed a probabilistic model for flood vulnerability of masonry building at regional scale, by considering 
the random nature of load and strength variables. Blanco-Vogt and Schanze (2014) [70] developed a conceptual and methodological 
framework including economic, ecological, institutional and social aspects, to assess physical vulnerability of buildings to floods. 
Given the lack of high fidelity models for fragility assessment of masonry structures exposed to flooding, such modelling is develop in 
this study, considering hydrostatic loads from flood inundation, while ignoring other effects associated with flow velocity, impact and 
buoyancy. 

Investigation on masonry buildings subjected to combined flood and seismic hazards is very rare [71], even more so when 
considering combined effects. A few studies have examined seismic and flood effects and risk assessment in the context of disaster risk 
reduction, such as Dabbeek et al. (2020) [72], however, quantification and comparison of their effects on building vulnerability is not 
common [73]. de Ruiter et al. (2017) [74] reviewed empirical vulnerability assessment techniques used for seismic or flood hazards 
and suggested that greater homogeneization of the two fields of work is needed, using common indicators. The necessity for developing 
techniques for combined flood-seismic fragility assessment of buildings is therefore evident. 

1.3. Social vulnerability to flood and seismic hazards 

Social vulnerability, encompassing socioeconomic and demographic factors, defines the response of communities to natural haz-
ards, through their interaction with multiple physical infrastructure systems [75,76]. It is recognised that socially vulnerable com-
munities are disproportionately negatively impacted by natural hazards [73]. Schools being an integral part of any community, social 
vulnerability of the community affects the performance of schools, especially in the face of damaging and disruptive events, and vice 
versa, the resilience of the school system can positively reduce the impact of hazardous events on their community. A number of factors 
are identified to influence the social vulnerability of a community, including economic status, education level, age, disabilities, mi-
nority status or vulnerable groups, housing conditions, access to transportation, health and education infrastructure etc. [75,77,78]. 
Studies have shown that low income and low levels of education are major indicators of vulnerability and to an extent correlated [77]. 
Several studies quantify social vulnerability through summative indices that capture the states of the influencing factors, although they 
might suffer from biases [79–81]. 

Economically poorer sections of society are more likely to suffer from a natural destructive event, owing to reduced risk perception, 
lack of preparedness and ability to respond and recover [82]. The nexus between social vulnerability and flood and seismic vulner-
ability of the physical environment has been identified by several authors [47,70,83]. Socially vulnerable communities tend to live in 
comparatively more hazardous areas, such as the flood plains of a region, or near major faults, because of land values, therefore their 
schools can be less accessible after an event, even if they are physically safe to operate [18]. In such communities, the chance of schools 
being used as shelters is also high, as houses are more likely to be damaged or unsafe, leading to long periods of disruption to edu-
cation. Communities who depend heavily on climate sensitive means of income, such as farming and fishing, disrupted during flooding 
events, often engage children to assist the household income and chores, leading to higher rates of school drop-out [15]. Young girls in 
these circumstances are often forced to child marriage [84], in an attempt to survive. 

This study defines the social vulnerability of the community associated with the school system under analysis by two factors which 
are school-specific, the number and the age group of the students population, and two factors, income and education level of their 
parents, which are community specific. While it is acknowledged that this is not an exhaustive description of the complex interplay of 
factors determining social vulnerability, this approach allows defining the interaction of community to school infrastructure, and to 
illustrate the integration of multiple qualitative and quantitative factors using Bayesian networks to estimate the impact of natural 
hazards on such infrastructure. 

1.4. Bayesian Networks for system performance modelling 

Bayesian Network (BN) allows modelling complex systems with uncertainties, in order to obtain probabilities of system perfor-
mance to described hazards’ occurrence. The BN approach involves designing the network of variables in a problem, establishing their 
causal relationships in terms of parent and child. Each variable can have multiple states of existence and a conditional probability table 
(CPT) that defines the conditional probability of each state, given the states of its parent nodes [85]. BN based analysis of physical 
infrastructure performance is a growing field of research [86–89], as it provides an intuitive visualization of the problem in the form of 
a directed acyclic graph (DAG) allowing to reduce the complexity and interdependency between variables by logically shaping the 
network. In the context of seismic risk assessment, BNs have been applied to bridges [88] and buildings [86], or entire infrastructure 
systems [87] and for disaster management. 

A number of studies report application of BNs to flood risk assessment. Sen et al. (2021b) [90] studied the resilience of housing 
infrastructure based on factors affecting recovery and reliability of the system. Urban flood disaster risk assessment using BN modelling 
is illustrated by Wu et al. (2019) [23] and Huang et al. (2021) [91] incorporating qualitative and quantitative variables and interfacing 
it with mapping software. BN can also be used for integrated index-based flood vulnerability assessment, where weights of system 
components are computed from various techniques and integrated using a BN approach [92]. Gehl and D’Ayala (2016) [93] have 
applied BN to assess multi-hazard vulnerability of road infrastructure considering scenarios of uncorrelated and cascading hazard 
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events including earthquakes, fluvial floods and associated ground failure. 
This study presents the application of BN for the performance assessment of school systems in terms of disruption to education, 

when exposed to combined flood and seismic hazards. The objective is to estimate the disruption to education delivery due to reduction 
in structural and functional response of the buildings and to explore ways to reduce the disruption. The BN framework estimates the 
probability of different periods of disruption. The disruption may be caused by loss of school functionality from structural and non- 
structural damage inflicted by the hazards, or loss of accessibility to the school or change of function as shelters. The BN further 
integrate the social vulnerability with the duration of disruption, to study the influence of existing social vulnerability states on the 
expected disruption after an event. Finally, the study explores the mobility of students between schools with an aim to reduce the 
duration of disruption to education. 

The methodology developed to study the sequential hazard effects on masonry school buildings and the application of BN for the 
performance assessment of the school systems is presented in Section 2. Section 3 provides the flood and seismic hazard characteri-
sation of the case-study location, which informs the hazard inputs to the BN. Physical fragility functions derived from the sequential 
loading are a critical input for the BN. These functions for the representative buildings are generated through numerical analysis using 
an applied element method platform as presented in Section 4. Section 5 presents the BNs developed for the school system as defined in 
the methodology and Section 6- the results in terms of the duration of disruption to education and the influence of social vulnerability 
on the system. 

2. Methodology 

This study presents a BN based methodology to estimate the probability of the school system’s disruption in regions exposed to 
flooding and earthquake. The main factors affecting such probability can be broadly identified as: external causes determining 
accessibility to the site, functionality and physical vulnerability of the school infrastructure and social vulnerability of the population 
using the school system. A first essential step is therefore to estimate the physical fragility of the representative buildings under study, 
when exposed to sequential flood and seismic hazards. In order to determine the level and duration of disruption of school’s opera-
tions, a second important step is to determine the loss of school functionality, which also allows to harmonise the effects from different 
hazards. The third step is to link the influence of the community social vulnerability in determining the probability of system 
disruption. 

Within the BN framework, the physical vulnerability of an asset type is represented by a set of fragility functions expressing the 
probability of occurrence of a damage state conditioned to the probability of occurrence of a given intensity of the natural hazard. 
Yearly recurring flooding, although may not cause major structural damage, produces saturation and material degradation in the 
masonry walls lower courses. Such degradation, usually not repaired, accumulates over the years. Therefore, if an earthquake of given 
intensity strikes in a region exposed to annual flooding, the damage caused is the result of the concurrent action of seismic acceleration, 

Fig. 1. Combined loading regime for flood and earthquake effects.  
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hydrostatic pressure from floodwater present at the time and the material degradation caused by previous flood events. In order to 
capture such effect in fragility functions, in this study a loading regime is devised that imposes, on the building with reduced material 
capacities in the lower courses, first a hydrostatic pressure representing the intensity of the flood hazard, followed by a static 
equivalent ground acceleration (GA) incrementally increased until structural failure occurs (Fig. 1). This process is explained in section 
4.3. Henceforth, using a capacity spectrum approach, fragility functions are obtained for three damage states, following the meth-
odology presented in Parammal Vatteri and D’Ayala (2021) [56]. A limitation of the loading regime is that it accounts only for the 
static loading from the flood inundation, and ignores any effects from flow velocity and debris impact and accumulation in this 
analysis. This reflects the observation that fluvial and pluvial flooding are often static in nature, with very low velocity [94], especially 
in floodplains. However, the analysis can be extended to consider these factors, following approaches available in literature (e.g. Refs. 
[95,96]). 

The generation of these fragility functions, corresponding to five flood depths followed by seismic action, allows to define within 
the Bayesian analysis the probability of the state of damage of individual buildings, and therefore their loss of functionality, condi-
tioned to the joint probability of a given Peak Ground Acceleration (PGA) and given flood depth. This in turns allows computing the 
probability distribution of the period of disruption of the school related to physical damage. 

The Bayesian network structure, illustrated in Fig. 2, indicates the variables and their causal relationships, from which conditional 
probabilities for each of their possible states are computed, while the rationale and assumptions guiding these relationships between 
the system variables are explained in detail in Section 5. The system here represents a school infrastructure network formed by a 
number of school compounds in a locality. Schools are characterised by several buildings with different structural performance, 
housing different functions. The disruption due to schools’ physical functionality is then derived by correlating physical damage to 
function disruption. The states illustrating the period of disruption of the system are affected by loss of accessibility of the schools’ 
compound or loss of use as they are assigned as shelters. The network computes the probability of overall disruption states due to these 
factors when exposed to varying levels of the two hazards. The school population is characterised in terms of number of students and 
age, which together with their parents’ level of education and income determines the social vulnerability component. The network 
evaluates the modified system disruption, by considering the influence of social vulnerability on shelter-use besides a direct link to 
duration of disruption of the system. The latter accounts for the high probability of education interruption for student from socially 
vulnerable backgrounds, in the aftermath of disasters [15]. Although in this study, given the level of information available for the 
hazard a full georeferenced exercise is not possible, the BN is designed to allow to determine the influence of spatial correlation 
between school locations, community served, and floodwater depth distribution depending on local orography. The network design is 
discussed in greater detail in Section 5, where the variables, inter-dependency and observations from BN analysis are presented. The 
basic framework of Bayesian inference process adopted in this study is summarised in Appendix A. 

The above two-step methodology, i.e. combined flood-seismic physical fragility assessment, followed by the BN-based system 
impact assessment, is illustrated through the case-study of school buildings in Guwahati city for which the hazard characterisation is 
presented in the next section. 

Fig. 2. Illustration of variables of the Bayesian Network and their relationship.  
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3. Hazards characterization in the case-study location 

Assam is a highly flood prone state with over 40% of its land area vulnerable to flooding. Two major river systems - Brahmaputra 
and Barak and their valleys constitute the majority of the land area of the state [97]. Guwahati, the capital city of Assam, extends 
mainly along the south bank of the Brahmaputra River, over a total area of 262 km2 known as the Guwahati Metropolitan Area, or 
Guwahati Urban Agglomeration. Within this, 216 km2 fall under the Guwahati Municipal Corporation (GMC) area. GMC is divided into 
31 administrative wards [98], whose boundaries are overlaid on a Google map [99] in Fig. 3. 

Although floods are an annual phenomenon in Assam, the extent of damage caused by them has increased significantly in recent 
years [100]. Using satellite remote sensing datasets, the State Government and Disaster Management Authority (ASDMA) has classified 
its territory into five hazard classes, by frequency of flood inundation during a period of 10 years (1996–2015), ranging from very low 
(1–4 times) to very high (16–18 times). Accordingly, Guwahati city is ranked very low to low. However, other studies [101] focusing 
on the GMC’s area, suggest that more than 50% of its territory is flood prone, of which 26.5% is chronically inundated, 22.7% oc-
casionally inundated, 13.3% rarely inundated and 16.3% is inundation-free. Moreover, Sahoo and Sreeja (2017) [102] estimated that 
26.78% of the GMC’s area is under high flood hazard, based on a ranking scheme developed on the basis of flood depth and inundated 
area, as shown in Fig. 4. 

Yearly floods in the city are characterised mainly as urban flash flood, originating from heavy monsoon rainfall (annual average of 
1700 mm), concentrated over short period of time, causing congestion of drainage and inundation [103–105]. A second driver of 
flooding is recognised in the unplanned urbanisation, encroaching on natural wetlands and lakes and changing the land use patterns 
[106]. The natural drainage basins, affected by siltation and waste pollution, experience back flow from the rivers [107]. Some of the 
worst affected areas in the city, also characterised by high population density, are reported to witness 0.8–1.2 m water logging for a 
minimum of 3–4 days and a maximum of up to 20 days during heavy monsoons [103,105]. However, no statistical information on 
observed flood depth and frequency is provided in these studies. 

Following the hazard map in Fig. 4, an in-depth study to develop flood inundation maps of Guwahati was conducted by Sahoo and 
Sreeja (2017) [102], that accounts for surface run off, topology and drainage network of the city. Urban Guwahati is divided into seven 
watersheds, with varying flood hazard intensities. Flood inundation depth and duration are computed for these watersheds for rainfall 
intensities of four return periods as shown in Table 1. The rainfall intensities are derived from available intensity-duration-frequency 
curves for the region, for a 15 min interval for each return period. They estimated a maximum inundation depth of around 1 m in the 
city for a 100 year rainfall event. Although more severe frequency is given in anecdotal evidence, this data is used in the present study 
for hazard characterization in terms of flood depth. As noted in Section 2, other flood hazard characteristics such as the flow velocity 
and impact loads from debris are not considered in this study. 

With respect to seismic hazard, the Indian Standard 1893 [3] classification in Zone V suggests a MSK intensity of IX and above, and 
expected PGA of 0.18 g and 0.36 g for the Design Basis Earthquake (DBE) and the Maximum Considered Earthquake (MCE) (475 year 
and 2475 year return periods, respectively) [108]. Some in-depth studies suggest seismicity to the region much higher than the level 
assumed by IS 1893 [109–111]. This study adopts the hazard curves for Guwahati as proposed by Nath and Thingbaijam (2012) [109], 
which suggests PGA of 0.66 g and 1.36 g for DBE and MCE respectively, in order to consider the possibility of higher hazard intensity in 

Fig. 3. Case-study location- Guwahati city (Guwahati Municipal Corporation Map from GMC (2021a) and Google map screen shot from Google Maps (2021).  
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the region. 

4. Physical vulnerability assessment 

Physical vulnerability of schools, as identified in the introduction is one of the three key factors influencing the disruption of 
education. Numerical modelling provides a means for physical capacity and vulnerability assessment of the confined masonry schools 
under this study. Extreme Loading for Structures [112] - an Applied Element Method (AEM) based software, capable of performing 
advanced non-linear structural analysis, is used to perform the consecutive flood-seismic analysis of selected index buildings, i.e. 
buildings structures representative of the sample of schools surveyed in Guwahati (see section 1), chosen by applying a classification 
system presented in Parammal Vatteri and D’Ayala (2021) [56]. Of the masonry school buildings observed, 60% have flexible di-
aphragms, and variable level of confinement of the masonry panels by means of reinforced concrete elements, hence belong to the 
confined masonry typology as defined for the World Bank GLOSI library [25]. Three confined masonry index buildings (IB1, IB2, IB3, 
Fig. 5) with varying levels of seismic design, determined by the quality of connections, minimum available confinement and wall 
density, are chosen for the study, to understand the effect of their relative performance on the system resilience. IB1 has poor con-
nections at the interfaces, minimum confinement in the form of plinth and lintel bands, corner columns and intermediate columns, 
resulting in poor design level (PDL). IB2 is improved in respect to IB1, by good connections at the interfaces, resulting in low design level 
(LDL). IB3 exhibits denser confinement, in the form of sill, roof and gable bands, besides good connections, resulting in medium design 
level (MDL). Further details of the criteria defining the seismic design level are elaborated in Parammal Vatteri and D’Ayala (2021) 

Fig. 4. Flood hazard zonation of Urban Guwahati: Sahoo and Sreeja, 2017 [102].  

Table 1 
Estimated flood depth and duration at the case-study location [102].  

Return period Rainfall intensity (mm/h) Area affected (km2) Worst case 

Flood depth (m) Flood Duration (h) 

25 years 119.0 59.9 0.68 73 
50 years 132.6 61.5 0.79 76 
75 years 141.3 62.05 0.88 78 
100 years 147.8 63.15 0.94 81  

Fig. 5. Models of index buildings chosen for the study.  
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[56], which also lists other index buildings in the case-study database. 
The ELS models are generated for a single structural unit from each IB, representing a classroom or office space, complete with 

shutters and roof trusses, simulating the flexible roof typology (Fig. 5). The models are built with the same geometry, in order to 
highlight the relevance of seismic design level on the lateral behaviour. The classroom blocks were formed of one or more of these 
units, however, the behaviour of the unit is considered representative of the block as the global response is limited by the absence of 
box-like behaviour, as further explained in the rest of the section. In the applied element method, the structure is discretised into the 
real configuration of a stretcher bond masonry wall, while concrete elements are meshed to compatible element sizes. Materials’ 
characteristics, obtained from literature [113,114] are listed in Table 2. In the ELS analysis, failure is identified when partial or 
complete separation of portion of the walls are observed in the form of separation cracks, leading to a large increase in displacement. 
Failures can be local or global. Moreover, the integrity of the masonry can also be compromised by tensile strength being overcome and 
small “open cracks” being formed. The effect of recurring floods is simulated as reduction of masonry strength parameters in the lower 
1 m of the walls, using as reference the floodwater depth identified in section 3.1. Following an experimental study on masonry infills 
in timber frames subjected to cycles of weathering and flooding [115], it is assumed that the lowermost 0.5 m and the next 0.5 m of 
masonry have 20% and 10% strength reduction with respect to the un-weathered masonry, respectively. Although the degradation can 
also be a function of the age of the structure, it is ignored in this study, since a full georeferenced spatial exercise of specific buildings is 
beyond the present scope, as noted in Section 2. 

4.1. Flood- hydrostatic loading 

ELS has in-built capability of applying distributed hydrostatic pressure by specifying the depth (h) and density (ρ) of water and the 
face on which it acts [112]. The loading scenario assumes that the buildings are surrounded by floodwater on all four sides, and there is 
no considerable ingress of water to the inside (Fig. 6a), as this assumption represents an extreme case of unbalanced lateral loading on 
the walls. The analysis considers incremental flood depths until a collapse mode is observed, identifying the critical flood depth for 
each IB. The results obtained for the three IBs are presented in Table 3. Failure of the buildings is caused in all cases by local failure of 
one of the more vulnerable wall panels with door as shown in Fig. 6b and c for IB2 with un-weathered and weathered material 
conditions, respectively. For the latter, it is evident that the damage is localised at the bottom of the walls and directly caused by the 
local deterioration of the materials. 

The critical depth of water causing collapse varies by about 15% among the IBs, for the models with original material properties, 
while a reduction of up to 22% is observed for the weathered cases, compared to the non-weathered ones. The flood depth causing 
failure of the weakest confined masonry building, i.e. weathered IB1, is comparable to the results for unconfined masonry walls 
obtained by Kelman and Spence (2003) [57]. The values obtained are all greater than the maximum expected flood depth identified in 
section 3.1 for the case study area, therefore structural failure generated by flooding is not anticipated. However as localised cracking 
for lower water depths is observed, the reduction in material properties to repeated flooding is justified. 

4.2. Seismic- ground acceleration loading 

The seismic capacity of the three IBs is investigated using monotonously increasing Ground Acceleration (GA). This technique of 
applying GA for non-linear static pushover analysis overcomes the difficulty of such analysis on buildings with flexible diaphragms. 
Detailed description of the seismic analysis procedure, including failure mechanisms, definition of failure criteria and comparative 
performance are provided in Parammal Vatteri and D’Ayala (2021) [56]. The capacity curves for out-of-plane failure, the weakest 
failure mechanism, are shown in Fig. 7, for the IBs in their original condition and for material weathering. The seismic base shear 
capacity of the index buildings increases with increase in seismic design level, due to the better interaction between confinement and 
masonry walls. The material degradation does not have significant influence on the seismic capacity of IB1 and IB2, owing to their 
seismic-induced collapse being limited to the upper portions of the walls without mobilising the full strength of the lower courses. The 
ultimate capacity of IB3 is reduced by 10% in weathered material conditions, as in this case the full capacity of masonry walls is 
mobilised before the failure mode develops. It is noted that the study accounted only for moderate strength reduction in the lower 1 m 
of the masonry, which could also be a reason for this observation. Hence, the results could be improved by better characterization of 
strength reduction in masonry and concrete. However, the effect of the material degradation becomes evident when flood loading is 
also considered. 

4.3. Sequential hydrostatic and seismic loading 

The concurrent occurrence of a flood and seismic shaking is simulated by applying sequential loading to a weathered building, 
following the steps in Fig. 1. With reference to the 100 years maximum expected flood, the sequential loading is repeated for five 
increments of water depth, to derive the capacity curves associated to different probability of exceedance of water depth for this return 

Table 2 
Material properties of confined masonry used for numerical modelling.  

Property Value Reference 

Compressive strength of concrete 20 MPa [116] minimum characteristic strength (fck) of concrete for RC construction 
Young’s modulus of concrete 22,360 MPa [116]: E = 5000√fck 

Compressive strength of masonry 4.63 MPa [113,114] 
Young’s modulus of masonry 2546 MPa [113]  
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period. The ground acceleration is incrementally applied up to failure in the transverse (Y) direction, being the worst case (Parammal 
Vatteri and D’Ayala 2021) [56]. 

The combined loading condition has substantial impact on the response of the three IBs, which cannot be captured by the material 
degradation assumption, alone. Fig. 8 shows the capacity curves and the crack patterns at failure for the worst case of flood (1 m) 
combined with the seismic action. The capacity curves show reduction of strength capacity up to a maximum 17.5%, 9% and 26% for 
the IB1, IB2 and IB3 respectively (Table 4). IB3’s displacement capacity is particularly affected with a decrease of 36% for 1 m flooding 
(Fig. 9 and Fig. 10). An appreciable reduction in stiffness for IB1 and in ductility for IB3 are also noticeable. The additional confinement 
present in IB3, while improving its strength capacity by 35%, introduces a discontinuity at sill level, causing localised failure, which 
affects global ductility by up to 40%, as compared to IB2. 

The 1 m depth flood followed by ground acceleration defines a step change in the behaviour of the three IBs, with reduction of 42%, 
25% and 16% in the initial stiffness, for IB1, IB2 and IB3 respectively. However, in the case of IB1 and IB2, localised failure modes are 
highly influenced by the construction geometry, and the lack of a sill tie beam, whereby lower ultimate drift can be observed for 0.75 m 
flood depth (Table 4, Fig. 9a and b). The sill tie beam in IB3 (Fig. 9c) provides sufficient restrain to the central panel to prevent the base 
course from failing, while the lateral panels’ failure is localised and does not affect the overall base shear capacity which is ensured 

Fig. 6. a) Flood loading pattern on index buildings and crack pattern at failure for models with b) original material properties and c) weathered material properties.  

Table 3 
Capacity of the three IBs under hydrostatic flood loading- Lateral displacement of walls vs flood depth.  

Typology Critical flood depth causing collapse (m) 

Original material properties Weathered material properties 

IB1 1.9 1.5 
IB2 2.0 1.6 
IB3 2.1 1.9  

Fig. 7. Seismic capacity curves for three IBs with unweather and weathered material properties.  
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through the confining columns and transfer of loading to the gable walls. 
To define fragility functions for different damage states, three damage state thresholds are visualised in Fig. 10, for IB3. Cracking 

initiates in the out-of-plane piers and at the bottom of all walls at point A. Cracks then propagate to spandrels of the OOP walls and 
diagonal cracks start appearing in the in-plane gable walls at point B. Even though the OOP walls suffer local separation of masonry 
elements at the bottom of the wall, the building withstands further lateral load while maintaining stability until the point C, beyond 
which large deformations occur for small increment of loads. At this point, the cracks are spread all over the OOP walls and the lower 
portion of IP walls, although continuous cracks are limited by the presence of RC confining elements. The effect of flood loading and 
weathering on ultimate collapse, beyond point C is highlighted for IB3 in Fig. 11. The gable walls show larger deformation and damage 
in the weathered model, whereas in the un-weathered model, they act as compression struts until ultimate failure of the building. The 
base shear sustained by the un-weathered model at ultimate collapse is about 1.6 times that of the weathered and flood-affected model. 

Fig. 8. Capacity curves for out-of-plane failure of three IBs after combined loading.  

Table 4 
Capacity curve parameters for three IBs under sequential flood and seismic loading.   

Flood 
depth 

Yield 
BSC 

Yield 
drift 

Change in yield 
BSC 

Change in yield 
drift 

Ultimate 
BSC 

Ultimate top 
drift 

Change in 
ultimate BSC 

Change in 
ultimate drift 

(m)  (%) (%) (%)  (%) (%) (%) 

IB1 0.00 0.30 0.23 –  0.50 1.07   
0.25 0.28 0.21 4.69 8.95 0.50 1.02 1.57 4.18 
0.50 0.27 0.21 7.81 7.74 0.47 1.01 5.93 5.36 
0.75 0.26 0.22 10.94 5.55 0.42 0.85 16.73 20.54 
1.00 0.26 0.35 12.50 − 51.33 0.42 1.04 17.48 3.17 

IB2 0.00 0.46 0.32 – – 0.73 2.29   
0.25 0.43 0.29 7.00 7.38 0.73 2.29 0.06 0.08 
0.50 0.41 0.27 12.00 15.83 0.71 2.22 2.32 2.98 
0.75 0.35 0.23 24.00 26.11 0.67 1.92 8.53 16.11 
1.00 0.35 0.32 25.00 0.38 0.65 2.05 10.57 10.63 

IB3 0.00 0.78 0.38 – – 1.18 2.31   
0.25 0.78 0.37 0.00 0.79 1.18 2.24 0.03 3.18 
0.50 0.74 0.33 5.36 11.73 1.11 1.90 5.88 17.95 
0.75 0.72 0.33 7.74 11.74 0.99 1.73 16.78 25.29 
1.00 0.66 0.38 15.48 − 0.92 0.88 1.47 25.94 36.46  

Fig. 9. Behaviour of three IBs at different load stages under the load case of 0.75 m flood followed by seismic action.  
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4.4. Fragility assessment 

The capacity curves obtained after sequential hydrostatic and ground acceleration loading, depicted in Fig. 8, are idealised to 
bilinear curves and fragility curves are derived using PGA as seismic intensity measure (IM). Details of the procedure for the appli-
cation of N2 method [117] using a suite of ground motions from FEMA_P695 (2009) [118] for this class of IBs are presented in 
Parammal Vatteri and D’Ayala (2021). The three representative points A, B and C, shown in Fig. 11, correspond to the thresholds of 
Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention (CP), damage states, used for the derivation of fragility curves. 
The results are presented in Fig. 12 and the fragility parameters are listed in Table 5. 

The fragility functions clearly capture the improvement in performance from IB1 to IB3 due to better seismic design level, in all 
combinations of flood depth and seismic loading. It should be noted that the reduction in displacement capacity observed for IB2 in 
relation to lower flood depths, is reflected in the fragility functions at both IO level, and LS level, compounded with larger dispersion 
compared to the other two IBs. This novel combined analysis process thus enables probabilistic assessment of the school systems across 
the intensity ranges of both hazards, illustrating its ability to capture physical effects in multi-hazard scenarios. This suite of fragility 
functions is used as input to the Bayesian Network in the following section, to represent the probabilistic distribution of the physical 
performance of the IBs. 

5. BN for combined flood and seismic vulnerability assessment 

A network of multiple schools in a region or city forms its school infrastructure, providing the crucial service of education to the 
community inhabiting it. As a collection of structural and non-structural components interlinked to provide the common objective of 

Fig. 10. Damage progression in IB3 for combined 1 m flooding and incremental seismic action.  

Fig. 11. Comparison of collapse failure modes at an advanced stage for IB3 with and without material degradation due to flooding and 1 m flood depth hydro-
static load. 
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delivering education, school infrastructure can be considered as a system [119], for which natural hazards are the external factors 
producing changes in performance and risk of failure. A generic BN for a school infrastructure network having n schools is developed to 
study the impact of combined hazards on the school system in terms of disruption to education as shown in Fig. 13. The BN is sub-
divided in four parts, reflecting the different nature and domain of the variables considered as contributing to the overall disruption to 
the system, as already discussed in Section 2. Table 6 presents the variables’ name, symbol, and their assigned states. 

The two root nodes, EQ and FL represent the earthquake and flood hazard respectively, which can be input as discretised hazard 
curves providing probability distribution of hazard in terms of PGA for earthquake and inundation depth for flood, in this study 
obtained by Nath and Thingbaijam (2012) [109] and Sahoo and Sreeja (2008) [102] respectively. The characteristics of such dis-
tributions shall depend on the seismicity and flood susceptibility of the location under study. As the exact location and topography of 
the schools’ compounds is not available, the assumption is that all compounds are exposed to the same value of intensity attributed to 
each hazard. Variability in accessibility to schools is incorporated through the assumed probability of flooding at the school site and 
the basin within which the school is located. These features can be fine-tuned for a more specific case study, where school location is 
available. The two hazard events are considered independent of each other, and hence, the joint probability of exceeding a given 
inundation depth and PGA is estimated by direct multiplication of the two event probabilities, while performing operations on the 
network (see Equation A.4 in Appendix A for an illustrative example). EQ and FL directly link into various states of loss of schools’ 
physical functionality (PFi), as grouped within the green box in Fig. 13. This expands to a first sub-BN, Part A, involving fragility curves 
for different building typologies under combined loading scenarios, functionality loss of buildings (BFi) and outputs physical func-
tionality (PFi), leading to the system’s disruption due to physical functionality state (TPF). More detail on Part A is provided in section 
5.1. 

As seen in section 3, yearly flood events may last days or weeks, but it might take schools many weeks or months to resume full 
operations. Earthquakes might last seconds or few minutes, but it might take months or years to repair and reconstruct [120]. Part B 
(blue box in Fig. 13 further detailed in section 5.2) estimates the duration of disruption in scenarios where schools fail to deliver 

Fig. 12. Fragility curves for sequential loading scenario for three IBs.  

Table 5 
Fragility parameters.  

Performance levels Median PGA of fragility curves corresponding to Flood depths (m) Range of dispersion β 

1 0.75 0.5 0.25 0 

IB1 

IO 0.070 0.123 0.128 0.128 0.128 0.732–0.815 
LS 0.231 0.297 0.301 0.301 0.305 0.633–0.754 
CP 0.385 0.483 0.503 0.503 0.510 0.804–0.888 

IB2 

IO 0.193 0.167 0.212 0.245 0.247 0.708–0.835 
LS 0.625 0.663 0.690 0.730 0.737 1.127–1.515 
CP 1.124 1.212 1.285 1.396 1.401 1.131–1.526 

IB3 

IO 0.242 0.291 0.316 0.344 0.345 0.672–0.711 
LS 0.635 0.823 0.851 1.001 1.010 0.549–0.858 
CP 1.175 1.505 1.639 1.647 1.753 0.830–1.236  
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education from causes other than physical functionality loss, as dealt in Part A. In this study, this segment of non-structural duration of 
disruption is considered dependent on two factors: duration of flood inundation at the school’s location accounting for local hydrology 
and topography (Di), and the eventuality of the school being assigned shelter function (SHi) for people affected by the events. While the 
first factor relates to accessibility, the second is a social variable, in turns depending on many other factors. Among various physical 
and social aspects qualifying the suitability of a school to be used as a shelter [121], physical robustness and accessibility are 
considered in this study, as they are reciprocal to the variables states determining the school’s loss of functionality. Therefore, SHi, is a 
function of PFi and Di (as defined above). Moreover, to capture the role of school-shelters in the community, the duration of inundation 
in the basin where school i is located, DBi, is defined as the probability of the residential areas served by school i being flooded for a 
given period, hence needing shelter. Such need will also be conditional to the social vulnerability (SVi) of the community relying on 
school-shelter i. 

Social vulnerability is an integral part of the performance assessment of school infrastructure, as established in the Introduction. 
While a multitude of factors affect the social vulnerability of a community, to limit the scope of this study, three factors are considered 
to estimate the effect of social vulnerability on the school infrastructure performance, namely, size of student population (Pi), category 
of school (Ci) based on age group of students and an indicator of the income and education (IE) of the community, forming Part C of the 
network (in purple in Fig. 13, detailed in section 5.3), in recognition that certain states of these variables such as larger population, 
younger age group and poor economic and education status of the community are important indicators of higher social vulnerability 
that affect the education delivery through schools at the wake of disasters. 

The probability of disruption related to physical and functional aspects of the school system as defined in part A and part B, is 
quantified in terms of the TSYS variable. The system’s overall disruption is also dependent on the effect of social vulnerability, 
quantified by the node TSYS_SV. These two output nodes enable the comparison of disruption to education by considering only the 
physical and functionality aspects, and by considering the social vulnerability aspect. A third output of the network is the estimation of 
revised disruption period from functional loss associated with flood (TOF_R), by allowing mobility of students between schools, as 
presented in Part D. This allows the assessment of the revised overall system disruption TSYS_R and the modification due to SV, TSYS_SVR 

Fig. 13. Bayesian Network for the overall disruption to school system exposed to sequential hazards. Subscripts ‘i’ to ‘n’ correspond to the serial number of schools in the 
infrastructure system considered. Subscript i-j on some nodes denote the interaction between any two schools in the network. The red boxes with dashed edges group the nodes that 
represent the same parameter in the network, which is repeated for the number of schools in the system. When there are more than two schools in the network, the interaction is 
considered in pairs of two schools, for all combinations within the set of n schools. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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and their comparison with the original TSYS and TSYS_SV before considering the mitigation. 
Part D of the network (shown in red box in Fig. 13 and discussed in section 5.5) explores the possibility of mobility of students 

between schools as a mitigating measure to reduce the overall duration of disruption to education. Options such as double-shifts can be 
viable to mitigate education loss [84] and explore the benefit of the system dimension of the school infrastructure. The assumption is 
that by moving students from a school that is non-functional, to a nearby functional school, the overall disruption to the school 
infrastructure system, and hence to the education delivery is reduced. For the sake of this analysis, it is assumed that the administrative 
system allows this temporary mobility and even encourages collaboration between neighbouring schools at times of emergency. The 
goal is therefore to compute the probabilities of ‘revised downtime states’ of each school when mobility is included. If mobility is not 
possible due to any of the conditions set out for the network, it means that the school infrastructure system is vulnerable and has no 
redundancy. 

To obtain the revised period of disruption (TOF_Ri) after allowing mobility, the following factors are considered in Part D: category of 
school with respect to age of students (Ci), distance between schools (DSi-j) and size of schools (SZi). The first two parameters determine 
the connectivity of schools (CNi-j) while the last factor contribute to the capacity of the schools (CPi) to allow movement (Mi-j) of 
students. For DS and CN, the combination is considered irrespective of the direction of movement of students, i.e. DSi-j means distance 
between schools i and j, which is the same as DSj-i. Hence, there will be C(n, 2) combinations of DSi-j and CNi-j in a network of n schools. 
The direction is important for the M node, describing the movement of students, as Mi-j denotes mobility of students from school i to j, 
and Mj-i in the opposite direction. These are not the same, as the physical and functional conditions of each school-pair are considered 
for the calculation of conditional probability of these nodes. Hence, there will be P(n,2) permutations of M nodes in the network of n 
schools. 

The following subsections detail the CPT definitions of each part of the network and the overall system. The complete network in 
Fig. 13 contains 24 variables, 15 of which appear in sets dependent on the number of schools in the system. The total number of nodes 
N in the BN for n schools is, 

N = 11n+ 2 * C(n, 2)+ 1 * P(n, 2) + 10 (1) 

One advantage of this network structure is that can be adapted to represent n clusters of schools, by simply inserting properties of 
cluster for each nodes instead of individual schools, in which case, the analysis can be carried out at the larger scale of the school 
infrastructure of the whole city. The scalability is especially useful, considering that the typology of buildings and hazard effects could 
be similar within a small locality having a cluster of schools, while varying considerably from locality to locality. For instance, the 
school buildings observed in the northern area of Guwahati city were predominantly old, single story masonry or CM buildings, while 
the more urbanised areas in south Guwahati housed RC school buildings as well (see Ref. [56]). The framework developed in this study 
would allow to analyse clusters and determine the spatial variance in vulnerability and resilience of the school infrastructure across a 
metropolitan urban area such as Guwahati. 

5.1. Part A - the sub-BN for disruption due to school’s physical functionality (PFi) level 

Each school compound comprises multiple building blocks of different construction typology, hosting single or multiple functions, 

Table 6 
Expansion of Variables in the Bayesian network shown in Fig. 13.  

Part of the network Variable abbreviation and expansion 

Part A EQ-Earthquake 
FL-Flood depth 
PFi: Individual school’s physical functionality disruption 

Part B Di-Duration of flooding at school site 
DBi- Duration of flooding in the basin 
SHi -Shelter function of school 
OFi- Other (non-structural) functionality disruption at individual schools 

Part C Pi -Population 
Ci: Category of school 
IE-Income and Education of Parents 
SVi -Social vulnerability of individual schools 

Part D DSi-j: Distance between any two pair of schools i and j 
SZi: Size of school 
CNi-j: Connectivity between schools i and j 
CPi: Capacity to accommodate moving students 
Mi-j: Movement between schools i and j 
TOF_Ri: Revised duration of disruption of individual schools 

Overall System TPF -Duration of disruption due to school system’s physical functionality loss 
TOF -Duration of disruption due to other (non-structural) functionality loss 
TOF_R: Revised duration of non-structural disruption of school system 
TSYS -Overall duration of disruption to school system 
TSYS_R –Revised overall duration of disruption to school system 
SV -Social vulnerability of the system 
TSYS_SV -Overall disruption to education, considering the social vulnerability 
TSYS_SVR –Revised overall disruption to education, considering the social vulnerability  
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such as classroom, office, refectory, etc., and it can therefore be considered as a sub-system within the school infrastructure system. A 
specific BN is generated to estimate the functionality of each school compound and of a system of three compounds as shown in Fig. 14. 
Variables used in this part of the network are detailed in Table 7 with their assigned states. From the survey of 86 schools in the case 
study area [122], it results that more than 75% had two buildings in the compound. Hence, each school in this network is assumed to 
have two building blocks, Bi1 and Bi2, where i represent the serial number of the school, while 1 and 2 identify the building block, each 
being assigned any one of the three IB typologies, introduced in Section 4, with the corresponding fragility functions derived in Section 
4.3. Each Bij node has four states, as shown in Table 7. Therefore, the CPTs of each Bij node has 400 columns, corresponding to 20 EQ 
states, 5 FL states and 4 performance states. Each entry of the CPT corresponds to one combination of these parents’ and its own states. 
The two blocks together provide three basic ‘building functions’ of the school, i.e. classroom, office and refectory, denoted as BFi1, BFi2 
and BFi3. These nodes are given three states (Table 7). The CPTs of BFi nodes are derived with respect to the fragility state of the 
building/s hosting that function: i) no damage and immediate occupancy correspond to unaffected functionality, ii) collapse prevention 
correspond to functionality total loss, iii) all other combinations of fragility states correspond to partially functional. The nodes PFi, 
represents the physical functionality of the school as a system, assuming three possible states of disruption, conditional to the states of 
BFi nodes as shown in Table 8. The inferred probabilities for each state of the PFi nodes are carried forward to Part B of the network, to 
assess the suitability of using the school as a shelter. 

The performance of Part A subsystem, is given by node TPF, measuring the disruption to its physical functionality in terms of 
duration of recovery, whose CPT is obtained by combining the probabilities of individual school functionality states. Of the three 
possible states, if the damage level is beyond immediate occupancy, but not reaching life safety, it is expected to cause up to 3–4 
months of recovery time, translating to a system performance state of ‘partially functioning’. Such a recovery period implies options of 
rapid repair and rehabilitation such as the ferrocement technique [32]. Physical damage corresponding to the life safety threshold 
would require major structural repair, and 1 year is considered as a reasonable period. The TPF node is an input to the overall system 
disruption period ‘TSYS’, as shown in Fig. 13. 

5.2. Part B: disruption from other causes 

Part B evaluates the probability of different states of duration of disruption to education for individual schools from other causes of 
functionality loss (OFi), i.e. other than the functionality loss induced by physical damage. These include the lack of accessibility due to 
inundation at the site of school and its basin, or the change in use, from educational to shelter or other post event function. Variables in 
this part of the network and their states are listed in Table 9. The CPTs of duration of inundation at the school site (Di) are derived from 
the flood depth hazard states, defined in number of days as per evidence provided by Sahoo and Sreeja (2008), in absence of systematic 
spatial data on flood depth and duration across the case-study location. Four states are assigned to Di, linked to the five states of flood 
depth given by the hazard curve. The duration of inundation in the basin (DBi), also linked to flood depth, is defined in weeks rather 
than days as per evidence provided by Chakraborty and Singh (2016) [103]. Di and DBi allow to differentiate the accessibility of the 
school site from the state of inundation of the community, reflecting diverse topographic and hydrological features of the area under 
study. The state of these two variables determine the possible state of the school-shelter. 

The SHi has four states, ranging from ‘not used as a shelter’ to ‘used as shelter up to four months’ (Table 9). Besides Di and DBi, the 

Fig. 14. BN for Part A: School functionality network.  
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other two parent nodes determining SHi states are the school functionality PFi and the state of social vulnerability of the community 
SVi. For instance, the school is more likely to be used as a shelter if the basin is inundated, but the location of school is not, owing to its 
high altitude or better drainage system, and if its functionality from PART A is satisfactory. A high state of social vulnerability also 
increases the probability of the school being used as a shelter for extended period, while the community recovers. Table 10 provides the 
CPT of possible states of SHi as a function of the states of its parent variables. Uniform probability distribution applies to all states. 

The CPT of individual school’s disruption period from other functionality loss (OFi) therefore is derived considering the correlation 
between duration of inundation at school site and shelter function of schools. Four possible states are defined for the disruption period 
(see Table 9) considering the following possible combinations of the parent nodes states: 

Table 7 
Variables and their states in Part A of the Network.  

Variables States 

EQ-Earthquake 20 PGA states and their annual exceedance probabilities as defined by the earthquake 
hazard curve (see Appendix B). 

FL-Flood depth 5 flood depth values and their annual exceedance probabilities derived from Ref. [102] 
(see Appendix B). 

Bi- Physical fragility of individual buildings  1. No damage  
2. Immediate Occupancy (IO)  
3. Life Safety (LS)  
4. Collapse Prevention (CP) 

BFi- Building Functionality  1. Function is unaffected  
2. Partially functional  
3. Non-functional 

PFi: Individual school’s physical functionality, with assumed recovery 
period  

1. Intact: minimal disruption, under1 week  
2. Partially functioning: up to 3 months  
3. Shutdown: 1 year 

TPF: Duration of disruption due to physical functionality loss of the 
school infrastructure system  

1. Short functionality loss under 1 week and minimal disruption  
2. Medium functionality loss up to 3 months  
3. Long functionality loss up to 12 months  

Table 8 
Conversion of functionality state to individual school functionality state.  

Building Functionality state (node BFi) Physical Functionality state (node PFi) 

All BFi1, BFi2 & BFi3 are in fully functional state (state 1) Intact (1) 
All BFi1, BFi2 & BFi3 are in shutdown state (state 3) Shutdown (3) 
All other combinations Partially functional (2)  

Table 9 
States of variables in Part B of the network.  

Variable States 

Di-Duration of flooding at school site 1: No inundation 
2: 1–2 days 
3: 3–6 days 
4: 7–10 days 

DBi - Duration of flooding in the basin 1: No inundation in basin 
2: Inundation up to 1–2 weeks 
3: Inundation up to 3–4 weeks 

SVi -Social vulnerability of individual schools 1: Low vulnerability 
2: Medium vulnerability 
3: High vulnerability 

SHi -Shelter function of school 1: Not used as shelter 
2: Used as shelter for up to 2–3 weeks 
3: Used as shelter for up to 1–2 month 
4: Used as shelter for up to 3–4 month (longer recovery) 

OFi - Duration of disruption at individual schools from other functionality losses 1: Negligible: under 1 week 
2: Disruption for 2–3 weeks 
3: Disruption for 1–3 months 
4: Disruption for 4–12 months 

TOF- Duration of disruption of school infrastructure system from other functionality loss 1: Short: ‘Low’ disruption up to 3 weeks 
2: Medium: ‘Medium’ disruption up to 3 months 
3: Long: ‘High’ disruption up to 12 months  

A.P. Vatteri et al.                                                                                                                                                                                                      



International Journal of Disaster Risk Reduction 74 (2022) 102924

17

• The school not being used as a shelter and inundation at site being minimum (Di state 1 or 2), the non-structural disruption is under 
one week (OFi state 1).  

• The school’s SHi has the longest duration (up to 4 months) leads to a disruption period of up to 12 months (OFi state 4), irrespective 
of the inundation at site.  

• Other combinations of Di and SHi states lead to duration of disruption of 2–3 weeks or 1–3 months. 

The overall disruption time TOF for the school from non-structural causes is then defined applying combination rules, such that, the 
condition of all schools under 3 weeks of disruption is considered to cause an overall ‘short’ disruption of the education system. All 
schools up to a maximum of 3 months disruption leads to a ‘medium’ disruption of the system, while all other combinations lead to 
‘long’ disruption, as at least one school will be facing 4–12 months of disruption individually. 

5.3. Part C: Social vulnerability 

For each individual school, the social vulnerability component is determined by the size of student population (Pi), representing the 
exposure factor, and the category of school (Ci) based on the age group of students, which relates directly to their vulnerability in a 
hazard event. Three states and their probabilities are assigned for each of these nodes based on the statistics of schools surveyed 
(Table 11). 

The social vulnerability of the community, is accounted via the combined income and education (IE) of the parents of students in 
the area, for which three possible states and associated probabilities (Table 11) are based on the 2011 census of India, which estimates 
a literacy rate of 73.18%, and a proportion of the population below the poverty line of 34% for Assam [123–125]. Given the poor 
resolution of this indicator, IE is assumed as common value to all schools in one locality. The CPT of SVi are defined considering the Pi 
and Ci states of individual schools, and the common IE state of the community, following the assumption that the larger the school 
population and the lower the children age attending a school compound, the higher the social vulnerability of the individual school’s 
student population, amplified by poorer state of income and education of the community. Therefore:  

1. Highest population or lowest age category when combined with the poorest income-education state lead to high SVi;  
2. When Pi and IE are either 1 or 2 and Ci is either 2 or 3 (see Table 11) indicating low vulnerable conditions, the SVi state is low;  
3. All other combinations lead to a state of medium social vulnerability. 

The social vulnerability of individual schools contributes to the level of social vulnerability of the overall school network (SV). The 
CPTs of the overall system’s social vulnerability states are defined by the combination of multiple schools being in any given state. 

Table 10 
CPT for SH node, conditioned on states of PFi, Di, DBi and SVi (corresponding states of the variable in brackets).  

PFi Di DBi SVi SHi state Combination 
rule 

shutdown (3) more than 2 days of inundation at 
school site (3,4)   

not used as a shelter (1) OR 

intact or partially 
functional (1,2) 

less than 2 days of inundation at 
school site (1,2) 

inundation up to 2 weeks 
in basin (2) 

Low or medium 
level 

used as shelter up to 3 
weeks (2) 

AND 

High level used as shelter up to 2 
months (3) 

intact or partially 
functional (1,2) 

less than 2 days of inundation at 
school site (1,2) 

inundation up to 4 weeks 
in basin (3) 

Low or medium 
level 

used as shelter for up to 2 
months (3) 

AND 

High level used as shelter for up to 4 
months (4)  

Table 11 
Variables and their states in Part C of the Network. Assigned probabilities of root nodes are given in brackets.  

Variables States Assigned Probabilities of root node states 

Pi -Population 1: 0–50 students 0.1: Based on survey statistics 
2: 50–100 students 0.3 
3: >100 students 0.6 

Ci: Category of school 1: LP school: class 1 to 5 0.56: Based on survey statistics 
2: ME school: class 6-8 0.22 
3: HS school: class 9-10 0.22 

IE-Income and Education of Parents 1: Above average 0.3: Based on 2011 census data 
2: Average 0.4 
3: Below average 0.3 

SVi -Social vulnerability for individual schools 1: Low vulnerability  
2: Medium vulnerability 
3: High vulnerability 

SV-Social vulnerability of the system. 1-Low vulnerability  
2-Medium vulnerability 
2-High vulnerability  
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5.4. Overall duration of disruption of the school system 

The ‘impact’ of combined hazards on the school system and the delivery of the education can be quantified as the Overall Duration of 
Disruption to the education system (TSYS) (Fig. 13) which is obtained as the combined product of the conditional probabilities of 
disruption due to schools’ physical functionality (part A-TPF) and other functionality losses (part B-TOF). TSYS is then modified by the 
level of social vulnerability (Part C) providing a Modified Probability of Duration of Disruption, TSYS_SV. Both TSYS and TSYS_SV have three 
states, short, medium and long disruption. The CPT of TSYS is defined with the following criteria:  

• For the overall system to receive short disruption both parents should be in short disruption state, i.e. TPF is within 1 week and TOF is 
limited to under 3 weeks.  

• On the other hand, TSYS will receive long disruption, hence high impact, if either of the two parent nodes are in long disruption state, i.e. 
TPF or TOF is up to a year.  

• In all other combinations, the overall system is in medium disruption or impact state, up to 3 months. 

CPT of TSYS_SV is defined by considering the observation that children from highly vulnerable communities are more likely to miss 
schooling even when other physical and functional aspects of schools are undisturbed or brought back to normal after an event. To 
incorporate this into the BN, CPT of TSYS_SV assumes that the state of overall disruption, TSYS, increases from short to medium and medium 
to long, if the SV state is ‘high’. Implications of ‘low’ SV state to possibly reduce the long disruption period from other physical and 
functional causes is not explored in this analysis, due to lack of evidence to quantify this link. 

5.5. Part D: Students’ mobility effect on duration of disruption of the system 

Part D of the network applies the conditions that allow mobility of students between schools within the school infrastructure system 
to estimate a revised non-structural disruption duration of the system TOF_R in order to improve the probability of short disruption as 
originally estimated through the TOF node. The mobility variable Mi-j between any two schools is decided based on connectivity be-
tween two schools, capacity of accommodating students and shelter function of individual schools. Table 12 shows the states of 
variables in this part of the network. The receptive capacity (CPi) of schools is dependent on the functionality of individual schools (PFi) 
in addition to their size (SZi) to accommodate more students, moving from nearby schools. The root nodes Ci and SZi are defined by 
three states, while DSi-j is a binary node as given in Table 12. Their probabilities are assigned based on the statistics of the sample of 
schools surveyed in the locality. Similar to part B of the network, logical conditions are applied between the states of Ci, DSi-j and PFi 
and SZi to derive the CPT of CNi-j and CPi, respectively as the following: 1) with youngest age category of students, CNi-j is possible if the 
DSi-j is less than 1 km, while for other age categories the DSi-j is irrelevant. 2) PFi state of ‘intact’ and SZi state above ‘small’ indicate a 
positive state of CPi, while other combinations of PFi and SZi lead to its negative state. 

Two states are defined for the mobility node Mi-j corresponding to positive and negative possibility of re-allocation of students, as 
defined in Table 13 for any couple of schools. Mi-j is conditional to connectivity (CNi-j), to the receptive school capacity and to its 
function not being shelter. 

The CPT of revised disruption period of individual schools, TOF_Ri, is defined for a system with three schools as shown in Table 14, 
assuming that if mobility is possible from school i to any other school in the network, the disruption of this school reduces to 
‘negligible’ disruption state, as students can be educated in other schools during its recovery. The revised disruption state of the overall 
system, TOF_R, is then computed using the same model as Part B, updated with the new disruption periods. 

Section 6 presents the results of the analysis for a system of three schools, which contains 56 nodes. On an Intel(R) Core(TM) i7- 
7600U CPU @ 2.80 GHz 2.90 GHz with 16 GB RAM, it takes under 70 s to run this network. As mentioned in Appendix A, the network 

Table 12 
Variables and their states in Part D of the network. Root nodes are written in italics and their assigned probabilities are given in brackets.  

Variables States Assigned Probabilities of root node 
states 

DSi-j: Distance between any two pair of schools i and j 1: Close, less than 1 km 0.43 Based on a sample data 
2: Far, more than 1 km 0.57 

SZi: Size of school 1: Large, more space than present population 0.33 Assigned uniform 
probabilities 2: Adequate, good enough for current 

population 
0.33 

3: Small, barely sufficient for current population 0.33 
CNi-j: Connectivity between schools i and j 1: Yes, if walkable (DSi-j = 1 and Ci = 1) or Ci > 1 

2: No, if not walkable 
CPi: Capacity to accommodate moving students 1: Yes 

2: No 
Mi-j: Movement between schools i and j 1-Yes 

2-No 
TOF_Ri: Revised duration of disruption of individual schools 1-negigible 

2-short 
3-medium 
4-long 

TOF_R: Revised duration of disruption of school infrastructure 
system 

1-short 
2-medium 
3-long  
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was first moralised, then triangulated to identify the elimination order, following which 38 cliques are formed to create the junction 
tree, in the Bayes Net Tool in order to carry out Bayesian inference. 

It is to be noted that by increasing the number of schools in the system, the size of the network increases as per Eq. (1), requiring 
higher computational effort for a realistic system of schools or clusters of schools. The network design shown in Fig. 13 is the most 
straightforward or ‘naïve’ way of connecting all system variables in a converging manner to produce a final system performance 
output. For very large systems, special techniques such as minimum link sets or minimum cut sets may be identified to divide the 
system into a combination of parallel or series subsystems, to manage the computational load [89]. 

6. Results and discussion 

The Bayesian network illustrated in section 5 is applied to a system of three schools with the following simplifying assumptions: the 
analysis considers only one IB type - IB2 -, for the general discussion on the probability and duration of disruption to the system, while 
the sensitivity to typology is presented separately. Without loss of generality, identical prior probabilities and CPTs are assigned to 
variables across schools, such as Pi, Ci, DSi-j etc., effectively assuming the same condition for all the schools. The same applies for the 
variable IE. 

Herein the results are presented in terms of the probability of disruption states for 1) the overall system disruption due to physical 
and other (non-structural) functionality loss, TSYS; 2) the modified overall system disruption due to the community social vulnerability, 
TSYS_SV and 3) the reduced overall system disruption TOF_R due to the mobility of student between schools. Three states of these var-
iables short, medium and long duration of disruption, namely DDs, DDm and DDl respectively, are considered. Furthermore, the in-
fluence of parent nodes on the system disruption states is assessed by means of a sensitivity study using the one-at-a-time (OAT) 
approach and by defining possible realistic scenarios. Lastly, the influence of the physical infrastructure quality, represented by the 
different IB typologies, on the overall system disruption, is presented. 

6.1. Probability distributions of disruption to school system 

The resulting probabilities of the states of disruption variable TSYS, as a function of flood and seismic hazard intensities are pre-
sented in Fig. 15a, for the baseline scenario of building typology, characterised by the physical fragility functions presented in Section 
4.4. A query into the probability distributions of its parent nodes TPF and TOF is helpful to gain insight into the variation in TSYS states, 
shown in Fig. 15b and c, respectively. Disruption states from the physical functionality reduction (TPF) varies predominantly with 
seismic hazard intensities, as the influence of flood hazard intensities on the structural damage is limited, (Fig. 12). The 100% 
probability of DDs from structural causes, at nil seismic intensity, rapidly decreases with increase in PGA, and becomes insignificant 
beyond 0.52 g PGA, while a DDm of up to 3 months becomes the most probable (95%) state for the system. The probability of DDl up to 
1 year increases gradually with PGA, with a maximum of 7.5% at the highest considered PGA, due to its low probability of occurrence, 
as per the hazard probability function used. 

On the other hand, disruption from non-structural functionality loss TOF, measuring the disruption from accessibility loss and 
change of function to shelter, is more dependent on the flood hazard level. Over the range of flood intensity considered, the probability 
of DDs drops to a minimum of 48%. It can be noted that the probability of short and long disruption from non-structural causes show 
modest variation over the range of PGA, correctly capturing that the increased structural damage associated with PGA renders the 
schools unsuitable for shelter function. Therefore the probability of the 3 different states of overall disruption of the system, shown in 
Fig. 15a, combines the independent trends of TPF and TOF, delivering short, medium and long disruption probabilities of 0.01%, 
85.34% and 14.66% respectively, for the coexisting maximum value of the two hazards. 

Fig. 15d presents the modification in the distribution of system disruption, by considering the effect of social vulnerability (TSYS_SV). 
Given the probability distributions assigned to the root variables IE, Ci and Pi, the DDs reduces to 70% in absence of hazardous events, 
with a corresponding rise of 30% in the DDm, when compared to the TSYS. This is due to considering the social vulnerability (SV) as a 
hazard independent component. The most relevant result is that DDl probability for the maximum value of the two hazards is 2.5 times 
higher than the baseline case. This comparison of TSYS and TSYS_SV illustrates the sensitivity of the system to social vulnerability and 
highlights its influence for successful education delivery. 

Table 13 
Conditions for defining CPT of Mi-j.  

SHj CPj CNi-j Mi-j state Combination rule 

– – No (2) No OR 
No(1) Yes (1) Yes (1) Yes AND 
All other combinations No –  

Table 14 
Conditions for defining CPT of TOF_Ri.  

Mi-j Mi-k OFi TOF_Ri state Combination rule 

Yes(1) Yes(1) – Negligible(1) OR 
All other cases 1,2,3,4 Same as Ti state –  
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Fig. 15. Probability of TSYS, TSYS_SV and TOF_R states for a base scenario.  
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The effectiveness of non-structural mitigation measures, such as the mobility of students between schools, can be assessed by 
comparing Fig. 15c and e, respectively depicting TOF and the revised duration of disruption after considering mobility of students 
(TOF_R). It can be seen that by allowing mobility between schools, the system can be maintained within the DDs i.e. 3 weeks, with at 
least 90% certainty. This is because the factors originally causing DDm due to flood inundation can now be mitigated to DDs, although 
the probability of DDl is not reduced. Thus, mobility of students can have a substantial impact on education delivery in the event of 
floods. A reduction of the probability of DDl (maximum 10%) requires structural interventions. A further estimation of revised system’s 
disruption period TSYS-R is performed assigning the same CPT definition of TSYS, combining TPF and TOF_R as shown in Fig. 16a. It can be 
seen that the combined system disruption is only modified along the flood hazard range at zero PGA when compared to Fig. 15a, as the 
non-structural mitigation is only effective for flood. The distribution along seismic hazard range is similar to that of the previous case, 
owing to the dependency of TSYS-R on TPF as per the CPT definition. A similar observation is made if the social vulnerability component 
is added to the TSYS-R to obtain a revised TSYS-SVR as shown in Fig. 16b, and compared to TSYS-SV in Fig. 15d, confirming the significant 
influence of SV. The BN thus allows to visualise and quantify the benefit of implementing simple mitigation strategies. 

Table 15 summarise the probabilities of the states of the period of disruption variables, marginalised over the flood hazard range, 
concurrent to the maximum considered earthquake (MCE) PGA according to IS 1893, which is 0.36 g. Since the flood hazard char-
acterization is based on a specific study of the region, and the whole range of intensity is relevant, the marginalisation is performed 
over the entire range. However, the range for seismic intensity is chosen sufficiently large to generate fragility curves for all the damage 
states, hence, the MCE level gives a more realistic notion of expected hazard intensities. The values give a direct quantification of 
system disruption for the given hazard characterization, building fragilities corresponding to the base case, and definitions of in-
terconnections between hazards and exposures variables. The non-structural disruption has a 95% probability to be only up to 3 weeks, 
and non-structural mitigation further improves this chance. However, as the structural disruption is more likely to be up to 3 months, 
the overall disruption to the system also has a high probability to be medium duration. Inclusion of social vulnerability increases the 
chance of long disruption as mentioned previously, up to 25.8%. The marginal improvement in overall system disruption after non- 
structural mitigation at MCE level is also noted, although the effect was more significantly observed at zero PGA. 

6.2. Sensitivity of system variables to contributing factors 

The influence of the contributing parameters on system’s disruption duration can be studied by setting the states of some parent 
nodes to a desired value and computing the updated probabilities of output variables. In order to illustrate the sensitivity of the system 
disruption variable TSYS through Bayesian inference (see Appendix A), the estimated marginal probabilities of its three states are 
computed for three scenarios of practical significance:  

1. One school’s physical functionality after an event is (a) intact, possibly due to structural interventions prior to the event (i.e. PF1 
state = 1) and (b) shutdown, possibly due to structural damage during the event (i.e. PF1 state = 3)  

2. One school is (a) not used as a shelter (i.e. SH1 state = 1) and (b) used as a shelter for over 3 months (i.e. SH1 state = 4)  
3. One school’s inundation status is (a) not inundated, due to higher elevation (i.e. D1 state = 1) and (b) inundated for more than a 

week (i.e. D1 state = 4) 

These evidence cases are provided to the BN to estimate the revised marginal probability over the flood hazard range at the PGA 
level of MCE, as shown in Fig. 17. The originally estimated marginal probabilities of TSYS without evidence are included, showing that 
under the given hazard characteristics, TSYS has about 15% and 85% probability of being in DDss and DDm, while a non-zero probability 
of DDl exists. TSYS shift for the ‘case a’ evidences for the three scenarios, i.e. state 1 for PF1, SH1 and D1 are indicated by green markers in 
Fig. 17, the red markers indicating the change caused by ‘case b’ evidence. For the first scenario (Fig. 17), PF1 = 1 improves the 
probability of DDs by 86%, while PF1 = 3 leads to 99% probability of DDm. Under scenario 2, SH1 = 1 does not alter the original 
estimate significantly, but SH1 = 3, produces a shift of TSYS to DDl, owing to the conditional probability definitions of OFi. The duration 

Fig. 16. a) Revised system disruption TSYS-R with TOF_R, b) TSYS-SVR while considering social vulnerability.  
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of inundation at school site, D1 has modest influence on the original estimate of TSYS, compared to the other two factors, due to its 
limited control over OFi states, and hence that of TSYS states as defined by CPT of OFi. It can be concluded that the SHi state, which is 
also dependent on the PFi state has a dominating influence on the states’ probability of TSYS. 

A similar exercise is carried out to identify the most relevant parameter affecting the revised disruption period TOF_R, determined by 
the mobility of students between schools. The extreme states (with same convention used in Fig. 17a) of the three root variable, school 
capacity (CP), connectivity (CN) and shelter function (SH) are considered and their relative influence on the two states of M1-2 is shown 
in Fig. 17b. Case b shows that the probability of M1-2 is solely dependent on the state of CN1-2 as shown in Table 13. The system also 
captures that high states of SH or CP will impede M1-2. Conversely, ‘Case a’ comparison suggests that a state of CP = 1 improves the 
original M1-2 probability by more than 2.5 times, under the given hazard characterization and system properties. Since CP is dependent 
on school’s physical functionality, this highlights the need for robust infrastructure, even when the mitigation measures are non- 
structural. 

It can be observed from Table 15 that without specific inference the non-structural disruption (TOF) in the present hazards con-
ditions, has a 95% probability of DDs, which is improved by 4.5% when considering the possibility of students’ mobility. It can be 
expected that the effectiveness of non-structural mitigation would be more significant in a case of frequent flood hazards. Considering 
the anecdotal evidence reported in Section 3, the hazard characterization of the city is modified to reflect a higher probability of 
exceedance of flood depths as given in Table 16. The TOF and TOF-R probability distributions assume the values shown in Fig. 18 to be 
compared with Fig. 15c and e. In this case, the marginal probabilities of TOF and TOF-R over the range of flood depths at the MCE level of 
PGA, to be in the DDs is 72.15% and 96.34% respectively, i.e. 33.5% improvement is achieved by the non-structural mitigation. 

Table 15 
Marginal probabilities of system outputs over the range of Flood hazard at MCE seismic hazard as per IS 1893.  

States TOF TOF_R TPF TSYS TSYS-SV TSYS_R TSYS-SVR 

1 Short (few weeks) 0.953 0.994 0.150 0.145 0.103 0.150 0.140 
2 Medium (few months) 0.040 0.001 0.850 0.849 0.639 0.845 0.620 
3 Long (1 year or more) 0.007 0.005 0.000 0.007 0.258 0.005 0.240  

Fig. 17. Influence of physical functionality, shelter function and inundation at site on duration of disruption of the school system.  

Table 16 
Assumed higher probability of flood hazard.  

Flood depth (m) 0 0.25 0.50 0.75 1.0 

Probability of exceedance 5% 35% 3% 2% 1%  
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6.3. Sensitivity to building typology 

The analysis presented in the previous sections assumed a baseline scenario where buildings in all the schools were set as IB2 
typology. The influence of building typology on system disruption (TSYS) can be inferred from the BN analysis, by assigning the specific 
fragility functions summarised in Fig. 12 and Table 5, with IB1 being the most fragile and IB3 most robust typology. Results are 

Fig. 18. Original and revised non-structural disruption at a fictitious high flood hazard case.  

Fig. 19. Influence of building typology on system disruption.  

Fig. 20. System disruption for a scenario with high social vulnerability and poor typology of buildings.  
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presented as 2D plots in Fig. 19a and Fig. 19b, for DDs and DDl, assuming three cases, whereby all buildings belong to one of the three 
typologies. 

The probability of DDs falls from 45% to practically zero when considering IB3 and IB1, respectively, for PGA corresponding to 
MCE. Similarly, the probability of DDl increases by 100%, although the values are insignificant at MCE level. At high PGA levels, the 
difference between IB1 and the other two typologies, which show comparable performance, increases. The 1 m flood depth results in 
an almost constant shift of the probability of DDl by about 15%, due to flood related causes, irrespective of the typology. This also 
results in a reduction of up to 60% in the probability of DDs, compared to the no-flood case. The likelihood of disruption is dominated 
by the seismic action rather than the flood depth at higher PGA ranges. However, at very high PGA level, the IB3 typology has a higher 
probability of DDl than IB2, due to the former lower ductility for high flood depth, as noted in Section 4.4, under combined-hazard 
loading. 

Communities of poor social and economic status may also be users of poorer building typology due to various reasons, such as lack 
of funds for maintenance and up keeping of schools. Assuming a scenario with high state of social vulnerability and all buildings of IB1 
typology, the overall disruption could be further aggravated as measured through TSYS_SV shown in Fig. 20. There is no probability of 
the system being in DDs under the given scenario. The system’s probability of DDm drops from 100% to 15% with the increasing flood 
hazard intensity alone. The probability of DDl reaches 100% for a combination of 1 m flood and a PGA as low as 0.21 g. TSYS_SV has a 
100% probability of DDl for the MCE PGA value irrespective of the flood depth. Thus, combined effect of high social vulnerability and 
poor infrastructure results in a substantially more vulnerable scenario when compared with Fig. 15d. 

7. Conclusion 

School infrastructure plays a critical role in delivering education and supporting social cohesion in communities. In location of high 
natural hazards and social vulnerability, such role becomes indispensable as schools are also used as shelters in the emergency and 
recovery phase from a destructive event. Studies on the effects of concurrent natural hazards on the structural resilience of school 
infrastructure built with modest level of engineering are lacking. In response, the methodology developed in this study derives first, a 
set of robust fragility functions for confined masonry school buildings’ physical vulnerability. Exploiting a novel modelling approach, 
it accounts for the recurring and sequential nature of demand arising from the geographic co-existence of flood and seismic hazard. A 
Bayesian network model underpins the second step of the methodology, by mapping the complex probabilistic resilience assessment of 
a system of several schools exposed to dual hazards scenarios, in terms of duration of disruption of system functionality due to physical 
vulnerability of the assets, accessibility of the compounds, changes in use to shelter, social vulnerability of the users’ community and 
student population. 

The analysis illustrates that BN is suitable to model the multi-hazard resilience assessment problem, containing qualitative and 
quantitative information, with discrete and continuous probability distributions. In particular, the inclusion of variables representing 
the social status of the users’ community allows to quantify the relevance of social vulnerability, even though this is represented in a 
simple and qualitative way. The results are limited by the availability of specific elements of data, from the modest characterisation of 
the hazards, to the lack of resolution of the social variables. Nonetheless, the methodology is robust and allows to account for and 
propagate the uncertainties through the system (as can be quantified by methods such as proposed by Ref. [126]) enabling a prob-
abilistic assessment of the disruption to the system. More nuanced results can be obtained with better data resolution, such as detailed 
flood basin characteristics, student demographics, distance between schools, seismicity at the sites, etc. 

The BN modelling also allows to explore the effect of simple mitigation policies, such as mobility between schools [84] or selected 
use of schools as shelter. It is seen that the mobility has a beneficial effect on reducing the probability of medium disruption. This type of 
decision can be taken in the immediate aftermath of a disruptive flood event, once accessibility and shelter function of schools are 
agreed, within a district, to minimise loss of education days for students, and highlights the importance of considering schools as a 
system of connected infrastructure, to serve their communities. Similar mitigation measure could be extended for reducing disruption 
in the immediate aftermath of seismic events as well. 

The analysis also illustrated the modelling of explicit relationships between variables and how their influence can be quantified in a 
probabilistic manner, over the entire hazard range. For instance, it was found that among the three contributing variables physical 
functionality, shelter function and inundation at school site, the shelter function has more influence on the overall disruption to the 
education system, providing evidence to current debate on the role of schools as shelters (e.g. Ref. [127]). Similarly, the building 
typology is also shown to considerably influence the probabilities of system disruption, and therefore the model is able to demonstrate 
the benefit of retrofit of existing school buildings to deliver more resilient infrastructure. The analysis is also able to quantify the level 
of risk associated to the two hazards and can therefore be helpful in decision making to prioritise action for structural or environmental 
interventions for different schools. 

The study illustrated the analysis results of a system containing three schools or clusters, computationally very efficient. However, 
the challenge of extending the network for a large number of schools in a full regional network, while feasible, needs further 
exploration with respect to computational optimization. 
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Appendix A. Bayesian inference 

The process of Bayesian inference involves computing the complete probability distribution of a set of unobserved or hidden 
variables, given a set of observed variables in the Bayesian network. This can be achieved by updating the information of one or more 
observed nodes of the BN, i.e. by specifying the state or probability of certain nodes, to get the updated probability of other nodes in the 
network. For any general BN, with X representing the set of all n variables in the network, the inference of a set of variables Xi, given a 
set of variables Xj, can be expressed using conditional probability: 

P
(
Xi
⃒
⃒Xj

)
=

P
(
Xi,Xj

)

P
(
Xj
) (A.1)  

where P(Xi,Xj) is the joint probability of Xi and Xj and P(Xj) is the probability of the observed variables. P(Xi,Xj) can be estimated by 
summing all other variables in the network, Xk, from the joint probability of the whole network. Hence, Bayesian inference is to 
compute the following [128]: 

P
(
Xi
⃒
⃒Xj

)
= α.P

(
Xi,Xj

)
∝
∑

k∕=i,j

P
(
Xi,Xj,Xk

)
(A.2) 

This operation requires to formulate the joint probability P(X) = P(Xi,Xj,Xk) in a computationally efficient manner. BN model 
facilitates this computation through factorization using the DAG structure and CPTs defined for each variable, as follows [129]: 

P(X)=
∏n

l=1
P(Xl|Parents [Xl]) (A.3) 

For example, in a sample network of five nodes as shown in Figure A1, the joint probability is. 

Fig. A.1. A sample Bayesian network (adapted from Ref. [89]).  

P(A,B,C,D,E)= P(A)P(B)P(C|B)P(D|A,B)P(E|C,D) (A.4) 

For a BN with nodes representing variables with discrete states, as in this study, an exact inference is possible using a junction-tree 
algorithm, which works by finding ways to decompose the calculation of joint probability distribution into a linked set of local 
computations [130]. A junction-tree algorithm progresses through the following steps: 1) The DAG structure is first moralised by 
linking parents of all child nodes. 2) Variables are eliminated one at a time by an order obtained through partial optimization technique 
[89], until the whole graph is exhausted. When a node is eliminated, its adjacent nodes are connected through fill-in edges, if they are 
not previously connected and the eliminated node forms a ‘clique’ with its adjacent nodes (Figure A2) A junction tree is formed by the 
cliques and separators generated, following the junction-tree properties [130] to ensure global consistency of the network. Separators 
are sets of variables between two sets of nodes (or cliques), such that the two sets of nodes are conditionally independent, given the 
separator set. 4) Joint probabilities of each clique or ‘clique potential’ and separator sets are computed following the junction-tree. 

Fig. A.2. Steps 1–3 of Junction tree algorithm illustrated for a sample network (adapted from Ref. [89]).  
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Appendix B. Prior probabilities of seismic and flood hazards 
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[50] M. Tomaževič, I. Klemenc, Verification of seismic resistance of confined masonry buildings, Earthq. Eng. Struct. Dynam. 26 (10) (1997) 1073–1088, https:// 

doi.org/10.1002/(SICI)1096-9845(199710)26:10<1073::AID-EQE695>3.0.CO;2-Z. 
[51] S. Brzev, Earthquake-Resistant Confined Masonry Construction, NICEE. National Information Center of Earthquake Engineering, 2007. 
[52] R. Meli, et al., Seismic Design Guide for Low-Rise Confined Masonry Buildings, Earthquake Engineering Research Institute, Oakland, California, 2011 no. 

August. 
[53] A. Chourasia, S.K. Bhattacharyya, P.K. Bhargava, N.M. Bhandari, Influential aspects on seismic performance of confined masonry construction, Nat. Sci. 5 (8) 

(2013) 56–62, https://doi.org/10.4236/ns.2013.58a1007. 
[54] A. Chourasia, S.K. Bhattacharyya, N.M. Bhandari, P. Bhargava, Seismic performance of different masonry buildings: full-scale experimental study, J. Perform. 

Constr. Facil. 26 (4) (2016) 371–376, https://doi.org/10.1061/(ASCE)CF. 
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