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Abstract 

Recent studies have explored the potential of tissue-mimetic scaffolds in encouraging 

nerve regeneration. One of the major determinants of the regenerative success of 

cellular nerve repair constructs is the local microenvironment, particularly native low 

oxygen conditions which can affect implanted cell survival and functional 

performance. In vivo, cells reside in a range of environmental conditions due to the 

spatial gradients of nutrient concentrations that are established. Here we evaluate in 

vitro the differences in cellular behaviour that such conditions induce, including key 

biological features such as oxygen metabolism, glucose consumption, cell death, and 

VEGF secretion. Experimental measurements are used to devise and parameterise a 

mathematical model that describes the behaviour of the cells. The proposed model 

effectively describes the interactions between cells and their microenvironment and 

could in the future be extended, allowing researchers to compare the behaviour of 

different therapeutic cells. Such a combinatorial approach could be used to accelerate 
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the clinical translation of nerve repair constructs by identifying which critical design 

features should be optimised when fabricating engineered nerve repair conduits. 

Graphical abstract 

 

Combining in vitro experiments and mathematical modelling to quantify the 

behaviour of therapeutic cells in peripheral nerve injury repair scenarios”. 

Key words: tissue engineering, hypoxia, microenvironment, mathematical modelling, 

VEGF, glucose 

Introduction 

Peripheral nerve injuries (PNIs) are associated with high socioeconomic and personal 

costs; the mean patient age is ~30 years so they can greatly impact lifetime health and 

productivity (Lad, Nathan, Schubert, & Boakye, 2010). Although nerves exhibit some 

regenerative capacity, the degree of reinnervation and subsequent recovery is 

dependent on many factors. In the case of incomplete regeneration, patients might not 

achieve meaningful functional recovery and the resulting disability may be highly 

debilitating with long-term effects on them and their families (Grinsell & Keating, 

2014; Panagopoulos, Megaloikonomos, & Mavrogenis, 2017). 

The current “gold standard” of treatment for large gap PNIs is an autograft, 

where a sensory nerve is harvested and sutured to bridge the gap. However, autografts 

exhibit success rates that are far from ideal (Yang et al., 2011), as well as causing 

donor site morbidity and being limited in their availability. Recently, research in PNI 

treatment has focused on nerve repair constructs (NRCs), that combine therapeutic 

cells and biomaterials. When implanted in the injury site, NRCs can provide 

mechanical support, guidance cues and a growth-permissive environment to modulate 



 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 
regeneration (Carriel, Alaminos, Garzón, Campos, & Cornelissen, 2014; Hsu et al., 

2013; Schuh, Day, Redl, & Phillips, 2018). Research into the design of NRCs has so 

far focused predominantly on the choice of biomaterial, cell type and pro-regenerative 

cues. For NRCs that include a cellular component, key aspects that require 

optimisation include spatial distribution of embedded cells and long-term nutrient 

supply. 

The conditions in the local microenvironment, particularly the native low 

oxygen levels, are a major determinant of the regenerative success of cellular NRCs 

that are often overlooked. Under physiological conditions the characteristic 

penetration length of oxygen in tissue is considered to be around 100-200 μm, 

depending on the proximity to blood vessels, cell type and density (Carrier et al., 

2002; Rouwkema, Rivron, & van Blitterswijk, 2008). PNIs cause acute damage and 

disruption to microvascular networks thereby obstructing tissue perfusion (Lim et al., 

2015). The resulting local tissue hypoxia and absence of neovascularisation can affect 

oxygen diffusion and distribution within implanted NRCs. As a result, the core of the 

NRC, which often lies at a distance beyond the diffusion distance of oxygen away 

from the nerve stumps, may become severely hypoxic compared to the ends of the 

NRC. Besides the physical characteristics of the biomaterial used, oxygen 

consumption rates are also determined by the type of cells embedded in the construct 

(Umber Cheema et al., 2012; Magliaro et al., 2019; McMurtrey, 2015). For instance, 

pluripotent stem cells tend to have low metabolic rates, while progenitor and 

differentiated cells have higher metabolic rates (Teslaa & Teitell, 2015). Additionally, 

the consumption rate of 3D cultures appears to change based on the cell seeding 

density (Magliaro et al., 2019; Patzer II, 2004; Sielaff et al., 1997). 

The formation of oxygen gradients has been found to correlate with gradients 

in viable cell density (Lewis, MacArthur, Malda, Pettet, & Please, 2005; Radisic et 

al., 2006) and increased metabolic loads of the embedded cells (Carrier et al., 2002). 

Besides cell viability, oxygen availability is also linked to vascular regeneration. Cells 

in hypoxic environments often respond by the activation of multiple pro-angiogenic 

pathways and the upregulation of factors that encourage new vessel formation (Fong, 

2008; Hashimoto & Shibasaki, 2015). Therefore, the presence of oxygen gradients 

within an NRC can lead to the formation of growth factor gradients, such as vascular 

endothelial growth factor (VEGF), which in turn can result in a more distinct 
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directional chemotactic response of migrating endothelial cells. This can have further 

implications in PNIs as VEGF expression and neovascularisation have been found to 

induce axonal regrowth and Schwann cell proliferation and promote neural 

regeneration (Cattin et al., 2015; Donzelli, Capone, Sgulò, Mariniello, & Maiuri, 

2016; Hobson, Green, & TerenghiI, 2000).  

Improving our understanding of the impact of the local microenvironment on 

implanted cells is therefore beneficial for informing NRC design. Nevertheless, most 

in vitro studies assessing the behaviour and pro-regenerative capacity of NRCs, have 

been performed at standard laboratory incubator oxygen concentrations. This 

condition does not represent the local in vivo endoneurial oxygen tension that studies 

in rat sciatic and human sural nerves report to be around 3-7% (Newrick, Wilson, 

Jakubowski, Boulton, & Ward, 1986; Tuck, Schmelzer, & Low, 1984; Zochodne, Ho, 

& Allison, 1994). For this purpose, here, the effect of in vitro oxygen conditions on 

cell survival, VEGF release as well as oxygen and glucose consumption were 

measured. To simulate the sorts of cellular biomaterial used in translational nerve 

tissue engineering research, differentiated neural stem cells (CTX0E03) at a range of 

cell densities were embedded in thin, stabilized collagen constructs, and subsequently 

cultured at a physiologically relevant range of oxygen concentrations as well as 

standard cell culture conditions. CTX0E03 cells were selected as they are human 

clinical-grade therapeutic cells with demonstrated potential as an allogeneic ‘off the 

shelf’ cell source for peripheral nerve repair (Kalladka et al., 2016; O’Rourke et al., 

2018; Rayner, Day, Bhangra, Sinden, & Phillips, 2021; Smith et al., 2012).  

The in vitro cellular biomaterial model allows us to explore NRC performance 

in a highly controlled environment, providing an insight into the behaviour of 

therapeutic cells in the critical first 24 hours after implantation. However, whilst in 

vitro experiments are invaluable in furthering our understanding of cellular behaviour 

and in improving NRC design, the vast number of possible scenarios, including 

differences in cell density and distribution, biomaterial permeability and anisotropy, 

that need to be tested can be prohibitive. To accelerate the design process, 

mathematical modelling can be integrated into experimental work to create an 

efficient and robust multidisciplinary workflow and allow for continuous 

improvement through an iterative process ( Coy, Evans, Phillips, & Shipley, 2018). 
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Such tools can also be used to extrapolate data from in vitro studies to an in vivo 

repair environment, thus refining future in vivo studies. 

To this end, we derived a cell-solute model, which comprises a set of coupled 

partial differential equations describing the spatial and the temporal evolution of the 

CTX0E03 population and its local environment, including oxygen and glucose 

consumption and VEGF release. This allows us to assess the spatial gradients that will 

be established in repaired nerves and exploit this information in construct design (Coy 

et al., 2020; Coy, Berg, Phillips, & Shipley, 2021). This type of mathematical model 

has been widely used to enhance the design of engineered tissues and tissue culture 

bioreactors (Cochran, Fukumura, Ancukiewicz, Carmeliet, & Jain, 2006; McMurtrey, 

2015; Rutkowski & Heath, 2002), as they are computationally cost-effective, rely on a 

limited set of parameters, while still capturing most of the underlying biophysics. To 

calibrate this model, we first performed a sensitivity analysis of its outputs that 

allowed us to highlight the hierarchy between the different parameters. We then used 

the experimental observations to assign representative values to these parameters by 

matching the predictions of the mathematical model against the obtained data.  

Methods  

Unless otherwise stated all cell culture materials were purchased from Sigma Aldrich 

(Gillingham, UK) or Thermo Fisher Scientific (Cambridge, UK). 

Culture and differentiation of CTX0E03 cells 

Human neural stem cells (CTX0E03, level P28-P31, ReNeuron Ltd, UK) were 

cultured in Dulbecco’s Modified Eagles Medium:F12 medium supplemented with 

human albumin (0.03%; Nova Biologics, CA, USA); Glutamax (2 mM); human 

transferrin (5 μg/ml), putrescine dihydrochloride (16.2 μg/ml), human insulin 

(5 μg/ml; Sigma), progesterone (60 ng/ml; Sigma), sodium selenite (40 ng/ml), 

epidermal growth factor (20 ng/ml), basic fibroblast growth factor (10 ng/ml; 

Invitrogen, Waltham, MA, USA), and 4-hydroxytamoxifen 4-OHT (100 nM) in 

175 cm
2
 laminin-coated (10 µg/ml; Amsbio, Abingdon, UK) flasks. Following 

expansion, CTX0E03 cells were subsequently differentiated for 1 week by removal of 

growth factors and 4-OHT.  
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Fabrication of stabilised cellular collagen gels 

Differentiated CTX0E03 cells (dCTX0E03) were used to create stabilised cellular 

collagen scaffolds. These were used to mimic the conditions in engineered neural 

tissue constructs. All gels were prepared using 80% v/v type I rat tail collagen (2 

mg/ml in 0.6% acetic acid; First Link, Wolverhampton, UK) mixed with 10% v/v 

10 × minimum essential medium. The mixture was then neutralised using sodium 

hydroxide (NaOH) and 10% v/v cell suspension was added to give cellular collagen at 

a series of cell densities (0.5-1.5 × 10
6
 cells/ml of gel). These cell seeding densities 

were based upon the range used within NRCs (R. Coy et al., 2020; Georgiou, 

Golding, Loughlin, Kingham, & Phillips, 2015; O’Rourke et al., 2018) (Table 1).  

Next, 240μl of the cellular collagen mixture was added to individual wells of a 

96 well plate and the gels were allowed to set at 37 °C for 15 min. Using RAFT 

absorbers (Lonza Bioscience, Slough, UK) the gels were stabilised using plastic 

compression for 15 minutes, a process whereby a biocompatible absorbent material is 

placed upon the gel and absorbs interstitial fluid to generate a dense, robust hydrogel 

(Brown, Wiseman, Chuo, Cheema, & Nazhat, 2005). The resulting compressed gels 

were then immersed in culture medium and incubated at 37 °C in a humidified 

incubator for 24 h under different oxygen concentrations, chosen to reflect the range 

of oxygen concentrations in which cells would reside in vivo.  

Low oxygen 3D cell culture and oxygen monitoring 

A hypoxia workstation and incubator (HypoxyLab, Oxford Optronix, Oxford, UK) 

was used for experiments requiring low oxygen conditions. Cell culture medium for 

hypoxic experiments was conditioned to the target oxygen concentration (1%, 3% or 

7%), which encompasses the rage of endoneurium in vivo measurements, for 2 h 

before use. Cellular collagen constructs were cultured in the HypoxyLab at the 

desired oxygen concentration for 24h. In situ dissolved oxygen within the constructs 

was measured using the integrated OxyLite™ (Oxford Optronix) monitoring system. 

Fibre‐optic oxygen probes (Oxford Optronix, Oxford, UK) were inserted into the 

middle of the constructs. The sensor probes were set to continuously measure oxygen 

partial pressure (5 samplings/ min). The results were recorded using Labview 

software (National Instruments, Berkshire, UK). Results are presented as partial 

pressure values in mmHg (e.g. 7.6 mmHg corresponds to 1%).  
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CellTiter-Glo assay 

Metabolic activity was examined by measuring ATP as an indicator and generating a 

luminescent readout, using the CellTiter-Glo® 3D Assay (Promega, UK). Based on 

the manufacturers protocol, a volume of reagent equal to that of the culture medium 

was added to each experimental well and following a 30-min incubation at room 

temperature, 200μl from the assay solution were transferred to a microplate and 

luminescence was quantified on a plate reader (Flx800, BioTek). The metabolic 

activity of cells was determined in culture by measuring the intensity of luminescence 

signals after 24h. 

Live/Dead assay 

To assess cell viability, cultures were stained using Syto 21/Propidium Iodide (PI) 

(Sigma Aldrich). Syto 21 is a green, fluorescent nucleic acid stain which exhibits 

bright, green fluorescence upon binding to nucleic acids in both live and dead cells. In 

comparison, propidium iodide, which exhibits red fluorescence, cannot permeate 

viable cells as it reaches the nucleus by passing through disordered areas of dead cell 

membrane. Thus, using both dyes allows for the simultaneous staining of viable and 

dead cells. 

For the Syto 21/ PI staining, the medium was removed from the gels, which were then 

washed three times with 200μL of medium (37 °C). Subsequently, 200 μL of Syto 

21/PI solution (1:1000 dilution) was added and the plates were incubated for 15 min 

at 37 °C before removing the Syto-21/PI solution. The gels were then washed briefly 

with 200μL of culture medium. Finally, an additional 200μL of culture medium was 

added to each gel prior to image acquisition. Images were visualized using a confocal 

microscope (Zeiss-LSM710, Carl Zeiss, Germany) with 20x phase contrast water 

immersion objective. High-throughput quantification of cell viability from 3D image 

stacks by adapting a readily available ImageJ protocol was performed.  

The spatial distribution of viable cells within the constructs was also estimated. From 

the 3D image stacks three different zones that correspond to the top, middle and 
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bottom of the gels were identified and the mean value of live and dead cells per zone 

was calculated by analysing 7 stacks per zone. 

Glucose detection assay 

Glucose consumption was quantified by an enzymatic assay (Glucose (HK) Assay 

Kit, GAHK20, Sigma Aldrich) according to the manufacturer’s guidelines. Briefly, 

after 24h incubation of the cellular gels, the supernatants were collected for further 

analysis. The reconstituted reagent was added to each sample and the resulting 

solution was incubated for minutes at room temperature. During that time, glucose 

was phosphorylated by adenosine triphosphate (ATP), a reaction which was catalysed 

by hexokinase. Glucose-6-phosphate (G6P) was then catalytically oxidized to 6-

phospho-gluconate in the presence of oxidized nicotinamide adenine dinucleotide 

(NAD). Due to this oxidation, an equimolar amount of NAD was reduced to NADH, 

thereby changing the optical absorbance of the sample. The consequent increase in 

absorbance was measured at 340 nm and was directly proportional to glucose 

concentration. 

VEGF release 

The concentration of secreted vascular endothelial growth factor-A (VEGF-A) post 

24h incubation was determined by an enzyme-linked immunosorbent assay (ELISA). 

The cell medium supernatant from the gels was collected, stored at -20
o
C and later 

analysed with a VEGF-A sandwich ELISA kit (human and rat VEGF-A kits, 

RayBiotech, GA, USA) according to the manufacturer’s protocols. 

Experimental data analysis 

Normality was determined using a Shapiro-Wilk test. Two-way statistical analysis of 

variance (ANOVA) was conducted, followed by Bonferroni’s multiple comparison 

test.  

Cell-solute mathematical model 

The cell-solute model is comprised of a set of continuous diffusion-reaction 

equations, that describe the interactions between oxygen ( ), glucose ( ) and VEGF 

( ) concentrations and the cell population ( ), within the in vitro well setup. These 

variables were selected as they reflect the potential effect of the local 

microenvironment on the viability of seeded cells and the expression of VEGF, both 
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of which are fundamental for nerve regeneration and vascular regeneration. We 

consider the gel and the medium above within the well geometry (Figure 1) as 

continuous materials with effective uniform properties. In the following sections we 

start by describing the model equations in the gel and culture medium, followed by 

initial and boundary conditions.  

We consider the transport of oxygen in the gel to be driven by molecular 

diffusion, modelled using Fick’s first law, and assume that cells metabolize oxygen 

following Michaelis-Menten kinetics, as is commonly used in the literature for 

conditions where oxygen is the limiting factor (Haselgrove, Shapiro, & Silverton, 

1993; Huang, Ismail-Beigi, & Muzic Jr, 2011; Magliaro et al., 2019; Zhong et al., 

2018).  

                  
  

    ̅
, (1) 

where    represents the oxygen concentration in the gel,   the local cell density in the 

gel,      the diffusion coefficient of oxygen in the gel,    the maximum oxygen 

consumption rate by the cells and  ̅ the oxygen concentration for which oxygen 

consumption by the cell is half its maximal value. Oxygen is considered to diffuse 

freely in the medium so that 

              , (2) 

where    represents the oxygen concentration in the medium and      is the 

diffusion coefficient of oxygen in the medium.  

Next, the equation that governs glucose concentration within the gel can be 

written as 

                  
  

    ̅
(   

 ̅

    ̅
), (3) 

where    represents the glucose concentration in the gel. Here,      is the diffusion 

coefficient of glucose in the gel,    the maximum glucose consumption rate by the 

cells and  ̅ the glucose concentration for which glucose consumption by the cell is 

half its maximal value. Glucose consumption by cells is assumed to follow Michaelis-

Menten kinetics (Aubert & Costalat, 2005; Dienel, Cruz, Sokoloff, & Driscoll, 2017) 

modified with an additional term to capture anaerobic metabolism given the 
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anticipated local oxygen conditions,  

 ̅

    ̅
 . The functional form of this new term is 

based on supplemental consumption of glucose in anaerobic conditions happening 

around the same oxygen level as the weakening of the oxygen metabolic reaction ( ̅) 

but being negligible for high oxygen concentration conditions. This extra term 

enables the impact of anaerobic metabolism to be captured whilst only introducing 

one new parameter into the model.  

Similar to oxygen, we assume that glucose diffuses freely in the medium so 

that: 

              , (4) 

where    represents the glucose concentration in the medium and      is the 

diffusion coefficient of oxygen in the medium. 

Next, we consider the VEGF as an unstable molecule secreted by cells. 

Although vascular endothelial growth factors are a family of polypeptides, in this 

work we focus on modelling VEGF-A, which is considered the key mediator of 

angiogenesis (commonly referred to as VEGF). We describe the VEGF concentration 

in the gel by: 

                           ,

 (5) 

where    represents the VEGF concentration in the gel,      is the diffusion 

coefficient of VEGF in the gel,   the VEGF degradation rate and    is the production 

rate of VEGF. Given that the production rate of VEGF by dCTX0E03 cells is not 

defined in the literature, we used the experiments presented in Figure 4 to define a 

production rate of VEGF that considers upregulation under low oxygen conditions. 

The final relationship describing the dependence of VEGF production on the 

underlying local environment is given by 

    (     ( 
 (

  

  
 

 

  
)
)),

 (6) 

where   represents the baseline VEGF production rate and   represents the VEGF 

production rate depending on oxygen. Further    is the hypoxic threshold for VEGF 
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production and    represents a crowding factor for the cells. VEGF is also assumed to 

diffuse freely in the medium: 

                  ,

 (7) 

where    represents the VEGF concentration in the medium and      the diffusion 

coefficient of VEGF in the medium. 

Finally, the viable cell density is determined by the balance of cell 

proliferation and death, along with cell migration. In collagen gels, however, cell 

migration is negligible on the short timescales considered here (Ardakani, Cheema, 

Brown, & Shipley, 2014) and thus neglected. In addition, CTX0E03 cells are 

conditionally immortalised and thus, do not proliferate in the absence of 4-OHT. We 

describe cell death as an increasing function of cell density, to represent competition 

for space, and a decreasing function of oxygen and glucose concentration, to represent 

competition for nutrients so that 

       (     (
 ̅

    ̅
)    (

 ̅

    ̅
))

 (8) 

where    controls the oxygen-related death,    controls the glucose-related death    

encompasses all other interactions. The rationale behind the choice of oxygen and 

glucose related deaths terms is exactly the same as that for anaerobic consumption 

(Equation 3). 

Well geometry and boundary conditions 

The model consists of an axisymmetric 2D geometry (rotational symmetry along the 

vertical axis of the well), that represents the well of a 96-well plate and is composed 

of two domains: i) the cell-seeded collagen gel at the base of the well, and ii) the 

volume of culture medium above it (Figure 1). Conditions are imposed at the 

boundaries to capture the geometrical constraints and relevant transport characteristics 

of the setup. At the boundary between the cellular gel and the medium, we assume 

continuity of concentration and flux for oxygen, glucose, and VEGF. Zero flux 

boundary conditions are imposed for oxygen at the bottom and the sides of the well, 

whereas the concentration of oxygen on the medium-air interface was set as constant 

and equal to the ambient oxygen as prescribed during the experiments. For VEGF and 
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glucose, zero flux conditions were set at the bottom, sides and air interface. The initial 

oxygen concentration in the gel was set at                   due to 

preconditioning of the cell culture medium. Based on the experimental data, the initial 

glucose concentration at the medium was set as                  and        

in the gel, the initial VEGF concentration was set at             , and the initial 

cell density was varied to match the experimentally-imposed seeding conditions.  

Parameter values 

Initially, the bounds of the parameters included in the model equations were informed 

based on literature values (see Table 2). For some parameters, literature was either 

scarce or conflicting and often from a range of cell types and culture conditions that 

do not represent the specific setup here. Thus, bounds for some parameters were 

chosen based on our own experimental observations and conditions.  

Sensitivity analysis 

The model defined by equations (1) to (9), while built with minimal components, still 

includes 19 parameters, excluding initial and boundary conditions. The large number 

of model parameters compared to the relatively small data set, due to the limited 

spatial and temporal resolution of the in vitro model, leads to an underdetermined 

system. To help regularise the problem, we performed a sensitivity analysis to 

prioritise the importance of parameters in predicting a relevant quantity of interest, 

chosen here as the average concentrations and cell density in the gel, 

             
 

  
∭     

 

  

 (9) 

where    represents the local concentration of the different species in the gel and    

the volume of the gel. By combining this prioritisation exercise with existing 

knowledge of the different parameters, we can define realistic intervals for each 

parameter value. Such intervals are then explored during the optimisation procedure 

(small intervals for impactful parameters, large intervals for minor parameters) by 

comparing model predictions against experimental measurements. 

Multiple approaches exist to perform sensitivity analysis (Saltelli, Tarantola, 

Campolongo, & Ratto, 2004). Given the size of the parameter set we selected the 
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Morris Screening Method (Morris, 1991) which qualitatively evaluates the global 

sensitivity of each parameter, including coupling and non-linearity, using a set of 

elementary effects. More specifically, we use the implementation proposed by 

Campolongo et al., who developed an optimised parameter sampling algorithm for 

sensitivity analysis with decreased computational cost (Campolongo, Cariboni, & 

Saltelli, 2007).   

Input values of the variables of interest are determined based on a sampling algorithm 

which starts at randomly selected points in the k-dimensional space and creates a 

trajectory through all the k-dimensions. First the elementary effects (EEi,j,i = 1,…r, 

j = 1,…k) used for the Morris screening test are individually computed for each 

trajectory and each variable of interest.  

      
                                        

  

 
              

 
 

An elementary effect can be computed if and only if       is still in the parameter 

range. This means that there are                elementary contributions. E     

values are then used to calculate the final sensitivity measures such as the mean 

absolute value of the elementary effect and the standard. More specifically,  

  
  

 

 
         and 

   √ 

 
 (      

 

 
      )

 

, 

with   
  being used to detect input parameters that have an overall influence on the 

output, and   being used to detect input parameter involved in interactions or non-

linearities. 

Optimisation 

We seek to minimise the difference between the model predictions and experimental 

measurements by defining the underlying parameters. Given the size of the parameter 

set, we choose to perform a global, heuristic optimization using a particle swarm 

method (Kennedy & Eberhart, 1995). The particle swarm algorithm seeks to find an 

approximate solution to the equation 
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            { }  ,

 (10) 

where   is the vector of parameters, { } the set or subset of species of interest (i.e., 

oxygen, glucose, VEGF and cell density) and where   describes the cost function 

     { }   
 

  
‖                 ‖  { } ,

 (11) 

which when minimised corresponds to minimising the average difference between 

experimental measurements and simulations for a given set of species. Thus    is the 

size of the experimental set for species  ,           the vector containing the 

corresponding predicted values for a given vector of parameter value   and vector of 

initial and boundary values    , and         the vector corresponding to the 

corresponding experimental measurements. This approach has the advantages of 

avoiding possible local minima, considering the hierarchy between parameters, and 

imposing very few constraints on the regularity of the cost function itself. 

Numerical Simulations 

The model (equations (1)- (9)) was solved numerically using finite volume methods 

in Python 3.7. Given the rotational symmetry of a culture well, the model is solved in 

2D (radial, axial). However, since the slope of the well geometry is small (<0.2%), 

variations in the radial direction can also be considered negligible compared to the 

axial ones, effectively rendering the model 1D. As for the axial direction, we devised 

a non-uniform two-part mesh corresponding to gel and medium with a change in 

mesh cell density at the interface between the two domains. This is done to allow a 

finer resolution in the gel where gradients are steeper, while still capturing the 

interface between gel and medium exactly. 

  Based on a mesh convergence analysis,       mesh cells (80% in the 

medium, 20% in the gel) with a timestep         enabled gradient fields to be 

sufficiently resolved in both domains. Further increasing the spatial or temporal 

resolution resulted in at most in ~1% change for the average concentration in the gel 

after 24h. Next, the Morris sensitivity analysis was run using the open source library 

SALib (Herman & Usher, 2017) using the intervals presented in Table 2 with 40 

trajectories on a 4 level grid. 
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 Finally, the particle swarm optimization was performed using another open 

source library, PySwarm (Miranda, 2018), with 3 meta-parameters (two acceleration 

coefficients c1, c2 to control the individual and collective behavior, and one inertia 

coefficient w to control a history effect). The implementation was split in two 

separate steps 1) optimization of the oxygen, glucose and cell density related 

parameters (which are mutually coupled) 2) optimization of the VEGF related 

parameters (independent of the other species). For each step, we use 20 particles and 

1250 samples leading to 25,000 simulations. For step 1, c1=2, c2=0.2, w=0.6 whereas 

for step 2, c1=2, c2=0.2, w=0.7 yielded the optimum results and met the appropriate 

convergence criteria (as defined in (Jiang, 2007)). During step 1) we compute the 

average oxygen in the gel every 0.5h for 24h for: (a) ambient oxygen concentrations 

        1%, 3% and 7% and for an initial cell density        60 (   

    , (b) average glucose concentration in the culture medium after 24h for      

   1%, 3%, 7% and 19% and for initial cell densities        20, 31, 60 

(      , (c) average cell density in the gel after 24h for 1%, 3%, 7% and 19% 

ambient oxygen concentrations and for initial cell densities        20, 31, 60 

(      . For consistency in calculating the cost function (equation (11)), all results 

were non-dimensionalised using the initial concentration for each species. Similarly, 

for step 2), we compute the average VEGF concentration in the culture medium for 

ambient oxygen concentrations         1%, 3%, 7% and 19% and for initial cell 

densities        20, 31, 60 (      . 

Results 

Viability and metabolic activity of dCTX0E03 cells under different oxygen 

conditions 

The potential use of cellular NRCs for the treatment of PNI is dependent on the ability 

of encapsulated cells to remain viable and maintain their therapeutic effects. 

Therefore, the proportion of viable cells and their metabolic activity were evaluated. 

Figure 2a and b illustrate the survival of target cells under low oxygen conditions. 

Reduced oxygen availability seemed to cause impairment in dCTX0E03 survival and 

metabolic activity, with the effect being more pronounced at the highest seeding 

densities. There was up to 10% reduction in viability and up to 26% reduction in 

metabolic activity after incubation at 1% O2 for 24 h, when compared with normoxic 
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conditions. Differences in cellular responses can also be observed between the higher 

oxygen tensions, although they are not as pronounced. Finally, cell death appears to 

be higher at high cell seeding density conditions, possibly due to competition for 

available nutrients. 

We also explored the spatial distribution of viable cells within the constructs 

(Figure 2c). Results indicate that areas of greater viable cell density occur at the top of 

the gels, correlating with highest oxygen concentrations at the air interface (and 

lowest at the well base which is furthest from the oxygen source). (Cheema, Brown, 

Alp, & MacRobert, 2007).  

Oxygen consumption characteristics in 3D constructs  

Figures 3 displays the temporal changes in the oxygen concentrations measured at the 

centre of cellular stabilised collagen constructs cultured under different ambient 

oxygen levels. Studies on acellular constructs (Figure 3a) show that the oxygen 

concentration in the gel equilibrated to ambient levels within 5 hours. Any differences 

in these profiles for cellular gels must be due to the cellular metabolism.  

 Cellular constructs exhibited time-dependent oxygen depletion in their core 

(Figure 3b-d). There was a rapid fall of oxygen towards approximately steady-state 

values, with the rates being affected by the ambient oxygen level. The lowest ambient 

oxygen concentration of 1% caused the steeper gradients for collagen gels with 

dCTX0E03 cells. Interestingly, the oxygen concentration appears to re-increase after 

12 h for cellular constructs cultured at 7%. Between 0h and 12h, dCTX0E03 cells 

cultured at 7% oxygen exhibit similar consumption characteristics as at other oxygen 

levels, namely a fast, initial decrease of the oxygen concentration, followed by much 

lower decrease rates. After 12h a recovery is observed which could be attributed to a 

shift in the equilibrium between oxygen metabolism and supply. As a proportion of 

the embedded cells die, total oxygen consumption decreases which in turns leads to a 

re-increase in local oxygen levels. 

Functional analysis of dCTX0E03 cells under different oxygen conditions 

Oxygen bioavailability is also directly linked to energy homeostasis. Lower oxygen 

levels compromise the function of mitochondria in generating cellular energy 

currency, ATP, through oxidative phosphorylation, which is the most efficient way of 
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producing ATP from glucose. This causes cells to rely on glycolytic ATP generation. 

Figure 4a demonstrates glucose consumption during the experiments. The glucose 

utilization rate was higher at low oxygen conditions. The decrease was also more 

pronounced at higher cell seeding densities. 

Finally, as illustrated in Figure 4b, subjecting cells to physiological stress 

through oxygen deprivation stimulates and subsequently increases the expression of 

VEGF. VEGF release was affected by the local oxygen levels and cell seeding 

density, however the relationship between them was not straightforward. Activation 

of VEGF expression by hypoxia-induced stress was more prominent at mild to severe 

hypoxia (1-3%). For 1-3% ambient oxygen concentrations, upregulation of VEGF 

release appears to reach maximum levels at          cells/ml and       

   cells/ml where cells were found to be more active. This trend was reversed for 

mildly hypoxic and normoxic conditions. 

Mathematical model  

We derived a cell-solute model for a well geometry, which needed to be further 

parametrised for the specific cell type used. The sensitivity analysis enabled the 

prioritisation of parameters that contribute most to variation in model predictions as 

summarised in Figure 5, where the values μ* (x-axis) and σ (y-axis) capture the 

impact of each model parameter on output predictions, and identify which parameters 

contribute to couplings or non-linear effects, respectively. Based on previous 

literature the individual parameters can also be classified in terms of (non-)linearity, 

(non-) monotony based on their individual σ/μ* ratio (Garcia Sanchez, Lacarrière, 

Musy, & Bourges, 2014).  

The oxygen concentration is mainly affected by the diffusion coefficient in the 

media, the oxygen concentration for which consumption is half maximal, the 

maximum rate of oxygen consumption, the oxygen related death rate and the baseline 

death rate (Figure 5a). The maximal rate of oxygen consumption has the strongest 

influence on model predictions and interacts most with other parameters. For the 

VEGF concentration, most parameters exhibit a non-linear influence on and/or 

interactions with other parameters (σ/μ* >0.5). The final concentration is mostly 

affected by the crowding factor and VEGF degradation (Figure 5b). The effect of a 

large group of parameters including VEGF production rate, maximum oxygen 
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consumption rate and baseline death rate can be considered secondary but non-

negligible. For glucose (Figure 5c), the model output varies non-linearly but 

monotonically or almost monotonically with the maximum rate of glucose 

consumption, anaerobic threshold, glucose diffusion in the medium and the glucose 

concentration for which consumption is half of the maximum. The global sensitivity 

analysis also indicates that the maximum rate of oxygen consumption is a potentially 

influential parameter in glucose concentration. Finally, the cell viability after 24 h is 

mostly affected by the baseline death rate (Figure 5d). Those parameters identified as 

having minimal influence on model outputs were then fixed at the nominal values 

provided in Table 2 (        
    

    
). 

Next, we used a particle swarm algorithm to minimise the difference between 

model predictions and experimental data, via the choice of the remaining 

parameters               
  ̅      

  ̅                      , as described in the 

Methods. Table 3 summarises the final set of parameters found.  

Figures 6 and 7 compare simulation predictions and experimental data for the 

final optimised parameter value set. Overall, the model replicates the general trends 

for the viable cell density, nutrient consumption, and VEGF release. The best fit for 

cell viability is for the 7% O2 dataset. For the remaining conditions, 1 and 3 % O2, the 

model tends to respectively underestimate and overestimate the mean viable cell 

density. With regards to glucose consumption, the fit against experimental 

observations appears to be worse for           cells/ml than for the other initial 

cell densities, but the model predictions closely follow the experimental data points. 

Regardless of the initial cell seeding density, the simulated concentration of VEGF 

released into the medium after 24 h is also in good agreement with the corresponding 

experimental data. The poorest fit was found to be for          cells/ml, 

especially for 3% ambient oxygen concentration. In the case of oxygen consumption, 

the model qualitatively reproduces the general trend of the experimental data. For 

instance, in the case of 1% ambient oxygen the broad shape of the oxygen 
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consumption curves matches that of the data, but the rates of decrease appear to be 

much quicker than the experimental values would suggest is realistic. This could 

indicate that the oxygen metabolism term requires further refinement in the future. 

Discussion 

This study explores the behaviour in vitro of therapeutic cells under physiologically-

relevant oxygen conditions, one of the major determining factors that affect the 

performance of NRCs in vivo. With regards to oxygen, local supply after implantation 

is expected to be limited, especially during the first days when neovascularisation has 

not progressed. dCTX0E03 cells were found to be vulnerable to oxygen conditions 

they are likely to encounter in situ. However, the reduction of cell viability was not as 

significant as expected based on previous literature. Extending the duration of the 

experiments could provide further insights regarding the low long-term survival upon 

implantation observed in previous studies (Smith et al., 2012; Stevanato et al., 2009). 

Moreover, this discrepancy could be associated with the fact that cells adapt by 

recalibrating their metabolic profile and activating anti-apoptotic pathways. Indeed, 

we observed an increase in the rate of glucose utilization under low O2 tension.  

Oxygen and glucose deprivation have also been correlated with changes in 

growth factor release (Mac Gabhann, Ji, & Popel, 2007). Our results are consistent 

with reports that VEGF expression increases under hypoxic conditions; a response 

that has been linked to neuronal protection and nerve regeneration (Jin et al., 2001; 

Lee et al., 2016). We also found a correlation between increased glucose consumption 

and greater VEGF secretion, although this has not been investigated for neural stem 

cells before. 

Next we developed a predictive, cell-type specific and computationally 

effective model to describe interactions between dCTX0E03 cells and soluble factors 

that can be readily used to investigate various nerve repair scenarios. The functional 

forms of the equations were adapted from previous cell-solute mathematical models 

(Chung et al., 2006; Coy et al., 2020; McMurtrey, 2015; Streeter & Cheema, 2011) 

developed for other cell types. Much of the modelling work done in tissue 

engineering so far has produced interesting results and generated general hypotheses 

about the optimisation of tissue engineered constructs or the tissue culture conditions. 
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However, many of the mathematical models were not benchmarked against a specific 

or consistent experimental data set or were validated by comparing theoretical 

simulations with scattered data from multiple sources from the literature, often for 

different cell types. Here, our focus was to parametrise the model using dedicated in 

vitro experiments. Aside from the novel set of differential equations that make up the 

model, we also optimised the parameter values and tailored them to the metabolic and 

functional characteristics of dCTX0E03s within collagen constructs. The final derived 

values are mostly within the range reported in the literature (Table 2) for other cell 

types. One noteworthy exception is the maximal rate of glucose consumption     , 

which is almost ten times higher than previously suggested (Gu et al., 2016; 

McMurtrey, 2015). However, the rate of glucose consumption by differentiated 

human neural stem cells, in general, is not widely characterised.  

Undoubtedly, the model described in this work involves a high degree of 

simplification of what are in reality complex biological phenomena. Nevertheless, the 

simulations appear to capture the cellular responses and related trends correctly. Some 

differences between the model outputs and experimental results were detected, with 

the largest ones being for          cells/ml at 3, 7% O2. To test whether these 

discrepancies were due to parameter estimation, we ran the PSO algorithm 10 times 

and confirmed that variability in the predicted parameter values was insufficient to 

account for the differences between measured and predicted VEGF concentrations 

(data not shown). This indicates that these differences were due to biological 

mechanisms that are not captured in the current governing equation set. For instance, 

the influence of VEGF concentration on the viable cell density was neglected here, 

even though it has been shown to influence the survival of neural stem cells under 

hypoxia. Moreover, from the two nutrients examined in this work, only the effect of 

oxygen was included in the VEGF governing equation.  

Finally, another aspect that was ignored when modelling VEGF production 

and release is the presence of different isoforms. Cells are able to express different 

VEGF isoforms as part of their physiological processes (Ara, Fekete, Zhu, & Frank, 

2010; Cain et al., 2014). Still, including multiple species of the same molecule would 

have drastically increased the complexity of the model and the number of unknown 

parameters. Each of the isoforms displays unique decay and diffusion characteristics, 

possibly due to differential collagen binding and proteolytic release (Vempati, Popel, 
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& Mac Gabhann, 2011, 2014). Differential VEGF binding to collagen may be 

important during the generation of VEGF gradients within the construct and its 

release in the local microenvironment. Therefore, including this mechanism in the 

model may improve its ability to predict the temporal and spatial VEGF distributions. 

The overall quantitative framework that we developed by combining 

experimental and theoretical approaches can enable researchers to simulate a wide 

variety of different engineered tissue configurations and obtain robust predictions 

about the therapeutic effect of CTX0E03 cells embedded in NRCs. For instance, 

during the first critical hours upon implantation, therapeutic cells adapt to their 

environment by rapidly consuming oxygen. We could hypothesize that once the 

oxygen concentration reaches a value around the hypoxic threshold, the cells 

experience oxidative stress and produce VEGF that will later promote the migration 

of endothelial cells and neovascularization. This will in turn help perfuse the construct 

with oxygen and nutrients, supporting both the therapeutic cell population and the 

subsequent neurite outgrowth. Therefore, if we optimise the construct by identifying 

the design that yields the maximal viable cell density and most favourable VEGF 

gradients, we could potentially accelerate nerve regeneration. Moreover, if in the 

future a more comprehensive database of cell and material-type specific parameters is 

collated by repeating the in vitro experiments using different cell types, the 

mathematical model can be extended, allowing researchers to compare the behaviour 

of different therapeutic cells under the same NRC configurations. 
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Figure 1 Cell culture well schematic 

 

Figure 2 dCTX0E03 cell survival and metabolic activity in stabilised collagen gels exposed 

to different oxygen conditions for 24h. (a) Cell viability was calculated using live/dead 

staining and analysis of obtained optical sections. Syto21 was used to label all cells and 

propidium iodide to label dead cells (b) Metabolic activity was assessed using the 3D 

CellTiter-Glo assay. Data expressed as means ± SEM. Significance levels were *p<0.033, 

**p<0.002 and ***p<0.001 compared with normal culture conditions (19%). (c) Spatial 

variability in the viability of dCTX0E03 cells in stabilised collagen gels exposed to different 

oxygen conditions for 24h (60 x 10
6
 cells/ ml density after stabilisation). Data expressed as 

means ± SEM (n=4 independent repeats, 3 samples per condition).  
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Figure 3 Oxygen levels in the centre of (a) acellular (n=1) or dCTX0E03-seeded constructs 

(60 10
6
 cells/ ml density after stabilisation) at (b) 1% oxygen, (c) 3% oxygen, (d) 7% oxygen. 

Time zero refers to the time point when the probe was positioned in the gel. Data expressed as 

means ± SEM (n=3) 

 

Figure 4 Functional analysis of dCTX0E03 cells under different oxygen conditions. (a) 

Glucose consumption by dCTX0E03 cells seeded in collagen and cultured under a range of 

ambient oxygen concentrations for 24h. Glucose concentration was quantified using a 

biochemical assay. Data expressed as means ± SEM (n=4 independent repeats, 3 samples per 

condition). (b) VEGF release from dCTX0E03 cells seeded in collagen and cultured under a 

range of ambient oxygen concentrations for 24h. VEGF concentration was measured via 

ELISA. Original values are divided by the initial cell seeding density. Data expressed as 

means ± SEM (n=4 independent repeats, 3 samples per condition). Significance levels were 

*p<0.033, **p<0.002 and ***p<0.001 compared to normal culture conditions (19%). 
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Figure 5 Morris sensitivity analysis results based on final (a) oxygen, (b) VEGF, (c) 

glucose, (d) cell density values in the centre of gel after 24 h. Each point represents the mean 

absolute value μ* (x-axis) and standard deviation σ (y-axis) of the elementary effect of each 

parameter; the first is used to identify which input parameters have an overall influence on the 

output (i.e oxygen, VEGF, glucose, cell density) and the latter can help identify which input 

parameters are involved in interactions or non-linearities.  

 

Figure 6 Comparison between experimental and simulation results based on final parameter 

values of (a-d) cell viability, (e-h) glucose and (i-l) VEGF in the media after 24 h. 
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Figure 7 Comparison between experimental and simulation results based on oxygen profiles 

in the gel after 24 h. 

Table 1: Main parameters for in vitro experiments 

 Experimental values  

Cell seeding density                      

               

Equivalent cell seeding density after 

stabilisation  

                              l 

 

Oxygen concentration 1, 3, 7 or 21% 

Glucose concentration 25 mM 

Duration  24 h  

 

Table 2: Initial parameter range 

 Nominal value and approximated bounds 

Cell density parameters  

Maximal cell density (                   cell/ml 

Proliferation rate constant 0 
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Baseline cell death rate constant        

[3.3   10
-7

, 1.1334   10
−5

] 1/s 

(Chung et al., 2006; R. Coy et al., 2020)
 
 

Hypoxic cell death rate constant      [1.7   10
-8

, 4   10
−6

] 1/s* 

Glucose deprivation induced death rate 

constant (    

[1.7   10
-8

, 4   10
−6

] 1/s* 

Oxygen concentration parameters  

Diffusion coefficient for oxygen in 

medi       
  

   
 2.62   10

-5
 

[1   10
-5

, 4   10
−5

] cm
2
/s(Han & Bartels, 

1996) 

Diffusion coefficient for oxygen in gel 

    
  

[1   10
-6

, 4   10
−6

] cm
2
/s (Umber Cheema 

et al., 2012) 

Concentration at which oxygen 

consumption is ½ maximal ( ̅  

                       mol/ml(R. Coy et 

al., 2020) (0.5% O2) 

Maximal rate of oxygen consumption 

(    

†                       mol/cell/s 

(Herculano-Houzel, 2011; McMurtrey, 

2015; Streeter & Cheema, 2011; Wagner, 

Venkataraman, & Buettner, 2011) 

Glucose concentration parameters  

Diffusion coefficient for glucose in 

medium (   
  

[5.65        1.09      ] cm
2
/s (Shipley 

et al., 2009; Suhaimi, Wang, & Das, 2015) 

Diffusion coefficient for glucose in gel 

(   
  

[0.23        1.51        ] cm
2
/s 

(Cochran et al., 2006; Wu et al., 2005) 

Concentration at which glucose 

consumption is ½ maximal ( ̅  

        mM (Barros, Bittner, Loaiza, & 

Porras, 2007; Duarte, Morgenthaler, Lei, 

Poitry-Yamate, & Gruetter, 2009; Van Zijl 
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et al., 1997) 

Maximal rate of Glucose consumption 

     

[5 x 10
-17

, 2.2x 10
-16

] mol/cell/s (Gu et al., 

2016; McMurtrey, 2015) 

Anaerobic threshold for glucose 

consumption (A) 

N/A 

VEGF concentration parameters  

Diffusion coefficient for VEGF in 

medium (   
  

[                   cm
2
/s (Mac 

Gabhann et al., 2007; Mac Gabhann, Yang, 

& Popel, 2005) 

Diffusion coefficient for VEGF in gel 

(     

[2.9 x       1.13 x     ] cm
2
/s (Chen, 

Silva, Yuen, & Mooney, 2007; Köhn-Luque 

et al., 2013; Wang et al., 2020) 

VEGF degradation rate (K) [2.67 x 10
-6

, 1.28 x 10
-4

] 1/s 

Hypoxia threshold for VEGF secretion 

(  ) 

[0.1, 2]* %O2 

VEGF crowding factor (    [1, 60]*       cell/ml 

Baseline VEGF secretion rate at low 

oxygen (   

N/A 

Baseline VEGF secretion rate based on 

oxygen (   

N/A 

* Based on experimental observations 

†
Bounds of parameter were adjusted to account for decreased oxygen consumption rate in 3D 

culture systems (Magliaro et al., 2019) 

Table 3: Final parameter values 

 Final value (Practical 

units) 

Final value (Modelling 

units) 

Cell density parameters   
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Maximal cell density 

(      

              

cell/ml 

                      

Proliferation rate constant 0 0 

Baseline cell death rate 

constant       

                  1/s 

 

                  1/s 

 

Hypoxic cell death rate 

constant      

                 1/s 

 

                 1/s 

 

Glucose deprivation 

induced death rate 

constant (    

               1/s 

 

               1/s 

 

Oxygen concentration 

parameters 

  

Diffusion coefficient for 

oxygen in medium     
  

   
           cm

2
/s    

           m2
/s 

Diffusion coefficient for 

oxygen in gel     
  

   
        

      cm
2
/s 

   
               m2

/s 

Concentration at which 

oxygen consumption is ½ 

maximal ( ̅  

 ̅              mol/ml  

(1.24 % O2) 

 ̅         -  kg/m
3
 

Maximal rate of oxygen 

consumption (    

        

       mol/cell/s 

          -   kg/cell/s 

Glucose concentration 

parameters 

  

Diffusion coefficient for 

glucose in medium (   
  

   
          cm

2
/s 

 

   
           m

2
/s 

 

Diffusion coefficient for    
           

               m
2
/s 
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glucose in gel (   

        cm
2
/s 

 

 

Concentration at which 

glucose consumption is ½ 

maximal ( ̅  

 ̅       mM  ̅        kg/m
3
 

Maximal rate of Glucose 

consumption      

       

       mol/cell/s 

               kg/cell/s 

Anaerobic threshold for 

glucose consumption (A) 

            

VEGF concentration 

parameters 

  

Diffusion coefficient for 

VEGF in medium (   
  

   
        

     cm
2
/s  

 

   
        -   m

2
/s 

Diffusion coefficient for 

VEGF in gel (     

         

      cm
2
/s 

 

               m
2
/s 

VEGF degradation rate 

(K) 

K            1/s K            1/s 

Hypoxia threshold for 

VEGF secretion (  ) 

               

mol/ml  

(1.08 % O2) 

           -  kg/m
3
 

VEGF crowding factor 

(    

             cell/ml                       

Baseline VEGF secretion 

rate at low oxygen (   

       

      pg/cell/s 

(molO2/ml)
-1 

              kg/cell/s 

(kgO2/m
3
)
-1
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            pg/cell/s/% 

O2) 

Baseline VEGF secretion 

rate based on oxygen (   

       

      pg/cell/s 

              kg/cell/s 

 

 


