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2 

Abstract  1 

The most common clinical phenotype of progressive supranuclear palsy is Richardson syndrome, 2 

characterised by levodopa unresponsive symmetric parkinsonism, with a vertical supranuclear gaze 3 

palsy, early falls, and cognitive impairment. There is currently no detailed understanding of the full 4 

sequence of disease pathophysiology in progressive supranuclear palsy. Determining the sequence of 5 

brain atrophy in progressive supranuclear palsy could provide important insights into the mechanisms of 6 

disease progression as well as guide patient stratification and monitoring for clinical trials. We used a 7 

probabilistic event-based model applied to cross-sectional structural MRI scans in a large international 8 

cohort, to determine the sequence of brain atrophy in clinically diagnosed progressive supranuclear 9 

palsy Richardson syndrome. A total of 341 people with Richardson syndrome (of whom 255 had 12-10 

month follow-up imaging) and 260 controls were included in the study. We used a combination of 12-11 

month follow-up MRI scans, and a validated clinical rating score (Progressive Supranuclear Palsy Rating 12 

Scale) to demonstrate the longitudinal consistency and utility of the event-based model’s staging 13 

system. The event-based model estimated that the earliest atrophy occurs in the brainstem and 14 

subcortical regions followed by progression caudally into the superior cerebellar peduncle and deep 15 

cerebellar nuclei, and rostrally to the cortex. The sequence of cortical atrophy progresses in an anterior 16 

to posterior direction, beginning in the insula and then frontal lobe before spreading to the temporal, 17 

parietal and finally the occipital lobe. This in-vivo ordering accords with the post-mortem 18 

neuropathological staging of progressive supranuclear palsy and was robust under cross-validation. 19 

Using longitudinal information from 12- month follow-up scans we demonstrate that subjects 20 

consistently move to later stages over this time interval, supporting the validity of the model. In 21 

addition, both clinical severity (Progressive Supranuclear Palsy Rating Scale) and disease duration were 22 

significantly correlated with predicted subject event-based model stage (p<0.01). Our results provide 23 

new insights into the sequence of atrophy progression in progressive supranuclear palsy and offer 24 

potential utility to stratify people with this disease on entry into clinical trials based on disease stage, as 25 

well as track disease progression. 26 

Keywords: event-based model; disease progression; Progressive Supranuclear 27 

Palsy; biomarkers; machine learning. 28 

Abbreviations: CBD = corticobasal degeneration; DC = diencephalon; EBM = event based model; GGT = 29 

globular glial tauopathy; GIF = geodesic information flow; GP = global pallidus; HC = healthy control; KDE 30 

= kernel density estimation; QC = quality control; MCMC = Markov Chain Monte Carlo; NINDS = National 31 

Institute of Neurological Disorders and Stroke; PSP = Progressive Supranuclear Palsy; PSP-RS = 32 

Progressive Supranuclear Palsy Richardson Syndrome; PSP Rating Scale = Progressive Supranuclear Palsy 33 

Rating Scale; ROI = region of interest; SCP = superior cerebellar peduncle. 34 
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 1 

Graphical Abstract 2 
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Introduction  1 

Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative condition, with an estimated 2 

prevalence of 5-7 per 100,000 and survival of just 5-7 years
1,2

. PSP pathology can present with a 3 

range of clinical phenotypes involving language, behavioural and movement abnormalities
3
. This 4 

heterogeneity in clinical presentation has been operationalised in the Movement Disorder Society 5 

2017 PSP diagnostic criteria
4
. The most common clinical phenotype is Richardson syndrome 6 

(PSP-RS), similar to the cases first described by Steele, Richardson and Olszewski in 1963
5
, and 7 

characterised by a levodopa unresponsive parkinsonian syndrome with a vertical supranuclear 8 

gaze palsy, early falls and dementia. Natural history studies of PSP-RS have shown the mean age 9 

of symptom onset is between 65 and 67 years with an average survival from disease onset of 6-7 10 

years
2,6

. PSP pathology is characterised by insoluble aggregates of the 4-repeat (4R) isoform of 11 

the microtubule-associated protein tau in neurons and glia, predominantly in the subthalamic 12 

nucleus, globus pallidus, striatum, dentate nucleus of the cerebellum, frontal lobes and to a lesser 13 

extent in the occipital cortices
7
. The recent pathology staging system for PSP defines six 14 

sequential stages of progression, starting with the subthalamic nucleus, spreading out caudally to 15 

the cortex and rostrally to the cerebellum
8
. This has been validated in an independent cohort with 16 

increasing pathogical stage correlating with clinical severity
9
.  17 

No effective disease modifying treatment has yet been proven for PSP, despite recent successful 18 

clinical trials
10,11

. Clinical trials in PSP can be complicated by variable disease stage at trial 19 

entry, highlighting the importance of stratifying patients into homogenous cohorts based on 20 

disease stage with similar rates of disease progression. Although the PSP Rating Scale has been 21 

shown to be a good independent predictor of survival
12

, and is used as the primary endpoint in 22 

clinical trials, such clinical biomarkers are only indirect measures of the biological stage of 23 

disease, and are affected by intra- and inter-rater variability, as well as fluctuation in patients’ 24 

clinical state. Reliable and individualised disease progression markers are therefore required to 25 

complement clinical ratings scales
13

.  26 

Structural MRI reveals significant atrophy in the brainstem and subcortical structures in PSP-RS, 27 

with additional involvement of the cortical structures
14

. Increased rates of atrophy in these 28 

regions can be detected over a 12-month period
15,16

, offering a potential biomarker readout for 29 

clinical trials. While there are new tau PET tracers emerging that show potential in the 4R 30 
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tauopathies, these are not yet validated for use in the clinic setting
17,18

, and in the absence of a 1 

validated tau PET tracer for PSP, structural MRI offers an indirect measure of underlying tau 2 

pathology in vivo. Indeed, a previous study in PSP showed that in vivo structural imaging 3 

reflected the independent contributions from tau burden and neurodegeneration at autopsy
19

, 4 

while the link in Alzheimer’s Disease is well established
20,21

. However, the order in which brain 5 

regions show evidence of increased atrophy in vivo is currently unknown. 6 

One approach to estimating the sequence of atrophy progression is event-based modelling 7 

(EBM)
22

, using a probabilistic data-driven generative model to infer the order in which 8 

biomarkers become abnormal. The EBM can be built from cross-sectional data by combining 9 

severity information across biomarkers and individuals without reference to a given individual’s 10 

clinical status
23

. The EBM allows inference of longitudinal information about disease 11 

progression by assuming there is a monotonic progression of an individual biomarker from 12 

normal to abnormal (even if this progression is non-linear), so that in a patient cohort containing 13 

a spectrum of disease stages, more individuals will necessarily show abnormality in a biomarker 14 

that changes early in the disease course. This approach has been successfully applied to 15 

Huntington’s disease
23

, sporadic and familial Alzheimer’s disease
24–26

, Parkinson’s disease
27

, 16 

multiple sclerosis
28

, the posterior cortical atrophy variant of Alzheimer’s disease
29

, and to 17 

amyotrophic lateral sclerosis
30

, providing a simple and validated method to investigate temporal 18 

disease patterns and estimate individuals’ disease stage. Recent work has demonstrated the 19 

clinical utility of the EBM for screening patients on entry into clinical trials, to improve cohort 20 

homogeneity and increase the power to detect a treatment effect
31

.  21 

The aim of this study was to define the progression of brain atrophy in clinically diagnosed PSP-22 

RS by developing an EBM that takes cross-sectional structural MR imaging as input. We 23 

hypothesised that there is a consistent sequence in which brain regions become atrophic in PSP-24 

RS, in keeping with the recent PSP pathology staging system proposed by Kovacs et al.
8
, and 25 

predicted that the image-based EBM stage would be correlated with clinical disease severity as 26 

measured by the PSP Rating Scale. 27 
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Materials and methods  1 

Subjects 2 

Data from individuals with a clinical diagnosis of possible or probable PSP-Richardson 3 

Syndrome were collected from six main sources for inclusion in the study: the 4R Tauopathy 4 

Imaging Initiative (4RTNI; ClinicalTrials.gov: NCT01804452)
16,32

, the davunetide randomized 5 

control trial (DAV; ClinicalTrials.gov: NCT01056965)
33

, the salsalate clinical trial (SAL; 6 

ClinicalTrials.gov: NCT02422485)
34

, the young plasma clinical trial (YP; ClinicalTrials.gov: 7 

NCT02460731)
34

, the PROgressive Supranuclear Palsy CorTico-Basal Syndrome Multiple 8 

System Atrophy Longitudinal Study (PROSPECT; ClinicalTrials.gov: NCT02778607), and the 9 

University College London Dementia Research Centre (UCL DRC) FTD cohort. Control data 10 

were collected from three sources: the Frontotemporal Lobar Degeneration Neuroimaging 11 

Initiative dataset (FTLDNI; http://4rtni-ftldni.ini.usc.edu/) PROSPECT, and the UCL DRC FTD 12 

Cohort. Controls were defined as no known diagnosis of a neurological or neurodegenerative 13 

condition, and no known history of memory complaints. Further details on individual cohorts are 14 

included in the supplementary material, and a summary of the demographics of each cohort is 15 

included in Supp. Table 1. Appropriate ethics was applied for and approved via the relevant trial 16 

and research ethics committees. For inclusion in this study all patients had to have, as a 17 

minimum, a baseline T1-weighted volumetric MRI on a 1.5T or 3T scanner, with basic 18 

demographic data (age at time of scan, gender), and disease duration at time of the scan (time 19 

from symptom onset to MRI scan) if available. 12-month follow-up scans, if available, were also 20 

included in the study, as were PSP Rating scale scores. Given original trial analyses failed to 21 

show any treatment effect (including no change in volumetric MRI measurements) in the 22 

davunetide
33

, salsalate and young plasma trials
34

, we combined data from each study’s treatment 23 

and placebo groups. Longitudinal data (both 12-month follow-up MRI and PSP Rating Scale) 24 

were used for validation of the staging system produced by the baseline EBM. 25 

  26 
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Magnetic resonance imaging 1 

Raw volumetric T1 MRI images were all processed by the same pipeline. Scans first underwent visual 2 

quality control (QC) to ensure correct acquisition and the absence of major artefacts. Next, raw images 3 

that passed QC were bias field corrected for magnetic field inhomogeneity, and the whole brain (cortical 4 

and subcortical structures) parcellated using the geodesic information flow (GIF) algorithm35. This 5 

automatically extracts regions based on the Neuromorphometrics atlas (Neuromorphometrics, Inc.), 6 

using an atlas propagation and label fusion strategy36,37. Subregions of the cerebellum were then 7 

automatically extracted with  GIF based on the Diedrichsen cerebellar atlas: the cerebellar lobules (I-IV, 8 

V, VI, VIIa-Crus I, VIIa-Crus II, VIIb, VIIIa, VIIIb, IX and X), the vermis and the deep nuclei (dentate, 9 

interposed and fastigial)35,38. The whole brainstem, medulla, pons, superior cerebellar peduncles (SCP) 10 

and midbrain were subsequently segmented using a customised version of the module available in 11 

FreeSurfer to accept the GIF parcellation as input for Freesurfer 39. Total intracranial volume (TIV) was 12 

calculated using SPM12 v6225 (Statistical Parametric Mapping, Wellcome Trust Centre for 13 

Neuroimaging, London, UK) running under MATLAB R2012b (Math Works, Natick, MA, USA)40. All 14 

segmentations were visually inspected to ensure accurate segmentation.  15 

Biomarker selection 16 

In this study we use the term biomarker to refer to image-based regional brain volumes that show a 17 

significant difference between cases and healthy controls (two-tailed t-test of mean difference in 18 

covariate adjusted volumes). Given the focus of this study was to test the hypothesis that the sequence 19 

of atrophy in PSP-RS is in keeping with the sequence of tau pathology at post-mortem as shown by 20 

Kovacs et al.8, nineteen regions of interest (ROI) were chosen for inclusion that most closely matched 21 

those used in their study; four brainstem (medulla, pons, superior cerebellar peduncle [SCP], and 22 

midbrain), three cerebellar (cerebellar cortex, deep nuclei and vermis), seven subcortical (thalamus, 23 

globus pallidus [GP], striatum [caudate and putamen], ventral diencephalon [DC], thalamus, 24 

hippocampus and amygdala) and five cortical (frontal, insula, temporal, parietal and occipital). Regions 25 

that had a right and left label were combined. All ROIs were controlled for the following covariates using 26 

linear regression on the control cohort: age at scan, sex, scanner type and TIV. Linear regressions of age 27 

against predicted EBM stage were also performed (after EBM model fitting) for cases and controls 28 

separately to confirm that there was no residual correlation after adjustment. All regions selected for 29 

inclusion showed a significant difference in covariate adjusted volumes between cases and controls 30 

(Bonferroni corrected threshold of         ) under a two-tailed t-test.  31 

The Event Based Model 32 

The EBM is designed to infer a data-driven, probabilistic sequence in which biomarkers become 33 

abnormal from cross-sectional data. The strengths of the EBM are firstly that it requires no a-priori 34 

biomarker cut-offs (thresholds) to define abnormality, secondly it requires no a priori staging and finally 35 

it can produce meaningful results using only moderately sized cross-sectional data. Its reliability with 36 
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8 

moderately sized datasets makes it ideally suited for analysing biomarkers in rare diseases such as the 1 

primary tauopathies.  2 

The EBM is based on the assumptions of homogenous disease progression and monotonicity: 3 

that is all patients have a broadly similar disease progression pattern with a unimodal distribution 4 

of orderings, and biomarker change is unidirectional from normal to abnormal i.e. no remission. 5 

An ‘event’ is considered to have occurred when a biomarker (in this study an MRI derived 6 

regional volume), has an abnormal value (‘atrophy’) in comparison with the expected values 7 

measured in healthy controls. The model then estimates the sequence    ( )  ( )   ( ) in 8 

which the biomarkers become abnormal where  ( ) is the first biomarker, and  ( ) is the last.  9 

Conceptually if biomarker A is usually abnormal when biomarker B is abnormal, but B is often 10 

abnormal without A, we infer that B occurs before A in the sequence.  11 

The estimation procedure first fits a mixture model to control and patient data for each 12 

biomarker. In this study we decided to use a recent version of the EBM that incorporates a non-13 

parametric method, kernel density estimation (KDE)
29

, for estimating the mixture models. This 14 

approach has been shown to perform at a similar level to the classic EBM (that incorporates 15 

Gaussian mixture modelling) with parametric input data, while demonstrating superiority when 16 

the data are skewed
29

. The mixture model obtains models for the distribution of normal and 17 

abnormal values for each biomarker, providing likelihoods  (      )  and  (       )  of 18 

observing the value,     , of biomarker   for subject  , given that biomarker   has or has not 19 

become abnormal, respectively. The EBM combines these likelihoods to then calculate the 20 

likelihood of the full dataset                       for a given sequence,  :  21 

 (   )  ∏[∑( ( )∏ (      ) ∏  (      )

 

     

 

   

)

 

   

]

 

   

 

(1) 22 

  iterates over the number of subjects  , and   iterates over the number of events  .  ( ) refers to the 23 

prior likelihood of being at stage   and in the absence of prior information is treated as uniform to 24 

impose as little information as possible on estimated orderings. The estimation procedure then searches 25 

for the characteristic ordering,  ́, which is the sequence that maximises the likelihood of  (   ) in 26 

equation (1) 23. This is found through a combination of a multiply initialized greedy ascent and Markov 27 

Chain Monte Carlo (MCMC) sampling, which samples from the posterior distribution on  , to find  ́, 28 

which is simply the sequence with the highest (maximum) likelihood. The set of samples from the 29 
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9 

MCMC sampling also provides information on the uncertainty of the maximum likelihood sequence, 1 

which can be visualised on a positional variance diagram22,23. 2 

Patient staging 3 

Once the characteristic sequence,  , has been obtained via the EBM, an individual sample    (a vector of 4 

all measurements across biomarkers   for a patient  ), can be staged by evaluating the stage   that 5 

maximises the likelihood in equation (2) below25: 6 

        (  | ́  )          ( )∏ (      ) ∏  (       )

 

     

 

   

 

(2) 7 

As before  ( ), the prior likelihood of being at stage  , is treated as uniform i.e., no a priori information 8 

on a particular stage. The EBM stage (Z), between 1 and the number of biomarkers,  , of subject  , is 9 

therefore given by the stage   that maximises equation (2). Each subject (case and control) had their 10 

EBM predicted stage calculated for their baseline MRI scan, and for those that had them, their 12-month 11 

follow-up scan. 12 

Cross validation of event sequence 13 

Although the MCMC sampling gives some information on the uncertainty of the event ordering in 14 

ordering of events derived from the EBM, previous work shows it tends to underestimate this 15 

uncertainty25. Bootstrapping is an additional method that tends to give a more liberal estimate of the 16 

uncertainty in the ordering. We first performed cross-validation of the maximum likelihood sequence 17 

generated by the EBM, by re-estimating the model on 100 bootstrap samples of the original data 18 

(sampling with replacement). We then performed repeated stratified 5-fold cross-validation as an 19 

additional check on the robustness of the model. This involved refitting the model on 80% of the cohort 20 

data and testing accuracy on the held out 20% for each of 10 5-fold random partitions, giving a total of 21 

50 cross-validation folds/models, which are averaged to find the final model sequence.  22 

Longitudinal validation  23 

We investigated the longitudinal consistency of the staging produced by the EBM, based on the 24 

predictions that, firstly, given PSP is a progressive disease, the EBM stage should increase over time, and 25 

secondly that increasing EBM stage should be associated with both increasing PSP Rating Scale score 26 

(the main clinical measure of disease severity) and also disease duration, especially during later model 27 

stages where there is more widespread atrophy. We staged patients using the baseline EBM based on 28 

their 12-month follow-up scan (255 cases) and compared this with predicted stage based on their 29 

baseline scan. The follow-up data was processed using the same pipeline as the baseline scans to 30 
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10 

produce the same ROI biomarkers at 12-months. To test for the relationship of PSP Rating Scale score 1 

with baseline EBM stage, a linear mixed effects model was fit to the data using the lme4 package41 in R 2 

Studio (version 1.4.1106), with EBM defined stage as the independent variable and PSP rating scale 3 

score as the dependent variable. 241 baseline and 232 12-month follow-up scans (473 total) had a 4 

corresponding PSP rating scale score. Subject Id was modelled as a random effect (random intercept) 5 

due to some subjects having two MRI scans at different time points. Significance was calculated using 6 

the lmerTest package42 which applies Satterthwaite’s method to estimate degrees of freedom and 7 

generate p-values for mixed models. In addition, we analysed disease duration (time from first symptom 8 

to MRI scan) as a function of predicted EBM stage (87 baseline and 43 12-month follow-up scans had 9 

disease duration recorded) using the same method. To confirm that baseline EBM stage was also 10 

correlated with both PSPRS score and disease duration we fitted a linear model for each as a function of 11 

EBM stage.  12 

Data availability  13 

Source data are not publicly available but non-commercial academic researcher requests may be made 14 

to the Chief Investigators of the six source studies, subject to data access agreements and conditions 15 

that preserve participant anonymity. The underlying event-based model code is publicly available at 16 

https://github.com/noxtoby/kde_ebm. 17 

Results  18 

Subject characteristics 19 

Table 1 summarises the key demographic data for the cohort included in the study. 929 MRI images 20 

were processed from a total of 654 subjects: 365 with a clinical diagnosis of PSP-RS (of which 275 had 21 

12-month follow-up scans) and 289 controls. Of the PSP-RS cases 26 (8%) had a pathological diagnosis 22 

after coming to post-mortem: 24 (92%) showed tau pathology consistent with PSP, while 2 cases had 23 

non-PSP tau pathology (one CBD and one GGT) and were therefore excluded from the analysis.  After 24 

stringent quality control with visual inspection of all images for the remaining 363 cases (pre- and post- 25 

processing), 341 PSP-RS cases (of which 255 had 12-month follow-up scans) and 260 control scans were 26 

included for the analysis. Reasons for scans failing quality control included poor quality of the raw T1 27 

image (usually due to movement artefacts) or inaccurate segmentations with the GIF or / and SPM 28 

algorithms. 70% (241/341) of the cases included had a PSP rating scale score at baseline and follow-up, 29 

as well as recorded age, gender, scanner type and TIV. At baseline the PSP-RS cohort had an older 30 

average age (67.9 years, standard deviation [SD] ± 6.8) compared to healthy controls (62.8 years, 31 

       ,              ). Disease duration data (time from diagnosis to baseline visit [average 32 

years, ± SD]) was available for 87/341 cases and showed an average length of 4.1 years (SD ± 3.1). There 33 

was a higher proportion of females in the control group compared to the PSP-RS group (male / female, 34 

112/148 vs 176/165 respectively,              ).  35 
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11 

Sequence of atrophy progression 1 

Supp. Fig. 1 shows histograms of the healthy control (HC) and covariate adjusted PSP-RS ROI biomarker 2 

distributions, with KDE mixture model fits and line showing probability of an event. These fits provide 3 

the parameters for the normal and abnormal likelihoods,  (      ) and  (       ), respectively, that 4 

are then used to calculate the maximum likelihood sequence of the full dataset. At baseline all nineteen 5 

ROI selected for inclusion in the model showed a significantly smaller covariate adjusted volume in PSP-6 

RS compared to controls.  7 

The positional variance diagram in Fig. 1A shows the most likely sequence in which these 8 

regions become atrophic, as estimated by the EBM, as well as the uncertainty in this sequence 9 

(based on MCMC sampling of the posterior distributions). The maximum likelihood sequence 10 

was estimated using PSP-RS cases only, based on the rationale that PSP is a rare disease, and it 11 

is very unlikely for our cohort of controls to have asymptomatic PSP. Indeed, it is more likely 12 

the controls would have a common disorder such as AD rather than PSP, and we did not want 13 

this to confound the sequence estimation hence the exclusion. The EBM estimated that the 14 

earliest atrophy occurs in the brainstem and subcortical regions followed by progression caudally 15 

into the superior cerebellar peduncle and deep cerebellar nuclei, and rostrally to the cortex. The 16 

sequence of cortical atrophy progresses in an anterior to posterior direction, beginning in the 17 

insula and then frontal lobe before spreading to the temporal, parietal and finally the occipital 18 

lobe (Fig. 1C) The high colour intensity of each square and their presence predominantly on the 19 

diagonal of the positional variance diagram indicates that the model has a high degree of 20 

certainty regarding their positions in the overall sequence.  21 

Cross validation of event sequence 22 

Fig. 1B shows positional variance of the maximum likelihood sequence re-estimated by bootstrapping of 23 

the data (random resampling with replacement 100 times) and refitting the model. The positional 24 

variance diagram for the bootstrapped results represents the proportion of bootstrap samples in which 25 

the event   (y axis) appears at position   (x axis) of the maximum likelihood sequence. The sequence 26 

ordering is generally preserved, though as one would expect with this more conservative estimate of 27 

uncertainty, there is increased uncertainty in the relative positions early in the sequence from stage two 28 

(midbrain) to stage 4 (ventral diencephalon), and in the middle from stage nine (striatum) to stage 29 

thirteen (pons). Using repeated stratified 5-fold cross-validation (Supp. Fig. 2) as an alternative method 30 

to assess model robustness (both in terms of the sequence and uncertainty in the sequence), the 31 

maximum likelihood sequence is preserved with similar uncertainty in relative positions when visually 32 

compared to the bootstrapping method (Fig. 1B) 33 
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12 

Patient staging 1 

Fig. 2 shows the proportion of subjects at each EBM defined stage (PSP-RS and HC). Patient staging 2 

results were evaluated using the maximum likelihood sequence (Fig. 1A) of regional atrophy for PSP-RS 3 

subjects as described in the Methods section. As one would expect the HC cohort is clustered at the 4 

early stages with greater than 80% at Stage 0 (i.e., no event occurred), while the PSP-RS cases are 5 

distributed more evenly across stages with the highest proportion in the middle to late stages. This 6 

suggests that the cohort of PSP cases gathered from multiple different studies were temporally 7 

heterogenous which supports the importance of accurately staging patients using objective biomarkers.  8 

Using a threshold of stage 2 (medulla and midbrain atrophic) the model was able to correctly 9 

classify subjects as PSP-RS versus healthy control with an overall accuracy of 90% (with a 10 

sensitivity and specificity of 91% and 90% respectively). Although not the focus of this model 11 

the high classification accuracy provided by the EBM further demonstrates its clinical validity.  12 

Outliers were present in both the HC and PSP-RS groups: specifically, 10 (4%) of PSP-RS cases 13 

were at Stage 0, while 14 controls were at Stage 10 or greater (5%). Visual inspection of these 14 

HCs suggested that the segmentations were accurate, but that there were non-specific covariate 15 

adjusted decreased volumes in regions including the hippocampus with relative sparing of the 16 

brainstem and subcortical structures, suggesting that these could potentially represent people 17 

with preclinical Alzheimer’s disease. 18 

Longitudinal consistency 19 

To test the validity of the EBM we first tested the hypothesis that a valid model will produce non-20 

decreasing disease stages for individuals from baseline to follow-up, within the bounds of model 21 

uncertainty. Fig. 3 compares each PSP-RS subject’s EBM stage at baseline with their stage at 12-month 22 

follow-up (255 cases had both a baseline and 12-month follow-up scan). Overall, on this metric the EBM 23 

shows good longitudinal consistency with each subjects EBM stage generally increasing or remaining 24 

stable at 12-months follow-up: 245/255 cases (ninety-six percent) either stayed at the same stage or 25 

progressed. For these cases the average stage progression over 12 months was 1 stage. Of the ten PSP 26 

cases that reverted in stage, nine only dropped one stage while one dropped two stages.  27 

To further validate the EBM, we first modelled PSP rating scale as a function of predicted EBM 28 

stage using a linear mixed model (Fig. 4A). EBM stage was modelled as a fixed effect while 29 

Subject Id was modelled as random effect due to some subjects having two MRI scans at 30 

different time points. We found a significant fixed effect of EBM stage on predicted PSP rating 31 

scale (β=1.46, 95% CI 1.2-1.8, p<0.001) and a conditional R
2 
of 0.56. We then modelled disease 32 
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13 

duration (years) as a function of predicted EBM stage, which showed a significant fixed effect 1 

(β=0.29, 95% CI 0.24-0.34, p<0.001) and a conditional R
2 
of 0.68 (Fig. 4B). When fitting linear 2 

models for PSPRS score and disease duration versus predicted EBM stage on baseline scans only 3 

(Supp. Fig 3A / B respectively), there was also a significant association albeit with a lower 4 

adjusted R
2 

(PSPRS vs EBM stage at baseline: β=1.14, 95% CI 0.84-1.44, p<0.001), adjusted R
2 

5 

0.18, disease duration vs EBM stage at baseline: (β=0.25, 95% CI 0.20-0.30, p<0.001, adjusted 6 

R
2 

0.39).To check that we had adequately adjusted for age we also ran linear models of age as a 7 

function of predicted EBM stage for cases (Supp. Fig. 4A) and controls separately (Supp. Fig. 8 

4B). There was no association between EBM stage and age in either the case (β=0.19, 95% 9 

CI=0.13-0.25, p=0.12, adjusted R
2
=0.017) or control group (β=-0.27, 95% CI=-0.66-0.12, 10 

p=0.18, adjusted R
2
=0.003).  11 

Discussion  12 

The principal result of this study is that a probabilistic data-driven method reveals, in vivo, the sequence 13 

in which brain regions become atrophic in PSP-RS. We established this sequence from cross-sectional 14 

data and went on to demonstrate the validity of this model longitudinally. Ninety-six percent remained 15 

in the same stage or progressed to a later stage over 12-months. The model derived staging correlated 16 

with both clinical severity and disease duration. 17 

Ordering of biomarkers 18 

The order of regional atrophy revealed by the EBM (Fig. 1) broadly mirrors the sequential spread of tau 19 

pathology in PSP proposed by Kovacs et al.8. The earliest atrophy in our model occurs in the brainstem 20 

and subcortical regions followed by progression caudally into the superior cerebellar peduncle and deep 21 

cerebellar nuclei, and rostrally to the cortex. The sequence of cortical atrophy progresses in an anterior 22 

to posterior direction, beginning in the frontal lobe before then spreading to the temporal, parietal and 23 

finally the occipital lobe. In the absence of external data to validate the model, we explored the 24 

generalisability and robustness of the model using two different validation methods: bootstrap cross 25 

validation and 5-fold repeated stratified 5-fold cross-validation. These demonstrate that even with a 26 

more conservative estimate of uncertainty, the sequence of atrophy is largely conserved (Fig. 1B and 27 

Supp. Fig. 2). There remains uncertainty early on between the relative positions of the midbrain, 28 

thalamus, ventral DC and SCP, in the middle between the striatum, frontal, parietal, and cingulate lobes, 29 

and the pons, and at the end of the sequence between the temporal lobe, amygdala, and hippocampus. 30 

This heterogeneity is of interest, and a motivation for future work. 31 

It is difficult, however, to make a direct comparison between our in-vivo findings and post-32 

mortem tau histopathology staging for two reasons: firstly, in this study we are measuring 33 
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14 

atrophy rather than tau pathology directly, and although there is evidence that atrophy on 1 

structural imaging is associated with tau pathology
19,20

 it is unlikely to directly correlate with 2 

histopathological scores of tau accumulation across neuronal and glial cell populations. 3 

Secondly, two of the regions identified to have the earliest tau pathology in Kovacs’ study are 4 

the subthalamic nucleus (STN) and the substantia nigra (SN), regions that are not individually 5 

segmented by the GIF algorithm used in this study. These are subsumed within the ventral 6 

diencephalon (ventral DC) segmentation in the Neuromorphometrics atlas, along with the 7 

hypothalamus. Although not specific for the STN and SN, reassuringly this region does occur 8 

early in the sequence (Fig. 1A), and after cross validation one can see (Fig. 1B and Supp. Fig. 2) 9 

that after the medulla there is uncertainty as to the exact ordering of the midbrain, thalamus, and 10 

ventral DC.  11 

The majority of cross-sectional imaging studies in PSP-RS, have focused on the clinical utility of 12 

structural MR imaging as a diagnostic biomarker to differentiate PSP from both PD and other 13 

atypical parkinsonian disorders
13

. These studies usually only give a group level overview of 14 

regional atrophy at baseline, as opposed to the sequence of atrophy changes that we have 15 

demonstrated in this study. Even so midbrain atrophy is commonly seen in PSP-RS at baseline, 16 

with relative sparing of the pons
43–45

, and the pons to midbrain ratio has high specificity and 17 

sensitivity for the diagnosis of pathogically confirmed PSP
46

. SCP atrophy is also evident early 18 

in the disease course 
47

 and has led to the development of the MR Parkinsonism Index (MRPI) 19 

for differentiation PSP-RS from other causes of parkinsonism
48

. Atrophy of subcortical 20 

structures including the striatum, globus pallidus and thalamus has also been observed in group-21 

level studies
49–54

, as well as involvement of frontal lobe
55–57

. Together these findings are 22 

consistent with the sequence of atrophy that the EBM produces, but our study is the first in PSP-23 

RS, to the best of our knowledge, that orders these regions relative to each other.  24 

The placement of the medulla first in the sequence is interesting as the medulla is not widely 25 

mentioned in the PSP imaging literature. It is however clear that tau pathology is consistently 26 

seen in the medulla at post-mortem
58,59

, with Kovacs
8
 placing it at Step 2 in their pathological 27 

staging system. More recently, perhaps due to the advent of automated segmentation techniques 28 

for the brainstem, its involvement has been shown in PSP-RS using MRI
44,45,60,61

. The early 29 

involvement of the thalamus in our EBM sequence is also supported both by pathological 30 

studies
8
 where tau pathology been shown to occur in all cases, and structural MRI studies that 31 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/advance-article/doi/10.1093/braincom

m
s/fcac098/6568415 by Institute of C

hild H
ealth/U

niversity C
ollege London user on 26 April 2022



15 

demonstrate atrophy: in particular the pulvinar, dorsomedial, and anterior nuclei
62,63

. In future 1 

work it will be interesting to investigate differential involvement of the thalamic nuclei in the 2 

different PSP subtypes, and their position in the event ordering relative to downstream atrophy 3 

events. 4 

Patient staging 5 

This EBM demonstrates that there is significant variability in terms of the stage of PSP-RS patients at 6 

baseline (Fig. 2) and provides an intrinsic staging mechanism by which to stratify patients more 7 

accurately in terms of their temporal position in the disease course. This is supported by the association 8 

between EBM stage and disease duration (both at all timepoints and only at baseline) in those subjects 9 

for which disease duration was recorded (Fig. 4B) 10 

Uncertainty in the model assigned stage is dependent on the degree of overlap between the HC and 11 

PSP-RS biomarker distributions, as well as the accuracy of a given person’s biomarker measurement23. 12 

Imaging biomarkers are known to be associated with a high degree of variance, some of which can be 13 

explained by different scanners used, the age and gender, and variation in individual TIV. We tried to 14 

control for this by regressing these out as covariates. Linear modelling of age against predicted EBM 15 

stage for cases and controls (Supp. Fig. 4 A/B) showed no association supporting the validity of this 16 

approach. 17 

Although the purpose of this study was to identify the sequence of regional atrophy in PSP-RS 18 

from cross-sectional data, rather than classify subjects as cases versus controls, using a threshold 19 

of stage 2 (medulla and midbrain atrophic) the model was able to correctly classify subjects as 20 

PSP-RS versus healthy control with an overall categorisation accuracy of 90%. This accuracy is 21 

similar to that seen in other MRI studies using simple group wise comparisons of midbrain 22 

volume between cases and controls
60

 and gives confidence that the EBM sequence is a valid 23 

representation of disease progression. This is further supported by the fact that ninety-six percent 24 

of cases either stayed at the same stage or progressed to a higher stage over a 12-month period. 25 

In addition, predicted subject EBM stage is significantly correlated (p<0.01) with a validated 26 

measure of clinical disease severity (PSP Rating Scale), as well as disease duration (p<0.01), 27 

demonstrating the clinical relevance of our MRI-based fine-grained staging system. However, 28 

unlike a clinical rating score, the EBM also provides insights into the underlying progression of 29 

brain volume changes, and given it is probabilistic, a natural way to incorporate uncertainty into 30 

the staging.  31 

  32 
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Limitations 1 

There are several assumptions made when building an EBM, which must be considered when 2 

interpreting our results. The EBM assumes that all patients have a broadly similar disease progression 3 

pattern with a unimodal distribution of orderings  We restricted analysis to those patients with a 4 

diagnosis of PSP-RS, to try and exclude some of the heterogeneity in clinical phenotype associated with 5 

PSP pathology4. Those cases included from the 4RTNI1, Davunetide and SAL / YP cohorts were diagnosed 6 

with probable PSP-RS according to the NINDS criteria, though it is possible that at least some of these 7 

cases may meet the 2017 diagnostic criteria for non-RS clinical phenotypes. In the Prospect study 10% of 8 

PSP cases diagnosed under the NINDS criteria were relabelled as a non-RS phenotype when the 2017 9 

MDS criteria were applied61. Given the sensitivity of the EBM to sample heterogeneity, and the variation 10 

in pathology staging by phenotype8,9,  investigation of PSP phenotype heterogeneity using subtype and 11 

stage inference64 (SuStain) may provide finer grained patient stratification and is worth pursuing. 12 

The EBM staging has no explicit timescale
23

, although it can predict what stage the patient is 13 

within the sequence of biomarker abnormalities, it is unable in itself to extract information on the 14 

time taken to transition between states. When given longitudinal data the model currently treats 15 

repeated measures as if they are independent i.e. from separate individuals, thus losing 16 

information on temporal covariance that could further inform on the ordering of events. 17 

Recently, a new generative model called the Temporal Event-Based Model (TEBM) has been 18 

developed
65

 to accommodate longitudinal data, which is able to learn both individual-level 19 

trajectories within the sequence of biomarker abnormalities as well as the time to transition 20 

between each event. Applied to our dataset the TEBM may provide insights into the transition 21 

times between each stage defined by this study. 22 

Although PSP-RS has been shown to be highly correlated with underlying PSP pathology
66

, in 23 

rare cases other pathologies such as CBD can present with PSP-RS and imaging is unable to 24 

differentiate the underlying pathology
67

. Of the 365 PSP-RS cases selected for image processing, 25 

24/26 (ninety-two percent) of cases that came to post-mortem had PSP pathology, while one had 26 

GGT and the other CBD pathology (these were excluded from the analysis). Although a small 27 

sample size this correlation between PSP-RS and underlying PSP pathology is in keeping with 28 

previous studies
66

. In the absence of a sensitive and specific tau-PET ligand, or indeed any other 29 

biomarker, for PSP pathology, there is not an easy way around this clinic-pathological 30 

disconnect, and until such time the inclusion of patients in clinical trials based on a clinical 31 

diagnosis of PSP-RS is likely to continue.  32 
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Another limitation, though not unique to this study, is that the MRIs of different patients were 1 

acquired across a range of centres and on different scanners. It is well known that scanners can 2 

differ from each other in relation to imaging quality, signal homogeneity and image contrast 3 

which can lead to bias
15

. Stringent visual quality controls were applied to both the raw images 4 

and post segmentation scans, the GIF algorithm bias corrects for field inhomogeneity, and we 5 

also controlled for scanner type by introducing it as a covariate in the linear regression. In 6 

addition, previous analyses on the davunetide dataset (which had the highest number of different 7 

scanners) scanner type showed no significant effect on atrophy rates
68

. Furthermore, the use of 8 

different scanners at multiple sites is a realistic scenario for clinical trials in rare diseases such as 9 

PSP, and so scanner heterogeneity combined with the large sample size in this study supports 10 

stronger generalisability of the findings. 11 

Conclusion 12 

In this study we have uncovered the in-vivo sequence of brain atrophy in a large series of individuals 13 

with PSP-RS using a probabilistic data-driven model of brain volume changes, that mirrors the recent 14 

post-mortem brain histopathology staging proposed by Kovacs et al.1 It provides an objective, in-vivo 15 

staging system that is longitudinally consistent and correlates with clinical measures of disease severity 16 

and disease duration. This approach has potential utility to stratify PSP patients on entry into clinical 17 

trials based on disease stage, and complement existing clinical outcome measures to track disease 18 

progression        19 
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Figure legends 1 

Figure 1: Sequence of atrophy progression in PSP Richardson Syndrome. (A) Regional volume 2 

biomarker positional variance diagram showing the sequence of atrophy progression in PSP-RS. (B) Re-3 

estimation of positional variance after cross-validation of the maximum likelihood event sequence by 4 

bootstrap resampling (100 bootstraps). For figures (A) and (B) the vertical ordering on the y-axis (from 5 

top to bottom) shows the maximum likelihood sequence estimated by the EBM (earliest to latest event). 6 

The bottom x-axis shows EBM stage while the top x-axis represents the percentage of regions atrophic 7 

(abnormal) at each stage. Colour intensity of the squares represents the posterior confidence in each 8 

biomarker’s position in the sequence, from either (A) MCMC samples of the posterior or (B) 9 

bootstrapping. SCP = superior cerebellar peduncle, Ventral DC = ventral diencephalon.  Note that 10 

because these volumes are covariate adjusted the control distribution will be centred at zero. (C) 11 

Graphic representation of the event sequence with relevant region transitioning from healthy (grey) to 12 

unhealthy (coloured). Dark red = first regions to atrophy, Light yellow = last regions to atrophy. Created 13 

with BioRender.com. 14 

Figure 2: Histogram of event-based model staging results for PSP-RS. Healthy controls in blue and PSP-15 

RS cases in orange. Each bar represents the proportion of patients in each category at each EBM stage. 16 

Each EBM stage on x-axis represents the occurrence of a new biomarker transition event. Stage 0 17 

corresponds to no events having occurred and Stage 19 corresponds to all events having occurred. 18 

Events are ordered by the maximum likelihood sequence for the whole PSP-RS population as shown in 19 

Fig. 1A. 20 

Figure 3: Longitudinal consistency of baseline EBM. Scatter plot showing predicted stage at baseline (x-21 

axis) versus predicted stage at 12 months (y-axis) for those PSP-RS subjects with a follow-up scan (n = 22 

255). The area of a circle is weighted by the number of subjects at each point. 23 

Figure 4: Association between predicted EBM stage, PSP Rating Scale score, and disease duration. (A) 24 

PSP Rating Scale score versus EBM stage* (β=1.46, 95% CI 1.2-1.8, p<0.001, conditional R2 0.56 (marginal 25 

0.22) (B) Disease duration (years) versus EBM stage** (β=0.29, 95% CI 0.24-0.34, p<0.001 and a 26 

conditional R2 of 0.68 (marginal 0.41). For both (A) and (B) the line represents the linear fixed effect 27 

model fit to all subjects, and 95% confidence intervals. Subject Id was modelled as a random effect 28 

(random intercept) due to some subjects having two MRI scans at different time points. Significance was 29 

calculated using Satterthwaite’s method to estimate degrees of freedom and generate p-values.  30 

* 473 scans (241 baseline and 232 12-month follow-up) with PSPRS score ** 130 scans (87 baseline and 31 

43 12-month follow-up) with disease duration 32 
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Table 1: PSP-RS EBM baseline demographics. 1 

Baseline Demographics PSP-RS Controls P value 

N (12 mths) 365 (275) 289 - 

Post QC - N (12 mths) 341 (255) 260 - 

Gender (M/F) 176/165 112/148 0.03a 

Age at first MRI (years [SD]) 67.9 [6.8] 62.8 [9.4] <0.001b 

Time symptom onset to first MRI (years 
[SD]) 

4.1 [3.1] - - 

Pathology [% PSP] 24 [92%]* - - 

PSP Rating Scale [SD] 38.9 [12.9]** - - 

UPDRS [SD] 30.6 [15.1] - - 

MOCA [SD] 20.7 [5.1] - - 

 2 
a Chi Square 3 
b Unpaired two-tailed t-test 4 
* % of all cases pre-QC 5 
** 70% (241/341) of baseline cases included had a PSP rating scale score 6 
PSP-RS = Progressive Supranuclear Palsy Richardson Syndrome 7 
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