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Accurate modelling of the optics of high resolution liquid crystal devices: 
a reconfigurable liquid crystal grating
Dezhi Shena, Mengyang Yangb and F. Anibal Fernández a

aDepartment of Electronic and Electrical Engineering, University College London, London, UK; bMicrosoft Research Cambridge, Cambridge, UK

ABSTRACT
An accurate method to model the optical behaviour of liquid crystal (LC) devices, particularly suited 
to devices where diffractive effects are present is described here. An accurate electromagnetic 
modelling programme that takes into account the full non-uniformity and anisotropy of the LC has 
been developed. This is combined with an existing in-house LC finite element modelling pro
gramme based on the Landau – De Gennes theory, that uses the order tensor representation of the 
LC orientation and allows an accurate descriptions of structures containing LC defects and small 
features. The electromagnetic model is based on the total field/scattered field (TF-SF) approach to 
electromagnetic scattering problems and is implemented using finite differences in the frequency 
domain (FDFD) in a form that can accommodate perfectly matched layers (PMLs) and periodic 
boundary conditions. The resultant matrix problem is solved efficiently using an especially adapted 
form of a sweeping preconditioner and the generalised minimum residual method (GMRes). This 
method has been implemented in 2D and is demonstrated here with the design and analysis of 
a reconfigurable blazed phase grating that utilises an LC defect to produce an abrupt fly-back, with 
the capability of short periods and high diffraction efficiency.
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1. Introduction

In comparison with other commonly used optical 
materials, liquid crystals (LC) have a large birefrin
gence that can be controlled with relatively low 
electric fields, making them very attractive for 
many photonic, microwave and terahertz applica
tions. In photonics, apart from traditional displays, 
they are ubiquitous in diffractive devices, program
mable holograms and spatial light modulators, with 
applications in communications and many other 
fields [1–7] and more recently, LC geometric 
phase lenses for beam steering, microscopy, laser 
tweezing and LiDAR [8–11]. Diffractive LC devices 

are also the basis for new display systems such as 
head-up, holographic, diffractive and 3D displays 
[12], and in general, applications where phase mod
ulation is necessary, something that is not possible 
with emissive systems. Another range of applica
tions is in shaping and controlling electromagnetic 
wave propagation in photonics, microwave and ter
ahertz waveguiding devices [13–17].

In many of these applications, changes in the material 
characteristics (LC orientation, presence of defects) and 
dimensions of the device features and size and spacing 
of electrodes, occur at length scales comparable to the 
wavelength used and accurate modelling becomes 
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essential to design and optimise these devices. This 
includes not only the balance between biasing electric 
fields and elastic interactions which will determine the 
LC orientation and then, the permittivity distribution, 
but also the accurate modelling of electromagnetic wave 
propagation through this fully anisotropic and non- 
uniform material.

We describe here a finite difference in the frequency 
domain (FDFD) method to model electromagnetic wave 
propagation, combined with a finite element LC model 
that yields the permittivity distribution for any state of 
switching of the LC material. A finite element programme 
based on the Landau-De Gennes theory [18–20] is used to 
find the distribution of the LC orientation over the LC 
cell, from which the high frequency or optical tensor 
permittivity distribution is calculated. This is then 
imported into the FDFD electromagnetic solver.

The numerical solution of electromagnetic problems 
of this kind is normally not simple. Fine discretisation of 
the problem domain is needed and the problem often 
presents ill-conditioning, which is usually exacerbated by 
the use of absorbing conditions that are necessary in 
many problems of interest. All these circumstances com
bined will cause low convergence rates, long computation 
times and large memory requirements. To try to over
come these problems, we use here a procedure that com
bines an adapted form of a sweeping preconditioner [21], 
within the total field – scattered field (TF-SF) approach to 
electromagnetic scattering problems [22–26].

The method has been implemented in two dimen
sions and is demonstrated here with the design and 
analysis of a reconfigurable blazed phase grating that 
uses LC defects to introduce an abrupt fly-back and 
reduced grating period.

Liquid crystal diffraction gratings and spatial light 
modulators (SLMs) in general, are common component 
in numerous optical systems. See for example [27,28]. 
LC-blazed gratings and SLMs are for many applications 
realised using arrays of LC cells in transmission or 
commercial liquid crystal on silicon (LCOS) panels for 
reflective devices, that consist of square pixels with 
a small inter-pixel gap. The characteristics of the device 
are determined by the voltages applied to the electrodes 
in each pixel. In this way, a blazed grating can be 
realised arranging the voltages in a stepped manner to 
achieve the desired-phase response [3,29–32], aiming at 
a piecewise constant phase distribution on the output 
plane. However, a number of pixels are required for 
each period of the grating, leading to small deflection 
angles. In these conditions, defects are unwanted and 
the inter-pixel crosstalk, although helping to smooth out 
the phase in the ramped part of the blazed grating, 
prevents a sharp fly-back. These effects are increased 

when the pixel size is reduced, which is necessary to 
achieve larger deflection angles. Here we study how a LC 
defect can be utilised to introduce a sharp change in LC 
orientation with the accompanying change in the phase 
response in the output plane. A preliminary generic 
design is presented and routes to optimisation are 
indicated.

2. Theory

2.1. Liquid crystal modelling

The LC modelling used here is based on the Landau – de 
Gennes theory and describes the local LC orientation 
and order by the order tensor Q, from where the direc
tor and the scalar order parameters can be extracted 
[18,19,33,34]. The order tensor, or Q-tensor, is sym
metric and traceless and can be specified by five scalar 
values. This formulation, allowing the LC order to vary, 
is particularly adequate to study LC defects and other 
situations where the order varies substantially.

A variational approach, implemented with the finite 
element method in 3D, is used to find the dynamic 
evolution of the Q tensor distribution that yields sta
tionary values to the Gibbs free energy functional: 

FðQ;φÞ ¼ ò
Ω

fDðQÞ þ fBðQÞ � fEðQ;φÞf g dΩ

þ ò
Γ

fSðQÞ dΓ (1) 

where fB is the Landau-de-Gennes bulk thermotropic 
energy that can be written as a power expansion in the 
scalar invariants of the Q-tensor about the nematic- 
isotropic transition and truncated to terms of order 
four: 

fBðQÞ ¼
1
2

A trðQ2Þ þ
1
3

B trðQ3Þ þ
1
4

C ðtrðQ2ÞÞ
2 (2) 

where A, B and C are material-dependent parameters.
The elastic distortion energy density fD can be written 

as an expansion in the gradients of the Q-tensor as: 

fDðQÞ ¼ 1
2 fL1Qαβ;γQαβ;γ þ L2Qαβ;βQαγ;γ þ L3Qαβ;γQαγ;β
þL4σαβγQαδQβδ;γ þ L6QαβQγλ;αQγλ;βg

(3) 

where Li are elastic coefficients that can be expressed in 
terms of the material’s Frank elastic constants and σαβγ 

is the Levi-Civita tensor.
The electric energy density fE, associated to the 

applied electric fields is given in general by: 

fEðQ;φÞ ¼
1
2

ε0ðÑφ � �ε � ÑφÞ (4) 

where φ is the electric potential
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The surface term in (1) corresponds to the anchoring 
energy that represents the attachment between the LC and 
the bounding surfaces. This can be described by [19,34,35]: 

fS ¼ a TrðQ2Þ þW1ðv̂1 �Q � v̂1Þ þW2ðv̂2 �Q � v̂2Þ (5) 

The principal axes of anchoring ðê; v̂1; v̂2Þ are the 
easy direction and two mutually orthogonal unit vectors 
such that ê ¼ v̂1 � v̂2. The constants W1 and W2 define 
the azimuthal and polar surface anchoring strength and 
a determines the resultant easy surface order.

The modelling of the LC hydrodynamics is done 
following the approach by Sonnet et al. [36,37], which 
is numerically equivalent to the Qian and Sheng formu
lation [38], a generalisation of the Eriksen and Leslie 
theory for the variable order case. With this, and not 
considering translational flow, the Q-tensor evolution is 
characterised by:

μ1
@Qij

@t
¼ �

@f
@Qij
þ @k

@f
@Qij;k

(6) 

where μ1 is proportional to the rotational viscosity and 
f is the total energy density.

Once the Q-tensor distribution is found, the permit
tivity distribution is then calculated as �ε ¼ ε0ðε?�Iþ
Δε n̂� n̂Þ where n̂ is the LC director, ε? is the relative 
permittivity calculated in the direction perpendicular to 
the long axis of the LC molecules and Δε ¼ εk � ε? is 
the dielectric anisotropy.

The solution of the coupled equations that describe 
the LC physics and the electrostatic potential is imple
mented using the finite elements method [18–20], to 
find the dynamic evolution of the LC orientation and 
order distribution. The problem domain is discretized 
with a mesh of first-order elements. Neglecting trans
lational flow in the LC, the variables on the nodes of 
the mesh are the five parameters that describe the 
Q-tensor plus the electric potential. The solution pro
cess consists of a time stepping procedure that calcu
lates iteratively the electric potential and the Q-tensor. 
At each time step, the potential distribution is found 
first from the current value of the Q-tensor, and then 
the Q-tensor is calculated in an iterative nonlinear 
Crank-Nicolson scheme using Newton-Raphson itera
tions to deal with the nonlinearity. These calculations 
are repeated within the same time step until consis
tency between electric potential and Q-tensor distribu
tions is achieved before progressing in the time 
stepping procedure.

To accelerate the solution process, variable time step
ping is implemented using an estimate of the time 
derivative error to calculate an appropriate step size. 

Adaptive mesh refinement has also been implemented 
to even-up the error distribution and increase the effi
ciency of the calculations [34].

2.2. Electromagnetic modelling

The propagation of electromagnetic waves through the 
LC cell is modelled using finite differences in the fre
quency domain (FDFD) [25,26,39,40]. The calculation 
method starts by formulating Maxwell’s curl equations 
in the form [41,42]: 

Ñ�~E ¼ k0μr
~H
!

Ñ� ~H
!
¼ � jη0

~J þ k0�εr �~E (7) 

where ~H
!
¼ � jη0

~H is the scaled magnetic field and we 
assume μr is scalar and uniform. Taking the curl of the 
first equation and substituting the second in the right- 
hand side leads to the Helmholtz equation for the elec
tric field: 

Ñ� Ñ�~E � k2
0μrεr �~E ¼ � jωμ0μrJ (8) 

Writing this equation in matrix form and assuming 
uniformity along y for the 2D case gives: 

� @2

@z2 0 @2

@x@z
0 � Ñ2

xz 0
@2

@x@z 0 � @2

@x2

2

6
4

3

7
5

Ex

Ey

Ez

2

6
6
6
6
4

3

7
7
7
7
5
� k2

0�ε �

Ex

Ey

Ez

2

6
6
6
6
4

3

7
7
7
7
5

¼ � jωμ0

Jx

Jy

Jz

2

6
6
6
6
4

3

7
7
7
7
5

(9) 

where Ñ2
xz ¼

@2

@x2 þ
@2

@z2 .
The domain is discretised using a regular rectangular 

grid and assuming that the general direction of propaga
tion is z, the nodes are numbered following a frontal 
arrangement based on layers perpendicular to the 
z-axis. This is an arbitrary choice, a simple addressing 
strategy and doesn’t restrict the solutions but is conveni
ent if the propagation is predominantly along the z-direc
tion. The discretised form of the equations for the three 
components of the electric field from (8) are then 
assembled, forming a vector of unknowns of the form: 
f ¼ ðEð1Þx ;Eð1Þy ;Eð1Þz ;Eð2Þx ;Eð2Þy ; . . . ;EðNÞz Þ for each of the 
nodes of the grid (denoted by the number in the super
script). This arrangement is more convenient than 
grouping by field component because it yields a more 
compact sparsity pattern of the resultant matrix. 
Similarly, a unified vector of the source terms is defined 
as: g ¼ ðJð1Þx ; Jð1Þy ; Jð1Þz ; Jð2Þx ; Jð2Þy ; . . . ; JðNÞz Þ.
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Equation (9) becomes now a matrix equation of the 
form: A f = g.

2.2.1. Mesh truncation
The problem domain and the corresponding mesh need to 
be terminated with proper boundary conditions. Electric or 
magnetic walls, where Dirichlet or Neumann boundary 
conditions apply, as well as periodic boundary conditions, 
present no implementation problems and bring no unde
sired consequences to the solution of the resultant matrix 
problem. If the domain is naturally unbounded, the mesh is 
usually terminated using an absorbing boundary condition 
that prevents outgoing waves to be artificially reflected back 
into the truncated domain. For this purpose, we use the 
stretched-coordinate formulation of perfectly matched 
layers (SC-PML) [43–45]. Although the Uniaxial PML 
formulation [46] is easier to implement, it has been 
shown [47] that the stretched-coordinate formulation 
leads to a global matrix with a lower condition number, 
which in turn leads to a more efficient matrix solution. To 
apply the SC-PML, the analytic extension ~x ¼ x � jf xð Þ is 
assumed, where it is customary to choose the frequency- 
dependent form: f ðxÞ ¼ σx=ω. Setting the coefficient σ to 
zero in the region of interest and with a positive non-zero 
value in the PML region, the solution of the equations will 
be an unaltered wave in the region of interest and a wave 
with exponentially decaying amplitude in the PML. To find 
the solution, a transformation of coordinates is needed to 
bring the problem back to the real coordinates: defining 
sx ¼ 1 � jσx=ω, and similarly sz, this is equivalent to trans

forming the differential operators by:e@
@x ¼

1
sx
@
@x ; e@

@z ¼
1
sz
@
@z .

Applying this transformation to Equation (8) 
leads to a discretised set of equations for the values 
of the field components at the nodes of the grid 
given by the matrix problem: A f = g.

The matrix A has a symmetric sparsity pattern and is 
symmetric Hermitian if the material is isotropic (not the 
case of LCs) or if it is anisotropic but lossless. The 
Hermitian property is also lost if PMLs are used.

The TF-SF approach is a convenient method that was 
initially developed for the FDTD solution of scattering 
problems [22–26] and consists of defining equivalent 
sources on an artificial surface surrounding the scatterer 
in order to replace the external excitation fields.

Explicit use of the vector g in the right-hand side of 
the matrix equation is avoided using the procedure 
presented by Rumpf [25,26], especially adapted to 
FDFD calculations.

This approach is carried out working with the fully 
assembled matrix and defining a masking matrix R—a 
diagonal matrix with 1 and 0 elements in the diagonal – 
to identify the vector components in the scattered field 

(SF) and the total field (TF) regions. In this form, the 
source field values that correspond to the scattered field 
or to the total field regions can be identified easily as: 
Rf source and ðI � RÞf source respectively, where f source is the 
excitation field. These expressions can then be used to 
add or subtract the source terms in the equations corre
sponding to TF and SF regions, resulting in the right- 
hand side vector: g [26]: g ¼ ðRA � ARÞf source avoiding 
the explicit calculation of equivalent sources. The use of 
the TF-SF approach is particularly useful to make the 
PML more effective by removing the applied source field 
incident on PML boundaries and also for the subse
quent post-processing of the results.

2.2.2. Solution of the matrix problem
The most time-consuming part of the solution process is 
the solution of the resultant matrix problem and in 
consequence the efficiency of the method chosen for 
this task is important.

For a problem limited entirely by electric or magnetic 
walls, or by a periodic boundary condition and in the 
absence of losses, the resultant matrix is Hermitian and 
there are several adequate methods to solve the matrix 
problem. However, the presence of losses or the intro
duction of PMLs will destroy the symmetry and increase 
the condition number of the matrix. In those cases, 
a method like GMRes is convenient but the matrix 
needs to be preconditioned in order to be solved effi
ciently. In this work, we choose the sweeping precondi
tioner proposed by Engquist and Ying [21] specially 
developed to solve matrix problems originated by the 
numerical solution of the Helmholtz equation. The pro
cedure consists on finding an approximate block LDLT 

factorisation of the original matrix A and use this as 
a preconditioner. However, this is done in a block Gauss 
elimination process that requires the inverse of the 
diagonal blocks. The basic idea of the method consists 
of using a frontal ordering approach to the generation of 
the matrix A, where each of the blocks correspond to 
layers in the problem domain. With this, the solution for 
the Schur’s complement in the block Gauss elimination 
can be seen as the approximate solution of the problem 
corresponding to just a number of layers which are 
bounded by absorbing boundary conditions. Sweeping 
through the domain a number of layers at the time in 
this manner, will give an approximation of the desired 
blocks and allow to construct the preconditioning 
matrix. Although valid for full 3D problems, this pre
conditioning procedure has been implemented here for 
2D problems in conjunction with the TF-SF approach to 
scattering problems and is demonstrated next with the 
analysis of a LC diffraction grating.
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3. Example of application: a liquid crystal 
reconfigurable blazed phase grating

The methods described above are used here to demon
strate a reconfigurable LC blazed phase grating that uses 
the generation of defects to obtain a sharp fly-back.

Traditionally, LC defects were seen as unwanted fea
tures that deteriorate the device performance. However, 
in many devices their presence and evolution are essen
tial to their operation, as for example in the case of 
bistable displays [48–53].

We present here a basic design for a reconfigurable 
LC blazed phase grating where a defect is created and 
used to introduce an abrupt fly-back. This can reduce 
considerably the grating period and in consequence, 
increase the possible deflection angles.

3.1. Transmission case

The first case studied here consists of a cell 10 μm wide 
and with a cell gap (height) of 3.3 μm. Two small 
electrodes 0.5 μm wide and separated by 0.5 μm are 
placed in the centre of one surface while the other is 
covered completely by a ground electrode. The LC 
material parameters are chosen for this example as 
those of 5CB, with the values: K11 = 6.4 pN, K22 = 3 pN, 
K33 = 10 pN, εk ¼ 13, ε? ¼ 6:7, no = 1.544 and ne =  
1.736 [33,54]. While in conventional LC gratings, the 
alignment is perpendicular to the grating in order to 
avoid the disclination lines, in this case it is chosen along 
the same direction of the grating. Periodic boundary 
conditions are used at the sides of the cell and a pretilt 
angle of 5° is applied to the top and bottom surfaces.

When the voltage is applied, pincement occurs in the 
vicinity of the inter-electrode gap and two disclination 
lines are created [55]. The −1/2 defect line then moves 

towards the centre of the cell reaching a stationary posi
tion in approximately 20 ms while the +1/2 defect 
remains close to the corner of the driving electrode.

Depending on the applied voltage, the position of the 
−1/2 defect and the corresponding field distribution over 
the output plane vary. The results shown in Figure 1(a) 
correspond to 5 V applied to one of the bottom electrodes 
while the other is connected to ground. The top electrode 
is also fixed to ground. For clarity of illustration, the 
calculated directors have been here interpolated on 
a coarse regular grid. Different voltages were tried and it 
was found that 5 V produced the results that best approx
imate an ideal blazed grating shape for the phase distri
bution over the top surface. This also corresponds to the 
case were the −1/2 defect migrates to the position closer 
to the middle of the cell gap.

From the director distribution results, the permittivity 
tensor can be calculated and interpolated onto a regular 
grid suitable for the FDFD calculation of the electromag
netic response. For this purpose too, the structure is 
extended at the top and bottom adding a narrow air gap 
and a perfectly matched layer, with periodic boundary 
conditions imposed on the sides. A plane wave excitation 
of wavelength 550 nm and polarised along the x-direction 
is applied at the bottom of the LC layer (z = 0 in 
Figure 1(b)). The combination of wavelength and cell 
gap was chosen to obtain approximately a 2π phase 
range in the grating. Figure 1(b) shows the magnitude 
of the x-component of the electric field over the whole 
cross-section. There is a slight polarisation conversion, 
predominantly in the defect region but the y-component 
of the electric field remains low over the top surface.

Figure 2(a) shows the resultant-phase distribution in 
the output plane, extracted just above the top surface of 
the LC layer. The far-field diffraction pattern of a single 
cell is shown in (b) and the diffraction pattern of an 

Figure 1. (Colour online) (a) Director distribution and electric potential contour lines when 5 V are applied to one of the bottom 
electrodes. the circle shows the stationary position of the −1/2 defect, the +1/2 defect remains stationary just above the bottom 
surface. (b) Field distribution: magnitude of Ex component when a plane wave is normally incident on the bottom surface of the LC 
layer. Dimensions are in microns; x-z cross-section is shown.
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array of 100 cells in (c). These results indicate that just 
with two electrodes the basic blazed grating shape can 
be approximated, and suggest that a more versatile 
structure consisting of a continuous array of small, 
regularly spaced electrodes on the bottom surface, 
which could then be connected to appropriate voltages, 
can be used to improve the approximation or to change 
the period of the grating, or in general, to approximate 
other desired phase distributions on the top surface or 
output plane.

3.1.1. Regularly spaced electrodes – ten electrode 
case
We consider now a section of 10 µm with 10 regularly 
spaced electrodes on the bottom surface of the same 
dimensions and spacing as those in Figure 1. The vol
tages applied to the central electrodes are 0 and 5 V as 
those in Figure 1 and the remaining electrodes were 
initially set to the voltages corresponding to the poten
tial values at the points corresponding to the centre of 
their position in the two-electrode structure, as the start 
of an iterative optimisation procedure.

A full automatic optimisation of the voltages, invol
ving repeated use of the LC and electromagnetic model
ling could be prohibitively onerous if too many 
iterations are needed. However, a simplified method as 
that used in [31] can make this viable.

For this example, only a simple manual iterative 
procedure of successive corrections was performed, 
consisting of changing slightly the voltages at the elec
trodes in order to improve the shape of the phase dis
tribution. Satisfactory results are achieved after only 
four or five iterations.

The director distribution and the magnitude of the Ex 
component are shown in Figure 3. The two central 
electrodes are set at zero and 5 V as in the previous 
case, while the others are set as indicated in 

Figure 4(a) after a simple optimisation. Figure 4(b) 
shows the phase distribution in the output plane (top 
surface of the LC layer). The corresponding far-field 
diffraction pattern for an array of 100 cells appears in 
Figure 4(c).

For the array of 100 cells, the diffraction efficiency 
for the −1 order mode is 67.8% and the ratio 
between the 0-order and the −1 orders of diffraction 
is 31.8%.

The presence of the defect causes a certain amount of 
twist to occur in the central region of the cell and this 
causes a degree of polarisation conversion, which is 
illustrated in Figure 5(a). The solid line corresponds to 
the magnitude of the Ex component of the field when an 
x-polarised plane wave is used as input and the red 
dashed line shows the magnitude of Ey, the leaked 
field. This effect can be reduced substantially when 
a LC material with a higher value of the twist elastic 
constant, K22, is used. Figure 5(b,c) show the field com
ponent values at the output plane when the twist elastic 
constant is increased by a factor of 1.2 and 1.5, 
respectively.

Changing the twist elastic constant in this form, 
the polarisation leakage is drastically reduced but 
there is almost no appreciable effect on the ampli
tude or phase distribution of the Ex component of 
the field or the resultant diffraction pattern.

As seen in Figure 5, the amplitude of the Ex compo
nent of the field varies significantly through the cell. 
However, there is little effect of this variation on the far 
field diffraction pattern. Only a small improvement is 
observed if the diffraction pattern is calculated assum
ing a uniform amplitude distribution and this differ
ence is because, for simplicity, the basic optimisation 
procedure used was looking for the best approximation 
to the phase response rather than the resultant diffrac
tion pattern.

Figure 2. (Colour online) (a) Phase distribution on the top surface when a plane wave is incident normally on the bottom surface, (b) 
Far-field diffraction pattern of a single cell (solid blue), (c) Far-field diffraction pattern of an array of 100 cells. the dotted red lines 
indicate the shapes corresponding to an ideal blazed grating of the same period and total phase range.
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Apart from seeking a material with higher K22 to 
improve the performance, a higher dielectric anisotropy 
would be beneficial since this would lead to a thinner 
cell and consequently, more tolerance to variations on 
the incidence angle and more uniformity in the output 
electric field amplitude.

3.1.2. Changing the grating period
To illustrate the reconfigurabilty of this grating, the period 
of the structure is now reduced from 10 µm to 8 µm, 
comprising eight electrodes and keeping the dimensions 
and spacing of the electrodes unchanged. The two central 
electrodes are fixed at 0 and 5 V and the rest of the voltages, 

Figure 3. (A) (Colour online) Director distribution for the 10-electrode device. (b) Magnitude of the Ex component of the field when an 
x-polarised plane wave is incident normally from the bottom. the LC region is the central region shown above and is topped by small 
air layers and PMLs at both ends.

Figure 4. (Colour online) (a) Voltage pattern and values on the electrodes, (b) Ex component phase distribution on the output plane. 
the red dashed line indicates the shape corresponding to an ideal blazed grating of the same period and phase range, (c) Far-field 
diffraction pattern of an array of 100 cells.

Figure 5. (Colour online) (a) Amplitude distribution of the electric field components over the output plane for 5CB, Ex solid line, Ey 

dashed line. (b) Amplitudes if K22 is increased by a factor of 1.2. (c) Amplitudes if K22 is increased by a factor of 1.5.
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shown in Figure 6(a), are found by the simple procedure of 
successive corrections described earlier. Again in this case, 
a defect pair nucleates and the −1/2 defect migrates to the 
middle of the cell allowing the overall abrupt change in the 
director orientations at either side.

The results are shown in Figure 6. The deflection angle 
of the −1 diffraction order increases from 3.16° to 3.96°, 
with a diffraction efficiency for the −1 order mode of 63.5% 
and a 0-order to −1 order ratio of 41% for an array of 100 
cells.

The phase distribution over the output plane, 
Figure 6(b), and also the diffraction pattern, Figure 6(c), 
depart from the ideal a bit more than what is observed in 
the ten electrode case, but this is expected since less ele
ments are used to approximate the ideal response.

3.2. Reflection case

A common and convenient form of implementation of 
devices like those described above is using LCOS tech
nology. In this case, the device operates in reflection, the 
excitation is from above and the bottom electrodes are 
directly connected to the CMOS layer. As a difference to 
the standard LCOS devices, where the pixel electrodes 
are themselves the reflector, in this case, a separate 
reflection layer would be required.

Considering this configuration, the structure chosen is 
10 µm wide by 1.7 µm tall and is filled with 5CB, the same LC 
material as in the structure used in transmission. The cell gap 
has been adjusted to have approximately 2π phase range.

The top surface of the LC layer is covered by a continuous 
ground electrode and the bottom surface has an array of 
electrodes of the same dimensions and spacing as before. 
One electrode, marked with the red outline in Figure 7(a), is 
connected to 3 V, other (solid black) is connected to ground 
and the rest, shown in grey, are set to voltages found with the 
iterative procedure described before, starting from the 

potential distribution originated by the two central electro
des. Again in this case, just a few iterations are needed to 
improve considerably the phase distribution and the corre
sponding diffraction pattern.

The resultant stationary director distribution is 
shown in Figure 7(a), where the −1/2 defect has already 
reached the final position near the top of the cell. To 
study the light propagation through the cell, the model 
is extended adding an air region at the top and termi
nating the structure above with a PML. At the bottom of 
the LC layer, a reflective layer is modelled as a dielectric 
with large negative imaginary permittivity (a value of 
10,000 was used here). Figure 7(b) shows the distribu
tion of the Ex component of the field over the cross- 
section when a plane wave propagating downwards is 
incident at z = 1.7 µm. An air layer and a PML were 
added at the bottom but this is not really necessary 
since the reflector at z = 0 practically stops all transmis
sion through. The output-phase distribution, shown in 
Figure 8(a), is extracted at a position in the top-air gap, 
just above the excitation plane at z = 1.7 µm.

The phase distribution over the output plane in the air 
region, slightly above z = 1.7 µm and the corresponding 
diffraction pattern are shown in Figure 8(b,c). The resul
tant diffraction efficiency for the −1 order mode is 76.4% 
and the 0-order to −1 order ratio is 6.6%. The amplitude of 
the output field varies in a similar way as in the transmis
sion case using the parameters for 5CB, but with a slightly 
reduced total variation as shown in Figure 9. However, the 
thinner cell does not permit twist to occur as easily as in the 
transmission case and the leakage to the y-polarisation is 
negligible, even with the low value of K22 of 5CB.

The amplitude variation over the output plane is no 
impediment to achieve a good far field response as 
shown by the diffraction pattern in Figure 8(c). This is 
achieved here with a grating period of 10 µm with 10 
electrodes per period. As with conventional LCOS 

Figure 6. (Colour online) (a) Voltage values on the electrodes. (b) Phase distribution of the Ex component of the field on the top 
surface. (c) Far-field diffraction pattern of an array of 100 cells. Dashed line indicates the shape corresponding to an ideal blazed 
grating of the same period and phase range.
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gratings, less electrodes per period are possible, but with 
a reduction in the fidelity of the phase response, as 
shown earlier.

Conventional LCOS SLM pixels are limited in size due 
to the strong fringing field effects at small pitch. With 
a typical small size pixel of about 4 µm, a grating with 10 
levels would have a period of 40 µm while with the pro
posed structure the period would only be 10 µm long, 
resulting in larger deflection angles. At the same time, 
while in a conventional LCOS device, the fly-back region 
would be of the order of 4 µm to 5 µm for the same phase 
range [32], the fly-back region of the structure described 
above is only of 1.1 µm.

4. Conclusions

A procedure to model accurately the optical behaviour of 
LC cells has been presented. It combines in this implemen
tation, an accurate LC modelling method, which is parti
cularly suitable to study structures containing defects and 
small features, with an efficient electromagnetic solver 

based on a FDFD formulation of the electromagnetic pro
blem. This leads to a matrix problem that is solved using 

Figure 7. (Colour online) (a) Director distribution and equipotential lines over the LC cell when 3 V are applied to one of the bottom 
central electrodes (marked with red outline) and other is grounded (solid black); the rest of the voltages are chosen to approximate 
the ideal phase distribution (grey). (b) Magnitude of Ex component when a downwards propagating plane wave is normally incident 
on the top surface of the LC layer and reflected at z = 0. Dimensions are in microns; xz-plane shown.

Figure 8. (Colour online) (a) Voltages on the electrodes. (b) Phase distribution of the Ex component of the field on the top surface. the 
red line indicates the phase corresponding to an ideal blazed grating of the same period and phase range. (c) Far-field diffraction 
pattern of an array of 100 cells.

Figure 9. (Colour online) Amplitude distribution of the electric 
field components over the output plane for 5CB in reflection cell, 
Ex solid line, Ey dashed line.
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GMRes. Electromagnetic problems of this type are usually 
ill-conditioned and this is here treated for a 2D implemen
tation with a modified form of a sweeping preconditioner.

The electromagnetic solver requires the values of the 
dielectric permittivity in each of the nodes of the FD grid 
and these are supplied by the LC model.

Using the same strategy followed by this procedure, 
a less computer-demanding constant-order LC solver, 
based on the Oseen-Frank formulation, can be substi
tuted here to study problems where order variation can 
be neglected, as, for example, in microwave and tera
hertz LC devices, where diffraction effects are important 
but LC order variation is not.

To illustrate the capability of the method, a 2D case of 
a reconfigurable LC grating is proposed and analysed. It is 
shown that a structure consisting of a number of regularly 
spaced small electrodes can be configured into a periodic 
array where the electrode voltages are selected to shape 
a desired phase distribution on the output plane. In this 
case, this is shown for a blazed grating where a LC defect is 
utilised to produce the abrupt phase profile. Good results 
are shown for 5CB, a common LC material but not parti
cularly suitable for this application. It is also shown that 
a careful choice of material can lead to thinner cells and 
lower polarisation leakage. Optimisation of the structure is 
also possible and even with a simple procedure results can 
be improved substantially in a few iterations.

Built in this form and using LC defects to produce the 
abrupt fly-back, the period of the grating can be drasti
cally reduced compared with the standard implementa
tion of LC gratings with LCOS SLMs, designed to 
approximate uniform levels of amplitude and phase 
over each pixel.
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