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ABSTRACT
Recent works have shown that weak lensing magnification must be included in upcoming large-scale structure analyses, such as
for the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), to avoid biasing the cosmological results. In this
work we investigate whether including magnification has a positive impact on the precision of the cosmological constraints, as
well as being necessary to avoid bias. We forecast this using an LSST mock catalog and a halo model to calculate the galaxy
power spectra. We find that including magnification has little effect on the precision of the cosmological parameter constraints
for an LSST galaxy clustering analysis, where the halo model parameters are additionally constrained by the galaxy luminosity
function. In particular, we find that for the LSST gold sample (8 < 25.3) including weak lensing magnification only improves
the galaxy clustering constraint on Ωm by a factor of 1.03, and when using a very deep LSST mock sample (8 < 26.5) by a factor
of 1.3. Since magnification predominantly contributes to the clustering measurement and provides similar information to that
of cosmic shear, this improvement would be reduced for a combined galaxy clustering and shear analysis. We also confirm that
not modelling weak lensing magnification will catastrophically bias the cosmological results from LSST. Magnification must
therefore be included in LSST large-scale structure analyses even though it does not significantly enhance the precision of the
cosmological constraints.

Key words: gravitational lensing: weak – cosmological parameters – large-scale structure of Universe – methods: analytical –
methods: statistical

1 INTRODUCTION

As light from distant galaxies travels towards telescopes it is deflected
gravitationally by intervening matter. This means that galaxy images
appear distorted. On average, the distortions to individual galaxy
images are very small, but when combined, they can be used to sta-
tistically map the matter distribution in the universe. This technique
is called weak gravitational lensing.
Weak gravitational lensing distorts both the shape and size of

galaxy images. Statistical measurements of the shape distortions are
referred to as cosmic shear, and statistical measurements of the size
distortions are referred to as magnification. Making a magnification
measurement of the matter distribution in the Universe, which di-
rectly uses size information is challenging because there is a large
intrinsic variation in the sizes of galaxies, and it is more prone to
serious systematics (Hoekstra et al. 2017). However, Schmidt et al.
(2011) achieved a simplified magnification measurement using the
joint distribution of galaxy sizes and magnitudes, and there are de-
veloping techniques which anchor the size distribution using the
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fundamental plane of galaxies (Huff & Graves 2013; Freudenburg
et al. 2020). Most magnification analyses therefore focus on making
a magnification measurement using galaxy number density informa-
tion (Scranton et al. 2005;Myers et al. 2005; Hildebrandt et al. 2009).
In a flux limited survey, distortions to the sizes of galaxy images affect
the observed number density of galaxies for two reasons:

(i) Since surface brightness is conserved by lensing if the observed
size of a galaxy is increased, so is its observed flux. This means
that galaxies previously too faint to be observed by a galaxy survey
become observable. The number density of galaxies is increased.

(ii) It is not only the observed size of individual galaxies that is
increased by magnification, but the observed size of the whole patch
of sky behind the lens. This means that the observable separation
between galaxies behind the lens increases and there is a dilution in
the number density of galaxies.

These two effects compete and contribute to an overall fluctuation in
the number density of galaxies, as a result of weak lensing magni-
fication (for the associated equations see section 3.1). Here we are
concerned with how magnification can probe the total matter distri-
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bution, but it can also be used to constrain the mass of galaxy clusters
(e.g. Tudorica et al. 2017).
Weak lensing using cosmic shear has been a highly successful

technique. In recent years there have been increasingly precise re-
sults using cosmic shear from galaxy surveys such as the Kilo Degree
Survey (KiDS) (van Uitert et al. 2018; Joudaki et al. 2018; Hilde-
brandt et al. 2020; Asgari et al. 2021), the Dark Energy Survey (DES)
(Abbott et al. 2018; Troxel et al. 2018; Amon et al. 2021; Secco et al.
2021) and the Hyper Suprime-Cam Survey (HSC) (Hikage et al.
2019). Weak lensing magnification has not been included in stan-
dard weak lensing analyses to date. All that has been included is the
sensitivity of results to including a simplified magnification model
(Abbott et al. 2019). The reasoning is that magnification provides
similar information to that of cosmic shear and has a poorer signal-
to-noise ratio (Bartelmann 2010). However, due to improvements in
statistical precision, recent works have shown that cosmological re-
sults from upcoming surveys such as the Vera C. Rubin Observatory
Legacy Survey of Space and Time (LSST) and Euclid will be biased
if the effects of weak lensing magnification are not included (Dun-
can et al. 2014; Cardona et al. 2016; Lorenz et al. 2018; Thiele et al.
2020).
These works have shown that magnification must be included in

future surveys to avoid bias, but the aim of this work is to determine
whether including magnification as a complementary probe can also
improve the final precision of the LSSTweak lensing results. Duncan
et al. (2014) and Lorenz et al. (2018) found no increase in precision
from including magnification in a weak lensing analysis, however
LSST is a special case, because it is a very deep ground based galaxy
survey. This means that there will be a lot of very faint, small and
distant galaxies, whichwill be poorly resolved. It will therefore not be
possible tomeasure the shape of these galaxies, but it may be possible
to count them for a weak lensing magnification analysis. This means
that the potentially usable sample size for weak lensingmagnification
is significantly larger than that for cosmic shear, and as such it is worth
investigating magnification’s potential as a complementary probe in
the case of LSST 1. Particularly, as Nicola et al. (2020) showed that
even with only approximately 100 square degrees, deep samples are
already sensitive to magnification.
In summary, we wish to determine the effect of including weak

lensing magnification on the precision of the final constraints from
LSST weak lensing. We determine this using the Fisher matrix for-
malism introduced in section 2. We then describe the modelling of
the observables (weak lensing power spectra and the galaxy lumi-
nosity function) in sections 3 and 4. We describe the details of our
LSST specific survey modelling in section 5; and present our results
and conclusions in sections 6 and 7. We verify the stability of our
Fisher matrices in appendix B.

2 FISHER ANALYSIS

The Fisher Information matrix summarises the expected curvature
of the log-Likelihood function around its maximum,

�8 9 =

〈
−m2 ln !
m\8m\ 9

〉
, (1)

where ! is the likelihood and \8 is a model parameter. If the likeli-
hood function is sharply peaked for a given parameter, the parameter

1 Lorenz et al. (2018) also considered LSST specifically, but did not include
systematics or explore departures from the gold sample used for cosmic shear.

is tightly constrained by the data (Dodelson 2003). The marginal
uncertainty on the model parameter \8 can be calculated from the
Fisher matrix as:

Δ\8 ≥
√
(�−1)88 . (2)

The greater than or equal relation is in reference to the Cramér-Rao
inequality, which specifies that the Fisher matrix gives the minimum
possible uncertainty on an unbiased model parameter (Tegmark et al.
1997).

The Fisher information matrix can be calculated without data and
is therefore a useful tool for forecasting best case parameter con-
straints. In the case of a Gaussian likelihood function and a parameter
independent covariance matrix the Fisher matrix is given by:

�8 9 =
∑
ℓ

m�ℓ

m\8
Cov−1 m�ℓ

m\ 9
, (3)

where� is the theory datavector andCov is the associated covariance
(Tegmark et al. 1997). In thisworkwe consider two component Fisher
matrices, which we then add together since they concern separate ob-
servables: the Fisher matrix where the theory datavector consists of
galaxy clustering or galaxy clustering and cosmic shear (detailed in
section 3), and the Fisher matrix where the theory datavector con-
sists of the galaxy luminosity function (detailed in section 4). There
may be a small correlation between the observables due to cosmic
variance, but we do not consider this in this forecast. The associated
covariances are detailed in sections 5.4.1 and 5.5 respectively.

3 WEAK LENSING OBSERVABLES

The two observable quantities used in this weak lensing analysis are
the shape, often referred to as ellipticity, and the number density
of galaxy images. Since weak lensing is a local effect, the mean
ellipticity n and fluctuation in the number density of galaxies =, re-
sulting from weak lensing, is equal to zero when averaged over large
scales in the absence of systematics. Therefore, the key statistical
quantity used in weak lensing analyses is the two-point correlation
function. There are three two-point correlation functions commonly
considered in large-scale structure and weak lensing analyses: cos-
mic shear (ellipticity-ellipticity), angular galaxy clustering (number
density-number density) and galaxy-galaxy lensing (number density-
ellipticity). In this work we focus on angular galaxy clustering as an
individual probe (section 6.1 and 6.3), and also consider a combined
clustering and shear analysis, where the analyses occur on separate
patches of sky (section 6.2).

The Fourier space two-point correlation function for angular
galaxy clustering is given by:

〈=̃8 (`)=̃ 9 (`′)〉 = (2c)2X (2) (` + `′)�8 9nn (ℓ) , (4)

where =̃ is the Fourier transform of the number density contrast, `
is the angular frequency, X (2) is the two-dimensional Dirac delta
function and �8 9nn is the projected number density power spectrum
between redshift bins 8 and 9 (Joachimi & Bridle 2010). It is useful
to work in Fourier space because it simplifies linking to the theory
predictions. The galaxy samples used for weak lensing are often
split into redshift bins; a technique called redshift tomography. This
binning enables weak lensing to probe the evolution of the power
spectrum with time, through auto- and cross-correlations between
the different redshift bins, and hence study the expansion of the
universe and dark energy.
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The Fourier transform of the two-point correlation function for
cosmic shear is given by:

〈ñ 8 (`)ñ 9 (`′)〉 = (2c)2X (2) (` + `′)�8 9n n (ℓ) , (5)

where ñ is the Fourier transform of the ellipticity and �8 9n n is the
projected ellipticity power spectrum between redshift bins 8 and 9 .

3.1 2D power spectra

The key quantities in equations 4 and 5, are the two-dimensional (2D)
power spectra�nn and�n n . These are the observables we model and
include in our Fisher matrix theory datavector, see section 2.
In this work we model the 2D observable power spectra �nn and

�n n bybreaking themdown into their constituent parts. The observed
ellipticity of a galaxy comes from a combination of the intrinsic
ellipticity of the galaxy before it is lensed n� (the intrinsic alignment,
see Joachimi et al. 2015; Troxel & Ishak 2014 for reviews), the
distortion of the shape by weak lensing shear W� , and a random
uncorrelated component nrnd which accounts for the randomness in
the intrinsic ellipicity of galaxies,

n 8 (θ) = W8
�
(θ) + n 8� (θ) + n

8
rnd (θ) , (6)

where 8 denotes the redshift bin. The observed number density of
galaxies comes from a combination of the number density fluctuation
of galaxies as a result of galaxy clustering =6, the distortion to the
number density from weak lensing magnification =<, and a random
component =rnd which accounts for the shot noise contribution,

=8 (θ) = =86 (θ) + =8< (θ) + =8rnd (θ) . (7)

In terms of the Fourier space 2D power spectra the uncorrelated
random components lead to noise power spectra, and separating out
the remaining contributions gives:

�
8 9
n n (ℓ) = �

8 9

GG (ℓ) + �
8 9

IG (ℓ) + �
98

IG (ℓ) + �
8 9

II (ℓ) ,

�
8 9
nn (ℓ) = �

8 9
gg (ℓ) + �

8 9
gm (ℓ) + �

98
gm (ℓ) + �

8 9
mm (ℓ) ,

(8)

where G represents ellipticity from weak lensing shear, I ellipticity
from the intrinsic alignment of galaxies, g number density fluctua-
tions as a results of intrinsic galaxy clustering and m number density
fluctuations as a result of weak lensing magnification.
We compute all these two-dimensional power spectra �ab from

their associated three-dimensional power spectra %ab using the Lim-
ber approximation in Fourier space (Kaiser 1992):

�
8 9

GG (ℓ) =
∫ jhor

0
dj
@8 (j)@ 9 (j)
5 2
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,
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�
8 9
gm (ℓ) = 2(U 9 − 1)�8 9gG (ℓ) ,

�
8 9
mm (ℓ) = 4(U8 − 1) (U 9 − 1)�8 9GG (ℓ) ,

�
8 9
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∫ jhor

0
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,

(9)

where j is the comoving distance, 5 (j) is the comoving angular

diameter distance and ?8 (j) is the probability distribution of galaxies
in redshift bin 8. @8 (j) is a weight function given by,

@8 (j) =
3�2

0Ωm

222
5 (j)
0(j)

∫ jhor

j
dj′?8 (j′) 5 (j

′ − j)
5 (j′)

, (10)

where �0 is the Hubble constant, Ωm the matter density parame-
ter, and 0(j) the scale factor (for further details see Bartelmann
& Schneider 2001). The calculation of the three-dimensional power
spectra %ab is detailed in the following section.

Equation (9) shows that the 2D power spectra associated with
magnification �gm and �mm can be computed from the 2D power
spectra associated with weak lensing shear �gG and �GG using U8
the faint end slope of the number counts in redshift bin 8. We discuss
the galaxy luminosity function in section 4 but detail the relationship
between the magnification and shear power spectra here.

As mentioned previously, weak lensing magnification contributes
to fluctuations in the number density of galaxies =. If the number
density of galaxies above the flux limit 5 is #0 (> 5 ), magnification
alters the number density of sources as:

# (> 5 ) = 1
`
#0 (> 5 /`) , (11)

where # (> 5 ) is the observed cumulative number density of sources
and ` is the local magnification factor (Bartelmann & Schneider
2001). If the cumulative number density of galaxies is assumed to
follow a power law #0 (> 5 ) = : 5 −U near the flux limit of the survey
then,

# (> 5 ) = 1
`
:

(
5

`

)−U
= #0 (> 5 )`U−1, (12)

whereU is equivalent toU8 mentioned in the previous paragraph. This
means the fluctuation in the observed number density of galaxies as
a result of magnification =< is given by,

=< =
# (> 5 ) − #0 (> 5 )

#0 (> 5 ) = `U−1 − 1 ≈ (1 + 2^)U−1 − 1

≈ 2(U − 1)^,
(13)

where the weak lensing limit ` ≈ 1 + 2^ has been employed.

3.2 3D power spectra

The fundamental ingredient for the construction of all of the 3D
power spectra %ab in eq. (9) is the matter power spectrum %X X . It
summarises the clustering ofmatter in the universe and can be derived
numerically using the Boltzmann equations and the primordial power
spectrum predicted by inflation. For the other power spectra, we can
only rely on an effective description, which we detail in this section.

In this work, we compute %lin
X X

using the Boltzmann code CAMB
(Lewis et al. 2000; Howlett et al. 2012). To include non-linear cor-
rections we use HALOFIT (Takahashi et al. 2012). The remaining
power spectra used in this analysis are %XI, %II, %gg and %gX . %XI
and %II are the intrinsic alignment (IA) power spectra, which encode
the tendency of galaxy shapes to point in the direction of a matter
overdensity (%XI) or to have an intrinsic coherent alignment with
other galaxy shapes (%II). %gg summarises the clustering of galaxies,
and %gX the cross-correlations between galaxy position and gravita-
tional shear. %gX is linearly related to the galaxy-magnification power
spectrum, which is the quantity of interest in this work. We employ
a halo model formalism to calculate %gg and %gX , while for the IA
power spectra we use the empirical Non-linear Linear Alignment
(NLA) model (Hirata & Seljak 2004; Bridle & King 2007).
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The halo model (e.g. Cooray & Sheth 2002) assumes that dark
matter clusters into dark matter halos and that all dark matter exists
within dark matter halos. We define dark matter haloes as spheres of
average density Δd̄<, with Δ = 200 and d̄< as the present day mean
matter density of the Universe. Galaxies are then assumed to form
within these dark matter halos, and hence the galaxy distribution
traces the distribution of dark matter. The model relies on two ingre-
dients, the underlying distribution of dark matter and how galaxies
populate dark matter halos.
The dark matter distribution is summarised by: the halo mass

function, which gives the number density of dark matter halos with
mass " at redshift I; the halo bias function, which accounts for
dark matter halos being biased tracers of the underlying dark matter
distribution; and the halo density profile, which summarises how
mass is distributed within dark matter halos. In this work we use
the Tinker et al. (2010) functional forms for the halo mass function
and halo bias function, and assume that the density of dark matter
halos follows the Navarro-Frenk-White distribution (Navarro et al.
1996). To parametrise the concentration-mass relation that enters in
the NFW profile, we follow Duffy et al. (2008). We compute the
halo mass function using the publicly available python package hmf
(Murray et al. 2013; Murray et al. 2021).
We summarise the second ingredient, how galaxies populate dark

matter halos, using the conditional luminosity function (CLF) (Yang
et al. 2003; Cacciato et al. 2013; van den Bosch et al. 2013). The CLF
gives the average number of galaxies with a luminosity ! between
! ± d!/2 in a halo of mass " . It is divided into two parts:

Φ(! |") = Φc (! |") +Φs (! |") , (14)

where Φc (! |") is the CLF for central galaxies and Φs (! |") is the
CLF for satellite galaxies. Central galaxies reside at the centre of
dark matter halos and satellite galaxies orbit around them. Following
the approach detailed in Cacciato et al. (2013) we take the CLF of
central galaxies to be modelled by a lognormal distribution,

Φc (! |")d! =
log e
√

2cfc
exp

[
− (log ! − log !c)2

2f2
c

]
d!
!
, (15)

where fc represents the scatter in the log luminosity of central galax-
ies and !c is parametrised as:

!c (") = !0
("/"1)W1

[1 + ("/"1)]W1−W2
. (16)

!0 = 2W1−W2!c ("1) is a normalisation and "1 is a characteristic
mass scale. The CLF of satellite galaxies is modelled by a modified
Schechter function,

Φs (! |")d! = q∗s
(
!

!∗s

)Us+1
exp

[
−

(
!

!∗s

)2] d!
!
. (17)

where Us is the faint end slope of the satellite luminosity function.
q∗s is parametrised as:

log[q∗s (")] = 10 + 11 (log"12) + 12 (log"12)2, (18)

where "12 = "/(1012ℎ−1"�) and !∗s is parametrised as:

!∗s (") = 0.562!c (") . (19)

Both of the functional forms in eq. (15) and (17) are derived from the
SDSS galaxy group catalog in Yang et al. (2008). In total we have 9
free parameters in our CLFmodel: log"1, log !0, W1, W2, fc, Us, 10,
11 and 12. We include all of these parameters in our Fisher matrix.
The Halo Occupation Distribution (HOD) can then be obtained as

the integral of the CLF over the luminosity interval [!1, !2]:

〈#x |"〉 =
∫ !2

!1
Φx (! |")d! , (20)

where x can be c, s or g=c+s; 〈#c |"〉 and 〈#s |"〉 are the average
number of central and satellite galaxies in a halo of mass " within
the luminosity interval [!1, !2]. Similarly, we can write =̄g as the
average number density of galaxies across all halo masses in a given
luminosity interval:

=̄g (I) =
∫
〈#g |"〉=(", I)d" , (21)

where =(", I) is the halo mass function mentioned above. To keep
the notation compact, we have omitted the redshift dependence of the
HOD: it arises as a consequence of the survey flux-limit: in this case,
the luminosity limits !1 and !2 in eq. (20) depend on the specific
redshift bin under consideration.

Once we have defined the HOD, we can calculate the 3D power
spectra %gg and %gX . First, the power spectra can be split into contri-
butions from the one-halo (1h) and two-halo (2h) terms. The 1h term
describes the clustering of galaxies on small scales within the same
dark matter halo and the 2h term describes the clustering of galaxies
on large scales between different halos. These contributions can then
be split into the contributions from central c and satellite s galaxies,
as with the CLF. This gives:

%gg = 2%1h
cs + %1h

ss + %2h
cc + 2%2h

cs + %2h
ss ,

%gX = %
1h
cX + %

1h
sX + %

2h
cX + %

2h
sX .

(22)

As shown in van den Bosch et al. (2013) these contributions can be
calculated using,

%1h
xy (:, I) =

∫
Hx (:, ", I)Hy (:, ", I)=(", I)d" ,

%2h
xy (:, I) =%lin

X X (:, I)
∫

d"1Hx (:, "1, I)=("1, I)1("1, I)

×
∫

d"2Hy (:, "2, I)=("2, I)1("2, I) ,

(23)

where x and y can be c, s or X, and 1(", I) is the halo bias. The
functionH encodes the matter or galaxy contribution:

HX (:, ", I) =
"

d̄m
D̃h (: |", I) ,

Hc (:, ", I) = Hc (", I) =
〈#c |"〉
=̄g (I)

,

Hs (:, ", I) =
〈#s |"〉
=̄g (I)

D̃s (: |", I) .

(24)

where D̃h is the Fourier transform of the normalised density distri-
bution of dark matter in a halo of mass " (mentioned above), and
D̃s is the normalised number density distribution of satellite galaxies
in a halo of mass " . In his work, we assume satellites to follow the
spatial distribution of the underlying dark matter, i.e. D̃s ≡ D̃h.
To calculate the 3D power spectra %II and %IX we employ the

widely used NLA model. This model links the strength of the tidal
field when a galaxy forms to the intrinsic ellipticity of the galaxy.
This gives,

%XI (:, I) = −�IA�1dc
Ωm
� (I) %X X ,

%II (:, I) =
(
�IA�1dc

Ωm
� (I)

)2
%XX ,

(25)

where �1 is a normalisation constant, dc the critical density of the
Universe today and � (I) the linear growth factor. We set �1 =

5 × 10−14"−1
� ℎ
−2Mpc3 based on the IA amplitude measured at

low redshifts using SuperCOSMOS (Brown et al. 2002), and �IA
captures the amplitude of the deviation from this reference case.
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We take �IA as a free parameter in our Fisher matrix. The NLA
model is sufficiently flexible for current studies but can be extended
by including a redshift dependent parameter, or using a halo model
formalism to calculate %II and %IX on small scales. Recently, Fortuna
et al. (2021) explored these options and found that the IA signal in
the one halo regime can be ignored at first order, and that including
an extra redshift dependent parameter is possibly sufficient for LSST.
Here we consider the simplest NLA model, but implementing more
complex IA models could be a future extension of this work.

4 GALAXY LUMINOSITY FUNCTION

The second part of our Fisher matrix theory datavector, see section
2, is the galaxy luminosity function. The galaxy luminosity function
describes the distribution of luminosities in a galaxy sample, the
number density of galaxies with a certain luminosity, and is often
directly measured from a galaxy sample. As specified in Cacciato
et al. (2013) the galaxy luminosity function at a given redshift I can
be calculated from the CLF detailed in section 3.2:

Φ(!, I) =
∫

3" Φ(! |")=(", I) , (26)

whereΦ(! |") is the CLF and =(", I) is the halo mass function (see
section 3.2). In this analysis we work with a galaxy sample divided
into redshift bins (labelled 8 and 9 previously) so we wish to compute
the galaxy luminosity function for each redshift bin,

Φ8 (!) =
∫

3I =8 (I)Φ(!, I) , (27)

where Φ8 (!) denotes the luminosity function of galaxies in redshift
bin 8, and =8 (I) the normalised redshift distribution in bin 8. We in-
clude a prediction for the galaxy luminosity function in each redshift
bin in our theory datavector as it helps to constrain the 9 CLF pa-
rameters detailed in section 3.2, and hence is critical for obtaining
information from the small scale clustering. The faint end slope of
the number counts is also required to calculate the magnification 2D
power spectra, see eq. (13).

5 SURVEY MODELLING

We perform our Fisher forecast using the cosmological parameter
estimation framework CosmoSIS (Zuntz et al. 2015). To calculate
the 3D power spectra detailed in section 3.2 we use our own halo
model code, which has been tested against other halo model codes
used in the literature.
In this analysis we define two mock LSST galaxy samples; an el-

lipticity sample n-sample and a number density sample n-sample.We
use a 440 square degree mock catalog from the LSST Dark Energy
Science Collaboration (DESC) Data Challenge 2 (DC2) simulations
(cosmoDC2 1.1.4; Korytov et al. 2019). These simulations were de-
signed to enable preliminary LSSTDESC analyses, and the statistical
distributions of galaxies have undergone a wide range of validation
tests, for details see Korytov et al. (2019); Kovacs et al. (2021). The
catalog includes photometric redshifts for all galaxies with an i-band
magnitude less than 26.5, up to redshift 3. The photometric redshifts
were calculated using the template fitting code BPZ (Benitez 2000).
The n-sample is defined as all galaxies in this mock catalog with
an i-band magnitude less than 26.5 and photometric redshift greater
than 0.1 and less than 2.0. We set an upper limit as the photomet-
ric redshifts begin to degrade significantly beyond 1.5, see Fig. 1.
The n-sample is defined as a subset of galaxies in n-sample with

8 < 25.3. This corresponds to the LSST gold sample, which will be
used for weak lensing (LSST Science Collaboration 2009). We do
not apply a separate signal-to-noise cut, but galaxies in the n-sample
have a signal-to-noise ratio > 5 and galaxies in the n-sample have a
signal-to-noise ratio > 20.

5.1 Redshift distributions

To compute the 2D power spectra in eq. (9) and the luminosity
functions in eq. (27) we require the redshift distribution of galaxies
in each photometric redshift bin. In this work we split both the
galaxy samples, n-sample and n-sample, into 10 tomographic redshift
bins containing equal numbers of galaxies using their photometric
redshifts. Figure 2 shows the resulting distribution of galaxies with
redshift for each tomographic bin, as well as the tomographic bin
boundaries. Figure 2 shows that the photometric redshifts are close
to random for bin 10 of n-sample, so our maximum photometric
redshift cut of 2.0 is well justified.

We compute the number density of galaxies in each tomographic
bin to be 12.7 arcmin−2 for n-sample and 4.9 arcmin−2 for n-sample.
However, weak lensing shape measurements typically weight galax-
ies by the uncertainty or ability to calibrate the shape measurements,
this would reduce the number density for n-sample, especially at
high redshifts. The LSST science book estimates that the number
density of galaxies in the gold sample will be 55 arcmin−2, with the
number density of galaxies useful for weak lensing approximately
40 arcmin−2 (LSST Science Collaboration 2009; Chang et al. 2013).
This means that our n-sample is slightly optimistic, with a galaxy
number density of 49 arcmin−2.

5.2 Faint end number count slopes

The key quantity in determining the amplitude of the fluctuation in the
number density of galaxies as a result of weak lensing magnification
is the faint end slope of the number counts U. If U is equal to 1
there is no overall fluctuation but if U does not equal 1 there is either
an increase or decrease in the number density of galaxies. U can be
represented in terms of magnitudes as,

U(8mag) = 2.5
d log10 # (< 8mag)

d8mag
, (28)

where 8mag represents the 8 band magnitude, and # (< 8mag) the
unlensed cumulative number density of galaxies with an 8 band mag-
nitude lower (brighter) than 8mag (e.g. Duncan et al. 2014).

We measure the faint end slopes U from our LSST DC2 mock
catalog. We compute a value U 9 for each redshift bin 9 , in each
mock sample. To compute U 9 we vary the 8 band magnitude in eq.
(28) and compute the cumulative number counts # (> 8mag). We
then fit the logarithm of # (> 8mag) with a straight line, and use the
slope to compute U 9 . Since we are only interested in the slope at
the faint end (high magnitudes) we only fit log10 # (> 8mag) over
the last magnitude before the sample magnitude limit; 25.5-26.5 for
n-sample, and 24.3-25.3 for n-sample. Figure 3 shows that in general
this lower fit limit (marked by a dotted line) captures the value of U 9
at the faint end of the sample. Increasing the lower fit limit has little
effect on the value of U 9 obtained, whereas decreasing the fit limit in
general gives a higher value of U 9 .

Table 1 shows the U 9 values obtained for each sample and their
associated uncertainties. The uncertainties come from the uncertainty
on the slope coefficient of the least-squares straight line fit detailed
above, since they were found to be much larger than the uncertainties

MNRAS 000, 1–17 (2021)



6 C. Mahony et al.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ph
ot

o-
z m

od
e

100

101

102

103

104

105

106

Nu
m

be
r D

en
sit

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ph
ot

o-
z m

od
e

100

101

102

103

104

105

Nu
m

be
r D

en
sit

y

Figure 1. Photometric redshift point estimate mode against true redshift. Left-hand panel: number density sample n-sample. Right-hand panel: ellipticity sample
n -sample
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Figure 2. Number density of galaxies as a function of true redshift for each photometric bin in the galaxy sample. The dashed lines indicate the photometric bin
boundaries. Left-hand panel: n-sample. Right-hand panel: n -sample

on the values of the cumulative number counts # (> 8mag) due to
the large number of galaxies in each sample. The uncertainties are
very small, and would become even smaller when using the full
18000 square degree LSST area instead of a 440 square degree
mock catalog. We therefore consider the U 9 parameters as fixed in
our forecast, but note that they can be difficult to measure accurately
from real data due to the presence of systematics and selection effects
(see conclusions for further discussion).

We can compare the U values in Table 1 to those found in Dun-
can et al. (2014) for the Canada–France–Hawaii Lensing Survey
(CFHTLenS). In both cases U 9 generally increases with redshift.
CFHTLenS reaches an U 9 value of approximately 1 at its 8 band
magnitude limit of 24.7, for its highest redshift bin between 1.02 and
1.3. This roughly corresponds to U7 and U8 in n-sample, where the
magnitude limit of 24.7 is included in the U 9 fit. Table 1 shows that
our U7 and U8 values for n-sample are consistent with CFHTLenS.

5.3 Systematics

We include a number of systematics in our analysis using nuisance
parameters. For the fiducial values of these parameters and their
associated priors please see Table 2. To apply a Gaussian prior to a
particular parameter in a Fisher matrix, one simply adds 1/f2

prior to
the diagonal element associated with the parameter (Coe 2009). In
conceptual terms, the priors on the Fisher matrix parameters can be
summarized by a diagonal covariance matrix with elements f2

prior.
This covariancematrix can then be inverted into a prior Fishermatrix,
giving 1/f2

prior diagonal elements, and added to the experimental
Fisher matrix.

5.3.1 Shear multiplicative bias

Systematic uncertainties in the measuring and averaging of galaxy
shapes can result in a multiplicative scaling of the observed shear.
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Figure 3. The faint end slope of the number counts U8 as a function of the limiting magnitude for each tomographic bin in n-sample (red) and n -sample (blue).
The U8 values used in this analysis were found by fitting the slope of the logarithmic cumulative number counts (see eq. (28)) between the vertical line and the
right hand side of the figure.

These systematic effects include: noisy galaxy images, the applica-
bility of the model used to describe the light profile of galaxies, the
details of the galaxy morphology and selection biases (e.g. Heymans
et al. 2006; Mandelbaum et al. 2018; Zuntz et al. 2018; Kannawadi
et al. 2019). We parametrise this multiplicative scaling using one
parameter <8 per redshift bin (10 parameters in total), which scale

the cosmic shear and galaxy-galaxy lensing power spectra as:

�
8 9
n n (;) → (1 + <8) (1 + < 9 )�

8 9
n n (;) ,

�
8 9
nn (;) → (1 + < 9 )�

8 9
nn (;) .

(29)

We imposeGaussian priors on thesemultiplicative parameters,which
are guided by the LSST DESC science requirements (Alonso et al.
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Table 1. Faint end number count slopes U 9 for each redshift bin 9 in n-sample
and n -sample, with their associated 1f uncertainties.

n-sample ε-sample

U1 0.445 ± 0.005 U1 0.412 ± 0.005
U2 0.663 ± 0.006 U2 0.624 ± 0.004
U3 0.848 ± 0.006 U3 0.677 ± 0.004
U4 0.781 ± 0.005 U4 0.825 ± 0.006
U5 0.573 ± 0.004 U5 0.97 ± 0.01
U6 0.694 ± 0.006 U6 0.74 ± 0.01
U7 0.74 ± 0.01 U7 0.895 ± 0.006
U8 0.95 ± 0.02 U8 0.99 ± 0.01
U9 1.39 ± 0.01 U9 1.08 ± 0.01
U10 2.24 ± 0.02 U10 1.42 ± 0.01

2018). These science requirements forecast the uncertainties LSST
will need to achieve in order to meet their main objectives of sig-
nificantly improving the constraints on the dark energy parameters
F0 and F0 , compared to previous dark energy experiments, and ob-
taining dark energy constraints where the total calibratable system-
atic uncertainty is less than the marginalised statistical uncertainty.
For the case of shear multiplicative bias the requirement is that the
‘systematic uncertainty in the redshift-dependent shear calibration’
should not exceed 0.003 by year 10. We therefore apply a Gaussian
prior centred on zero with a standard deviation of 0.003 to each of
our shear multiplicative bias parameters.

5.3.2 Clustering Multiplicative Bias

We parametrise uncertainties in the number count measurement us-
ing a similar approach to that for shear. Systematics which affect the
number density of galaxies include: galactic dust obscuring back-
ground galaxies, variable survey depth impacting the number of
sources promoted across the flux limit by magnification, and stars
contaminating the galaxy sample (Hildebrandt 2015; Thiele et al.
2020). Usually these effectswould be partially absorbed by the galaxy
bias (CLF) parameters, however since we include the galaxy lumi-
nosity function in our analysis the CLF parameters will be tightly
constrained. We therefore felt it was important to include this multi-
plicative bias parameterisation for clustering as well as shear.
Analogous to shear multiplicative bias, the observed clustering

power spectra are scaled by a multiplicative factor as,

�
8 9
nn (;) → (1 + <8eff) (1 + <

9

eff)�
8 9
nn (;) ,

�
8 9
nn (;) → (1 + <8eff)�

8 9
nn (;) .

(30)

However, since most systematics decrease with signal to noise ratio,
we assume <8eff has a power law dependence on the signal to noise
of galaxies in redshift bin 8. This enables us to reduce the number of
clustering multiplicative bias parameters from ten parameters (one
<8eff per redshift bin) to two parameters 0m and 1m. <8eff is given in
terms of 0m and 1m by,

<8eff = <step − <fid

=
1
#8

[
0m

#8∑
==1

( (
#

)1m

=
− 0fid

#8∑
==1

( (
#

)1fid

=

]
,

(31)

where #8 is the number of galaxies in tomographic bin 8, the sum is
over the signal-to-noise ratio (/# of all galaxies in tomographic bin
8, 0fid is the fiducial value of 0m and 1fid is the fiducial value of 1m.
We introduce the <fid term because if <eff = <step, 1m becomes

unconstrained when 0m is equal to zero, which breaks the Gaussian
Likelihood assumption in the Fisher matrix prediction.

We compute the signal to noise ratio for each galaxy in our samples
from the error on the i band apparent magnitude. Using the signal to
noise of every galaxy in this bias calculation is computationally ex-
pensive, since the total number of galaxies in n-sample and n-sample
is of order 107 and 108. We therefore use a randomly selected 1%
subsample of galaxies in this calculation. This subsample is repre-
sentative of the full galaxy sample, but prevents our bias calculation
from being prohibitively slow.

5.3.3 Photometric redshift uncertainties

Wemodel uncertainties in the redshift distributions shown in figure 2
by introducing shift factors Δ8 (Bonnett et al. 2016). Δ8 simply shifts
the redshift distribution in bin 8 so,

=8 (I) → =8 (I − Δ8). (32)

Since we have two redshift distributions, one for n-sample and one for
n-sample, each divided into 10 bins this results in 20 shift parameters
Δ8 . These parameters are likely to be correlated, so we are making a
conservative choice by allowing 20 separate shift parameters, which
may somewhat weaken our final constraints. We impose Gaussian
priors on each of these shift parameters, once again guided by the
LSST DESC science requirements (Alonso et al. 2018). The prior is
centred on zero, with a standard deviation of 0.003 for the n-sample
parameters and of 0.001 for the n-sample parameters.

A future extension of this work could be to include other modes
of redshift uncertainty, such as a change in the width or to the high
redshifts tails, as in Nicola et al. (2020). These may be particularly
interesting for magnification, as they change the level of overlap
between different redshift bins.

5.4 Covariances

In this forecast we consider two component Fisher matrices. The
Fisher matrix for the weak lensing observables and the Fisher matrix
for the galaxy luminosity function (see section 2). We therefore re-
quire two covariances: the weak lensing observables covariance and
the galaxy luminosity function covariance.

5.4.1 Weak lensing observables covariance

We compute a Gaussian covariance for the observable weak lensing
power spectra (�n n , �nn, �nn ) using CosmoSIS. The covariance
between two power spectra is given by,

Cov
[
�8 9 (ℓ), �:; (ℓ′)

]
= Xℓℓ′

2c
�ℓΔℓ

[
�̄8: (ℓ)�̄ 9; (ℓ)+�̄8; (ℓ)�̄ 9: (ℓ)

]
,

(33)

where 8 9 :; denote redshift bins, Xℓℓ′ is the Kronecker delta, � is the
survey area and Δℓ the size of the angular frequency ℓ bin (Joachimi
et al. 2008; Joachimi & Bridle 2010). We do not include the non-
gaussian contributions to the covariance since their effect is small,
and unlikely to impact our final results (Barreira et al. 2018). To
account for the random terms in equations 6 and 7 we define,

�̄8 9 (ℓ) = �8 9 (ℓ) + # 8 9 , (34)

where # 8 9 is the shot or shape noise contribution. In the case of�n n ,

# 8 9 = X8 9
f2
n

2=̄8
, (35)
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in the case of �nn,

# 8 9 = X8 9
1
=̄8
, (36)

and in the case of �nn , # 8 9 = 0. Where fn is the total intrinsic
ellipticity dispersion, and =̄8 is the average number density of galaxies
in redshift bin 8 (Bartelmann & Schneider 2001). We compute the
power spectra covariance for 20 log-spaced angular frequency ; bins
from ;min = 30, to avoid inaccuracies in the Limber approximation,
to ;max = 3000, to avoid the very non-linear regime.

5.4.2 Galaxy luminosity function covariance

We compute the galaxy luminosity function covariance bymeasuring
the galaxy luminosity functions of our mock LSST galaxy samples
and then computing a bootstrap covariance. Since Fisher forecasts do
not require a datavector, only a covariance, we only use the measured
luminosity functions to compute the covariance andmodel the galaxy
luminosity function in the forecast using the CLF formalism (see
section 4).
Tomeasure the luminosity functions for the n-sample and n-sample

we begin by computing the luminosity of each galaxy from its rest-
frame absolute magnitude in the 8 band. We then divide our sample
into the 10 tomographic bins described above and scale the lumi-
nosity function for each bin 9 by the volume of bin 9 , to convert
the histogram to a number density. When calculating the bin volume
we assume that the galaxies do not scatter beyond the tomographic
bin boundaries. This is an approximation, which figure 2 shows, is
becoming problematic for bin 10.
Ideally, we would use the full range of galaxy luminosities to

compute our bootstrap covariance. However in order to use the low
luminosity region we would need to correct our galaxy samples
to be volume complete, for example through the 1/+max method
(Schmidt 1968; Felten 1976; Cole 2011). High luminosity objects can
be observed across the full volume of the survey, but low luminosity
objects can only be observed at smaller distances. This introduces
a bias referred to as Malmquist bias, and we therefore only want to
include galaxies that can be observed across the whole volume of
the survey. For the purposes of this work we deemed it sufficient
to simply cut out the low luminosity galaxies to make the sample
volume limited, since this is still a significant step forward compared
to previous analyses. For details of how we determine the volume
complete cut see appendix A.
We then compute a bootstrap covariance for our measured galaxy

luminosity functions. First, we sample our dataset with replacement
100 times and compute the associated datavectors. We then assume
that each luminosity bin in each tomographic bin is independent
(each of our datapoints is independent) and calculate the variance of
these 100 samples. This gives us a diagonal covariance. The variance
of the 100 samples is in general small, due to the very large numbers
of galaxies in each sample.

5.5 Fiducial values

The Fisher matrix gives the curvature of the log-Likelihood function
around its peak. It does not find the location of the peak, this is
defined with a set of fiducial values (shown in Table 2). The set
of parameters required to calculate the 3D power spectra in section
3.2 are the cosmological parameters and the CLF parameters. In
this work we consider the constraints on a flat ΛCDM cosmology,
and vary the cosmological parameters; Ωm the matter density, ℎ0
the hubble parameter, Ωb the baryon density, =s the scalar spectral

Table 2. Fiducial values and priors for the model parameters used to compute
the fisher matrices in this work. Flat priors do not contribute to the Fisher
matrix so we simply specify flat, and do not include bounds.

Parameter Fiducial Value Prior

Survey
Area 18000 deg2 fixed
f4 0.35 fixed

Cosmology
Ωm 0.265 flat
ℎ0 0.71 flat
Ωb 0.0448 flat
=s 0.963 flat
�s/10−9 2.1 flat
F −1.0 flat
Fa 0.0 flat
Ωk 0.0 fixed

CLF
log("1) 11.24 flat
log(!0) 9.95 flat
W1 3.18 flat
W2 0.245 flat
f2 0.157 flat
Us −1.18 flat
10 −1.17 flat
11 1.53 flat
12 −0.217 flat

Intrinsic Alignments
�IA 1.0 flat

n-sample Photo-z
Δ8n 0.0 Gauss(0.0, 0.003)

n -sample Photo-z
Δ8n 0.0 Gauss(0.0, 0.001)

Shear Bias
<8 0.0 Gauss(0.0, 0.003)

Clustering Bias
0m 0.001 flat
1m 0.0 flat

index, �s/10−9 the amplitude of primordial fluctuations, and F and
Fa the dark energy equation of state parameters.We take their fiducial
values from the input values used to generate the simulation for the
LSSTDESCmock catalog, or from the values obtained by thePlanck
satellite (Aghanim et al. 2020).

We also vary the full set of CLF parameters log"1, log !0, W1,
W2, fc, Us, 10, 11 and 12, detailed in section 3.2. Here we use the
fiducial values found for SDSS by Cacciato et al. (2013), which have
been shown to also be applicable to higher redshift surveys (Cacciato
et al. 2014; van Uitert et al. 2016).

6 RESULTS

6.1 Clustering

Figure 4 shows the forecast constraints on the cosmological param-
eters from �nn with and without including magnification terms for
n-sample. In the case of including magnification the observable is
�nn = �gg + �gm + �mm instead of �nn = �gg. Including magnifi-
cation generally has a small impact on the cosmological parameter
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constraints. The greatest change is the 1f constraint on Ω<, which
is improved by a factor of 1.3 from 0.003 to 0.0023.
The forecast constraints on the cosmological parameters from�nn

and �nn including magnification terms for n-sample show that the
impact of magnification is reduced compared to the n-sample. The
1f constraint onΩ< is only improved by a factor of 1.03 from 0.0032
to 0.0031, instead of a factor of 1.3 with the n-sample. This shows
that including magnification has a greater impact for deeper samples.
Figure 5 shows the forecast constraints on the CLF parameters

from �nn with and without including magnification terms for the
n-sample. Including magnification has little effect on the constraints
on the CLF parameters. This is expected because the CLF constraints
are predominantly determined by the galaxy luminosity function.We
focus on the cosmological and CLF parameters, instead of presenting
the full 28 parameter space, for clarity. The steps taken to ensure the
stability of our Fisher matrix are detailed in appendix B.
A useful measure of the constraining power of an analysis is the

Figure of Merit (FoM) defined as,

FoM = det( [F−1]@)
1

#@ , (37)

where [F−1]@ is the inverse Fisher matrix for the set of parameters @
and#@ is the number of parameters @ in the set. In thisworkwe define
@ as the full set of cosmological parameters, so the FoM represents
the power of the constraints on the cosmological parameters. It is also
common to define a Dark Energy FoMwhere @ = {F, F0} (Albrecht
et al. 2006).
When magnification is included in the clustering analysis for the

n-sample the FoM is increased by a factor of 1.45. However, when
magnification is included in the clustering analysis for n-sample (the
LSST gold sample) the FoM is increased by a factor of 1.08. This
mirrors the conclusions from looking at the parameter constraints
on Ω< – magnification is more beneficial for deeper samples with
greater numbers of low signal-to-noise ratio galaxies. Interestingly,
there is no increase in the FoM for clustering without magnification
when using the n-sample instead of n-sample. This implies that it
is more beneficial to have a smaller sample of high signal-to-noise
objects than a larger sample including lower signal-to-noise objects.
This is likely due to the additional fainter objects having poorer
photometric redshifts and therefore largely contributing to the tails
of the redshift distribution. Looking back at figure 2 we can see that
the redshift distribution for the n-sample is much cleaner.

6.2 Shear calibration

The previous section showed that including weak lensing magnifica-
tion only has a small effect on the cosmological parameter constraints
from an LSST-like angular galaxy clustering analysis. In a combined
clustering and cosmic shear analysis the impact of magnification on
the cosmological parameter constraints can only be reduced. This is
because magnification predominantly contributes to the clustering
signal and provides very similar information to shear. We therefore
focus on the effect of magnification on the shear multiplicative bias
parameters.
We examine the impact of including magnification on the shear

multiplicative bias parameters for a combined LSST clustering �nn
and shear�n n analysis, where the analyses occur on separate patches
of sky so the �nn term is negligible. We are therefore investigating
whether the improved cosmological constraints from magnification
translate into an improved calibration.
Figure 6 shows the forecast constraints on the shear multiplicative

bias parameters from our �nn and �n n analysis, with and without

magnification terms, where �n n is calculated for n-sample and �nn
for the n-sample. Including magnification only slightly improves the
constraints on the shear calibration parameters, with a greater effect
at higher redshift. The 1f constraint on <1 is improved by a factor
of 1.06, <6 by 1.3 and <10 by 1.34 when including magnification.
When �nn is calculated using the n-sample the impact is similar, but
less pronounced. These results show that including magnification
is not particularly helpful for calibrating the shear measurement.
However, the impact ofmagnificationmay be slightly improvedwhen
performing a full ‘3x2pt’ analysis, where the clustering and shear are
measured on the same patch of sky.

6.3 Bias

Recent works have shown that cosmological results from upcoming
surveys such as LSST will be biased if the effects of weak lensing
magnification are not included, due to improvements in statistical
precision (Duncan et al. 2014; Cardona et al. 2016; Lorenz et al.
2018; Thiele et al. 2020). To examine this for our forecast, figure 7
shows the absolute difference between the clustering power spectra
�nn with and without magnification in terms of the 1f uncertainty
on the clustering power spectra without magnification. In this case
the clustering power spectra have been calculated using n-sample.
The grey shaded region indicates where�nn including magnification
is more than 2f away from �nn without magnification. Particularly
at high ℓ (small scales) �nn including magnification significantly
diverges from �nn without magnification. It is worth noting that this
result is influenced by the very small uncertainty on the clustering
signal for a sample of such great depth. For a clustering signal with
greater uncertainty the difference due to magnification in terms of
the 1f uncertainty would be reduced.

For qualitative comparison, we have also shown the impact of
changing Ωm and �s by 5f in Fig. 7. In all of the redshift bin
combinations shown, the difference from including magnification
is larger than or comparable to the difference from changing Ωm
and �s by 5f. This clearly indicates that not including magnification
terms will catastrophically bias cosmological constraints from LSST.
Additionally, the difference from not including magnification seems
to mimic the behaviour of biasing �s by 5f. This implies that not
includingmagnification could particularly bias the constraints for �s,
one of the parameters weak lensing is most sensitive to.

Figure 8 shows the absolute difference between the clustering
power spectra�nn with and without magnification in terms of the 1f
uncertainty on the clustering power spectra without magnification,
where the clustering power spectra have been calculated using the n-
sample. In this case the difference from includingmagnification is not
as large as for n-sample, however in most redshift bin combinations
is still comparable or larger than the differences from changing Ωm
and �s by 5f.

7 CONCLUSIONS

Previous works have shown that upcoming results from surveys such
as LSST and Euclid will be biased if the effects of weak lensing
magnification are not included (Duncan et al. 2014; Cardona et al.
2016; Lorenz et al. 2018; Thiele et al. 2020). In this work we forecast
whether including weak lensing magnification as a complementary
probe can additionally improve the precision of the LSST galaxy
clustering constraints. We determined this using the Fisher matrix
formalism, where our theory datavector included galaxy clustering
and the galaxy luminosity function. To calculate the galaxy clustering
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Figure 4.Constraints on the cosmological parameters used in this analysis from�nn and�nn includingmagnification terms for n-sample. Includingmagnification
has only a small impact on the constraints.

and the galaxy luminosity function, we employed a halo model,
detailed in Cacciato et al. (2013). We defined two mock LSST galaxy
samples from the LSST DC2 simulations (Korytov et al. 2019) for
use in our forecast; a sample which corresponds to the LSST gold
sample where the 8 band magnitude is less than 25.3 (intended to
be used for the weak lensing shear measurement), and a very deep
sample where the 8 band magnitude is less than 26.5.

We found that weak lensing magnification provides little addi-
tional information as a complementary probe for LSST. For a galaxy
clustering analysis using the LSST gold sample we found that in-
cluding magnification increased the Figure of Merit (FoM) for the
set of cosmological parameters Ωm, ℎ0, Ωb, =s, �s/10−9, F and Fa
by a factor of 1.08. When using the deep galaxy sample we found
that magnification increased the FoM by a factor of 1.45. In terms of
the precision of the Ω< constraints, we found for a galaxy clustering
analysis using the LSST gold sample that including magnification
increased the 1f precision by a factor of 1.03, using the deep sample
we found a factor increase of 1.3. These results show that including
magnification is more beneficial for deeper samples.

The effect of including magnification would be smaller in a com-
bined galaxy clustering and cosmic shear analysis because magnifi-
cation provides similar information to that of cosmic shear. However,
we investigated the impact of including magnification on the calibra-
tion of the shear measurement. We found that including magnifica-

tion only slightly improves the constraints on the shear calibration
parameters.

While this forecast ismore realistic thanmany to date, as it includes
LSST mock catalog data and a flexible galaxy bias model, it still re-
lies on a number of simplified assumptions about magnification.
Firstly, the magnification modelling assumes that the galaxy sample
is purely flux limited. Often galaxies are also selected based on their
signal-to-noise ratio, colours and morphology which complicates the
magnification modelling (Hildebrandt 2015). Secondly, there are a
large number of systematics associated with the magnification mea-
surement such as dust attenuation, variable survey depth, star-galaxy
separation and the blending of galaxy images (Hildebrandt et al.
2013;Morrison&Hildebrandt 2015; Thiele et al. 2020).We included
a multiplicative factor in our modelling of the clustering power spec-
tra in order to incorporate these effects, but more detailed modelling
is likely required. For example, we could have marginalised over the
faint end slopes of the number counts U8 , which are required to com-
pute the magnification power spectra. We chose to fix them, since at
least for the gold sample it should be comparatively easy to explore
the luminosity function beyond the magnitude limit, so measurement
errors on U8 can be expected to be very small. This forecast could
therefore be considered a best case scenario for magnification, and
even in this scenario we found that including magnification has little
impact. However, we also confirmed that not including magnifica-
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tion will strongly bias cosmological results from LSST, so must be
modelled.
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APPENDIX A: VOLUME COMPLETE CUT FOR GALAXY
LUMINOSITY FUNCTION COVARIANCE

A deeper galaxy sample will be volume complete to lower luminosi-
ties, so when the luminosity function of a shallower sample diverges
from the luminosity function of a deeper sample, we know the shal-
lower sample has ceased to be volume complete. We can therefore
determine the volume complete luminosity cut for the n-sample by
finding where it diverges from the n-sample. Our divergence condi-
tion is
|Φ8n (!) −Φ8=(n ) (!) |

Φ8n (!)
> 0.2 , (A1)

where Φ8n is the luminosity function for the n-sample and Φ8
=(n ) is

the luminosity function for the n-sample, where the n-sample has
been binned using the n-sample tomographic bins. We cut Φ8n when
there is a difference of 20% from the deeper sample Φ8

=(n ) . This
value was found to cut Φ8n before it significantly diverged from the

deeper sample whilst allowing for small deviations, see the right
panel of Fig. A1.

Since we did not have a sample deeper than the n-sample available
to us, we made a more stringent volume complete cut on the n-
sample luminosity function based on where the luminosity function
of our shallower sample n-sample diverged. If the shallower sample
is volume complete we can be sure that the deeper sample is also
volume complete. In this case our divergence condition is

|Φ8= (!) −Φ8n (=) (!) |

Φ8=
> 0.2 , (A2)

where Φ8= is the luminosity function for n-sample and Φ8
n (=) is the

luminosity function for n-sample, where n-sample has been binned
using the n-sample tomographic bins. While this luminosity cut en-
forces that n-sample is volume complete, using a shallower sample
means that the cut is much more conservative than necessary.

APPENDIX B: FISHER MATRIX STABILITY

High-dimensional Fisher matrices can be unstable. Here we detail the
steps taken to ensure the stability of our Fisher matrices and hence
the robustness of our results.
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The derivatives in eq. (3) are calculated numerically using a
method of numerical differentiation called a 5-pt stencil. Thismethod
requires the pipeline to be evaluated at 4 points around the model
parameter’s fiducial value (5 points including the fiducial value). The
separation between these points is referred to as the step size. If the
step size is too large the Fisher matrix fails to capture the curvature of

the likelihood function about the peak and if it is too small numerical
difficulties can arise. Therefore when using Fisher matrices it is vital
to verify whether the step size is appropriate, otherwise any results
are meaningless.

We verify our step sizes in 1 dimension by fixing all but one model
parameter. We then calculate the 1D likelihood using a Fisher matrix

MNRAS 000, 1–17 (2021)
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with a specified step size and by sampling the likelihood function
directly. If the 1D likelihoods match we know we are using a rea-
sonable step size when calculating our Fisher matrix. We sample the
likelihood function directly using a simulated datavector generated
at the Fisher matrix fiducial values and a grid sampler. Grid samplers
evaluate the likelihood at a specified set of grid points. Since we are
assuming a Gaussian Likelihood when calculating our Fisher matrix
(eq. (3)) we are only interested in whether the standard deviation f
of the likelihood calculated using the Fisher matrix matches the f of
the likelihood from sampling directly using a grid sampler.
Figure B1 shows the f of the 1D likelihood calculated using the

Fisher matrix for different choices of step size. These plots show that
as the step size decreases thef of the 1D likelihood reaches a plateau,
where the step size is actually capturing the shape of the likelihood,
before becoming unstable (see subplot for the photometric redshift
bias parameter for redshift bin 10). We therefore select a step size in
the range where the f of the Fisher likelihood is stable. Figure B2
shows the Fisher likelihoods generated using the selected step sizes
overlaid with the likelihood from the grid sampler to verify that they
match. For the case of the magnification bias parameter 1m the Fisher
and grid likelihoods do not match. This is because when calculating
the Fisher matrix we assume that the likelihood is Gaussian, and the
likelihood of 1m from direct sampling is clearly not Gaussian. This
is a limitation of the Fisher matrix approach.
We additionally check the Fisher step sizes for the cosmological

parameters, by varying all the cosmological parameters at once and
exploring the multivariate posterior with Markov Chain Monte Carlo
(MCMC) sampling4. Figure B3 shows a comparison between the
constraints obtained from the MCMC and the Fisher matrix. They
match well and show that our Fisher matrix is adequately capturing
the shape of the likelihood.
Figures B1 and B2 show only an example case for the parameters

used to generate the �nn Fisher matrix for n-sample. However, the
step sizes have been verified using thismethod for every Fishermatrix
referred to in the results section.

This paper has been typeset from a TEX/LATEX file prepared by the author.

4 the MCMC we use is emcee (Foreman-Mackey et al. 2013)
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Figure B3. Comparison of the constraints on the cosmological parameters used in this analysis when found using and MCMC or a Fisher matrix. All other
parameters have been fixed.
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