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Abstract

There are three main ways in which judgmental predictions are expressed: point

forecasts; interval forecasts; probability density forecasts. Do these approaches

differ solely in terms of their simplicity of elicitation and the detail they provide? We

examined error in values of the central tendency extracted from these three types of

forecast in a domain in which all of them are used: lay forecasts of inflation. A first

experiment using a between‐participant design showed that the mean level of

forecasts and the bias in them are unaffected by the type of forecast but that

judgment noise (and, hence, overall error) is higher in point forecasts than in interval

or density forecasts. A second experiment replicated the difference between point

and interval forecasts in a within‐participant design (of the sort used in inflation

surveys) and showed no effect of the order in which different types of forecast are

made but revealed that people are more overconfident in interval than in point

forecasts. A third experiment showed that volatility in past data increases bias in

point but not interval forecasts, and that taking the average of two point forecasts

made by an individual reduces judgment noise to the level found in interval

forecasting.
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1 | INTRODUCTION

There are three main ways in which people use judgment to make

predictions about the future values of a variable. In point forecasting,

they make a single point estimate of its expected value. In interval (or

range) forecasting, they provide a range of values within which they

judge there is some probability (e.g., 90%) of the outcome occurring.

The mid‐point of the bounds of the interval is taken to correspond to

their expected value of the variable; it should be the same as the

point forecast.1 In probability density forecasting, they provide a

probability that the outcome will be in each of a number of different

ranges. The mean or median of the distribution of these probabilities

should correspond to the expected value of the outcome (i.e., equal

to the point forecast).

These types of judgmental forecast vary in two ways: they differ

in how simple they are to elicit and in terms of how much information

they provide to users. Unlike point forecasts, interval and density

forecasts provide users with information about forecasters' un-

certainty in their forecasts: in many applications, this is important for

planning purposes. Furthermore, density forecasts provide more

detail about this uncertainty than interval forecasts. In many domains,

this additional information is useful for guiding future decisions.
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For example, those assessing financial risks may need to know more

than that there is a difference in the width of the interval forecasts

for the future returns on two investments; they may wish to know

whether it reflects a difference in variance or kurtosis of the dis-

tribution of those returns.

There is a trade‐off between the simplicity of elicitation of

forecasts and the detail that those forecasts provide. In some do-

mains, time pressure arising from the number of forecasts required

within a short period of time limits forecasters to the provision of

point forecasts: for example, demand forecasters may need to make

forecasts for many stock‐keeping units within a short period. In other

areas, such as meteorology, agriculture, and the nuclear industry,

users need density forecasts but time pressure is less of a con-

sideration. Reviewers have tended to focus on either point and in-

terval forecasting (e.g., Lawrence et al., 2006) or on density

forecasting (e.g., O'Hagan et al., 2006), partly because the salient

issues for research and practice depend on the type of forecast under

consideration. Perhaps, for this reason, there has been little concern

with comparing the accuracy of the different types of forecast. It is

this neglected issue that we focus on here.

Estimates of expected value can be extracted from all three types

of forecast: we should expect point forecasts, the mid‐point of the

bounds describing interval forecasts, and the mean or median of

density forecasts to be the same when they are all based on the same

data. Here we ask people to make a number of forecasts from the

same set of data series. For each person, we measure the mean

central (expected) values that they produce for each type of forecast

(point, interval, density) to determine whether there is any difference

between them. As we also have the true outcomes corresponding to

each forecast, we also examine whether the overall accuracy, mea-

sured by the root mean‐squared error (RMSE), varies across the

different types of forecast. This overall measure of error can be de-

composed into mean error (ME), also known as bias, directional error,

or constant error, and variable error (VE), also known as noise, or

inconsistency. Hence, we also examine whether these components of

overall error vary across different types of forecast.

Our investigation is framed in terms of inflation forecasting.

There were three reasons for this. First, this is one of the few do-

mains in which all three types of forecast (point, interval, and density)

are used in practice: surveys of both experts (economists and pro-

fessional forecasters) and lay people (consumers and households)

require them. Second, and related to the first point, inflation fore-

casting by lay people provides, to the best of our knowledge, the only

previous studies that compare different types of forecasting (Bruine

de Bruin, Manski, et al., 2011). Third, data series for inflation are

available and are regularly updated. Thus, it is possible to provide

people with inflation data series for various countries, ask them to

make inflation forecasts for those countries, and then compare their

forecasts with true outcomes when those are available.

Though our studies are framed within the inflation forecasting

domain,2 we anticipate that our conclusions about differences

between different types of forecasting will generalize across all

content areas. Indeed, calibration of inflation forecasts and of

calibration of other types of forecast (e.g., Benson & Önkal, 1992)

are affected in a similar way by specific factors such as feedback

(Niu & Harvey, 2022).

2 | RATIONALE AND HYPOTHESES

Bruine de Bruin, Manski, et al. (2011) found that, on average, point

forecasts are the same as the mean (and median) value of density

forecasts. They obtained this result using a within‐participant design:

people first made an interval or point forecast, then, if they had made

an interval forecast, they made a point forecast, and, finally, they

made a density forecast. Here, we seek to replicate this finding using

a between‐participants design: separate groups of participants made

point forecasts, interval forecasts, and density forecasts.

The reason that we made this change is that context effects are

known to influence responses in both traditional and online surveys

(e.g., Reips, 2002; Smyth et al., 2009; Tourangeau et al., 2000), in-

cluding surveys of inflation expectations (Niu & Harvey, 2021). Our

concern here is that people's responses to survey questions eliciting

density forecasts may be influenced by their earlier responses to

survey questions eliciting point (or interval) forecasts. In particular,

point forecasts may act as mental anchors for estimates of the means

of density forecasts: because of under‐adjustment (Tversky &

Kahneman, 1974), these two values would then be more similar than

they would otherwise be. Once the possibility of anchoring is elimi-

nated by the use of a between‐participants design, differences be-

tween point forecasts, the mid‐point of interval forecasts, and the

mean value of density forecasts may appear.

Although Bruine de Bruin, Manski, et al. (2011) did not report

whether the mid‐point of the range (i.e., interval) forecast matched

the point forecast and the mean of the density forecast, it is rea-

sonable to assume that it would do so given that they found that the

latter two values were the same. Thus, the first hypothesis that we

test is the following one:

H1: Point forecast =Mid‐point of the interval forecast =Mean of the

density forecast.

This is a null hypothesis. We use a well‐powered experiment to

examine whether we can obtain evidence inconsistent with it in a

between‐participants design that excludes the possibility of anchor-

ing effects.

To test our other hypotheses, we extracted from the data the

three error measures that we mentioned above. Given that D is the

judged rate of inflation for a particular country minus the actual rate

of inflation for that country and given that each participant makes

inflation judgments for n countries, each participant's ME is given by

ΣD/n. Their VE is given by √(Σ(D −ME)2/n). Their RMSE is given by

√(Σ(D2)/n). Equivalently, RMSE can be expressed via its decomposi-

tion into ME and VE as √((ME)2 + (VE)2).3

Many previous studies (e.g., Bruine de Bruin, van der Klaauwm,

et al., 2011; Bryan & Venkatu, 2001a, 2001b; Georganas et al., 2014)
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have shown that people tend to overforecast inflation. It appears that

people have a general expectation that inflation will be higher than it

turns out to be. Thus, we test whether the ME is positive.

H2: ME > 0.

If H1 is true, it also means that the three different types of

forecast will be equally biased. Thus, we also seek to obtain evidence

against the following hypothesis:

H3: MEPoint =MEInterval =MEDensity.

People's judgments are noisy (Kahneman et al., 2021): they are

subject not only to bias but to moment‐to‐moment random variation.

It is not surprising, therefore, that taking the average of a number of

judgments from a single person produces a more accurate estimate

than using a single judgment (Herzog & Hertwig, 2009, 2014; Vul &

Pashler, 2008). When someone makes a point forecast, they make a

single judgment (f). When they make an interval forecast, they make

two judgments (f + δf; f − δf). Thus, they estimate f twice; we, there-

fore, expect the average of the bounds of the interval used to express

the range forecast to be more accurate than the point forecast. An

analogous argument leads us to expect the central tendency of a

density forecast to be more accurate than the mean of the bounds of

a range forecast. To examine the validity of these arguments, we test

the following hypothesis:

H4: VEPoint > VEInterval > VEDensity.

If H3 and H4 are true, then we should also expect:

H5: RMSEPoint > RMSEInterval > RMSEDensity.

2.1 | Experiment 1

2.1.1 | Method

Separate groups of participants made point forecasts, interval fore-

casts, and density forecasts.

Participants

One hundred and thirty‐nine participants (75 males, 64 females)

with a mean age of 22 years (SD = 5 years) were recruited

for the online study. They were divided into three groups: a point

forecasting group (N = 56); an interval forecasting group (N = 42); a

density forecasting group (N = 41). Forty of these participants

were recruited from the participant pool at University College

London (UCL) and given 0.25 credits for their participation. The

remaining 99 participants were recruited in UCL or China; the

former received £3.00 and the latter received 3RMB for taking

part. Data were collected between July 1, 2019 and September

30, 2019.

Stimulus materials

Participants in each group were shown 10 graphs of real inflation rate

data from 10 different countries. Each one displayed a time series

representing 20 years of annual historical inflation data from 1998 to

2017.4 The last displayed data point was for the period immediately

before the one to be forecast. The identities of the 10 countries were

not specified; instead, they were labeled with numbers. Seven of the

series showed no trends; three contained shallow trends.

The way that data are graphed can affect the forecasts that

people make (Lawrence & O'Connor, 1992). For example, people are

less likely to follow an upward trend in the data when the last data

point is already close to the top of the vertical axis. To avoid such

problems, the inflation data series were displayed in the central part

of the y‐axis scale, which ranged from 12% to −8% and the final

points for all 10 countries were in the middle of that scale, ranging

from −0.31% to 7.55%. Series were broadly comparable with a mean

inflation level at 2.61% (SD = 2.90%) across the 10 series. A typical

series is shown in Figure 1.

Two versions of the experiment were programmed, one in Eng-

lish for English speakers and one in Chinese Mandarin for Chinese

speakers. To ensure these were comparable, the English version was

initially translated into Chinese and then back‐translated into English.

The back‐translation was then compared to the original version to

ensure that they matched.

Design

The experiment used a between‐participants design. Participants

from each language group were randomly assigned to one of three

groups: point forecasting, interval forecasting, density forecasting.

Procedure

Participants first saw an information screen that outlined the nature

of the study and a consent screen that detailed the ethical permission

that had been provided and that elicited their consent for partici-

pating. They were then asked basic demographical questions that

required them to specify their age, gender, level of education, main

academic discipline that they had studied, the country that they had

lived in for most of their life, and any economics‐related work ex-

perience. A brief explanation of the nature of inflation was then

provided. After that, participants in each group completed their 10

forecasts. The 10 countries for which inflation had to be forecast

were presented in a different random order for each participant.5

Instructions given to those in the point forecasting group were:

“Below is a series of inflation rates for one country. WHAT WILL

HAPPEN NEXT? Please estimate the actual value of the inflation the

next year by clicking once on the punctuated line.” Instructions for

those in the interval forecasting group were: “Below is a series of

inflation rates for one country. WHAT WILL HAPPEN NEXT? Please

make your 90% prediction interval. (90% prediction intervals corre-

spond to the interval in which future observations will fall, with a 90%

probability.) Click twice on the punctuated line at the end of the graph

to show the upper and lower boundary of this 90% interval.”

Finally, those in the density forecasting group were instructed as
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follows: “Below is a series of inflation rates for one country. WHAT

WILL HAPPEN NEXT? Please allocate £100 to the 20 bins appearing

on the screen. Money allocation should be higher in the bins where

you believe there is a greater probability for actual inflation next year.

To allocate all £100, please enter your bets to each of the bins at the

end of the graph.” These instructions appeared above each of the 10

graphs for which participants had to make forecasts. Examples of the

screens in the three conditions are shown in Figure 2.

2.1.2 | Results

The central tendency of forecasts that each person made in the three

conditions was first extracted. For those in the point forecasting

group, this was simply the point forecasts that they made. For those

in the interval forecasting group, it was the mid‐point of the interval

bounds that they provided. For those in the density forecasting

group, we used the reported bin probabilities to fit an underlying

parametric density and then extracted the underlying forecast den-

sity mean from this. This approach, developed by Engelberg et al.

(2009), assumes that probabilistic beliefs are unimodal and that a

participant's distribution can be specified as a member of the gen-

eralized Beta family. However, when a forecaster fills in values for

only two of the 20 bins, it is only possible to specify the mean of

distribution when the two bins are adjacent. In our experiment, 10

participants failed to do this. As a result, our sample for the density

forecasting group was reduced.

Once we had extracted the mean value of forecasts on each trial for

each participant in each condition, we carried out a two‐way mixed

analyses of variance (ANOVA) on these values using forecast type (point

forecasting, interval forecasting, and density forecasting) as a between‐

participant factor and trial number (1–10) as a within‐participant factor.

This analysis showed no significant main effects or interactions. Thus,

we obtained no evidence inconsistent with H1: even with a between‐

participants design that excluded the possibility of anchoring effects,

there was no suggestion that different forecasting methods produced

different estimates of the central value of inflation. This replicates and

reinforces Bruine de Bruin, Manski, et al.'s (2011) conclusions.

It is clear from the upper panel of Figure 3 that people over-

estimated inflation: a one‐sample t test showed that ME was sig-

nificantly positive, t (128) = 22.67, p < .001. This finding is consistent

with H2. A one‐way ANOVA on ME using forecast type as a

between‐participant factor revealed no significant main or interactive

effects. Thus, we failed to obtain evidence inconsistent with H3.

A one‐way ANOVA on VE revealed an effect of forecast type,

F (2, 126) = 12.43, p < .001, generalized eta squared (ges) = 0.1648.6

Post hoc analyses revealed significant differences between the point

and density forecast (p < .001) and between the point forecast and

the interval forecast (p = .002) but no significant difference between

the interval forecast and the density forecast (Figure 3, middle panel).

Finally, a one‐way ANOVA on RMSE revealed an effect of forecast

type, F (2, 126) = 6.56, p= .002, ges = 0.0943. Post hoc analyses revealed

significant differences between the point and density forecast (p = .01)

and between the point forecast and the interval forecast (p = .007) but

no significant difference between the interval forecast and the density

forecast. This is shown in the lower panel of Figure 3.

Our hypotheses do not concern the relative quality of uncertainty

estimation in interval and density forecasting. However, in selecting

between those two types of forecasting, users may wish to take this

issue into account. Hence, we present an analysis of it in Appendix A.

2.1.3 | Discussion

Despite using a well‐powered between‐participant design to elim-

inate anchoring and other context effects, we obtained no evidence

F IGURE 1 Experiment 1: Time series showing
20 years of annual inflation figures from
Country 1
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F IGURE 2 Experiment 1: Examples of point
forecasting (upper panel), interval forecasting
(middle panel), and density forecasting (lower panel)

NIU AND HARVEY | 5



against H1. If there is any effect of type of forecast on estimates of

central tendency produced by different types of forecast, it must be

small. Thus, data from our between‐participant design replicates the

finding that Bruine de Bruin, Manski, et al. (2011) obtained in their

within‐participant design. This implies that context effects did not

influence their result.

Our finding that people overestimated inflation rate is consistent

with H2 and replicates findings from previous studies (e.g., Bruine de

Bruin, van der Klaauw, et al., 2011; Bryan & Venkatu, 2001a, 2001b;

Georganas et al., 2014). It appears that people expect inflation to be

higher than it turns out to be.

Given the lack of evidence against H1, it is not surprising that

there was also no evidence suggesting that bias in inflation forecasts

depends on the type of forecast made (H3).

We expected that estimates of central tendency derived from

point forecasts would be noisier and less accurate than those derived

from interval and density forecasts and that those derived from in-

terval forecasts would be noisier and less accurate than those derived

from density forecasts (H4). This received partial support: point

forecasts were indeed noisier and less accurate than estimates of

central tendency derived from interval and density forecasts but

estimates of central tendency derived from interval forecasts were

F IGURE 3 Experiment 1: Bar chart showing
mean error, variable error, and root mean‐squared
error scores (with standard error bars) in each
forecasting task
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not noisier and less accurate than those derived from density fore-

casts. Our hypothesis was based on the “wisdom of the inner

crowd” effect (Herzog & Hertwig, 2009, 2014; Van Dolder & van den

Assem, 2018; Vul & Pashler, 2008): the average of a number of

judgments from a single person produces a more accurate estimate

than a single judgment from that person. We argued that the mean

value of the forecast distribution is estimated just once in point

forecasting, twice (albeit implicitly) in interval forecasting, and three

or more times (albeit implicitly and depending on the number of bins

filled) in density forecasting.

Why did we fail to obtain a difference between theVE and RMSE

values associated with interval and density forecasting? First, the

benefit gained from averaging more judgments decreases with the

number of judgments already averaged. Referring to the increases in

accuracy obtained by averaging judgments from more advisors,

Budescu and Yu (2007, p. 154) point out that “The accuracy of the

average opinion increases monotonically as a function of the number

of advisors but at a diminishing rate that depends on the inter‐judge

correlation.” Thus, it could be that most of the gain to be obtained by

aggregating judgments is associated with increasing the number of

judgments from one (point forecasting) to two (interval forecasting)

and that little extra benefit is obtained by increasing the number of

judgments beyond two (density forecasting).

Second, the difficulties that people are reported to have in

making density forecasts (O'Hagan et al., 2006) may have increased

the random noise in their responses and thereby canceled out any

benefit derived from repeatedly making implicit judgments of the

central tendency of the distribution. In contrast, providing interval

forecasts is a simple task and so the benefit derived from making an

estimate of the central tendency twice would not be diluted by

judgment noise associated with performing a difficult task.

2.2 | Experiment 2

Our first experiment showed that, relative to point forecasting, the

gain in accuracy from using interval forecasts was as great as the gain

in accuracy from using density forecasts. Furthermore, unlike point

forecasts, interval forecasts provide survey users with some in-

formation about respondents' estimates of the aleatory uncertainty7

in the system responsible for generating inflation. This should be

important for predicting consumers' behavior: they are less likely to

act on less certain inflation forecasts.

Thus, the mid‐point of the bounds of an interval forecast pro-

vides a more accurate estimate of the expected value of inflation

than a point forecast and interval forecasts also provide uncertainty

information. Furthermore, they are no less accurate than density

forecasts and much simpler to produce. Their only drawback is that

the uncertainty information that they provide is not as detailed as

and not as accurate as that produced by density forecasts. However,

if survey users do not require uncertainty information that is as de-

tailed and accurate as that obtained from density forecasts, interval

forecasts would provide advantages over point forecasts without

incurring the disadvantages of density forecasts.

Surveys ask participants many questions: responses to the earlier

questions may influence how later ones are answered (Niu &

Harvey, 2021). Although the last experiment indicated that such

context effects did not influence Bruine de Bruin, Manski, et al.'s

(2011) finding that the mean value of central forecast is unaffected

by the type of forecast made, it is possible that such effects may

differentially influence the noisiness (VE) and accuracy (RMSE) of

different types of forecast. For example, the accuracy advantage of

interval forecasts may vanish when they are made after point fore-

casts. Thus, in this experiment we ask whether the accuracy ad-

vantage of interval forecasts is preserved in a within‐participant

design. Using this design, we address the same hypotheses as before.

We also examine two other issues.

If context effects do influence the accuracy of different types of

forecast (without influencing their mean value), the strength of that

influence may be affected by the order in which the different types of

forecast are made. Explicit point forecasts may provide stronger

anchors for interval forecasts than the (implicit) central values of

interval forecasts provide for point forecasts. If they do, point fore-

casts would reduce judgment noise (VE) in interval forecasts that

follow them more than interval forecasts would reduce judgment

noise in point forecasts that follow them. Thus, the order in which the

two types of forecasts are made may affect the noisiness of interval

forecasts more than that of point forecasts. With this in mind, we test

the following hypothesis.

H6: |VEInterval second −VEInterval first| > |VEPoint second −VEPoint first|.

In this experiment, we also measure people's confidence in the

judgments. We asked them to assess the likelihood (0%–100%) that

their point forecast or their interval bounds were within 10% either

way of their true values. In other words, we asked them to assess

their epistemic uncertainty in their own judgments. As their interval

forecast (but not their point forecast) provided their estimate of

the aleatory uncertainty in the inflation figures, this allowed us to

examine how aleatory and epistemic uncertainty are related

(Tannenbaum et al., 2017). People may be more confident in judg-

ments in which they have been allowed to express their uncertainty

(interval forecasts) than in those in which they have not (point

forecasts).

H7: ConfidencePoint Forecasts < ConfidenceInterval Forecasts.

2.2.1 | Method

Two groups of participants made both point forecasts and interval

forecasts: one of those groups made point forecasts followed by

interval forecasts and the other group made them in the reverse

order.

NIU AND HARVEY | 7



Participants

One hundred and one participants (65 males, 39 females) with a

mean age of 29 years (SD = 11 years) took part in the web‐based

study. They were recruited from the online participant recruitment

platform, www.Prolific.com, between July 16, 2020 and August 13,

2020 and paid £1.10 for their participation.

Stimulus materials

Participants made forecasts from 10 graphs, each showing 20 years

(2000 to 2019) of real inflation data from 10 countries that were

extracted from the World Bank website. For each one, they made

both a point forecast and an interval forecast for the 2020 inflation

rate. The order of these judgments varied between participants. Both

types of forecast were made in the same way as in Experiment 1.

After each forecast, participants expressed their confidence in it

by moving a slider that ranged between 0% and 100%. For the point

forecast, participants were first asked “How confident are you about

the point forecast you just made?” and then moved their slider along

a scale that was labeled at the left end “0%—My estimate is definitely

not accurate to within 10% either way of the correct value,” in the

middle “50%—My estimate is as likely to be within 10% of the

true value as it is not to be within that range,” and at the right end

“100%—My estimate is definitely accurate to within 10% either way

of the true value.” The chosen position on the slider was made

numerically explicit with a message posted below it: for example,

“You are 60% confident about your forecast.” To reduce anchoring

effects, the starting position of the slider was randomized from the

21 possibilities that were 5% apart (0%, 5%, 10%, … 100%).

F IGURE 4 Experiment 2: Bar charts showing
mean error, variable error, and root mean‐squared
error scores (with standard error bars) in each
condition
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For the interval forecast, participants were first asked “How

confident are you about the interval boundaries that you set?” and

then moved their slider along a scale that was labeled at the left end

“0%—My interval boundaries are definitely not accurate to within

10% either way of the correct value,” in the middle “50%—My in-

terval boundaries are as likely to be within 10% of the true value as it

is not to be within that range,” and at the right end “100%—My

interval boundaries are definitely accurate to within 10% either way

of the true value.” The chosen position on the slider was made nu-

merically explicit with a message posted below it: for example, “You

are 60% confident about your interval forecast.” To reduce anchoring

effects, the starting position of the slider was randomized from the

21 possibilities that were 5% apart (0%, 5%, 10%, … 100%).

For the same reasons as before, inflation data series were dis-

played in the central part of the y‐axis scale, which ranged from 10%

to −6%. The final points for all 10 countries were in the middle of that

scale, ranging between 0.08% and 2.90%. The 10 series were broadly

comparable, with a mean inflation of 2.05% (SD = 1.75%).

Design

Forecast type (point forecast and interval forecast) was varied within

participants. The order of these tasks was varied between partici-

pants, who were randomly allocated to a point‐then‐interval group

(N = 43) or to an interval‐then‐point group (N = 44). The presentation

order of the 10 graphs in each task was individually randomized for

each participant. The identities of the 10 real countries were anon-

ymized by labeling them with numbers: for example, “Country 3

of 10.”

Procedure

The procedure and task instructions for point and interval forecasts

were the same as those described for Experiment 1.

2.2.2 | Results

Forecasts for each country were compared with the actual 2020

inflation rates that were extracted from the World Bank website.

Respondents were excluded from the analysis if any of their

forecasts (point forecasts or mid‐point of the interval forecasts) were

beyond three standard deviations of the mean forecast for a parti-

cular country and forecast type. This led to a sample for analysis of

87 people (56 males, 31 females) with a mean age of 28 years (SD = 9

years).

Forecasts

After extracting the mean value of forecasts on each trial for each

participant in each condition, we carried out a three‐way ANOVA on

these values using task order (point forecasting first, interval fore-

casting first) as a between‐participant factor and forecast type (point

forecasting, interval forecasting) and trial number (1–10) as within‐

participant factors. This analysis showed no significant main effects

or interactions. Thus, we again failed to obtain evidence inconsistent

with H1 but, this time, in a within‐participants design of the sort used

by Bruine de Bruin, Manski, et al. (2011).

Again, people systematically overestimated inflation (Figure 4,

upper panel): a one‐sample t test showed that ME was significantly

positive, t (86) = 19.14, p < .001, consistent with H2. However, a two‐

way mixed ANOVA on ME with task order as a between‐participant

variable and forecast type as a within‐participant one revealed no

significant effects. As in Experiment 1, we failed to obtain evidence

inconsistent with H3.

A two‐way mixed ANOVA onVE (Figure 4, middle panel) using the

same factors as before revealed only a main effect of forecast type,

F (1, 85) = 4.09, p = .046, ges = 0.0058. This provides further evidence

consistent with H4. However, there was no evidence for the interac-

tion predicted by H6: the relative noisiness of point and interval

forecasts was not affected by the order in which they were made.

Finally, a two‐way mixed ANOVA on RMSE using the same

factors as before yielded no significant effects. Despite forecast type

significantly affecting VE, this did not feed through to producing a

correspondingly significant effect on RMSE (Figure 4, lower panel).

Presumably, this was because any such effect was overwhelmed by

the influence of ME on RMSE.8

Confidence in forecasts

For each confidence judgment (e.g., there is a 60% chance of my point

forecast is within 10% of the true value), we set an outcome index, d, at

1.00 when the event occurred (the forecast was within 10% of the true

value) and at 0.00 when the event did not occur (the forecast was not

within 10% of the true value). On each trial, the difference (j − d) be-

tween the judgment, j, expressed as a probability rather than as a per-

centage, and the outcome index, d, then provides a measure of the bias

in the judgment: higher mean values of this difference indicate greater

overconfidence. The square of the bias, (j − d)2, is known as the prob-

ability score: lower mean values of the probability score indicate a

greater ability to assign appropriate probabilities (Yates, 1990, 1994).

Here we subtract the probability score from 1.00 so that higher values

indicate better calibration: we term this the calibration score.

ANOVAs using the same three factors used for the analysis of

forecasts indicated that forecast type had an effect on level of con-

fidence, F (1, 85) = 27.83, p < .0001, ges = 0.0299, on bias, F (1,

85) = 44.78, p < .001, ges = 0.0433, and on the calibration score, F (1,

85) = 36.10, p < .001, ges = 0.0354: people were more confident in

their interval forecasts than in their point forecasts, more over-

confident in them, and less able to judge how likely they were to be

accurate (Figure 5).

2.2.3 | Discussion

The switch from a between‐participants to a within‐participants de-

sign had little effect on the nature of the findings that we obtained.

Again, there was no significant difference between mean values

of point forecasts and the mean values of the mid‐point of

interval forecasts (H1). Furthermore, though there was significant
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over‐forecasting of inflation (H2), the size of this bias did not depend

on the type of forecast made.

It would, however, be wrong to assume that the change in ex-

perimental design had no effect. In our previous between‐participant

experiment, the mean value of RMSE was 2.58 in the point fore-

casting condition and 2.18 in the interval forecasting condition: the

former was 18% higher than the latter. In contrast, in this experiment,

the corresponding RMSE values for point and interval forecasting

were 1.89 and 1.85, respectively: the former was only 2% higher than

the latter. In other words, the use of a within‐participant rather than a

between‐participant design reduced the percentage difference in

RMSE between point and interval forecasting by nine‐tenths. This is

consistent with anchoring having an effect in reducing the difference

in the accuracy of central forecasts derived from different methods

of elicitation. However, in contrast, to claim of H6, this anchoring

effect was not asymmetrical: initial point forecasts acted as mental

anchors for the central value of later interval forecasts to the same

extent that the central value of initial interval forecasts acted as

F IGURE 5 Experiment 2: Bar charts showing
mean confidence levels, bias levels, and
calibration scores (with standard error bars) in
each condition
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mental anchors for later point forecasts. As a result, there was no

effect on the order in which the two types of forecasts were made.

Although the mean of the bounds of interval forecasts provided

less variable estimates of future inflation than point forecasts, people

were more overconfident in their ability to estimate those bounds

than in their ability to make point forecasts. It is possible that al-

lowing people to express uncertainty in the forecasts (i.e., making

interval forecasts) reduces their concern about being wrong and that

this, in turn, raises their confidence in their accuracy. Whatever the

mechanism, higher confidence in interval judgments could have im-

plications for survey design and the use of survey data.

We suggested that the mean of the bounds of an interval fore-

cast provides a more accurate central forecast than a point forecast

because people make two separate (though implicit) point forecasts

when estimating intervals. Because of the “wisdom of the inner

crowd” effect (Herzog & Hertwig, 2009, 2014; Vul & Pashler, 2008),

this acts to cancel out judgment noise (Kahneman et al., 2021) and so

increases accuracy. This can explain the difference between these

two types of forecasting in both a between‐participants design

(Figure 3) and a within‐participants design (Figure 4). In the next

experiment, we test predictions arising from this account.

2.3 | Experiment 3

If the “wisdom of the inner crowd effect” is responsible for the mid‐point

of the bounds of an interval forecast providing a more accurate estimate

of the expected value of inflation than a point forecast, then asking

people to make a point forecast from the same data on two separate

occasions and taking the average of those judgments should result in less

noisy and, hence, more accurate estimates of inflation than either one of

those judgments separately. In other words, the VE and RMSE of the

average of the two point forecasts should be less than the average VE

and average RMSE of the two separate forecasts.

H8: VE of average of two point forecasts < Average VE of two point

forecasts.

H9: RMSE of average of two point forecasts < Average RMSE of two

point forecasts.

The “wisdom of the inner crowd” effect may or may not be

sufficient to explain the difference in accuracy of point and interval

forecasts. If it is sufficient,

H10: VE of average of two point forecasts = VE of the mid‐point of

interval forecast bounds.

H11: RMSE of average of two point forecasts = RMSE of the mid‐

point of interval forecast bounds.

H12: Average VE of two point forecasts > VE of the mid‐point of

interval forecast bounds.

H13: Average RMSE of two point forecasts > RMSE of the mid‐point

of interval forecast bounds.

The “wisdom of the inner crowd” effect is assumed to arise be-

cause averaging two or more judgments cancels out some of the

noise in the judgments (Kahneman et al., 2021). Thus, the effect

should be greater when single judgments contain more noise. If se-

parate judgments were noise‐free, we would expect no reduction in

RMSE after averaging them; if separate judgments were very noisy,

we would expect averaging them to produce a large reduction in both

VE and RMSE. People's time‐series forecasts contain more noise

when the data series on which they are based contain more noise

(Harvey, 1995; Harvey et al., 1997). Thus, we expect the “wisdom of

the inner crowd” effect to be greater when people make forecasts

from more volatile series.

H14: The effect identified in H8 and H9 will be greater with noisier

inflation series.

H15: The effect identified in H12 and H13 will be greater with noisier

inflation series.

2.3.1 | Method

To test these hypotheses, we ran two groups of participants. The first

group made interval forecasts of inflation for 20 countries. The

second group made point forecasts of inflation for those 20 countries

and then made point forecasts for those same countries again (in the

same order).

Participants

One hundred and one participants (66 males, 35 females) with a

mean age of 26 years (SD = 10 years) took part in the web‐based

study. They were recruited from the online participant recruitment

platform, www.Prolific.com, between November 28, 2020 and

January 19, 2021 and paid £1.00 for their participation.

Stimulus materials

Stimulus graphs depicting 20 years (2000–2019) of real inflation

data from 20 countries extracted from the annual CPI data set

provided by the World Bank. The series were displayed in the

central part of the y‐axis scale and ranged from 10% to −6%. The

final points for all 20 countries were in the middle of that scale,

ranging between −0.36% and 2.90%. For the 10 low volatility

series, the mean inflation was 1.58% (SD = 1.11%); for the 10 high

volatility series, the mean inflation was 2.45% (SD = 2.28%). Mean

levels of variance were 0.70 (SD = 0.18) for the 10 low volatility

series and 4.50 (SD = 1.20) for the 10 high volatility series. These

were significantly different, t (18) = 8.94, p < .001. The two sets of

series are shown in Figure 6. It is clear that the greater volatility in

the second set of countries occurred mainly around the time of the

worldwide financial crisis (2008–2011). As before, countries were
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not explicitly named in the experiment: they were referred to by

number.

Design

Forecast type was a between‐participant variable: one group

made interval forecasts from the 20 series; the other group made

point forecasts from those series and then made another set of

point forecasts from those same 20 series in the same order as

before. Series volatility was a within‐participant variable: fore-

casts were made for 10 low volatility and 10 high volatility series.

The order of the 20 series was randomized separately for each

participant. In the point forecast condition, each participant re-

ceived the series in the same order in the first and second blocks

of forecasts. There was no explicit separation of these blocks: as

far as participants were concerned, they made 40 forecasts in a

single block of 40 series.

Procedure

As before, participants saw an information screen and responded to a

consent screen before receiving a simple definition of inflation

(Consumer Price Index) and being given their instructions. Instruc-

tions for the point forecasting and interval forecasting groups were as

described for the previous experiments. An example picture of an

interval forecast or a point forecast (upper two panels of Figure 2)

was provided before the start of the formal task. At the end of the

experiment, participants answered the same demographical ques-

tions as before.

2.3.2 | Results

Two participants were excluded because of missing values in their

data. Others were excluded from the analyses using the same criteria

as specified for Experiment 2. As a result, data were analyzed from 85

participants (54 males, 31 females) with a mean age of 27 years

(SD = 10 years). There were 45 participants in point forecast condi-

tion and 40 participants in interval forecast condition.

We calculated ME, VE, and RMSE scores derived (a) from the

average value of the two point forecasts, (b) separately for each point

forecast and then averaged, and (c) from the mid‐point (average) of

the bounds of the interval forecast. These different types of error

scores are shown in Figure 7 for low volatility series (left bar of each

pair) and high volatility series (right bar of each pair). Inspection

suggests that volatility affects the ME for point, but not interval

forecasts, VE is comparable for the average value of the two point

forecasts and the mid‐point of the interval forecasts, but that both of

F IGURE 6 Experiment 3: The 20 inflation series each showing 20
years of historical inflation data between 1998 and 2017 and ranging
between −6% and 10%. Low volatility series are shown on the left
and high volatility series on the right. In this figure, axis labels and
numbering have been excluded for clarity but they were included in
the experimental materials
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these are lower than the average VE of the two point forecasts, and

the pattern of RMSE scores closely reflects the combined values of

the ME and VE scores.

To test H8, H9, and H14, we carried out ANOVAs on VE and

RMSE values derived from the point forecasting group data with type

of point forecast error (average error of the two separate forecasts

vs. error of the average of the two forecasts) and volatility (high/low)

as within‐participant variables. The ANOVA on VE scores revealed

main effects of type of forecast error, F (1, 44) = 52.06, p < .001,

ges = 0.0831, and volatility, F (1, 44) = 447.95, p < .001, ges = 0.8038,

and a significant interaction between these factors, F (1, 44) = 4.12,

p < .05, ges = 0.0024. Follow‐up analyses revealed that the simple

effect of forecast type error was significant for both high volatility

series, F (1, 44) = 35.39, p < .001, ges = 0.0719, and low volatility

series, F (1, 44) = 52.82, p < .001, ges = 0.1332, and that the simple

effect of volatility was significant for both the average VE of the two

point forecasts, F (1, 44) = 401.36, p < .001, ges = 0.7786, and the VE

of the average of the two point forecasts, F (1, 44) = 444.70, p < .001,

ges = 0.8338.

The ANOVA on RMSE scores revealed main effects of type of

forecast error, F (1, 44) = 63.48, p < .001, ges = 0.0101, and volatility,

F (1, 44) = 294.62, p < .001, ges = 0.5163, and a significant interaction

F IGURE 7 Experiment 3: ME (Upper panel),
VE (Middle panel), and RMSE (Lower panel) scores
for inflation forecasts made from low and high
volatility series. Within each panel, the scores are
based on the average value of the two point
forecasts (Left), the average error of the two point
forecasts (Centre), and the mid‐point of the
interval forecasts (Right)
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between these factors, F (1, 44) = 11.54, p = .001, ges = 0.0007.

Follow‐up analyses revealed that the simple effect of forecast type

error was significant for both high volatility series, F (1, 44) = 48.76,

p < .001, ges = 0.0122, and low volatility series, F (1, 44) = 51.07,

p < .001, ges = 0.0081, and that the simple effect of volatility was

significant for both the average VE of the two point forecasts, F (1,

44) = 268.88, p < .001, ges = 0.5064, and the VE of the average of the

two point forecasts, F (1, 44) = 317.58, p < .001, ges = 0.5280. In

summary, these results are consistent with H8, H9, and H14.
9

To test H10 and H11, we carried out mixed ANOVAs on the VE

and RMSE values with type of forecast error (derived from the

average of two point forecasts vs. derived from the mid‐point of the

bounds of interval forecasts) as a between‐participants factor and

with volatility (high/low) as a within‐participants factor. The ANOVA

on VE revealed only a main effect of volatility, F (1, 83) = 786.17,

p < .001, ges = 0.8097. Thus, we obtained no evidence inconsistent

with H9.

However, the ANOVA on RMSE revealed a main effect of vo-

latility, F (1, 83) = 545.50, p < .001, ges = 0.5708, and an interaction

between volatility and type of forecast error, F (1, 83) = 4.30, p < .04,

ges = 0.0104. Further analysis showed that the simple effect of vo-

latility was significant both for the RMSE derived from the point

forecasts, F (1, 44) = 317.58, p < .001, ges = 0.5280, and for the RMSE

derived from the interval forecasts, F (1, 39) = 235.62, p < .001,

ges = 0.6749, but that the simple effect of type of forecast error was

significant only for the high volatility series, F (1, 83) = 5.54, p = .02,

ges = 0.0625.

The significance of this interaction for RMSE, but not for VE,

strongly suggests that it arose because the ME for the average of the

two point forecasts was affected much more by higher volatility than

the ME associated with the mid‐point of the bounds of the interval

forecast. An ANOVA on the ME scores using the same factors as

before confirmed this. It revealed a main effect of type of forecast

error, F (1, 83) = 4.74, p = .03, ges = 0.0459, and an interaction be-

tween that variable and volatility, F (1, 83) = 5.70, p = .02, ges =

0.0107. ME values for point forecasts, but not for interval forecasts,

were higher when series were more volatile. Thus, the simple effect

of volatility was significant only for the point forecasts, F (1, 44) =

5.82, p = .02, ges = 0.0204, and the simple effect of type of forecast

error was significant only for high volatile series, F (1, 83) = 5.66,

p = .02. ges = 0.0638. In summary, we found no evidence inconsistent

with H10 but we did obtain evidence inconsistent with H11 because

of this unexpected effect of forecast type on ME, one of the con-

tributors to RMSE.

Finally, to test H12, H13, and H15, we carried out mixed ANOVAs

on the VE and RMSE values with the type of forecast error (the

average of the errors calculated separately for each point forecasts

vs. the error derived from the mid‐point of the bounds of interval

forecasts) as a between‐participants factor and with volatility (high/

low) as a within‐participants factor. The analysis of VE revealed main

effects of type of forecast error, F (1, 83) = 3.87, p = .05, ges = 0.0274,

and volatility, F (1, 83) = 744.03, p < .001, ges = 0.7805, but no in-

teraction between these factors.

The analysis of RMSE revealed main effects of type of forecast

error, F (1, 83) = 8.75, p = .004, ges = 0.0772, and volatility, F (1,

83) = 490.41, p < .001, ges = 0.5491, together with an interaction

between these variables, F (1, 83) = 6.38, p = .01, ges = 0.0156. Fur-

ther analysis revealed a simple effect of type of forecast error only

for high volatility series, F (1, 83) = 10.97, p = .001, ges = 0.1168, and

a simple effect of volatility for both point forecast error, F (1,

44) = 268.88, p < .001, ges = 0.5064, and interval forecast error, F (1,

39) = 235.62, p < .001, ges = 0.6749. Again, this interaction was ob-

served for RMSE but not for VE because of the unexpected effect of

volatility on the ME of point forecasts but not on the ME of interval

forecasts. (Because ME is the same whether it is calculated as the

average ME of the two separate point forecasts or as the ME of

the average of the two point forecasts, the analysis of ME reported in

the last paragraph applies here too.) In summary, these results are

consistent with H12 and H13, but only partially consistent with H15.

2.3.3 | Discussion

Comparison of VE and RMSE scores for the two ways of averaging

point forecasts revealed results that we expected. Error scores based

on the average of the two forecasts were significantly lower than

averages of the error scores calculated for each forecast separately.

This was expected on the basis of a “wisdom of the inner

crowd” effect. Furthermore, if this effect reduces VE by some pro-

portion (e.g., 20%), then the absolute size of the reduction should be

greater whenVE is higher. VE is higher when forecasts are made from

noisier series (Harvey, 1995). Hence, we expected the “wisdom of the

inner crowd” effect to be greater with the noisier series; the inter-

actions between series volatility and forecast type for VE and RMSE

provide evidence that it was indeed greater for noisier series.

Turning now to the comparisons between VE based on the mid‐

point of the bounds of the interval forecasts and the two values of VE

based on the different methods of obtaining VE from point forecasts,

we found that there was no evidence of a difference between the VE

values derived from the interval forecasts and the VE values derived

from the average of the two point forecasts. There was, however, a

significant difference between the VE values derived from the in-

terval forecasts and the average of the VE values calculated sepa-

rately for each of the two point forecasts. Taken together, these

results are consistent with the “wisdom of the inner crowd” effect

being sufficient to explain why VE values derived from the mid‐point

of the bounds of interval forecasts are lower than those derived from

single point forecasts (Experiments 1 and 2).

Consistent with this, there was a main effect of volatility but no

interaction between volatility and type of forecast when the VE va-

lues derived from the mid‐points of the bounds of interval forecasts

were compared with the VE values derived from the average of the

two point forecasts: no interaction was expected because there was

no difference in the size of those VE values. However, we had ex-

pected the corresponding interaction to be significant when VE va-

lues derived from the mid‐points of the bounds of interval forecasts
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were compared with the average of the VE scores calculated sepa-

rately for each of the two point forecasts. In fact, this interaction did

not attain significance.

There was one other way in which the results did not turn out in

the manner we had predicted. In developing our hypotheses, we had

expected that the results from the analyses of RMSE values would

broadly reflect those obtained from the analyses of VE scores. Our

expectations were based on the assumption that ME scores would

not be influenced by volatility or by whether they were derived from

point forecasts or from interval forecasts. In fact, volatility increased

not only VE (which we had expected) but also ME (which we had not

expected). Furthermore, this effect of volatility on ME was restricted

to ME values derived from point forecasts; it was not present for ME

values derived from interval forecasts. Because of these differential

effects of volatility on different error sources, results from analyses

of RMSE did not reflect those from our analyses of VE in the way we

had expected. In particular, analysis of RMSE scores derived from the

mid‐points of the bounds of interval forecasts and those derived from

the averages of the two point forecasts revealed an interaction be-

tween volatility and error source (whereas analysis of the corre-

sponding VE scores did not). Similarly, analysis of RMSE scores

derived from the mid‐points of the bounds of interval forecasts and

the average RMSE scores calculated for each point forecast sepa-

rately also revealed an interaction between volatility and error source

(whereas the corresponding VE scores did not show that interaction

between even though it was expected).

Why did higher volatility increase ME scores that are derived

from point forecasts? There have been many demonstrations that lay

people tend to expect inflation to be higher than it turns out to be

(e.g., Bruine de Bruin, van der Klaauw, et al., 2011; Bryan &

Venkatu, 2001a, 2001b; Georganas et al., 2014). When series contain

little noise, they are constrained in how much they can over‐forecast

inflation while still producing a plausible prediction. However, when

series are noisy, greater overforecasting is possible because forecasts

well above the statistical expectation may still be plausible if they are

within the envelope provided by previous outliers. Why did higher

volatility not increase ME scores that are derived from the mid‐points

of interval forecasts? People producing interval forecasts are likely to

respond to higher volatility not by taking the opportunity of raising

the mid‐points of their interval forecasts but by simply widening the

interval that they provide (without changing its mid‐point).

3 | GENERAL DISCUSSION10

Domains in which judgmental forecasts are required differ in terms of

the type of forecast that is seen as most appropriate. When many

forecasts are needed within a limited period of time, point forecasts

are likely to be preferred even though they provide users with no

information about the uncertainty associated with the forecasts.

Demand forecasting frequently provides an example of such a do-

main. However, when users need information from forecasters about

the uncertainty associated with their forecasts and are willing to

sacrifice the speed of forecasting to obtain this information, interval

and density forecasting are more appropriate. Which of these is se-

lected depends on how detailed the information about the un-

certainty associated with the forecasts needs to be: interval forecasts

provide only basic uncertainty information, whereas density fore-

casting provides the distributional information needed in certain

domains, such as finance or meteorology.

Within this overall framework, users make decisions about the type

of forecast they require by identifying where their needs lie on a trade‐off

between speed (or convenience) of providing forecasts and the detail

those forecasts contain about the uncertainty inherent in them. The work

that we have reported here demonstrates that there are additional factors

that should enter into their decisions. First, estimates of the expected

value for the period being forecast are subject to more judgment noise in

point forecasts than in interval or density forecasts: as a result, point

forecasts are more inaccurate. Second, people are more overconfident in

interval forecasts than in point forecasts: they are less able to assess the

likelihood that their judgments are correct. Third, in domains in which

forecasts are typically biased (inflation forecasting, sales forecasting), the

level of bias increases with the volatility of the data on which forecasts

are based when point forecasts are made but not when interval forecasts

are made. Arguably, all these factors should be taken into account when

users specify the type of forecast they require.

Our results are consistent with the lower variable and overall error in

interval and density forecasts than in point forecasts arising from a

“wisdom of the inner crowd” effect (Herzog & Hertwig, 2009, 2014; Van

Dolder & van den Assem, 2018; Vul & Pashler, 2008). We suggest that

the expected value or central tendency of the variable for the period

being forecast is estimated just once for point forecasts but more than

once for interval and density forecasts. Consistent with this, our third

experiment demonstrated that the relative disadvantage of point fore-

casting can be eliminated by eliciting point forecasts twice and using the

average of the resulting estimates. Of course, for this to be effective, an

effort must be made to ensure that forecasters do not remember the

exact value of their first forecast when making their second one. We

accomplished this by eliciting a set of 20 forecasts and then eliciting that

set again; this procedure was sufficient to produce a significant reduction

in VE, an indication that people were unable to fully remember their first

forecasts when making their second ones.

3.1 | Limitations

We examined point, interval, and density forecasting. Other types of

forecasting are sometimes used. For example, rather than asking

forecasters to set an interval such that there is a 90% likelihood that

the outcome will lie within it, it is possible to provide forecasters with

a fixed interval and ask them to estimate the likelihood that the

outcome will fall within it. Though this latter approach is rarely used

in practice, it reduces biases in forecasts (Hansson et al., 2008). In

addition, the above types of forecast are sometimes used in combi-

nation: for example, forecasters may specify a point forecast and

then place an interval around it or, alternatively, they may set an
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interval and then place a point within it to signify the most likely

outcome within the interval. These procedural variations could in-

fluence ME or VE and might lead to modification of our conclusions.

However, a “wisdom of the inner crowd” approach could be used to

predict how they would do so. For example, we would expect that a

point forecast made before an interval forecast would contain a

greater VE than one made after it.

We discussed the trade‐off between the simplicity of producing a

particular type of forecast and the usefulness of the forecast. For ex-

ample, density forecasts are relatively difficult to produce but they pro-

vide more detailed and more accurate information to users about the

uncertainty associated with the forecast. However, while sophisticated

users will easily absorb this additional detail (Armstrong, 2001; Ramos

et al., 2013; Roulston & Kaplan, 2009), others may find it difficult to

interpret these more complex forecasts (Fischhoff, 1994; Ramos

et al., 2013; Yaniv & Foster, 1995; Yates et al., 1996). For example, Bruine

de Bruin, Manski, et al. (2011) reported that respondents found density

forecasts for price inflation were more difficult to appreciate and less

clear than point forecasts. Here we have drawn attention to one pre-

viously ignored factor (accuracy of estimation of expected values) that

should be taken into account when selecting the type of forecast that will

be made. However, we have not studied how forecasters and users

weigh the importance of different factors when making their choice.

3.2 | Implications

Lay surveys have consistently shown that people overestimate inflation.

One explanation of this is that people are more likely to recall large price

increases for specific goods (e.g., rice) because those are more salient and

memorable than many smaller price increases (Bruine de Bruin, van der

Klaauwm, et al., 2011). For this to be a factor, the respondents must have

experienced those increases in their own country. However, we obtained

consistent overestimation of inflation by people who did not even know

the countries for which they were making inflation forecasts. It is not easy

to reconcile this finding with a model based on personal and selective

recall of large price rises. It is more consistent with people having a

generally biased view of inflation, perhaps because the media devotes

more coverage to possible inflation increases than inflation decreases

(even when those are equally likely). This “risk amplification” via the media

could cause a difference in the availability of different possible levels of

future inflation that influences expectations (Tversky & Kahneman, 1974).

3.3 | Conclusions

Selecting between point, interval, and density forecasting should not be

just a matter of trading‐off simplicity for potential usefulness. There are

other relevant factors that need to be taken into account. In particular,

different types of forecasting vary in how well they are able to produce

estimates of the expected values of future periods of variables of interest:

these estimates differ in bias, judgment noise, overall accuracy, and the

degree of overconfidence associated with them.
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ENDNOTES
1 This assumes that interval bounds are placed symmetrically around where
the point forecast would be placed. Any systematic difference between the

mid‐point of the interval and the position of the point forecast would
produce a difference in the mean error (bias) for the two types of forecast.
No such difference in bias was obtained in our experiments.

2 Our studies do not aim to simulate inflation surveys. What we ask our
participants to do is not the same as what respondents are asked to do
in those surveys.

3 Mean absolute error (MAE) provides an alternative measure of overall

error. We did not use it here because, unlike RMSE, it does not de-
compose neatly into ME and VE. However, in almost all cases reported
here, analysis of it leads to the same conclusions as those arising from
the analysis of RMSE.

4 Some but not all surveys of inflation expectations provide respondents
with information about inflation in preceding periods.

5 At the end of the experiment, participants also answered three open‐
ended questions about how they made their forecasts. We do not
report details of their responses here.

6 We use generalized eta squared (ges) to measure effect size (Olejnik &
Algina, 2003).

7 Aleatory uncertainty refers to uncertainty arising from fundamentally
random factors in the environment and is contrasted with epistemic
uncertainty that can, in principle, be eliminated by the provision of

additional information (Tannenbaum et al., 2017).

8 There was a significant effect of forecast type on MAE, the alternative

measure of overall error, F (1, 85) = 6.15, p = .015, ges =0.0033. See end-
note 1.

9 ME derived from the average of the two point forecasts is the same as
that obtained by taking the average of the ME scores calculated for
each forecast separately. But, however they were calculated, ME
scores were found to be higher with more volatile series, F (1,

44) = 5.82, p = .02, ges = 0.0204.

10Hypotheses and findings from the three experiments are summarized
in Table B1.
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APPENDIX A

Experiment 1: Uncertainty estimation in interval and density forecasting

It is well established that interval forecasts tend to be much too

narrow, thus implying that forecasters are highly overconfident. For

example, Hansson et al. (2008) point out: “If people, for example,

produce intuitive 90% confidence intervals for unknown quantities,

the percentage of intervals that include the true value is often closer

to 40% or 50% than to the normatively expected 90% (see Block &

Harper, 1991; Lichtenstein et al., 1982; Russo & Schoemaker, 1992;

Soll & Klayman, 2004).”

In the interval condition of our experiment in which people were

asked to set a 90% interval for each of 10 inflation series, the out-

come should be within the set interval in nine of those 10 series. In

fact, however, outcomes were within the set interval in an average of

only 5.265 series out of 10 (52.65%). A one‐sample t test showed

that this was significantly below 90%, t (41) = 9.67; p < .001. This

result, therefore, replicates the overconfidence found in the previous

work cited above.
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Hansson et al.'s (2008) experiments showed that if, instead of

setting an interval for a given probability, people were asked to

provide a probability for a given interval, overconfidence all but

vanished. In our density condition, we required people to provide a

probability equivalent (i.e., a number of pounds sterling out of a

maximum of £100) for each of a number of intervals (i.e., bins). As this

corresponds closely to the task examined by Hansson et al. (2008),

we expected little, if any, overconfidence to be present.

For each series, we first calculated the optimal forecast; in the

seven untrended series, this corresponded to the series mean; in the

three series with shallow trends, it corresponded to an extrapolation

of the trend to the period to be forecasted. After excluding one series

(Kiribati) because points were not normally distributed around the

mean or trend line, we calculated the 90% prediction interval for each

series. The judged probability of the outcome being within this in-

terval should be 90%. In other words, the model fitted to each par-

ticipant's data on each trial should show that £90 out of the available

£100 was allocated to that interval. In fact, we found that, on aver-

age, a total sum of £82.92 out of the £100 was allocated to the 90%

interval. A one‐sample t test showed that this mean value was dif-

ferent from £90, t (30) = 5.90; p < .001. Thus, some overconfidence

was still present in the density forecasting group.

A two‐sample t test showed that the mean probability equivalent

assigned to the 90% interval in the density forecasting condition (i.e.,

82.92%) was significantly different from the mean probability of

outcomes appearing within the judged 90% interval in the interval

condition (i.e., 52.65%), t (48.69) = 7.48; p < .001. Thus, although in-

terval and density forecasts do not differ in terms of the accuracy

with which they provide an estimate of the expected value of the

point to be forecast, density forecasts provide a better estimate of

the uncertainty associated with the prediction.

APPENDIX B

Table B1

TABLE B1 A summary table of the hypotheses and results in the three experiments

Hypotheses Experiment Results

H1: Point forecast =Mid‐point of the interval forecast =Mean of
the density forecast

Experiment 1,
Experiment 2

Supported

H2: ME > 0 Experiment 1,
Experiment 2

Supported

H3: MEPoint =MEInterval (=MEDensity) Experiment 1,

Experiment 2

Supported

H4: VEPoint > VEInterval (>VEDensity) Experiment 1,

Experiment 2

Partially supported:

VEPoint > VEInterval = VEDensity

H5: RMSEPoint > RMSEInterval > RMSEDensity Experiment 1 Partially supported:
RMSEPoint > RMSEInterval = RMSEDensity

H6: |VEInterval second −VEInterval first| > |VEPoint second −VEPoint first| Experiment 2 Not supported

H7: ConfidencePoint Forecasts < ConfidenceInterval Forecasts Experiment 2 Supported

H8: VE of average of two point forecasts < Average VE of two point
forecasts

Experiment 3 Supported

H9: RMSE of average of two point forecasts < Average RMSE of two
point forecasts

Experiment 3 Supported

H10: VE of average of two point forecasts = VE of the mid‐point of
interval forecast bounds

Experiment 3 Supported

H11: RMSE of average of two point forecasts = RMSE of the mid‐point
of interval forecast bounds

Experiment 3 Not supported

H12: Average VE of two point forecasts > VE of the mid‐point of
interval forecast bounds

Experiment 3 Supported

H13: Average RMSE of two point forecasts > RMSE of the mid‐point of
interval forecast bounds

Experiment 3 Supported

H14: The effect identified in H8 and H9 will be greater with noisier
inflation series

Experiment 3 Supported

H15: The effect identified in H12 and H13 will be greater with noisier
inflation series

Experiment 3 Supported only for H13
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