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Cryptanalysis of quantum cryptographic systems generally involves finding optimal adversarial attack strate-
gies on the underlying protocols. The core principle of modeling quantum attacks often reduces to the ability
of the adversary to clone unknown quantum states and to extract thereby meaningful secret information.
Explicit optimal attack strategies typically require high computational resources due to large circuit depths
or, in many cases, are unknown. Here we introduce variational quantum cloning (VarQlone), a cryptanalysis
algorithm based on quantum machine learning, which allows an adversary to obtain optimal approximate cloning
strategies with short depth quantum circuits, trained using hybrid classical-quantum techniques. The algorithm
contains operationally meaningful cost functions with theoretical guarantees, quantum circuit structure learning
and gradient-descent-based optimization. Our approach enables the end-to-end discovery of hardware-efficient
quantum circuits to clone specific families of quantum states, which we demonstrate in an implementation on
the Rigetti Aspen quantum hardware. We connect these results to quantum cryptographic primitives and derive
explicit attacks facilitated by VarQlone. We expect that quantum machine learning will serve as a resource for
improving attacks on current and future quantum cryptographic protocols.
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I. INTRODUCTION

Quantum cryptography is one of the prominent application
areas for quantum technologies. Early proposals for quantum
cryptographic protocols appeared as early as the 1980s with
conceptual ideas including quantum money [1] and quantum
key distribution [2]. Since then, new protocols are being de-
veloped at a staggering rate, exploiting quantum phenomena
such as entanglement and nonlocality of quantum correlations
for security proofs [3–6]. On the experimental side, rapid
progress is being made as well, with the first violation of
loophole-free Bell inequalities [7] demonstrated in 2015 and
the satellite Micius implementing quantum protocols over
long distances, including quantum key distribution (QKD)
[8–10]. For an overview of recent advances in quantum cryp-
tography, see the topical review [11].

At the heart of the security of many quantum protocols, is
a fundamental pillar of quantum mechanics: the no-cloning
theorem. This theorem states that the cloning of arbitrary
quantum information perfectly and deterministically is forbid-
den by the laws of quantum mechanics [12]. Its connection to
cryptography is easily seen in “prepare and measure” QKD
protocols. If an adversary is capable of intercepting and mak-
ing perfect copies of quantum states sent between two parties
communicating using some secret key (encoded in quantum
information) they can, in principle, learn the underlying secret
information. The fact that the adversary is unable to do so
under a foundational quantum mechanical principle leads to
many potential advantages in using quantum communication
protocols including, in many cases, realization of information-
theoretic security guarantees.

However, the original formulation of the no-cloning theo-
rem is not sufficient to fully analyze the security of protocols
as it merely states that perfect and deterministic cloning is
forbidden. In a remarkable discovery [13] it was established
that cloning becomes possible, to some extent, if one is willing
to relax the two assumptions in the no-cloning theorem. As a
consequence, an adversary can partially learn hidden infor-
mation. Specifically, removing the requirement of generating
“perfect” clones gives approximate cloning [13], and relax-
ing determinism gives probabilistic cloning [14,15]. Both of
these subfields of quantum information have a rich history
and have been widely studied. For comprehensive reviews see
Refs. [16,17].

So far, we used here the example of cloning as an attack
by an adversary on quantum protocols. It turns out that in
some cases these types of attacks are actually optimal [16].
In cases where they are not, cloning provides a means to
at least provide lower bounds on the strategies of an adver-
sary [18]. However, actually implementing such cloning-based
attacks might be nontrivial in practice. For example, build-
ing general cloning circuits can require quantum circuits of
large depth, which are not easily implementable on noisy
intermediate scale quantum (NISQ) [19] devices (universal
quantum computers with on the order of 50–200 physical,
noisy qubits, which lack the capabilities of quantum error
correction [20,21]). The effect of decoherence and errors in
these devices puts the production of high-quality clones out
of reach of an adversary with NISQ resources. Worse still, in
many cases the optimal transformations to perform cloning
might not be known, in particular for families of states whose
optimal cloning fidelities are difficult to extract analytically.
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On the other hand, there has been much interest in implement-
ing quantum cloning and cryptographic attacks on protocols
via specific and tailored experiments (for example, [22–26])
but these may not be easily reconfigurable or generalizable to
other scenarios. In summary, finding and constructing quan-
tum cloning circuits to prepare high-fidelity clones on NISQ
hardware is challenging.

The present proposal adds a ingredient towards the circum-
vention of these issues. We give an algorithm—“variational
quantum cloning” (VarQlone)—which uses quantum machine
learning [27–30] (QML) techniques to learn to clone quantum
states in an end-to-end manner. VarQlone is made possible
by recent advances and techniques in the field of variational
quantum algorithms (VQAs) [31–35]. VQAs are intentionally
tailored to be useful on NISQ devices, which are too small
and noisy to implement “coherent” algorithms with speedups,
for example, in factoring large prime numbers [36]. However,
such devices are capable of performing tasks which cannot be
simulated by any classical device in reasonable time [37–39],
making the search for dedicated applications a topic of likely
practical relevance. VQAs have been proposed or used for
various applications, including quantum chemistry [40] and
combinatorial optimization [41].

The core quantum component is typically a parameterized
quantum circuit (PQC) [42] and when VQAs are applied to
machine-learning problems, they have come to be seen as
quantum neural networks [43,44]. This is because they can
achieve many of the same tasks as classical neural networks,
[45,46] and can outperform them in certain cases [47–49].
Furthermore, machine learning techniques, both quantum
[50–56] and classical [57–61] has proven useful in discov-
ering interesting variations of, and providing insights into
quantum algorithms and subroutines. This line of study even
extends to the foundations of quantum mechanics [62].

VarQlone is different from other variational algorithms in
that it can be viewed as a first step into a different area of
application, variational quantum cryptanalysis. Specifically,
in using QML techniques to learn to clone quantum states,
VarQlone can discover unique ways to attack quantum proto-
cols, in particular those whose underlying security reduces to
quantum cloning. Furthermore, in developing such techniques
more generally we can draw on the relationship between
classical machine learning and deep learning, with classical
cryptography [63–66].

For concreteness in this work, we focus on cloning families
of quantum states used in two distinct families of quantum
cryptographic protocols: those used in QKD protocols and
those used in quantum coin-flipping protocols. For the for-
mer, we use the canonical BB-84 protocol [2] as an example,
which can be attacked by cloning phase-covariant states. For
quantum coin-flipping protocols so-called fixed-overlap states
are typically used. Furthermore, the security of coin-flipping
protocols are typically much less well studied than QKD
protocols, so we also explicitly give analytic (cloning-based)
attacks on two examples of such protocols, that of Mayers
et al. [67] and that of Aharonov et al. [68] We then use
VarQlone to construct these attacks explicitly. As part of our
algorithm we define suitable cost functions, prove theoret-
ical guarantees for them (including notions of faithfulness
[51] and “barren plateaus” [69,70]), and use state-of-the-art

FIG. 1. Cartoon overview of VarQlone in a cryptographic attack.
Here an adversary Eve, E , implements a 1 → 2 cloning attack on
states used in a quantum protocol (for example, QKD) between
Alice and Bob. Eve intercepts the states sent by Alice |ψ〉A and
may interact with an ancillary “environment,” E∗. This interaction is
trained (an optimal parameter setting θ is found) by Eve to optimally
produce clones, ρB

θ , ρE
θ . In order to attack the protocol, Eve will

return ρB
θ to Bob and use the rest (her clone, ρE

θ plus the remaining
environment state, ρE∗

θ ) to cheat. The training procedure consists of
using a classical computer to optimize the quantum parameters, via a
cost function. The cost is a function of k observables, Ok , measured
from the output states, which are designed to extract fidelities of the
states to compare against the ideal state.

techniques such as quantum architecture search and variable
structure Ansätze [71]. To illustrate this, Fig. 1 shows a car-
toon of how VarQlone can be used in a cryptographic scenario.

Finally, to underline the practical potential of our approach
we implemented it on the Rigetti Aspen quantum computer
and show how VarQlone can learn to clone states with a
higher fidelity on this device than previously known “an-
alytic” quantum circuits, highlighting the flexibility of our
approach. Furthermore, the nature of VarQlone allows us to
improve cloning fidelities generically, on quantum computers
available through the cloud [72], without significant tweaking
and custom built experimental hardware.

II. QUANTUM CLONING

Approximate quantum cloning allows circumventing the
no-cloning theorem, but there are still a number of subtleties
that have to be addressed when building quantum cloning
machines (QCMs), i.e., the unitaries U . Figure 1 illustrates
so-called 1 → 2 cloning, but we can generalize to M → N
cloning. Here M copies of the input state to be cloned is given,
and N output “clones” are requested. Next, we have to choose
the comparison metric which is used to compare the clones
outputted from the QCM, relative to the ideal input states. It
is common to use the fidelity [73], between quantum states
ρ, σ :

F (ρ, σ ) =
(

Tr
√√

ρσ
√

ρ
)2

. (1)

We will require two specifications of the fidelity. The first
is the local fidelity, F j

L := FL(σ j, ρA), which compares the
ideal input state, ρA := |ψ〉〈ψ |A (of which we may have M
identical copies), to the output clones, σ j := Tr j̄ (U

†ρ⊗M
A ⊗

ρR ⊗ ρauxU ), j ∈ {1, . . . , N}, i.e., the reduced states of the
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FIG. 2. Variational Quantum Cloning implemented on phase-covariant states using three qubits of the Rigetti Aspen-8 chip (QPU), plus
simulated results (QVM). Violin plots in (a) show the cloning fidelities, for Bob and Eve, found using each of the circuits shown in (b)–(d),
respectively. Shown in red is the maximal possible fidelity for this problem. (b) The ideal circuit with clones appearing in registers 2 and 3.
(c) The structure-learned circuit for the same scenario, using one less entangling gate. (d) The effect of allowing clones to appear in registers 1
and 2. In the latter case, only four (nearest-neighbor) entangling gates are used, demonstrating a significant boost in performance on the QPU.

QCM output. Tr j̄ (·) denotes the partial trace over all subsys-
tems except j, ρaux is an auxiliary subsystem which may be
needed for cloning and ρR is a quantum register of size N − M
which will receive the clones. The second is the global fidelity
compares the entire output state of the QCM to a product state
of input copies, FG(Traux[U †ρ⊗M

A ⊗ ρR ⊗ ρauxU ], ρ⊗N
A ).

Next, we have symmetry, which only applies to local clon-
ers, and requires that all output clones must be of the same
quality:

F j
L = F k

L , ∀ j, k ∈ {1, . . . , N}. (2)

Finally, we have universality, which refers to the set of
states, S , the cloner can optimally clone. A universal cloning
machine can clone all states equally well, whereas a state-
dependent cloner restricts the family of states to be some
subset of the Hilbert space. All of these are practically relevant
dimensions when studying the relationship between cloning
and quantum cryptography.

III. VARIATIONAL QUANTUM CRYPTANALYSIS

In this work we propose the merging of quantum machine
learning with quantum cryptography and cryptanalysis. Our
attack vector is given by learning to clone the quantum states
used in two different families of protocols with VarQlone. Let
us begin with QKD protocols by focusing on BB84. [2] In this
protocol one party, say, Alice, sends single-qubit states in two
orthogonal bases (for instance, the eigenstates of the Pauli X
and Pauli Y matrices, |±〉 and | ± i〉) to a second party, Bob,
via a quantum channel that is susceptible to an eavesdropping
adversary, Eve. Eve’s goal is to extract the secret information
sent between Alice and Bob, encoded in the states. It turns
out that the optimal “individual” (or, incoherent) attack [16]
on this protocol by Eve is given by cloning so called phase-
covariant [74] states of the form

|ψxy(η)〉 = 1√
2

(|0〉 + eiη|1〉). (3)

For these states, Figs. 2(c) and 2(d) illustrate some candidate
cloning circuits learned by VarQlone, compared to the optimal
“analytic” circuit given in Refs. [17,75,76] [Fig. 2(b)]. For

this family of states, Eve can construct a cloning machine
with fidelity F PC,E

L,opt ≈ 0.85. First, circuit (c) is a circuit learned
in the same circumstances as circuit (b). We see that it can
achieve a higher cloning fidelity on the Rigetti Aspen-8 chip,
due to the fewer number of gates required. Circuit (d) im-
proves performance on chip with a further reduction in gate
numbers, by changing in which registers the clones need to
appear. As a final comment, we note that the circuit (b), while
providing optimal cloning fidelities for equatorial states, is
not strictly the most economical version one could use for
this particular task. Specifically, one can perform a variation
of phase-covariant cloning, known as mirror phase-covariant
cloning [77], using only four entangling gates, comparable to
circuit (d). We discuss this in Appendix F. Nevertheless, we
chose circuit (b) to compare against to demonstrate the flexi-
bility and reconfigurable nature of VarQlone. Now, let us now
analyze the performance of one of these VarQlone-learned
circuits [circuit (c) specifically] in an attack on BB84. The
security criterion for the optimal individual attack indicates
that if Eve has as much information about the states as Bob,
then a secret key can no longer be extracted. As such, the
protocol requires a critical “error rate,” Dcrit, above which
Alice and Bob will detect malfeasance, and abort the protocol.
The key rate which can be extracted here can be generally
computed in terms of the Holevo quantity, χ :

R = I (A:B) − min{χ (A:EQ), χ (B:EQ)}, (4)

where I (A:B) denotes the mutual information (MI) between
Alice and Bob and the index Q denotes that Eve may employ
general quantum strategies. The Holevo quantity is given by
von Neumann entropy:

χ (Q:E ) := S(ρE ) − 1
2 S
(
ρ0

E

)− 1
2 S
(
ρ1

E

)
. (5)

In order to calculate the critical error rate, we follow the
analysis in Ref. [16]. Intuitively, Eq. (4) formalizes the above
statement that no key can be extracted (R = 0) when Alice
and Bob’s MI is equal to the minimum value between Alice
and Eve and Bob and Eve. In Eq. (5), ρE denotes the mixed
state of Eve over all of the combinations of Alice’s choice of
input, and ρ0

E and ρ1
E denotes the states of Eve for the random

variables that encode 0 and 1 in the protocol, respectively.
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FIG. 3. Overview of cloning-based attack on the protocol of Mayers et al. [67], plus corresponding numerical results for VarQlone.
(a) Cartoon of coin-flipping protocols, Alice and Bob send quantum (q) and/or classical (c) information to agree on a final “coin-flip” bit,
y. (b) The relevant part of the protocol of Mayers et al., P1, plus a cloning-based attack on Bob’s side. He builds a cloning machine using
VarQlone to produce two clones of Alice’s sent states, one of which he returns, and the other is used to guess Alice’s input bit, a. (c) Fidelities
of each output clone, ρ

j
θ achieved using VarQlone when (1 → 2) cloning the family of states used in, P1. In the left (right) panel, |φ0〉 (|φ1〉) is.

Both simulated (QVM, purple circles) and on Rigetti hardware (QPU, blue crosses) are shown. For the QVM (QPU) results, 256 (five) samples
of each state are used to generate statistics. Violin plots show complete distribution of outcomes and error bars show the means and standard
deviations. Inset (i) shows the two qubits of the Aspen-8 chip which were used, with the allowed connectivity of a CZ between them. Note an
ancilla was also allowed, but VarQlone chose not to use it in this example. The corresponding learned circuit is given in Appendix F.

For circuit (c) we compute the error rate based on the BB84
protocol run in the x-y Pauli basis, and find Dcrit = 15.8%. By
contrast, the optimal error rate for the ideal incoherent attack
is Dincoh

crit = 1 − F PC,E
L,opt ≈ 14.6% [16]. As such, VarQlone is

able to learn a close-to-optimal attack on BB84 but which
achieves a higher fidelity on quantum hardware. For further
discussion and details of the calculation, see Appendix C.
Finally, we can see that circuit (d) in Fig. 2 achieves a higher
still fidelity on hardware, but it does so by not using the ancilla
to reduce the circuit depth. As such, it is a better circuit for
purely performing cloning than either circuit (b) or (c), but
does not provide an optimal attack for BB84 [16]. This is
because the ancilla-free cloning machine only allows Eve to
effectively perform a “one-sided” attack, i.e., she can guess
Alice’s BB84-encoded bit well, but without the ancilla she has
limited information about Bob’s bit.

Next, we move to quantum coin-flipping protocols, for
which our primary example is the protocol of Mayers et al.
[67] (which we denote P1 for brevity). The goal of such
protocols is for two (mutually distrusting) parties (Alice and
Bob) to agree on a random “coin flip” bit, y; a high-level
overview of such protocols can be seen in Fig. 3(a). As a result
of our analysis on P1, we provide a cloning-based attack to
completely break it analytically (in contrast to the above BB84
protocol, whose security is maintained as long as the critical
error rate is observed). We then use VarQlone to construct a
candidate circuit to implement the cloning part of the attack.
The relevant parts of the protocol P1 can be seen in Fig. 3(b).
At a high level, Alice will choose bits, a, ci and sends them
to Bob encoded in the states in Eq. (6). Bob’s attack consists
of running a cloning attack and performing a state discrimina-
tion, with the purpose of guessing Alice’s input bit to the coin,
a. For further details of the protocol specifics, and our attack,

see Appendix D. Also shown in Fig. 3(c), are the results of
VarQlone when cloning the states of P1, both simulated and
on the Rigetti Aspen-8 chip.

Specifically, the states used in P1 are of the form

|φx〉 = cos φ|0〉 + (−1)x sin φ|1〉, x ∈ {0, 1} (6)

with φ chosen to be equal to π/18. These two states are so-
called fixed-overlap states, which are defined by their overlap
s := 〈φ0 |φ1〉 = cos(π/9). This family of states was one of
the original scenarios studied in the realm of approximate
cloning [78], but are difficult to tackle analytically [16]. Fig-
ure 3 shows the results of cloning these states, using a circuit
learned by VarQlone. We also show in this figure a high-level
overview of a quantum coin-flipping protocol and further de-
tails of the protocol, P1.

The key quantity in quantum coin-flipping protocols be-
tween two parties, Alice and Bob, is the bias on the coin that
can be achieved by a cheating party (we assume this is Bob in
this work). For example, a bias of ε = 0.1 indicates the coin
has 60% probability of favoring Bob’s preferred outcome, in
contrast to 50% which would be achieved by a fair (unbiased)
coin. We begin by first deriving the following theorem (proof
is given in Appendix D 2) which gives a bias assuming a
perfect state-dependent cloning attack on the states in Eq. (6).

Theorem 1. [Ideal Cloning Attack Bias on P1]
Bob can achieve a bias of ε ≈ 0.27 using a state-dependent

cloning attack on the protocol, P1, with a single copy of
Alice’s state.

The above theorem is proven using the Holevo-Helstrom
[79,80] bound. From this, we then have the following corol-
lary, by plugging in the VarQlone-learned circuit for cloning
the states of P1 to build the full attack:
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Corollary 1. [VarQlone Attack Bias on P1]
Bob can achieve a bias of ε ≈ 0.29 using a state-dependent

VarQlone attack on the protocol, P1, with a single copy of
Alice’s state.

However, this applies only for a single round of the pro-
tocol, whereas P1, which was originally described [67] to
contain k rounds. If this attack is repeated on all k rounds,
we show in Appendix D 2 how this completely breaks the
protocol (in other words, the bias in the quantum coin can be
made to approach 1/2 as k → ∞).

As a final note on coin-flipping protocols, in Appendix D
we discuss a second quantum coin flipping protocol (that of
Aharonov et al. [68], denoted P2), and derive similar cloning-
based attacks on it. This protocol uses the two states in Eq. (6)
plus their orthogonal counterparts, for an alternative choice
of the angle φ. In the next section, we use these states to
demonstrate 1 → 3 and 2 → 4 cloning, and to highlight some
features of the VarQlone algorithm.

IV. THE ALGORITHM: VARIATIONAL
QUANTUM CLONING

Now we outline details of our variational quantum cloning
algorithm, which generated the cloning-based attacks in the
previous section. To reiterate, our motivation is to find short-
depth circuits to clone a given family of states, and also use
this toolkit to investigate state families where the optimal
figure of merit is unknown.

Figure 1 illustrates how VarQlone is used in a cryp-
tographic scenario; however, the core variational part is
common to many variational algorithms. In particular, a vari-
ational method uses a parameterized state, denoted by ρθ ,
typically prepared by some short-depth parameterized unitary
on some initial state, ρθ := U (θ)|0〉〈0|U †(θ). The parameters
are then optimized by minimizing (or maximizing) a cost
function, typically a function of k observable measurements
on ρθ , Ok . This resembles a classical neural network, and
indeed techniques and ideas from classical machine learning
can be borrowed and adapted.

We propose to use primarily local cost functions of the
following functional form:

CM→N
loc (θ) := E

|ψ〉∈S
f (Oψ

L , ρθ, M, N ). (7)

Here we use two specific realizations of the function, f , to
generate the results, but in the Appendixes we provide alter-
natives, such as a global cost function, and a specific form the
local cost Eq. (7) which enforces asymmetry in cloning.

Choosing f as follows:

fsq :=
N∑

i=1

[
1 − F i

L (θ)
]2 +

N∑
i< j

[
F i

L (θ) − F j
L (θ)
]2

(8)

results in what for brevity we refer to as the squared cost
function, a generalization of the cost proposed in Ref. [81].
Here F j

L (θ) := FL(|ψ〉〈ψ |, ρ j
θ
) is the local fidelity of the pa-

rameterized state relative to output clone j. This is generated
using the observable Oψ

sq = |ψ〉〈ψ | for the specific instance
of state to be cloned from the set, |ψ〉 ∈ S . As such, we define
CM→N

sq (θ) := E|ψ〉∈S [ fsq]. By choosing f to be a linear func-

tion of the fidelities, we get a local cost more familiar from
variational-algorithm literature [51,70,82,83]. We discuss the
tradeoff between these different functional forms in the Ap-
pendixes, which turns out to be important for our specific
application.

The cost functions we propose can be differentiated using
the parameter shift rule [45,84], and we explicitly give their
gradients in the Appendixes. For all the results described here,
we use the gradient-descent-based Adam [85] optimizer, with
our cost functions. This is in contrast to Ref. [81] which
exclusively used gradient-free optimization approaches. As a
theoretical guarantee on these cost functions, we prove no-
tions of faithfulness, i.e., that small values of the cost functions
imply near-optimal solutions (meaning the quantum states
of the output clones are sufficiently close to optimality). As
an example, we can prove the squared cost function above
is ε-weakly faithful with respect to the Fubini-Study metric
[86,87], DFS (definitions are given in Appendix B 3):

Theorem 2. The squared cost function is ε-weakly faithful
with respect to DFS. If the cost is ε-close to its minimum, i.e.,

Csq(θ) − Copt
sq � ε, (9)

where Copt
sq is the optimal theoretical cost, then

DFS
(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
� N ε

2(1 − Fopt ) sin(Fopt )

:= f1(ε), ∀|ψ〉 ∈ S,∀ j ∈ [N]. (10)

We also remark that typically global cost functions are
usually more favorable from the point of view of operational
meaning. For example, in variational compilation [51], this
cost function compares the closeness of two global unitaries.
In this respect, local cost functions are usually used as a proxy
to optimize a global cost function, meaning optimization with
respect to the local function typically provides insights into
the convergence of desired global properties. In contrast to
many previous applications, by the nature of quantum cloning,
VarQlone allows the local cost functions to have immediate
operational meaning. Furthermore, in our use cases, there is
a more subtle relationship between local and global optimiza-
tion than in other applications, as for cloning in both cases
the results can lead to different outcomes. We also revisit this
discussion in Appendix B 3.

A key element in variational algorithms is the choice of
Ansatz that is used in the PQC. The primary Ansatz we choose
is one with a variable structure. This allows us to learn cloning
circuits in an end-to-end manner. The idea is to optimize over
both the continuous parameters of a quantum circuit, but also
the gates within the circuit itself, which come from a discrete
set.

The goal is to solve the following optimization problem
[88]:

(θ∗, g∗) = arg minθ,g∈GC(θ, g). (11)

Such variable-structure Ansatz approaches can be broadly
dubbed quantum architecture search (QAS) [89] to draw
parallels with neural architecture search [9,90] (NAS) in clas-
sical ML. Approaches to QAS have appeared in many forms
[71,88,91–94]. In this work, G is a gateset pool, from which a
particular sequence, g is chosen. As a summary, to solve this
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problem, we iterate over g, swap out gates, and reoptimize
the parameters, θ, until a minimum of the cost, C(θ∗, g∗) is
found. This is a combination of a discrete and continuous
optimization problem, where the discrete parameters are the
indices of the gates in g (i.e., the circuit structure), and the
continuous parameters are θ. Each time the circuit structure
is changed (a subset of gates are altered), the continuous
parameters are reoptimized, as in Ref. [71]. Variations of this
approach have been proposed in Refs. [88,95] which could be
easily incorporated, and we leave such investigation to future
work. For the results shown in Fig. 2 [for 1 → 2 cloning
phase-covariant states, Eq. (3)], we use the following three
qubit gate pool:

GPC := {R2
z (θ ), R3

z (θ ), R4
z (θ ), R2

x (θ ), R3
x (θ ), R4

x (θ ),

R2
y (θ ), R3

y (θ ), R4
y (θ ), CZ2,3, CZ3,4, CZ2,4

}
. (12)

In order to achieve the results in Fig. 3, to attack protocol
P1 using 1 → 2 state-dependent cloning, we use the following
pool:

GP1→2
1

:= {Ri
j (θ ), CZ2,3, CZ3,4

}
,

∀i ∈ {2, 3, 4},∀ j ∈ {x, y, z}, (13)

where Ri
j indicates the jth Pauli rotation acting on the ith qubit

and CZ is the controlled-Z gate. In both cases, we use the qubits
indexed 2, 3, and 4 in an Aspen-8 sublattice. Note that in
the latter case, we allow only a linear, nearest-neighbor (NN)
connectivity, which removes the need for inserting SWAP gates
by the quantum compiler. In Appendix E, we include a more
detailed discussion of the specifics of the algorithm via sup-
plementary numerical results. These considerations include
the cost functions, Ansätze, barren plateaus, sample complex-
ity of the algorithm along with the VarQlone-based analysis of
the protocols mentioned above. As a final demonstration, we
extend to the more general M → N cloning [96,97], where M
copies of the input state are transformed into N > M output
clones. Specifically, we test 1 → 3 and 2 → 4 cloning of the
states used in the coin-flipping protocol of Aharonov et al.
[68] mentioned above and the results are shown in Fig. 4,
where again we are able to find high-fidelity results for these
two problems. Figure 4 also shows the effect of circuit con-
nectivity [nearest-neighbor (NN) versus fully connected (FC)]
allowed in the gate pool for both of these cases. The best
VarQlone-learned quantum circuits for 1 → 2 cloning of the
states used in [67], P1, and 1 → 2, 1 → 3 and 2 → 4 cloning
of the states of [68], P2, are given explicitly in Appendix F.

V. DISCUSSION

Quantum cloning is one of the most important ingredients
not just as a tool in quantum cryptanalysis, but also with roots
in foundational questions of quantum mechanics. However,
given the amount of attention this field has received, a fun-
damental question remained elusive: how do we construct
efficient, flexible, and noise-tolerant circuits to actually per-
form approximate or probabilistic cloning? This question is
especially pertinent in the current NISQ era, where search
for useful applications on small scale noisy quantum devices
remains at the forefront. In this work, we attempt to an-
swer this question by proposing variational quantum cloning

FIG. 4. Clone fidelities for optimal circuits learned by VarQlone
for (a) 1 → 3 and (b) 2 → 4 cloning of the states used in the
coin-flipping protocol of [68] . Mean and standard deviations of 256
samples are shown (violin plots show full distribution of fidelities),
where the fidelities are computed using tomography only on the
Rigetti QVM. In both cases, VarQlone is able to achieve average
fidelities >80%. (c)–(d) The mean and standard deviation of the
optimal fidelities found by VarQlone over 15 independent runs (15
random initial structures, g) for a nearest neighbor (NN, purple) vs
(d) fully connected (FC, pink) entanglement connectivity allowed in
the variable structure Ansatz for 1 → 3 and 2 → 4 cloning of P2

states. Insets of (c)–(d) show corresponding allowed CZ gates in each
example.

(VarQlone), a cloning device that utilizes the capability of
short-depth quantum circuits and the power of classical com-
putation to learn the ability to clone a state (or set of states)
using the techniques of variational algorithms. This brings
into view an alternative domain of performing realistic imple-
mentation of attacks on quantum cryptographic systems. We
note, however, that in order to fully implement realistic and
practical attacks, one must consider all aspects of the protocol
environment, including, for example, the input and output
mechanisms to the quantum cloner. Incorporating VarQlone
into the full analyses of experimental implementation of quan-
tum protocols, for example, [25,26], is a fruitful avenue for
future work.

In conclusion, we remark that our work opens frontiers
of analyzing quantum cryptographic schemes using quantum
machine learning. In particular, this is applicable to secure
communication schemes which are becoming increasingly
relevant in quantum internet era.
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APPENDIX A: CLONING WITH MULTIPLE INPUT STATES

For further background, in this section we provide some
relevant equations for the cloning fidelities in some scenarios.
In the main text, we discussed phase-covariant cloning, and
its relevance for attacking the BB84 protocol. However, the
earliest result in approximate cloning was in fact for univer-
sal cloning [13]. For example, if Eve was eavesdropping on
a protocol using arbitrary single-qubit states, the best local
fidelity she and Bob can jointly receive is F U,B

L,opt = F U,E
L,opt =

5/6 < F PC,E
L,opt . This is still higher, however, than trivial quan-

tum cloning strategies [16].
Now, as mentioned in the main text, we can provide multi-

ple (M) copies of an states to the cloner and request N output
approximate clones. This is referred to as M → N cloning

[96,97]. Generalizing the universal cloning fidelity (F U, j
L,opt) :=

F U, j
L,opt(1, 2) to the M → N scenario, the optimal local fidelity

becomes

F U, j
L,opt(M, N ) = F U

L,opt(M, N ) = M

N
+ (N − M )(M + 1)

N (M + 2)
.

(A1)
In the limit M → ∞, an optimal cloning machine becomes
equivalent to an quantum state estimation machine [16] for
universal cloning. In the context of cryptography, M → N
cloning can be modeled as having N adversaries, E1 . . . , , EN

who receive M copies of the state to be cloned. N − M ancilla
qubits are used to assist, so the initial state is |ψA〉⊗M ⊗
|0〉⊗N−M .

Examining M → N cloning in the case of fixed-overlap
states reveals an interesting feature of QCMs, which has rel-
evance for the cost functions we define in Appendix B. For
these states, the optimal global fidelity of cloning the two
states in Eq. (6) is given by

F FO
G,opt(M, N ) = 1

2 (1 + sM+N +
√

1 − s2M
√

1 − s2N ). (A2)

Interestingly, it can be shown that the state-dependent quan-
tum cloning machine (SDQCM) which achieves this optimal
global fidelity, does not actually saturate the optimal local
fidelity. Instead, computing the local fidelity for the globally
optimized SDQCM gives [98]

F FO, j
L,∗ (M, N ) = 1

4

[
1 + sM

1 + sN
(1 + s2 + 2sN )+ 1 − sM

1 − sN
(1 + s2 − 2sN ) + 2

1 − s2M

1 − s2N
(1 − s2)

]
, ∀ j. (A3)

In contrast, computing the optimal local fidelity for this scenario [78] (for 1 → 2 cloning) is

F FO, j
L,opt = 1

2
+

√
2

32s
(1 + s)(3 − 3s +

√
1 − 2s + 9s2)

√
−1 + 2s + 3s2 + (1 − s)

√
1 − 2s + 9s2, ∀ j. (A4)

It can be shown that the minimum value for this expression is
achieved when s = 1

2 and gives F FO, j
L,opt ≈ 0.987, which is much

better than the symmetric phase-covariant cloner.
Comparing Eq. (A4) and Eq. (A3) reveals that F FO, j

L,∗ (1, 2)

is actually a lower bound for the optimal local fidelity, F FO, j
L,opt

in Eq. (A4). This point is crucially relevant in our designs for
a variational cloning algorithm and affects our ability to prove
faithfulness arguments.

APPENDIX B: VARIATIONAL QUANTUM CLONING:
COST FUNCTIONS, GRADIENTS, AND GUARANTEES

In this Appendix, we elaborate on the details of our varia-
tional quantum cloning algorithm discussed in the main text.
Before doing so, we provide a gentle introduction to the
motivations, methods and mind set for developing variational
algorithms.

As mentioned in the main text, the primary reason for
the development of variational quantum algorithms (VQAs)
[31–35] is the availability of NISQ quantum computers
(through the cloud [72,99,100]). The small size of these
devices and current noise rates put a speedup in, for example,

factoring large prime numbers [36] out of reach, and “coher-
ent” algorithms more generally.

VQAs have been proposed for a range of applications from
learning Grover’s algorithm [50] and compiling quantum cir-
cuits [51–53] to solving linear systems of equations [54–56]
and even extending to the foundations of quantum mechan-
ics [62], among others [82,101–104]. Deeper fundamental
questions about the computational complexity [31,32], train-
ability [69,70,105–109], and noise resilience [83,110,111] of
VQAs have also been considered. While all of the above are
tightly related, each application and problem domain presents
its own unique challenges, for example, requiring domain-
specific knowledge, efficiency, interpretability of solution, etc.
The tangential relationship of these algorithms to machine
learning techniques also opens the door to the wealth of in-
formation and techniques available in that field [112,113]. A
parallel and related line of research has focused on purely
classical machine learning techniques (for example, reinforce-
ment learning) to discover alternative quantum experiments
[57–60] and quantum communication protocols [61].

The variational approach has been useful in quantum in-
formation and has been applied successfully to learn quantum
algorithms. More interestingly, given the flexibility of the
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method, it can learn alternate versions of quantum primitives,
or even improved versions in some cases to achieve a particu-
lar task. For example, the work of Ref. [71] found alternative
methods to compute quantum state overlap and Ref. [114]
is able to learn circuits which are better suited to a given
hardware.

In light of the above, let us now turn to the specifics
of VarQlone. An overview of the relevant parts is given in
Fig. 7. In the following sections, we highlight some important
ingredients of the algorithm, including the cost functions we
use, and the derivations of their corresponding gradients, and
theoretical guarantees on them. The one key ingredient miss-
ing from this section is the choice of Ansatz we use in the
algorithm, but we will revisit this later when discussing the
numerical results in greater detail.

1. Cost functions

In the main text, we introduced a functional form for our
local cost functions, and discussed one specific instance of it.
Here we elaborate on the alternative choices of cost functions
one can choose, including a global cost, a cost for asymmetric
cloning and an alternative local symmetric cost function.

We begin by stating the functions, and then discussing the
various ingredients and their relative advantages. The first cost
(introduced in the main text) we refer to as the “squared local
cost” or just “squared cost” for brevity:

CM→N
sq (θ) := E

|ψ〉∈S

{
N∑

i=1

[
1 − F i

L (θ)
]2

+
N∑

i< j

[
F i

L (θ) − F j
L (θ)
]2}

. (B1)

The second local cost we call the linear local cost or “local
cost” again for brevity, given by

CM→N
L (θ) := E

|ψ〉∈S

[
Cψ

L (θ)
]

:= E
|ψ〉∈S

[
Tr
(
Oψ

L ρθ

)]
,

Oψ

L := 1 − 1

N

N∑
j=1

|ψ〉〈ψ | j ⊗ 1 j̄, (B2)

where |ψ〉 ∈ S is the family of states to be cloned.

Now, these first two cost functions are related only in that
they are both functions of local observables, i.e., the local
fidelities. The third and final cost is fundamentally different
to the other two, in that it instead uses global observables, and
as such, we refer to it as the “global cost”:

CM→N
G (θ) := E

|ψ〉∈S

[
Tr
(
Oψ

Gρθ

)]
, Oψ

G := 1 − |ψ〉〈ψ |⊗N .

(B3)

The second local cost and our global cost functions
are adapted from the literature on variational algorithms
[51,70,82,83]. For compactness, we will drop the superscript
M → N when the meaning is clear from context.

Now, we motivate our choices for the above cost functions.
For Eq. (B1), if we restrict to the special case of 1 → 2
cloning (i.e., we have only two output parties, j ∈ {B, E}),
and remove the expectation value over states, we recover the
cost function used in Ref. [81]. A useful feature of this cost
is that symmetry is explicitly enforced by the difference term
[Fi(θ) − Fj (θ)]2.

In contrast, the local and global cost functions are inspired
by other variational algorithm literature [51,70,82,83] where
their properties have been extensively studied, particularly
in relation to the phenomenon of “barren plateaus” [69,70].
It has been demonstrated that hardware-efficient Ansätze are
untrainable (with either differentiable or nondifferentiable
methods) using a global cost function similar to Eq. (B3),
since they have exponentially vanishing gradients [84].
In contrast, local cost functions [Eq. (B2) and Eq. (B1)]
are shown to be efficiently trainable with O(log N ) depth
hardware-efficient Ansätze [70]. We explicitly prove this
property also for our local cost [Eq. (B2)] in Appendix E 1 b.

We also remark that typically global cost functions are
usually more favorable from the point of view of operational
meaning, for example, in variational compilation [51], this
cost function compares the closeness of two global unitaries.
In this respect, local cost functions are usually used as a proxy
to optimize a global cost function.

In our case, the nature of quantum cloning allows VarQlone
local cost functions to have immediate operational meaning,
illustrated through the following example [using the local
cost, Eq. (B2)] for 1 → 2 cloning:

Cψ

L (θ) = Tr

[(
1 − 1

2

2∑
j=1

|ψ〉〈ψ | j ⊗ 1 j̄

)
ρθ

]
⇒ CL(θ) = 1 − 1

2
E
[
FL
(|ψ〉〈ψ |, ρ1

θ

)+ FL
(|ψ〉〈ψ |, ρ2

θ

)]
,

where E[FL] is the average fidelity [16] over the possible input states. The final expression of CL(θ) in the above equation follows
from the expression of fidelity when one of the states is pure. Similarly, the global cost function relates to the global fidelity of
the output state with respect to the input state(s).

2. Cost function gradients

In this work, we opt for a gradient-descent-based optimization approach, for which we require the efficient computation of
gradients. Here we derive the analytic gradients for our cost functions. We use the local cost function, Eq. (B1) as an explicit
example and the derivations for the other cost functions follow straightforwardly. As a reminder, the squared cost is given by

CM→N
sq (θ) := E

|ψ〉∈S

{
N∑

i=1

[
1 − F i

L (θ)
]2 +

N∑
i< j

[
F i

L (θ) − F j
L (θ)
]2}

, (B4)
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where the expectation is taken over the uniform distribution. For example, in the phase-covariant cloner of the states Eq. (3), the
parameters, η are sampled uniformly from the interval, [0, 2π ).

Now, the derivative of Eq. (B4), with respect to a single parameter, θl , is given by

∂Csq(θ)

∂θl
= 2 E

|ψ〉∈S

{
N∑

i=1

[
1 − F i

L (θ)
][−∂F i

L (θ)

∂θl

]
+

N∑
i< j

(
F i

L (θ) − F j
L (θ)
)[∂F i

L (θ)

∂θl
− ∂F j

L (θ)

∂θl

]}
.

We can rewrite the expression for the fidelity of the jth clone as

F j
L (θ) = 〈ψ |ρ j (θ)|ψ〉 = Tr[|ψ〉〈ψ |ρ j] = Tr[|ψ〉〈ψ |Tr j̄ (U (θ)ρinitU (θ)†)]. (B5)

Using the linearity of the trace, the derivative of the fidelities with respect to the parameters, θl , can be computed:

∂F j
L (θ)

∂θl
= Tr

[
|ψ〉〈ψ |Tr j̄

(
∂U (θ)ρinitU (θ)†

∂θl

)]
. (B6)

Now if we assume that each U (θ) := U (θd )U (θd−1) · · ·U (θ1) is composed of unitary gates of the form: U (θl ) = exp(−iθl�l ),
where �2

l = 11 (for example, a tensor product of Pauli operators), then from Refs. [45,84], we get

∂U (θ)ρinitU (θ)†

∂θl
= U l+ π

2 (θ)ρinit[U (θ)l+ π
2 ]† − U l− π

2 (θ)ρinit[U (θ)l− π
2 ]†, (B7)

where the notation U l± π
2 indicates the lth parameter has been shifted by ±π

2 , i.e., U l± π
2 := U (θd )U (θd−1) · · ·U (θl ±

π/2) · · ·U (θ1). Now,

∂F j
L (θ)

∂θl
= Tr
(
|ψ〉〈ψ |Tr j̄

{
U l+ π

2 (θ)ρinit
[
U (θ)l+ π

2
]†})− Tr

(
|ψ〉〈ψ |Tr j̄

{
U l− π

2 (θ)ρinit
[
U (θ)l− π

2
]†})

⇒ ∂F j
L (θ)

∂θl
= Tr
[
|ψ〉〈ψ |ρ l+ π

2
j (θ)
]

− Tr
[
|ψ〉〈ψ |ρ l− π

2
j (θ)
]

= F
( j,l+ π

2 )
L (θ) − F

( j,l− π
2 )

L (θ),

where we define F
(l± π

2 )
j (θ) := 〈ψ |ρ l± π

2
j (θ)|ψ〉 the fidelity of the jth clone, when prepared using a unitary whose lth parameter

is shifted by ±π
2 , with respect to a target input state, |ψ〉.

Plugging this into the above expression, we get

∂Csq(θ)

∂θl
= 2E

|ψ〉∈S

[
N∑

i< j

(
F i

L − F j
L

)[
F

(i,l+ π
2 )

L − F
(i,l− π

2 )
L − F

( j,l+ π
2 )

L + F
( j,l− π

2 )
L

]− N∑
i=1

(
1 − F i

L

)[
F

(i,l+ π
2 )

L − F
(i,l− π

2 )
L

]]
. (B8)

Using the same method, we can also derive the gradient of
the local cost, Eq. (B2), with N output clones as

∂CL(θ)

∂θl
= E

(
N∑

i=1

[
F i,l−π/2

L − F i,l+π/2
L

])
. (B9)

Finally, similar techniques result in the analytical expression
of the gradient of the global cost function:

∂CG(θ)

∂θl
= E
(
F l−π/2

G − F l+π/2
G

)
, (B10)

where FG := F (|ψ〉〈ψ |⊗N , ρθ ) is the global fidelity between
the parameterized output state and an N-fold tensor product
of input states to be cloned.

3. Cost function guarantees

We would like to have theoretical guarantees about the
above cost functions in order to use them. One particular

1From Ref. [84], we actually need to assume only that �l has at
most two unique eigenvalues.

desirable feature is faithfulness [51,54], meaning achieving
the cost minimum indicates a solution to the problem in
question.

Unfortunately, due to the hard limits on approximate quan-
tum cloning, the above costs cannot have a minimum at 0,
but instead at some finite value (say, Copt

L for the local cost).
If one has knowledge of the optimal cloning fidelities for
the problem at hand, then normalized cost functions with a
minimum at zero can be defined. Otherwise, one must take
the lowest value found to be the approximation of the cost
minimum.

Despite this, we can still derive certain theoretical guaran-
tees about them. Specifically, we consider notions of strong
and weak faithfulness, relative to the error in our solution.
Our goal is to provide statements about the generalization
performance of the cost functions, by considering how close
the states we output from our cloning machine are to those
which would be outputted from the “optimal” cloner, rel-
ative to some metrics. In the following, we denote ρ

ψ, j
opt

(ρψ, j
θ

) to be the optimal (VarQlone learned) reduced state
for qubit j, for a particular input state, |ψ〉. If the super-
script j is not present, we mean the global state of all
clones.
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Definition 1 (Strong Faithfulness). A cloning cost func-
tion, C, is strongly faithful if

C(θ) = Copt ⇒ ρ
ψ

θ
= ρ

ψ
opt, ∀|ψ〉 ∈ S, (B11)

where Copt is the minimum value achievable for the cost, C,
according to quantum mechanics, and S is the given set of
states to be cloned.

Definition 2 (ε-Weak Local Faithfulness). A local cloning
cost function, CL, is ε-weakly faithful if∣∣CL(θ) − Copt

L

∣∣� ε ⇒ D
(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
� f (ε), ∀|ψ〉 ∈S,∀ j,

(B12)
where D(·, ·) is a chosen metric in the Hilbert space between
the two states and f is a polynomial function.

Definition 3 (ε-Weak Global Faithfulness). A global
cloning cost function, CG, is ε-weakly faithful if∣∣CG(θ) − Copt

G

∣∣ � ε ⇒ D
(
ρ

ψ

θ
, ρ

ψ
opt

)
� f (ε), ∀|ψ〉 ∈ S.

(B13)
One could also define local and global versions of strong

faithfulness, but this is less interesting so we do not focus
on it here. Let us begin by examining the squared local cost
function. For this case, we will provide the most extensive
analysis, and faithfulness proofs for the other cost functions
can be derived using similar methods.

a. Squared cost function

We first can write the squared cost function as

CM→N
sq (θ) = 1

N

∫
S

[
N∑

j=1

[1 − Fi(θ)]2

+
N∑

i< j

[Fi(θ) − Fj (θ)]2

]
dψ, (B14)

where the expectation of a fidelity Fi over the states in
distribution S is defined as E[Fi] = 1

N
∫
S Fidψ , with the nor-

malization condition being N = ∫S dψ . For qubit states, if
the normalization is over the entire Bloch sphere in SU (2),
then N = 4π . For notation simplicity, we herein denote the
CM→N

sq (θ) as Csq(θ).
We begin with a proof of the how the cost function is

strongly faithful.
1. Strong Faithfulness:
Theorem 3. The squared local cost function is locally

strongly faithful, i.e.,

Csq(θ) = Copt
sq ⇒ ρ

ψ, j
θ

= ρ
ψ, j
opt ∀|ψ〉 ∈ S,∀ j ∈ [N].

(B15)

Proof. The cost function Csq(θ) achieves a minimum at
the joint maximum of E[Fi(θ)] for all i ∈ [N]. In sym-
metric M → N cloning, the expectation value of all the
N output fidelities peak at Fi = Fopt for all input states
|ψ〉. This corresponds to a unique optimal joint state
ρ

ψ, j
opt = Uopt|ψ⊗M, 0⊗N−M〉〈ψ⊗M, 0⊗N−M |U †

opt for each |ψ〉 ∈
S, where Uopt is the unitary producing the the optimal state.
Since the joint optimal state and the corresponding fidelities
are unique for all input states in the distribution, we conclude
that the cost function achieves a minimum under precisely the

unique condition, i.e., E[Fj (θ)] = Fopt for all j ∈ [N]. This
condition implies that

ρ
ψ, j
θ

= ρ
ψ, j
opt , ∀|ψ〉 ∈ S,∀ j ∈ [N]. (B16)

We note that since Fopt is the same for all the reduced states
j ∈ [N], this implies that the optimal reduced states are all
the same for a given |ψ〉 ∈ S . Thus Eq. (B16) provides the
necessary guarantee that minimizing the cost function results
in the corresponding circuit output being equal to the optimal
cloned state for all the inputs. �

2. Weak Faithfulness:
Computing the exact fidelities of the output states requires

an infinite number of copies. In reality, we run the iteration
only a finite number of times and thus our cost function can
only reach the optimal cost up to some precision. This is also
relevant when running the circuit on devices in the NISQ era
which would inherently introduce noise in the system. Thus,
we can hope only to minimize the the cost function up to
within some precision of the optimal cost.

Formally, we state this as the following lemma:
Lemma 1. Suppose the cost function is ε-close to the opti-

mal cost in symmetric cloning

Csq(θ) − Copt
sq � ε, (B17)

then we have

Tr
[(

ρ
ψ, j
opt − ρ

ψ, j
θ

)|ψ〉〈ψ |]
� N ε

2(1 − Fopt )
, ∀|ψ〉 ∈ S,∀ j ∈ [N]. (B18)

Proof. In M → N symmetric cloning, the optimal cost
function value is achieved when each output clone achieves
the fidelity Fopt. Thus, using Eq. (B1), the optimal cost func-
tion value is given by

Copt
sq = N (1 − Fopt )

2. (B19)

The optimal cost function corresponds to all output clones
having the same fidelity. Therefore, as we begin to minimize
the cost Csq(θ), all the output clones start to produce states
with approximately same fidelity. This is explicitly enforced
by taking the limit ε → 0, in which case the difference terms
of Eq. (B1) vanish. Thus, the cost function explicitly enforces
the symmetry property. Let us assume ε → 0, and consider
the quantity Csq(θ) − Copt

sq :

Csq(θ) − Copt
sq

= 1

N

∫
S

[
N∑
i

[1 − Fi(θ)]2 +
N∑

i< j

[Fi(θ) − Fj (θ)]2

]
×dψ − N (1 − Fopt )

2

≈
ε→0

1

N

∫
S

[
N∑
j

[1 − Fj (θ)]2 − N (1 − Fopt )
2

]
dψ

≈ 1

N

∫
S

[
N∑
j

[Fopt − Fj (θ)][2 − Fopt − Fj (θ)]

]
dψ
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� 2(1 − Fopt )

N

∫
S

[
N∑
j

[Fopt − Fj (θ)]

]
dψ

= 2(1 − Fopt )

N

[
N∑
j

∫
S

Tr
[(

ρ
ψ, j
opt − ρ

ψ, j
θ

)|ψ〉〈ψ |] dψ

]
.

(B20)

The second line follows since Fopt is the same for each input
state, |ψ〉. Utilizing the inequality in Eq. (B17) and Eq. (B20),
we obtain

N∑
j

∫
S

Tr
[(

ρ
ψ, j
opt − ρ

ψ, j
θ

)|ψ〉〈ψ |]dψ � N ε

2(1 − Fopt )

⇒ Tr
[(

ρ
ψ, j
opt − ρ

ψ, j
θ

)|ψ〉〈ψ |] � N ε

2(1 − Fopt )
,

∀|ψ〉 ∈ S,∀ j ∈ [N]. (B21)

�

The above inequality allows us to quantify the close-
ness of the state produced by VarQlone and the unique
optimal clone for any |ψ〉 ∈ S . We quantify this close-
ness of the states in the two popular distance measures in
quantum information, the Fubini-Study (or Bures angle) dis-
tance [115] and the trace distance between the two quantum
states.

Using the above lemma, we can prove the following two
theorems for the squared local cost function:

Theorem 4. The squared cost function as defined Eq. (B1),
is ε-weakly faithful with respect to the Fubini-distanc measure
DFS. In other words, if the squared cost function, Eq. (B1), is
ε-close to its minimum, i.e.,

Csq(θ) − Copt
sq � ε, (B22)

where Copt
sq := min

θ

∑N
i [1 − Fi(θ)]2+∑N

i< j[Fi(θ)−Fj (θ)]2 =
N (1 − Fopt )2 is the optimal theoretical cost using fidelities
produced by the ideal symmetric cloning machine, then the
following fact holds:

DFS
(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
� N

2(1 − Fopt ) sin(Fopt )
ε := f1(ε), ∀|ψ〉 ∈ S,∀ j ∈ [N]. (B23)

Proof. To prove Theorem 4, we revisit and rewrite the Fubini-Study distance as [115]

DFS(ρ, σ ) = arccos
√

F (ρ, σ ) = arccos 〈φ|τ 〉, (B24)

where |φ〉 and |τ 〉 are the purifications of ρ and σ , respectively, which maximize the overlap. We note that DFS(ρ, σ ) lies between
[0, π/2], with the value π/2 corresponding to the unique solution of ρ = σ . Since this distance is a metric, it obeys the triangle’s
inequality, i.e., for any three states ρ, σ , and δ,

DFS(ρ, σ ) � DFS(ρ, δ) + DFS(σ, δ). (B25)

Rewriting the result of Lemma 1 in terms of fidelity for each |ψ〉 ∈ S and correspondingly in terms of Fubini-Study distance
using Eq. (B24) is

F
(
ρ

ψ, j
opt , |ψ〉)− F

(
ρ

ψ, j
θ

, |ψ〉) � ε′ ⇒ cos2
[
DFS
(
ρ

ψ, j
opt , |ψ〉)]− cos2

[
DFS
(
ρ

ψ, j
θ

, |ψ〉)] � ε′, (B26)

where ε′ = N ε/2(1 − Fopt ). Let us denote Dψ
± = DFS(ρψ, j

opt , |ψ〉) ± DFS(ρψ, j
θ

, |ψ〉) This inequality in Eq. (B26) can be further
rewritten as

cos
[
DFS
(
ρ

ψ, j
opt , |ψ〉)]− cos

[
DFS
(
ρ

ψ, j
θ

, |ψ〉)] � ε′

cos
[
DFS
(
ρ

ψ, j
opt , |ψ〉)]+ cos

[
DFS
(
ρ

ψ, j
θ

, |ψ〉)] ,
cos
[
DFS
(
ρ

ψ, j
opt , |ψ〉)]− cos

[
DFS
(
ρ

ψ, j
θ

, |ψ〉)] � ε′

2 cos
[
DFS
(
ρ

ψ, j
opt , |ψ〉)] ,

2 sin

(
Dψ

+
2

)
sin

(
Dψ

−
2

)
� ε′

2 cos
[
DFS
(
ρ

ψ, j
opt , |ψ〉)]

⇒ Dψ
− � ε′

sin
[
DFS
(
ρ

ψ, j
opt , |ψ〉)] = N ε

2(1 − Fopt ) sin(Fopt )
, (B27)

where we have used the approximations that in the limit ε → 0, DFS(ρψ, j
opt , |ψ〉) ≈ DFS(ρψ, j

θ
, |ψ〉) and the trigonometric

identities cos(x − y) = 2 sin( x+y
2 ) sin( x−y

2 ), and sin 2x = 2 sin x cos x.

Further, using the Fubini-Study metric triangle’s inequality on the states {ρψ, j
opt , ρ

ψ, j
θ

, |ψ〉} results in

DFS
(
ρ

ψ, j
θ

, |ψ〉) � DFS
(
ρ

ψ, j
opt , |ψ〉)+ DFS

(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
. (B28)
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Combining the above inequality and Eq. (B27) results in

DFS
(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
� N

2(1 − Fopt ) sin(Fopt )
ε, ∀|ψ〉 ∈ S. (B29)

This bounds the closeness of the trained output state and the optimal output state as a function of ε. �

As our second result, we prove Theorem 5 which provides
a similar result, but relative to the trace distance. Contrary to
the Fubini-Study distance, this result holds true only when the
input states are qubits. The trace distance is a desirable bound
to have since it is a strong notion of distance between quan-
tum states, generalizing the total variation distance between
classical probability distributions [115].

Theorem 5. The squared cost function, Eq. (B1), is ε-
weakly faithful with respect to the trace distance DTr:

DTr
(
ρ

ψ, j
opt , ρ

ψ, j
θ

)
� g1(ε), ∀ j ∈ [N], (B30)

where

g1(ε) ≈ 1

2

√
4Fopt (1 − Fopt ) + ε

N (1 − 2Fopt )

2(1 − Fopt )
. (B31)

Proof. First, we note that Fopt = 〈ψ |ρψ, j
opt |ψ〉 is the same

value for all input states |ψ〉 ∈ S . We apply the change of
basis from |ψ〉 → |0〉 by applying the unitary V |ψ〉 = |0〉.
Then the effective change on the state ρ

ψ, j
opt to have a fidelity

Fopt with the state |0〉 is, ρ
ψ, j
opt → V ρ

ψ, j
opt V †.

We can write the state V ρ
ψ, j
opt V † as

V ρ
ψ, j
opt V † =

(
Fopt a∗
a 1 − Fopt

)
, (B32)

where we use the usual properties of a density ma-
trix and a ∈ C. The upper bound condition in Eq. (B48)
states that 〈ψ |ρψ, j

opt − ρ
ψ, j
θ

|ψ〉 = 〈0|V (ρψ, j
opt − ρ

ψ, j
θ

)V †|0〉 =
N ε/2(1 − Fopt ) = ε′ then becomes

V ρ
ψ, j
θ

V † =
(

Fopt + ε′ b∗
b 1 − (Fopt + ε′)

)
(B33)

for some b ∈ C. The condition that V ρ
ψ, j
opt V †,V ρ

ψ, j
θ

V † � 0,
i.e., they are positive, implies that

|a|2 � Fopt (1 − Fopt ) ≡ r2
Foct

,

|b|2 � (Fopt + ε′)[1 − (Fopt + ε′)] ≡ rFopt+ε′ . (B34)

The trace distance between two general qubit states is related
to the positive eigenvalue of the difference of the two qubit
states. Consider the eigenvalues of V ρ

ψ, j
opt V † − V ρ

ψ, j
θ

V †. The

two eigenvalues of this matrix is λ± = ±
√

ε′2 + |a − b|2.
From this, the trace distance between the two states is

DTr
(
V ρ

ψ, j
opt V †,V ρ

ψ, j
θ

V †
) = 1

2

∣∣∣∣V ρ
ψ, j
opt V † − V ρ

ψ, j
θ

V †
∣∣∣∣

= 1
2 |λ+| = 1

2

√
ε′2 + |a − b|2.

(B35)

We note that the trace distance is unitary invariant. Thus,

DTr
(
ρ

ψ, j
opt , ρ

ψ, j
θ

) = DTr
(
V ρ

ψ, j
opt V †,V ρ

ψ, j
θ

V †
)

= 1

2

√
ε′2 + |a − b|2

� 1

2

√
ε′2 + (rFoct + rFopt+ε′

)2
≈ 1

2

√
4Fopt (1 − Fopt ) + ε′(1 − 2Fopt )

= 1

2

√
4Fopt (1 − Fopt ) + ε

N (1 − 2Fopt )

2(1 − Fopt )
,

(B36)

where we have used the inequality |a − b|2 � ||a| + |b||2 for
all a, b ∈ C. �

b. Local cost function

Next, we prove analogous results for the local cost func-
tion, defined for M → N cloning to include the distribution S
over the input states is

CL(θ) := E

[
1 − 1

N

(
N∑

j=1

Fj (θ)

)]

= 1 − 1

NN

∫
S

N∑
j=1

Fj (θ) dψ, (B37)

where N = ∫S dψ is the normalization condition. As above,
we can show this cost function also exhibits strong faithful-
ness:

1. Strong Faithfulness:
Theorem 6. The squared local cost function is locally

strongly faithful:

CL(θ) = Copt
L ⇒ ρ

ψ, j
θ

= ρ
ψ, j
opt , ∀|ψ〉 ∈ S,∀ j ∈ [N].

(B38)
Proof. Similar the faithfulness arguments of the squared

cost function, one can immediately see that the cost function
CL(θ) achieves a unique minimum at the joint maximum of
E[Fj (θ)] for all j ∈ [N]. Thus, the minimum of CL(θ) cor-
responds to the unique optimal joint state with its unique
local reduced states ρ

ψ, j
opt for each j ∈ [N] for each input state

|ψ〉 ∈ S . Thus the cost function achieves a minimum under
precisely the unique condition, i.e., the output state is equal to
the optimal clone state. �

2. Weak Faithfulness:
Now we can also prove analogous versions of weak faith-

fulness. Many of the steps in the proof follow similarly to the
squared cost derivations above, so we omit them for brevity
where possible. As above, we first have the following lemma:

Lemma 2. Suppose the cost function is ε-close to the opti-
mal cost in symmetric cloning

CL(θ) − Copt
L � ε, (B39)

042604-12



PROGRESS TOWARD PRACTICAL QUANTUM … PHYSICAL REVIEW A 105, 042604 (2022)

where we assume limε→0 |E[Fi(θ)] − E[Fj (θ)]| → 0,∀i, j,
and therefore Copt := 1 − Fopt. Then,

Tr
[(

ρ
ψ, j
opt − ρ

ψ, j
θ

)|ψ〉〈ψ |] � N ε, ∀|ψ〉 ∈ S,∀ j ∈ [N].
(B40)

The proof of Lemma 2 follows identically to Lemma 1, but
with the exception that we can write CL(θ) − Copt

L = E(Fopt −
F (θ)) in the symmetric case, assuming Fi(θ) ≈ Fj (θ), ∀i �=
j ∈ [N].

Now we can prove the following theorem:
Theorem 7. The local cost function, Eq. (B2), is ε-weakly faithful with respect to DFS:

CL(θ) − Copt
L � ε, (B41)

where Copt
L := 1 − Fopt then the following fact holds:

DFS
(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
� N ε

sin(Fopt )
=: f2(ε), ∀|ψ〉 ∈S,∀ j ∈ [N]. (B42)

Proof. We rewrite the Eq. (B40) in terms of the Fubini-Study distance,

F
(
ρ

ψ, j
opt , |ψ〉)− F

(
ρ

ψ, j
θ

, |ψ〉) � N ε ⇒ cos2
[
DFS
(
ρ

ψ, j
opt , |ψ〉)]− cos2

[
DFS
(
ρ

ψ, j
θ

, |ψ〉)] � N ε. (B43)

Following the derivation in the squared cost function section, we obtain the Fubini-Study closeness as

DFS
(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
� N ε

sin(Fopt )
, ∀|ψ〉 ∈ S,∀ j ∈ [N]. (B44)

�
Finally, we have Theorem 8 relating to the trace distance. The proof follows identically to Theorem 5 so we just state the

result:
Theorem 8. The local cost function, Eq. (B2), is ε-weakly faithful with respect to DTr on qubits:

DTr
(
ρ

ψ, j
opt , ρ

ψ, j
θ

)
� 1

2

√
4Fopt (1 − Fopt ) + N ε(1 − 2Fopt ) =: g2(ε), ∀ j ∈ [N]. (B45)

c. Global cost function

Finally, we show in the next theorems that the global cost
function exhibits similar notions of faithfulness:

Theorem 9. The global cost function is globally strongly
faithful, i.e.,

CG(θ) = Copt
G ⇒ ρ

ψ

θ
= ρ

ψ
opt, ∀|ψ〉 ∈ S. (B46)

Proof. The global cost function CG(θ) achieves the
minimum value Copt

G at a unique point corresponding to
E[FG(θ)] = F opt

G , where F opt
G corresponds to the fidelity term

for Copt
G . This corresponds to the unique global clone state

ρ
ψ
opt. Thus the cost function, achieves a unique minimum

under precisely the unique condition, i.e., the output global
state is equal to the optimal clone state for all inputs in the
distribution. �

Now we provide statements of weak faithfulness, some-
thing that is much more relevant in the practical implementa-
tion of the cloning scheme using global optimization.

Lemma 3. Suppose the cost function is ε-close to the opti-
mal cost in symmetric cloning

CG(θ) − Copt
G � ε, (B47)

where Copt
G := 1 − F opt

G . Then

Tr
[(

ρ
ψ
opt − ρ

ψ

θ

)|ψ〉⊗2〈ψ |⊗2
]
� N ε, ∀|ψ〉 ∈ S. (B48)

Proof. The proof of Lemma 3 follows identically to
Lemma 2 but with the exception that CG(θ) − Copt

G =
E[F opt

G − FG(θ)]. �

Finally, we have the following theorem relating to weak
faithfulness of the global cost function:

Theorem 10. Suppose the cost function is ε-close to the
optimal cost in symmetric cloning

CG(θ) − Copt
G � ε, (B49)

where Copt
G := 1 − F opt

G . Then

DFS
(
ρ

ψ

θ
, ρ

ψ
opt

)
� N ε

sin
(
F opt

G

) =: f4(ε), ∀|ψ〉 ∈ S (B50)

and

DTr
(
ρ

ψ
opt, ρ

ψ

θ

)
� 1

2

√
4F opt

G

(
1 − F opt

G

)+ N ε
(
1 − 2F opt

G

)
=: g4(ε), ∀|ψ〉 ∈ S. (B51)

Proof. The proof of Theorem 10 follows along the same
lines as the proof of closeness of the Fubini-Study distance
for standard local cost function as provided in Theorem 7 and
the closeness of trace distance as provided in Theorem 8. �

d. Global versus local faithfulness

This section explores the relationship between local
and global cost function optimization for different cloners
(universal, phase-covariant, etc.). In particular, we address the
question of whether optimizing a cloner with a local or a
global cost function also achieves an optimal solution relative
to the other cost (operational meaning). If the answer is affir-
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mative, we can use whichever cost exhibits the most desirable
qualities and be confident they will achieve the same results.
If not, we must be more careful as the choice may not lead
to the optimal behavior we desire and so will be application
dependent.

We note that this relationship only manifests in symmetric
cloning, since there is no possibility to enforce asymmetry in
the global cost function. As we will see in Eq. (B70), the only
way to enforce asymmetry is by constructing a cost function

which optimizes with respect to the local asymmetric optimal
fidelities.

The tradeoff between local and global faithfulness turns out
to be subtle when dealing with cloning problems, and is in
contrast to similar studies in analogous variational algorithm
literature. To begin, we have the following theorem:

Theorem 11. For the general case of M → N cloning, the
global cost function CG(θ) and the local cost function CL(θ)
satisfy the inequality

CL(θ) � CG(θ) � NCL(θ). (B52)

Proof. We first prove the first part of the inequality:

CG(θ) − CL(θ) = 1

N

∫
S

Tr
[(

Oψ

G − Oψ

L

)
ρ

ψ

θ

]
dψ

= 1

NN

∫
S

Tr

[(
N∑

j=1

(|ψ〉〈ψ | j ⊗ 1 j̄ − |ψ〉〈ψ |1 ⊗ · · · |ψ〉〈ψ |N )

)
ρ

ψ

θ

]
� 0

⇒ CG(θ) � CL(θ), (B53)

where Oψ

L is defined in Eq. (B2), and the inequality in the second line holds because

N∑
j=1

(|ψ〉〈ψ | j ⊗ 1 j̄ − |ψ〉〈ψ |1 ⊗ · · · |ψ〉〈ψ |N
) = N∑

j=1

|ψ〉〈ψ | j ⊗ (1 j̄ − |ψ〉〈ψ | j̄ ) � 0, ∀|ψ〉 ∈ S. (B54)

For the second part of the inequality, we consider the operator NOψ

L − Oψ

G,

NOψ

L − Oψ

G = (N − 1)1 −
N∑

j=1

(|ψ〉〈ψ | j ⊗ 1 j̄

)+ |ψ〉〈ψ |1 ⊗ · · · |ψ〉〈ψ |N

=
N−1∑
j=1

(1 j ⊗ 1 j̄ − |ψ〉〈ψ | j ⊗ 1 j̄ ) − |ψ〉〈ψ |N ⊗ 1N̄ + |ψ〉〈ψ |1 ⊗ · · · |ψ〉〈ψ |N

=
N−1∑
j=1

[(1 − |ψ〉〈ψ |) j ⊗ 1 j̄] −
N−1⊗
j=1

(1 − |ψ〉〈ψ |) j ⊗ |ψ〉〈ψ |N

= (1 − |ψ〉〈ψ |)1 ⊗
(
11̄ −

N−1⊗
j=2

(1 − |ψ〉〈ψ | j ) ⊗ |ψ〉〈ψ |N
)

+
N−1∑
j=2

[(1 − |ψ〉〈ψ |) j ⊗ 1 j̄]

� 0, (B55)

where the second last line is positive because each individual operator is positive for all |ψ〉 ∈ S . �

A similar inequality was proven in the work of, for example, Ref. [54]. We, however, note that the inequality proven in
Theorem 11 (unlike in Ref. [54]) does not allow us make statements about the similarity of individual clones from the closeness
of the global cost function and vice versa. This can be seen as follows:

CG(θ) − Copt
G � ε ⇒ CL(θ) − Copt

L � ε − (CG(θ) − CL(θ)) + (Copt
L − Copt

G

)
⇒ CL(θ) − Copt

L � ε + (Copt
L − Copt

G

)
� CL(θ) − Copt

L � ε. (B56)

Here we have used the result of Theorem 11 that CG(θ) � CL(θ), and we note that Copt
L − Copt

G �= 0 for all the M → N cloning.
In particular, for 1 → 2 cloning, Copt

L = 5/6, while Copt
G = 2/3. This is due to the nonvanishing property of these cost functions,

even at the theoretical optimal, and highlights the subtlety of the case in hand.
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While we are unable to leverage generic inequalities for our purpose based on the cost functions, we can make statements in
specific cases. In other words, by restricting the cloning problem to a specific input set of states, we can guarantee that optimizing
globally will be sufficient to also optimize local figures of merit.

In particular, in the following we establish this strong and weak faithfulness guarantees for the special cases of universal and
phase-covariant cloning by analyzing problem-specific features.

Theorem 12. The global cost function is locally strongly faithful for a universal symmetric cloner, i.e.:

CG(θ) = Copt
G ⇐⇒ ρ

ψ, j
θ

= ρ
ψ, j
opt , ∀|ψ〉 ∈ H,∀ j ∈ {1, . . . , N}. (B57)

Proof. In the symmetric universal case, Copt
L has a unique

minimum when each local fidelity saturates:

F opt
L = M(N + 2) + N − M

N (M + 2)
, (B58)

achieved by local reduced states, {ρψ, j
opt }N

j=1. Now it has been
shown that the optimal global fidelity FG that can be reached
[16,116] is

F opt
G = N!(M + 1)!

M!(N + 1)!
, (B59)

which also is the corresponding unique minimum value for
Copt

G , achieved by some global state ρ
ψ
opt.

Finally, it was proven in Refs. [117,118] that the cloner
which achieves one of these bounds is unique and also sat-
urates the other, and therefore must also achieve the unique
minimum of both global and local cost functions, Copt

G and
Copt

L . Hence, the local states which optimize Copt
L must be the

reduced density matrices of the global state which optimizes
Copt

G and so

ρ
ψ, j
opt := Tr j̄

(
ρ

ψ
opt

)
, ∀ j. (B60)

Thus for a universal cloner, the cost function with respect
to both local and global fidelities will converge to the same
minimum. �

Now, before proving an analogous statement in the case of
phase-covariant cloning, we first need the following lemma
(we return to the notation of B, E , and E∗ for clarity):

Lemma 4. For any 1 → 2 phase-covariant cloning ma-
chine which takes states |0〉B ⊗ |ψ〉E and an ancillary qubit
|A〉E∗ as input, where |ψ〉 := 1√

2
(|0〉 + eiθ |1〉), and outputs a

three-qubit state |�BEE∗ 〉 in the following form:

|�BEE∗ 〉 = 1
2 [(|0, 0〉 + eiφ (sin η|0, 1〉 + cos η|1, 0〉))|0〉E∗

+ (eiφ|1, 1〉 + (cos η|0, 1〉 + sin η|1, 0〉))|1〉E∗ ],
(B61)

the global and local fidelities are simultaneously maximized
at η = π

4 where 0 � η � π
2 is the “shrinking factor.”

Proof. To prove this, we follow the formalism that was
adopted by Cerf et al. [119]. This uses the fact that a symmet-
ric phase-covariant cloner induces a mapping of the following
form [16]:

|0〉|0〉|0〉 → |0〉|0〉|0〉,
|1〉|0〉|0〉 → (sin η|0〉|1〉 + cos η|1〉|0〉)|0〉,
|0〉|1〉|1〉 → (cos η|0〉|1〉 + sin η|1〉|0〉)|1〉,
|1〉|1〉|1〉 → |1〉|1〉|1〉. (B62)

Next, we calculate the global state by tracing out the ancillary
state to get ρ

opt
G :

ρ
opt
G = TrE∗ (|�BEE∗ 〉〈�BEE∗ |) = |�1〉〈�1| + |�2〉〈�2|,

(B63)

where |�1〉 := 1
2 [|0, 0〉 + eiφ (sin η|0, 1〉 + cos η|1, 0〉)] and

|�2〉 := 1
2 [eiφ|1, 1〉 + (cos η|0, 1〉 + sin η|1, 0〉)]. Hence the

global fidelity can be found as

F opt
G = Tr

(|ψ〉〈ψ |⊗2ρ
opt
G

) = |〈ψ⊗2 |�1〉|2 + |〈ψ⊗2 |�2〉|2

= 1
8 (1 + sin η + cos η)2. (B64)

Now, optimizing F opt
G with respect η, we see that F opt

G has only
one extremum between [0, π

2 ] specifically at η = π
4 . We can

also see that the local fidelity is also achieved for the same η

and is equal to

F opt
L = 1

2

(
1 +

√
2

2

)
, (B65)

which is the upper bound for local fidelity of the phase-
covariant cloner. �

With Lemma 4 established, we can next prove:
Theorem 13. The global cost function is locally strongly

faithful for phase-covariant symmetric cloner, i.e.,

CG(θ) = Copt
G ⇐⇒ ρ

ψ, j
θ

= ρ
ψ, j
opt , ∀|ψ〉 ∈ S,∀ j ∈ {B, E},

(B66)
where S is the distribution corresponding to phase-covariant
cloning.

Proof. Now, we have in Lemma 4 that the global and local
fidelities of a phase-covariant cloner are both achieved with
a cloning transformation of the form in Eq. (B62). Applying
this transformation unitary to |ψ〉|�+〉BE (where |�+〉BE is a
Bell state) leads to Cerf’s formalism for cloning. Furthermore,
we can observe that due to the symmetry of the problem,
this transformation is unique (up to global phases) and so any
optimal cloner must achieve it.

Furthermore, one can check that the ideal circuit in
Fig. 2(b) does indeed produce an output in the form of
Eq. (B61) once the preparation angles have been set for phase-
covariant cloning. By a similar argument to the above, we
can see that a variational cloning machine which achieves
an optimal cost function value, i.e., CG(θ) = Copt

G much also
saturate the optimal cloning fidelities. Furthermore, by the
uniqueness of the above transformation [Eq. (B62)] we also
have that the local states of VarQlone are the same as the
optimal transformation, which completes the proof. �
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4. Asymmetric cloning

As discussed in the main text, for certain applications, we
require asymmetric cloning in the output states, i.e., in the
1 → 2 cloning, the optimal reduced states of Bob and Eve
do not necessarily have the same fidelities with respect to the
input states. We note that the cost functions proposed for sym-
metric cloning does not work for the asymmetric case because
the symmetric cost functions are a monotonic function of
Bob’s and Eve’s output state fidelities with respect to the input
states, thus they always converge to the optimal fidelity values
which are same for for Bob and Eve. This section provides
a construction for asymmetric cost function with a desired
output fidelity in one of the clones.

a. Optimal asymmetric fidelities

From Ref. [16], any universal 1 → 2 cloning circuit pro-
ducing outputs clones for Bob and Eve must satisfy the
no-cloning inequality:√(

1 − F p,B
L

)(
1 − F q,E

L

)
� 1

2 − (1 − F p,B
L

)− (1 − F q,E
L

)
,

(B67)
where the output clones of Bob and Eve are denote by F p,B

L

and F q,E
L for the desired parameterizations p and q.

It can be easily verified that the fidelities that saturate the
above inequality are

F p,B
L = 1 − p2

2
, F q,E

L = 1 − q2

2
, p, q ∈ [0, 1], (B68)

with p, q satisfy p2 + q2 + pq = 1. This implies that Eve is
free to choose a desired fidelity for either clone, by vary-
ing the parameter, p. For example, suppose Eve wishes to
send a clone to Bob with a particular fidelity F p

B = 1 − p2/2,
then from Eq. (B67) her clone would have a corresponding
fidelity:

F p
E = 1 − 1

4 (2 − p2 − p
√

4 − 3p2). (B69)

b. Asymmetric cost functions

From the inequality presented in the previous section, we
can derive an asymmetric cost function for 1 → 2 cloning.
Note that it can be generalized to arbitrary M → N cloning.
This cost function for a particular input state family, S is then

CL,asym(θ)

:= E
[
F p,E

L − F E
L (θ)
]2 + E
[
F p,E

L − F E
L (θ)
]2

= 1

N

∫
S

([
F p,B

L − F B
L (θ)
]2 + [F p,E

L − F E
L (θ)
]2)

dψ

(B70)

with F p, j
L , j ∈ {B, E} defined according to the conditions in

Eq. (B69). We note Eve could also choose a specific fidelity
for her clone, parameterized by q, F q,E

L = 1 − q2/2, which
would in turn determine F q,B

L as above.

c. Asymmetric faithfulness

1. Strong Faithfulness:
Theorem 14. The asymmetric 1 → 2 local cost function is strongly faithful:

CL,asym(θ) = Copt
L,asym(θ) ⇒ ρ

ψ,i
θ

= ρ
ψ,i
opt , ∀|ψ〉 ∈ S,∀i ∈ {B, E}. (B71)

Proof. The cost function CL,asym(θ) achieves the minimum value of zero, uniquely when F B
L (θ) = F p,B

L and F E
L (θ) = F p,E

L for
all input states |ψ〉 ∈ S . This corresponds to the unique reduced states ρ

ψ,B
opt and ρ

ψ,E
opt for Bob and Eve. Thus the cost function,

achieves a unique minimum of zero precisely when the output reduced state for Bob and Eve is equal to the optimal clones for
all inputs in S . �

2. Weak Faithfulness:
Returning again to ε-weak faithfulness, we get similar results as in the symmetric case above:
Theorem 15. The asymmetric cost function, Eq. (B70), is ε-weakly faithful with respect to DFS:

CL,asym(θ) − Copt
L,asym � ε, (B72)

where Copt
L,asym = 0. Then the following fact holds for Bob’s and Eve’s reduced states:

DFS
(
ρ

ψ,B
θ

, ρ
ψ,B
opt

)
�

√
N ε

sin(1 − p2/2)
, DFS
(
ρ

ψ,E
θ

, ρ
ψ,E
opt

)
�

√
N ε

sin(1 − q2/2)
. (B73)

Furthermore, we also have the following trace distance bounds:

DTr
(
ρψ,B, ρ

ψ,B
θ

)
� 1

2

√
p2(2 − p2) −

√
N ε(1 − p2), DTr

(
ρψ,E , ρ

ψ,E
θ

)
� 1

2

√
q2(2 − q2) −

√
N ε(1 − q2). (B74)

Proof. First, we derive a similar result to Lemma 2 and Lemma 1. By expanding the term |CL,asym(θ) − CL,opt| in terms of the
corresponding output states, we obtain

|CL,asym(θ) − CL,opt| =
∣∣∣∣ 1N
∫
S

([
F p,B

L − F B
L (θ)
]2 + [F p,E

L − F E
L (θ)
]2)

dψ

∣∣∣∣
= 1

N

∫
S

[(
Tr
[(

ρψ,B − ρ
ψ,B
θ

)|ψ〉〈ψ |])2 + (Tr
[(

ρψ,E − ρ
ψ,E
θ

)|ψ〉〈ψ |])2]dψ. (B75)
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Using the inequalities Eq. (B72) and Eq. (B75), we get

1

N

∫
S

(
Tr
[(

ρ
ψ, j
opt − ρ

ψ, j
θ

)|ψ〉〈ψ |])2dψ � ε ⇒ Tr
[(

ρ
ψ, j
opt − ρ

j
θ

)|ψ〉〈ψ |] � √
N ε, (B76)

where j ∈ {B, E}. Thus the above inequality holds true for the output clone states corresponding to both Bob and Eve.
Next, to derive Eq. (B73) we rewrite the Eq. (B76) in terms of the Fubini-Study metric,

F
(
ρ

ψ, j
opt , |ψ〉)− F

(
ρ

ψ, j
θ

, |ψ〉) � √
N ε ⇒ cos2

[
DFS
(
ρ

ψ, j
opt , |ψ〉)]− cos2

[
DFS
(
ρ

ψ, j
θ

, |ψ〉)] � √
N ε. (B77)

Following the derivation in the squared symmetric cost function section, we obtain the Fubini-Study closeness as

DFS
(
ρ

ψ, j
θ

, ρ
ψ, j
opt

)
�

√
N ε

sin
(
F r, j

L

) , ∀|ψ〉 ∈ S, (B78)

where F r, j
L is the optimal cloning fidelity corresponding to j ∈ {B, E} with r ∈ {p, q}. Finally, plugging in the optimal

asymmetric fidelities, F p,B
L = 1 − p2/2, and similarly for F q,E

L we arrive at

DFS
(
ρ

ψ,B
θ

, ρ
ψ,B
opt

)
�

√
N ε

sin(1 − p2/2)
, DFS

(
ρ

ψ,E
θ

, ρ
ψ,E
opt

)
�

√
N ε

sin(1 − q2/2)
. (B79)

Finally, to prove Eq. (B74), we follow the trace distance derivation bounds as in previous sections and obtain

DTr
(
ρψ, j, ρ

ψ, j
θ

)
� 1

2

√
4F r, j

L

(
1 − F r, j

L

)+ √
N ε
(
1 − 2F r, j

L

)
. (B80)

Again, plugging in the optimal fidelities for Bob and Eve completes the proof. �

5. Sample complexity of the algorithm

VarQlone requires classical minimization of one of the cost
functions C(θ) := {Csq(θ),CL(θ),Casym(θ),CG(θ)} to achieve
the optimal cost value. In order to do so, we must be able to
efficiently evaluate the cost function of choice. In our case,
this can be achieved by a method to compute the fidelity
between quantum states:

(1) Prepare an initial circuit with some values for θ. Input
a state |ψ〉 ∈ S into the circuit and compute the cost function
value Cψ (θ) using the SWAP test [120] to estimate overlap
between the output clone and the input state. Let L denote
the number of copies of the state |ψ〉 used to estimate Cψ (θ).

(2) Compute an estimator for the true cost C(θ) =
E|ψ〉∈S [Cψ (θ)] using K different states sampled from S .

Estimating the overlap in the above steps is sufficient for
our purposes, since this coincides with the fidelity when at
least one of the states is a pure state:

F (|ψ〉〈ψ |, ρ) = 〈ψ |ρ|ψ〉 = Tr(|ψ〉〈ψ |ρ). (B81)

Since VQAs are heuristic algorithms, there are no guarantees
on the number of training iterations over θ to converge to Copt.
However, one can at least provide guarantees on the number of
samples required to estimate the cost, for a particular instance
of the parameters. Since this is a necessary subroutine in the
algorithm, it must be efficient.

Theorem 16. The number of samples L × K required to
estimate the cost function C(θ) up to ε′-additive error with
a success probability δ is

L × K = O

(
1

ε′2 log
2

δ

)
, (B82)

where K is the number of distinct states |ψ〉 sampled uni-
formly at random from the distribution S , and L is the number
of copies of each input state.

Proof. We provide the proof for the cost function CG(θ).
However, this proof extends in a straightforward manner to
other cost functions. As a reminder, the global cost function is
defined as

Cψ

G (θ) =1− 〈φ|ρψ

θ
|φ〉 ⇒ CG(θ) =1− 1

N

∫
S
〈φ|ρψ

θ
|φ〉 dψ.

(B83)
The estimation of Cψ

G (θ) requires the computation of the over-
lap 〈φ|ρψ

θ
|φ〉. Let us denote |φ〉 := |ψ〉⊗N to be an N-fold

tensor product of the input state. The SWAP test proposed by
Buhrman et al. [120] is an algorithm to compute this overlap,
and the circuit is given in Fig. 5.

This test inputs the states |φ〉 and ρ
ψ

θ
with an additional

ancilla qubit |0〉, and measures the ancilla in the end in the
computational basis. The probability of obtaining an outcome
“1” in the measurement is

P [‘1′] = pψ = 1
2

(
1 − 〈φ|ρψ

θ
|φ〉). (B84)

FIG. 5. SWAP test circuit illustrated for 1 → 2 cloning. In (a) for
example, we compare the global state ρ

ψ

θ , with the state |φ〉, where
|φ〉 := |ψ〉 ⊗ |ψ〉 is the product state of two copies of ψ . (b) Local
SWAP test with the reduced state of Bob and Eve separately. One an-
cilla is required for each fidelity to be computed. The generalization
for N input states in M → N cloning is straightforward.
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From this, we see that Cψ

G (θ) = 2pψ . To estimate this cost
function value, we run the SWAP test L times and estimate
the averaged number of “1” outcomes. Let us the define the
estimator for cost function with L samples to be

Ĉψ

G,avg(θ) = 1

L

L∑
i=1

Ĉψ

G,i(θ), (B85)

where Ĉψ

G,i(θ) is equal to 2 if the SWAP test outcome at the ith
run is “1” and is 0 otherwise. From this we can see that the
expected value of Ĉψ

G,avg(θ) is

E
[
Ĉψ

G,avg(θ)
] = Cψ

G (θ) = 2pψ. (B86)

Now consider K different states {|ψ1〉, · · · |ψK〉} are chosen
uniformly at random from the distribution S . The average
value of the cost over K is

ĈG,avg(θ) = 1

K

K∑
j=1

Ĉ
ψ j

G,avg(θ) = 1

LK

K∑
j=1

L∑
i=1

Ĉ
ψ j

G,i(θ) (B87)

with

E[ĈG,avg(θ)] = 1

K

K∑
j=1

1

N

∫
S

Ĉψ

G,avg(θ) dψ = CG(θ). (B88)

Using Höeffding’s inequality [121], one can obtain a proba-
bilistic bound on |ĈG,avg(θ) − CG(θ)|,

P [|ĈG,avg(θ) − CG(θ)| � ε′] � 2e−2KLε′2
. (B89)

Now, setting 2e−2KLε′2 = δ and solving for L × K gives

L × K = O

(
1

ε′2 log
2

δ

)
. (B90)

�
Finally, we note that the SWAP test, in practice, is somewhat

challenging to implement on NISQ devices, predominately
due to the compilation overhead of compiling the 3-local
controlled SWAP into the native gateset of a particular quantum
hardware. Furthermore, in this case, we have a strict need for
the copy of the input state |ψ〉 to be kept coherent while imple-
menting the SWAP test, due to the equivalence between fidelity
and overlap if one state is pure. This is due to the fact that for
mixed quantum states, there is no known efficient method to
compute the fidelity exactly [122] and one must resort to using
bounds on it, perhaps also discovered variationally [107,123–
125]. In light of this, one could use the shorter depth circuits
to compute the overlap found using a variational approach
similar to that implemented here [71].

APPENDIX C: QUANTUM KEY DISTRIBUTION
AND CLONING ATTACKS

Here we provide further details of the cloning-based eaves-
dropping attacks on the BB84 protocol discussed in the main
text.

First, let us clarify the types of attacks one may consider.
The simplest attack by Eve is a so-called “incoherent” or
individual attack, where Eve interacts with the quantum states
only one at a time, and in the same fashion, and does so before

the reconciliation phase of the protocol. In such attacks, the
security condition states that a secret key can no longer be
extracted if the fidelity of the states received by Bob and stored
by Eve is the same compared to the original state sent by
Alice. This criterion defines the critical value for the error rate
of BB84 to be Dincoh

crit = 1 − F PC,E
L,opt = 14.6%, as mentioned in

the main text.
Based on this simple fidelity calculation, one could claim

that the VarQlone learned circuits for phase-covariant Fig. 2
achieve the same error rate since they saturate the same fi-
delity bound.

However, this criterion does not allow for comparison be-
tween a cloning machine using the ancilla, and one without.
This is important since, as discussed above and in Ref. [16],
a phase-covariant cloning machine with ancilla provides the
optimal attack on both Alice and Bob. In contrast, one without
an ancilla retains no information with which Eve can use to
attack Bob’s side of the protocol.

In order to have a better comparison we return to the
general expression for the key rate in the main text:

R = I (A:B) − min{χ (A : EQ), χ (B : EQ)}. (C1)

To compute the critical error rate from this expression,
Dcrit, it is enough to calculate the Holevo quantity for Eve, set
R = 0, and I (A:B) = 1 − H (Dcrit ) and to solve the resulting
equation for Dcrit. We do this for the circuit in Fig. 2(c) only,
since while the circuit in Fig. 2(d) achieves higher fidelities on
the Aspen hardware, it does not actually make use of the an-
cillary qubit (the sequence of gates acting on it approximately
resolve to the identity).

Now we compute the resulting mixed states outputted over
all input states to the cloning machine, for each basis state:
{|+〉, |−〉, |+i〉, |−i〉} so ρE in Eq. (5) is given by

ρE := 1
4

(
ρ+

E + ρ−
E + ρ+i

E + ρ−i
E

)
. (C2)

Similarly, ρ0
E , ρ1

E in Eq. (5) are the mixed states encoding
the symbol 0 (which have input |+〉, | + i〉) and the symbol
1 (which have input |−〉, | − i〉), so are given by

ρ0
E := 1

2

(
ρ+

E + ρ+i
E

)
ρ1

E := 1
2

(
ρ−

E + ρ−i
E

)
. (C3)

Calculating the minimum Holevo quantity (denoted by χmin)
for the above density matrices outputted by the circuit in
Fig. 2(c) numerically gives the following:

1 − H (Dcrit ) − χmin = 0,

⇒ 1 − χmin + [Dcrit log2 Dcrit

+ (1 − Dcrit ) log2 (1 − Dcrit )] = 0,

⇒ Dcrit = 15.8%, (C4)

which is very close to the optimal bound for the individual
attack and as expected, is greater than the lower bound of 11%
proved by Shor and Preskill [126]. Nevertheless as pointed out
in Refs. [16,127], the same bound can be reached by a collec-
tive attack (where Eve defers any measurements until the end
of the reconciliation phase and applies a general strategy to
all collected states) where the individual quantum operations
are still given by the optimal phase-covariant cloner. As such,
the VarQlone learned attack can almost saturate the optimal
collective bound as well.
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APPENDIX D: QUANTUM COIN FLIPPING
AND CLONING ATTACKS

With our primary objective being the improvement of prac-
ticality in attacking quantum secure communication-based
protocols, this Appendix describes the explicit protocols
whose security we analyze through the lens of VarQlone. In
this Appendix, we focus on the primitive of quantum coin
flipping [67,68] and the use of states which have a fixed
overlap. Protocols of this nature are a nice case study for our
purposes since they provide a testbed for cloning states with
a fixed overlap, and in many cases explicit security analyses
are missing. In particular in this work, to the best of our
knowledge, we provide the first purely cloning-based attack
on the protocols we analyze.

In the main text, we discussed one example of such a
protocol (i.e., that of Mayers et al. [67]) and cloning-based
attacks on it. In this section, we will introduce another such
protocol (that of Aharonov et al. [68], alluded to in the main
text), and several cloning-based attacks on it.

1. Quantum coin flipping

Let us first introduce (quantum) coin flipping in more
detail. A “biased coin” in a coin-flipping protocol has one
outcome more likely than the other, for example, with the
following probabilities:

Pr(y = 0) = 1/2 + ε,

Pr(y = 1) = 1/2 − ε,
(D1)

where y is a bit outputted by the coin. We can associate y =
0 to heads (H) and y = 1 to tails (T). The above coin is an
ε-biased coin with a bias towards H. In contrast, a fair coin
would correspond to ε = 0.

It has been shown that it is impossible2 in an information
theoretic manner, to achieve a secure coin-flipping proto-
col with ε = 0 in both the classical and quantum setting
[67,128,129]. Furthermore, there are two notions of coin flip-
ping studied in the literature: weak coin flipping (where it is
a priori known that both parties prefer opposite outcomes)
and strong coin flipping (where neither party knows the de-
sired bias of the other party). In the quantum setting, the
lowest possible bias achievable by any strong coin-flipping
protocol is limited by ∼0.207 [130]. Although several pro-
tocols have been suggested for ε-biased strong coin flipping
[2,67,68,131], the states used in them share a common struc-
ture. Here we introduce the more general form of these states
which will be useful for us (a special case of which was
introduced in the main text).

a. Quantum states for strong coin flipping

Multiple qubit coin flipping protocols utilize the following
set of states (illustrated in Fig. 6):

|φx,a〉 =
{|φx,0〉 = cos φ|0〉 + (−1)x sin φ|1〉
|φx,1〉 = sin φ|0〉 + (−1)x⊕1 cos φ|1〉 , (D2)

2Meaning it is not possible to define a coin-flipping protocol such
that neither party can enforce any bias.

FIG. 6. States used for quantum coin flipping. The first bit repre-
sents the “basis,” while the other represents one of the two orthogonal
states.

where x ∈ {0, 1}.
Such coin-flipping protocols usually have a common struc-

ture. Alice will encode some random classical bits into some
of the above states and Bob may do the same. They will then
exchange classical or quantum information (or both) as part
of the protocol. Attacks (attempts to bias the coin) by either
party usually reduce to how much one party can learn about
the classical bits of the other.

We explicitly treat two cases:
(1) The protocol of Mayers et al. [67] (protocol P1 in the

main text) in which the states, {|φ0,0〉, |φ1,0〉} are used [which
have a fixed overlap s = cos(2φ)].

(2) The protocol of Aharonov et al. [68], which uses the
full set, i.e., {|φx,a〉}. We denote this protocol P2.

These set of states are all conveniently related through a
reparameterization of the angle φ [98], which makes them
easier to deal with mathematically.

In all strong coin-flipping protocols, the security or fairness
of the final shared bit lies on the impossibility of perfect dis-
crimination of the underlying nonorthogonal quantum states.
In general, the protocol can be analyzed with either Alice
or Bob being dishonest. Here we focus, for illustration, on
a dishonest Bob who tries to bias the bit by cloning the
nonorthogonal states sent by Alice.

For all of the below, the biases are computed assuming
access to the ideal cloning machine (i.e., the one which clones
the input states with the optimal, analytic fidelities). In Ap-
pendix E, we compare these ideal biases with those achievable
using the quantum cloning machines learned by VarQlone.

2. Two-state coin-flipping protocol (P1)

In the main text, we gave a sketch the protocol of Mayers
et al. [67] for a single round and a possible cloning attack on
it. This was incidentally one of the first protocols proposed for
strong quantum coin flipping. Here Alice utilizes the states3

3Since the value of the overlap is the only relevant quantity, the
different parameterization of these states to those of Eq. (D2) does
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Attack 1. Cloning Attack on P1 with k = 1.

Inputs. Random bit for Alice (a ←R {0, 1}) and Bob (b ←R {0, 1}). Bob receives a state |φi
c〉.

Goal. A biased bit towards 0, i.e., p(x = 0) > 1/2.
The Attack:

1. for i = 1, . . . , n:
(a) Step 1: Alice announces a ⊕ ci. If a ⊕ ci = 0, Bob sends the second qubit of |φi

c〉 to Alice, otherwise he sends the first qubit.
(b) Step 2: Bob runs a 1 → 2 state-dependent cloner on the qubit he has to return to Alice, producing 2 approximate clones. He
sends her one clone and keeps the other.
(c) Step 3: Bob runs an optimal state discrimination on the remaining qubit and any other output of the cloner, and finds c1 with
a maximum success probability Popt

disc,P1
. He then guesses a bit a′ such that Psucc,P1 (a′ = a) := Popt

disc,P1
.

(d) Step 4: If a′ ⊕ b = 0 he continues the protocol honestly and announces b ⊕ d1, otherwise he announces a′ ⊕ d1. The
remaining qubit on Alice’s side is |φi

a〉.

|φ0〉 := |φ0,0〉 and |φ1〉 := |φ1,0〉 such that the angle between
them is φ := π

18 ⇒ s := cos( π
9 ). In the following, we describe

the general version of the protocol with k rounds. We also
discuss the proposed attack in more detail, and prove the
relevant theorems from the main text.

a. P1 with k rounds

With the k round version of the protocol, Alice and Bob
now choose k random bits, {a1, . . . , ak} and {b1, . . . , bk}, re-
spectively. The final bit is now the XOR of input bits over all
k rounds, i.e.,

x =
⊕

j

a j ⊕
⊕

j

b j . (D3)

In each round j = 1, . . . , k of the protocol, and for every
step i = 1, . . . , n within each round, Alice uniformly picks
a random bit ci, j and sends the state |φi, j

c 〉 := |φci, j 〉 ⊗ |φci, j )〉
to Bob. Likewise, Bob uniformly picks a random bit di, j and
sends the state |φi, j

d 〉 := |φdi, j 〉 ⊗ |φdi, j
〉 to Alice. Hence, each

party sends multiple copies of either |φ0〉 ⊗ |φ1〉 or |φ1〉 ⊗
|φ0〉.4

In the next step, for each j and i, Alice announces the value
a j ⊕ ci, j . If a j ⊕ ci, j = 0, Bob returns the second state of the
pair (i, j) back to Alice, and sends the first state otherwise.
Similarly Bob announces b j ⊕ di, j , and Alice returns one of
the states back to Bob accordingly. Now we come to why it
is sufficient to consider only a single round in the protocol
from the point of view of a cloning attack. This is because a
dishonest Bob can bias the protocol if he learns about Alice’s
bit a j , which he can do by guessing ci, j with a probability
better than 1/2. With this knowledge, Bob only needs to
announce a single false bj ⊕ di, j in order to cheat, and so this
strategy can be deferred to the final round [67]. Hence a single
round of the protocol is sufficient for analysis, and we herein
drop the j index.

In the last phase of the protocol, after a and b are an-
nounced by both sides (so x can be computed by both
sides), Alice measures the remaining states with the projec-
tors, (Eb, E⊥

b ) and the returned states by Bob with (Ea, E⊥
a )

not make a difference for our purposes. However, we note that
explicit cloning unitary would be different in both cases.

4Note that if ci, j and di, j are chosen independently of aj and bj , no
information about the primary bits has been transferred.

[Eq. (D4)]. She aborts the protocol if she gets the measure-
ment result corresponding to ⊥, and declares Bob as being
dishonest. In this sense, the use of quantum states in this
protocol is purely for the purpose of cheat detection.

El = |φl〉〈φl |⊗n, (D4)

E⊥
l = 1 − |φl〉〈φl |⊗n, l ∈ {0, 1}. (D5)

b. A cloning attack on P1

Next, we present the explicit attack (illustrated in Attack
1) and calculation that can be implemented by Bob on P1.
Without loss of generality, we assume that Bob wishes to bias
the bit towards x = 0. For clarity, we give the attack for when
Alice only sends one copy of the state (n = 1), but we discuss
the general case in the next section.

Now we revisit the following theorem from the main text
to get the success probability of the above attack:

Theorem 17. [Theorem 1 in main text.] Bob can achieve a
bias of ε ≈ 0.27 using an ideal state-dependent cloning attack
on the protocol, P1 with a single copy of Alice’s state.

Proof. As mentioned in the previous section, the final mea-
surements performed by Alice on her remaining n states, plus
the n states returned to her by Bob allow her to detect his
nefarious behavior. If he performed a cloning attack, the ⊥
outcomes would be detected by Alice sometimes. We must
compute both the probability that he is able to guess the value
of Alice’s bit a (by guessing the value of the bit c1), and
the probability that he is detected by Alice. This would pro-
vide us with Bob’s final success probability in cheating, and
hence the bias probability.

At the start of the attack, Bob has a product state of either
|φ0〉 ⊗ |φ1〉 or |φ1〉 ⊗ |φ0〉 (but he does not know which). In
step 2, depending on Alice’s announced bit, Bob proceeds to
clone one of the qubits, sends one copy to Alice, and keeps
the other to himself. As mentioned in the main text we can
assume, without loss of generality, that Alice’s announced bit
is 0. In this case, at this point in the attack, he has one of the
following pairs: |φ0〉〈φ0| ⊗ ρ1

c or |φ1〉〈φ1| ⊗ ρ0
c , where ρ1

c and
ρ0

c are leftover clones for |φ1〉 and |φ0〉, respectively.
Bob must now discriminate between the following density

matrices:

ρ1 = |φ0〉〈φ0| ⊗ |φ1〉〈φ1| (D6)

and ρ2 = |φ1〉〈φ1| ⊗ ρ0
c . (D7)
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Alternatively, if Alice announced a ⊕ ci = 1, he would
have

ρ1 = |φ1〉〈φ1| ⊗ |φ0〉〈φ0| (D8)

and ρ2 = |φ0〉〈φ0| ⊗ ρ1
c . (D9)

In either case, we have that the minimum discrimination error
for two density matrices is given by the Holevo-Helstrom
[79,80] bound as follows:5

Popt
disc = 1

2 + 1
4 ||ρ1 − ρ2||Tr = 1

2 + 1
2 DTr(ρ1, ρ2). (D10)

The ideal symmetric cloning machine for these states will
have an output of the form

ρc = α|φ0〉〈φ0| + β|φ1〉〈φ1| + γ (|φ0〉〈φ1| + |φ1〉〈φ0|),
(D11)

where α, β, and γ are functions of the overlap s = 〈φ0 |φ1〉 =
cos π

9 . Now, using Eq. (D6), ρ2 can be written as follows:

ρ2 = α|φ1〉〈φ1| ⊗ |φ0〉〈φ0| + β|φ1〉〈φ1| ⊗ |φ1〉〈φ1|
+ γ (|φ1〉〈φ1| ⊗ |φ0〉〈φ1| + |φ1〉〈φ1| ⊗ |φ1〉〈φ0|).

(D12)

Finally by plugging in the values of the coefficients in
Eq. (D11) for the optimal local cloning machine [78] and find-
ing the eigenvalues of σ := (ρ1 − ρ2), we can calculate the
corresponding value for Eq. (D10), and recover the following
minimum error probability:

Pfail,P1 = Per
disc,P1

= 1 − Popt
disc,P1

≈ 0.214. (D13)

This means that Bob can successfully guess c1 with P1
succ,P1

=
78.5% probability.

Now we look at the probability of a cheating Bob being
detected by Alice. We note that whenever Bob guesses a
successfully, the measurements (Eb, E⊥

b ) will be passed with
probability 1, hence we use (Ea, E⊥

a ) where the states sent
by Bob will be measured. Using Eq. (A4) with the value of
overlap s = cos(π/9), the optimal fidelity is FL ≈ 0.997, and
so the probability of Bob getting caught is at most 1%. Putting
this together with Bob’s guessing probability for a gives his
overall success probability of 77.5%.

This implies that Bob is able to successfully create a bias
of ε ≈ 0.775 − 0.5 = 0.275. �

We also have the following corollary, for a general num-
ber of states, n exchanged, which shows the protocol can be
completely broken and Bob can enforce an arbitrary bias:

Corollary 2. The probability of Bob successfully guessing
a over all n copies has the property

lim
n→∞ Pn

succ,P1
= 1. (D14)

Proof. If Bob repeats the above Attack 1 over all n copies,
he will guess n different bits {a′

i}n
i=1. He can then take a

majority vote and announce b such that a∗ ⊕ b = 0, where we
denote a∗ as the bit he guesses in at least n

2 + 1 of the rounds.
If n is even, he may have guessed a′ to be 0 and 1 an equal

number of times. In this case, the attack becomes indecisive
and Bob is forced to guess at random. Hence we separate the
success probability for even and odd n as follows:

Pn
succ,P1

=
{∑n

k= n+1
2

(n
k

)
(1 − Pfail )kPn−k

fail n odd,∑n
k= n

2 +1

(n
k

)
(1 − Pfail )kPn−k

fail + 1
2

( n
n/2

)
(1 − Pfail )

n
2 P

n
2

fail n even.
(D15)

By substituting the value of Pfail one can see that the function
is uniformly increasing with n so limn→∞ Pn

succ,P1
= 1. �

Although as Bob’s success probability in guessing cor-
rectly increases with n, the probability of his cheating strategy
getting detected by Alice will also increase. We also note that
this strategy is independent of k, the number of different bits
used during the protocol.

3. Four-state coin-flipping protocol (P2)

Another class of coin-flipping protocols are those which
require all the four states in Eq. (D2). One such protocol was
proposed by Aharonov et al. [68], where φ is set as π

8 .
In protocols of this form, Alice encodes her bit in “basis

information” of the family of states. More specifically, her
random bit is encoded in the state |φx,a〉. For instance, we can
take {|φ0,0〉, |φ1,0〉} to encode the bit a = 0 and {|φ0,1〉, |φ1,1〉}
to encode a = 1. The goal again is to produce a final “coin

5This also is because the we assume a symmetric cloning machine
for both |φ0〉 and |φ1〉. If this is not the case, the guessing probability
is instead the average of the discrimination probabilities of both
cases.

flip” y = a ⊕ b, while ensuring that no party has biased the
bit, y. A similar protocol has also been proposed using BB84
states [2] where |φ0,0〉 := |0〉, |φ0,1〉 := |1〉, |φ1,0〉 := |+〉 and
|φ1,1〉 := |−〉. In this case, the states (also some protocol
steps) are different but the angle between them is the same
as with the states in P2. A fault-tolerant version of P2 has also
been proposed in Ref. [131], which uses a generalized angle
as in Eq. (D2).

The protocol proceeds as follows. First Alice sends one
of the states, |φx,a〉 to Bob. Later one of two things will
happen. Either, Alice will send the bits x and a to Bob, who
measures the qubit in the suitable basis to check if Alice was
honest, or Bob is asked to return the qubit |φx,a〉 to Alice, who
measures it and verifies if it is correct. Now, example cheating
strategies for Alice involve incorrect preparation of |φx,a〉 and
giving Bob the wrong information about (x, a), or for Bob
in trying to determine the bits x, a from |φx,a〉 before Alice
has revealed them classically. We again focus only on Bob’s
strategies here to use cloning arguments. We note that the
information theoretic achievable bias of ε = 0.42 proven in
Ref. [68] applies only to Alice’s strategy since she has greater
control of the protocol (she prepares the original state). In
general, a cloning-based attack strategy by Bob will be able
to achieve a lower bias, as we show. As above, Bob randomly
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selects his own bit b and sends it to Alice. He then builds a
QCM to clone all four states in Eq. (E21).

We next sketch the two cloning attacks on Bob’s side of
P2. Again, as with the protocol, P1, Bob can cheat using as
much information as he gains about a and again, once Bob
has performed the cloning, his strategy boils down to the
problem of state discrimination. In both attacks, Bob will use
a (variational) state-dependent cloning machine.

a. Cloning attacks on P2

In the first attack model [which we denote I; see Fig. 11(a)
in Appendix E 3] Bob measures all the qubits outputted from
the cloner to try and guess (x, a). As such, it is the global
fidelity that will be the relevant quantity. This strategy would
be useful in the first possible challenge in the protocol, where
Bob is not required to send anything back to Alice. We discuss
in Appendix D 3 b how the use of cloning in this type of attack
can also reduce resources for Bob from a general POVM to
projective measurements in the state discrimination, which
may be of independent interest. The main attack here boils
down to Bob measuring the global output state from his QCM
using the projectors, |v〉〈v |, |v⊥〉〈v⊥ |, and from this measure-
ment, guessing a. These projectors are constructed explicitly
relative to the input states using the Neumark theorem [132].

The second attack model [which we denote II; see
Fig. 11(a) in Appendix E 3] is instead a local attack and as
such will depend on the optimal local fidelity. It may also be
more relevant in the scenario where Bob is required to return
a quantum state to Alice. We note that Bob could also apply a
global attack in this scenario but we do not consider this pos-
sibility here in order to give two contrasting examples. In the
below, we compute a bias assuming he does not return a state
for Alice for simplicity, and so the bias will be equivalent to
his discrimination probability. The analysis could be tweaked
to take a detection probability for Alice into account also. In
this scenario, Bob again applies the QCM, but now he only
uses one of the clones to perform state discrimination [given
by the discriminator in Fig. 11(a)].

b. Attack I on P2

For attack I, which is a 4 state global attack on P2:
Theorem 18. [Ideal Cloning Attack (I) Bias on P2] Using

a cloning attack on the protocol, P2, (in attack model I) Bob
can achieve a bias:

εi
P2,ideal ≈ 0.35. (D16)

We note first that this attack model (i.e., using cloning) can
be considered a constructive way of implementing the optimal
discrimination strategy of the states Alice is to send. In order
to bias the bit, Bob needs to discriminate between the four
pure states in Eq. (D2) or equivalently between the ensembles
encoding a = {0, 1}, where the optimal discrimination is done
via a set of POVM measurements.

However, by implementing a cloning-based attack, we can
simplify the discrimination. This is because the symmetric
state-dependent cloner (which is a unitary) has the interesting
feature that for either case (a = 0 or a = 1), the cloner’s
output is a pure state in the two-qubit Hilbert space. As such,
the states (after going through the QCM) can be optimally

discriminated via a set of projective measurements {Pv, Pv⊥},
rather than general POVMs (as would be the case if the QCM
was not used). So using VarQlone to obtain optimal cloning
strategies also is a means to potentially reduce resources for
quantum state discrimination also. Now let us prove Theorem
18:

Proof. The attack involves the global output state of the
cloning machine. For this attack we can use the fixed overlap
1 → 2 cloner with the global fidelity given by Eq. (A2):

F FO,opt
G (1, 2) = 1

2 (1 + s3 +
√

1 − s2
√

1 − s4) ≈ 0.983,

(D17)

where s = sin(2φ) = cos( π
4 ) for P2. Also alternatively we

can use the four-state cloner which clones the two states with
a fixed overlap plus their orthogonal set. For both of these
cloners we are interested in the global state of the cloner which
we denote as |ψ1→2

x,a 〉 for an input state |φx,a〉.
In order for Bob to guess a he must discriminate be-

tween |φ0,0〉 (encoding a = 0) and |φ1,1〉 (encoding a = 1)
or alternatively the pair {|φ0,1〉, |φ1,0〉}. This is since the
pairs {|φ0,0〉, |φ0,1〉} are orthogonal and {|φ0,0〉, |φ1,0〉} both
encode a = 0, so the only choice is to discriminate be-
tween |φ0,0〉 and |φ1,1〉. Due to the symmetry and without
an ancilla, the cloner preserves the overlap between each
pairs, i.e., 〈ψ1→2

0,0 |ψ1→2
1,1 〉 = 〈φ0,0 |φ1,1〉 = s (we also have

〈ψ1→2
0,1 |ψ1→2

1,0 〉 = s).
Now we select the projective measurements Pv = |v〉〈v|

and Pv⊥ = |v⊥〉〈v⊥| such that 〈v |v⊥〉 = 0. One can show that
the discrimination probability is optimal when |v〉 and |v⊥〉
are symmetric with respect to the target states [illustrated in
Fig. 11(a)] according to the Neumark theorem. From the fig-
ure, we have that 〈v |v⊥〉 = 0 so 2θ + 2φ = π

2 ⇒ θ = π
4 − φ.

Finally, writing the cloner’s states for {|ψ1→2
0,0 〉, |ψ1→2

1,1 〉} in the
basis {|v〉, |v⊥〉} gives∣∣ψ1→2

0,0

〉 = cos
(π

4
− φ
)
|v〉 + sin

(π
4

− φ
)
|v⊥〉,

(D18)∣∣ψ1→2
1,1

〉 = cos
(π

4
− φ
)
|v〉 − sin

(π
4

− φ
)
|v⊥〉,

where it can be checked that 〈ψ1→2
0,0 |ψ1→2

1,1 〉 = cos( π
2 −

2φ) = sin(2φ) = s. Hence |v〉 and |v⊥〉 can be explicitly de-
rived. Note that these bases are also symmetric with respect
to the other pair, i.e., {|ψ1→2

0,1 〉, |ψ1→2
1,0 〉}. Finally, the success

probability of this measurement is then given by

Popt,i
disc,P2

= 1
2 + 1

2

〈
ψ1→2

0,0

∣∣ψ1→2
1,1

〉 = 1
2 + 1

2 sin 2φ = 0.853,

(D19)

which is the maximum cheating probability for Bob. From
this, we derive the bias as

εi
P2,ideal = Popt,i

disc,P2
− 1

2 = 0.353, (D20)

which completes the proof. �

c. Attack II on P2

Finally, we consider a second attack model (attack II) on
the protocol, P2, which is in the form of a “local” attack. Here
we further consider two scenarios:
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(1) A cloning machine which is able to clone all four states
|φ0,0〉, |φ1,1〉 and |φ0,1〉, |φ1,0〉,

(2) A cloning machine tailored only the two states, |φ0,0〉
and |φ1,1〉 (which Bob needs to discriminate between).

We focus on the former scenario, since it connects more
cleanly with the VarQlone clone fidelities, but scenario 2
facilitates a more optimal attack (in the ideal scenario).

Scenario 1:
In this case, we can compute an exact discrimination prob-

ability, but it will result in a less optimal attack.
Theorem 19. [Ideal Cloning Attack (II) Bias on P2 in sce-

nario 1.] Using a cloning attack on the protocol, P2, (in attack
model II with four states) Bob can achieve a bias:

εII
P2,ideal = 0.25. (D21)

Proof. Considering the four states to be in the x-z plane
of the Bloch sphere, the density matrices of each state can be
represented as

ρi j = 1
2

(
1 + mx

i jσx + mz
i jσz
)
, (D22)

where σx and σz are Pauli matrices and mi j is a three-
dimensional vector given by

m00 := [sin(2φ), 0, cos(2φ)],

m01 := [− sin(2φ), 0,− cos(2φ)],

m10 := [− sin(2φ), 0, cos(2φ)],

m11 := [sin(2φ), 0,− cos(2φ)]. (D23)

After the cloning (in the ideal case), the density matrix of each
clone will become

ρc
i j = 1

2

(
1 + ηxmx

i jσx + ηzm
z
i jσz
)
, (D24)

where ηx and ηz are the shrinking factors in each direction
given as follows:

ηx = sin2(2φ)

√
1

sin4(2φ) + cos4(2φ)
,

ηz = cos2(2φ)

√
1

sin4(2φ) + cos4(2φ)
. (D25)

For the states used in P2, we have φ = π
8 and hence ηx =

ηz := η = 1√
2
. Again, we can return to the discrimination

probability between the two ensembles encoding a = 0 and
a = 1 in Eq. (D27). Here we have (let us define ρc to be the
output clone that Bob chooses to use (c ∈ {1, 2})

Popt,II
disc,P2

= 1

2
+ 1

4
||ρ(a=0) − ρ(a=1)||Tr

= 1

2
+ 1

4

∣∣∣∣∣∣∣∣12 [(ρc
00 − ρc

11

)+ (ρc
10 − ρc

01

]∣∣∣∣∣∣∣∣
Tr

= 1

2
+ 1

4

∣∣∣∣∣∣η
4

((
mx

00 − mx
11 + mx

10 − mx
01

)
σx

+(mz
00 − mz

11 + mz
10 − mz

01

)
σz

∣∣∣∣
Tr

= 1

2
+ η cos(2φ)

4
||σz||Tr

= 1

2
+ η cos(2φ)

2
= 3

4
.

Computing the bias in the same way as above completes the
proof. �

Scenario 2:
Here we give a bound on the success probabilities of Bob

in terms of the local fidelities of the QCM where the cloning
machine is only tailored to clone two fixed-overlap states.
Here we rely on the fact that Bob can discriminate between
the two ensembles of states (for a = 0, a = 1) with equal
probabilities.

Theorem 20. The optimal discrimination probability for a
cloning attack on the protocol, P2, (in attack model II, with
two states) is

0.619 � Popt,II
disc,P2

� 0.823. (D26)

Proof. For each of the input states, |φi, j〉, in Eq. (E21),
we denote ρc

i j to be a clone outputted from the QCM. Due
to symmetry, we only need to consider one of the two output
clones. We can now write the effective states for each encod-
ing (a = 0, a = 1) as

ρ(a=0) := 1
2

(
ρc

00 + ρc
10

)
, ρ(a=1) := 1

2

(
ρc

01 + ρc
11

)
. (D27)

Dealing with these two states is sufficient since it can be
shown that discriminating between these two density matrices,
is equivalent to discriminating between the entire set of four
states in Eq. (D2).

Again we use the discrimination probability from the
Holevo-Helstrom bound:

Popt,II
disc,P2

:= Popt
disc(ρ(a=0), ρ(a=1)) := 1

2 + 1
2 DTr(ρ(a=0), ρ(a=1)).

(D28)

Now we have

DTr(ρ(a=0), ρ(a=1)) = 1
2 ||ρ(a=0) − ρ(a=1)||Tr

= 1
2

∣∣∣∣ 1
2

(
ρc

00 − ρc
11

)+ 1
2

(
ρc

10 − ρc
01

)∣∣∣∣
Tr

� 1
4

∣∣∣∣(ρc
00 − ρc

11

)∣∣∣∣
Tr + ∣∣∣∣(ρc

10 − ρc
01

)∣∣∣∣
Tr

� 1
2

[
DTr
(
ρc

00, ρ
c
11

)+ DTr
(
ρc

01, ρ
c
10

)]
⇒ Popt

disc(ρ(a=0), ρ(a=1))

� 1
2

(
Popt

disc

(
ρc

00, ρ
c
11

)+ Popt
disc

(
ρc

01, ρ
c
10

))
= Popt

disc

(
ρc

00, ρ
c
11

)
. (D29)

The last equality follows since for both ensembles,
{|φ0,0〉, |φ1,1〉} and {|φ0,1〉, |φ1,0〉}, we have that their output
clones have equal discrimination probability:

Popt
disc

(
ρc

00, ρ
c
11

) = Popt
disc

(
ρc

01, ρ
c
10

)
. (D30)

This is because the QCM is symmetric and depends only on
the overlap of the states (we have in both cases 〈φ00 |φ11〉 =
〈φ01 |φ10〉 = sin(2φ)).

Furthermore, since the cloning machine can only lower the
discrimination probability between two states, we have

Popt
disc

(
ρc

00, ρ
c
11

)
� Popt

disc

(
ρc

00, |φ1,1〉〈φ1,1|
) =: Popt

disc.

Now using the relationship between fidelity and the trace
distance, we have the bounds

1
2 + 1

2

(
1 −√〈φ1,1|ρc

00|φ1,1〉
)
� Popt

disc

� 1
2 + 1

2

√
1 − 〈φ1,1|ρc

00|φ1,1〉. (D31)
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FIG. 7. Illustration of VarQlone for M → N cloning. A data set of K states is chosen from S, with M copies of each. These are fed with
N − M blank states, and possibly another ancilla, |φ〉A into the variable structure Ansatz, Ug(θ). Depending on the problem, either the global,
or local fidelities of the output state, ρθ , is compared to the input states, |ψ k〉, and the corresponding local or global cost function, C(θ) is
computed, along with its gradient. We have two optimization loops, one over the continuous parameters, θ, by gradient descent, and the second
over the circuit structure, g. Gradient descent over θ in each structure update step outputs, upon convergence, the “minimum” cost function
value, Cbest

t , for the chosen cost function, t ∈ {L, sq, G}.

By plugging in the observed density matrix for the output
clone, we can find this discrimination probability. As in the
previous section, the output density matrix from the QCM for
an output clone can be written as Eq. (D11):

ρc
00 = α|φ0,0〉〈φ0,0| + β|φ1,1〉〈φ1,1|

+ γ (|φ0,0〉〈φ1,1| + |φ1,1〉〈φ0,0|), (D32)

which has a local fidelity, FL = 〈φ0,0|ρc
00|φ0,0〉 = α + s2β +

sγ . On the other hand, we have F (ρc
00, |φ1,1〉〈φ1,1 |) =

〈φ1,1|ρc
00|φ1,1〉 = s2α + β + sγ .

Combining these two, we then have

F
(
ρc

00, |φ1,1〉〈φ1,1 |) = FL + (s2 − 1)(α − β ). (D33)

Plugging in FL from Eq. (A4), and α − β =
√

1−s2

1−s4 (for an
optimal state-dependent cloner), we get

1

2
+ 1

2

⎡⎢⎣1 −

√√√√
FL + (s2 − 1)

√
1 − s2

1 − s4

⎤⎥⎦

� Popt,II
disc,P2

� 1

2
+ 1

2

√√√√1 − FL − (s2 − 1)

√
1 − s2

1 − s4
. (D34)

To complete the proof, we use FL ≈ 0.989 and s =
1/

√
2 which gives the numerical discrimination probabilities

above. �
APPENDIX E: ALGORITHM SPECIFICS

AND SUPPLEMENTAL NUMERICAL RESULTS

In the main text and in the preceding sections, we discussed
the VarQlone algorithm and a high-level overview of the nu-
merical results. Here we revisit these numerics and dive into
some specifics of the algorithm, in particular the Ansatz we
choose. A cartoon illustration of the main ingredients can be
seen in Fig. 7, which includes the cost functions discussed in
Appendix B.

We will examine three different choices for the Ansätze in
the VarQlone circuit. The first two options are fixed structure
meaning the only trainable parameters are the continuous

rotation angles in a fixed gate sequence. We then generalize to
the primary Ansatz, which is that of a variable structure where
both the continuous parameters and the gates in the Ansatz are
optimized over.

1. Fixed structure Ansätze

To demonstrate the following two Ansätze, we use 1 → 2
phase-covariant cloning, which as a reminder requires cloning
the following states:

|ψxy(η)〉 = 1√
2

(|0〉 + eiη|1〉). (E1)

a. Phase-covariant cloning with a fixed ideal Ansatz

As discussed in the main text, the ideal circuit for perform-
ing phase-covariant cloning is given by Fig. 2(b). Here we
learn the parameters of this fixed circuit. This gives us the
opportunity to illustrate the effect of measurement noise in
using the SWAP test to compute the fidelity. The results of this
can be seen in Fig. 8. We compare the SWAP test in Fig. 8(a) to
direct simulation of the qubit density matrices (using quantum
state tomography [133] with the forest-benchmarking library
[134]) to compute the fidelities. in Fig. 8(b) to compute the
fidelity. The effect of measurement noise can be clearly seen
in the latter case.

We note in the main text that we do not use the SWAP test
when running the experiments on the Aspen QPU. This is
because the test fails to output the fidelity since both states
to compare will be mixed due to device noise. However,
this essentially reproduces the findings of Ref. [81] in a
slightly different scenario. Furthermore, this was only possi-
ble because we had prior knowledge of an optimal circuit to
implement the cloning transformation from Ref. [17,75]. Of
course, in generality this information is not available, and so
we favor the variable structure Ansatz discussed above.

b. Phase-covariant cloning with a fixed hardware-efficient Ansatz

We also test a hardware-efficient fixed structure Ansatz
for the sample problem as in the previous section. Here we
introduce a number of layers in the Ansatz, K , in which each
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FIG. 8. Learning the parameters of the fixed circuit in Fig. 2(b). We use 30 random samples with an 80%–20% train-test split. To train, we
use the analytic gradient, Eq. (B8), and the Adam optimizer with a batch size of 10 states and an initial learning rate of 0.05. In all cases, the
error bars show mean and standard deviation over five independent training runs. Shown are the results when the fidelity is computed using
(a) the SWAP test (with 50 measurement shots) and (b) using direct density matrix simulation. In both cases, we plot the average (squared)
cost [Eq. (B1)] on the train and test set, and also the average fidelities of the output states of Bob, FB, and Eve, FE , corresponding to this
cost function value. Also plotted are the theoretical optimal fidelities (magenta solid line) for this family of states, and the corresponding cost
minimum (red dash line).

layer has a fixed structure. For simplicity, we choose each
layer to have parameterized single-qubit rotations, Ry(θ ), and
nearest-neighbor CZ gates. We deal again with 1 → 2 cloning,
so we use three qubits and therefore we have two CZ gates per
layer. We show the results for K = 1 layer to K = 6 layers in
Fig. 9. Not surprisingly, we observe convergence to the mini-
mum as the number of layers increases, saturating at K = 3.

Barren plateaus: Furthermore, we can examine VarQlone
for the existence of barren plateaus in this scenario. We do this
specifically for a local cost, given by

CL = κTr[OLU (θ)ρU (θ)†], (E2)

OL = c01 +
∑

j

c jO j . (E3)

FIG. 9. Local cost, CL minimized on a training set of 24 ran-
dom phase-covariant states. We plot layers L ∈ [1, . . . , 6] of the
hardware-efficient Ansatz shown in the inset. Fastest convergence is
observed for L = 5 but L = 3 is sufficient to achieve a minimal cost
value, which is the same number of entangling gates as in Fig. 2(b).
Error bars shown mean and standard deviation over five independent
training runs.

Note that taking c0 = 1, c j = −1/N ∀ j and κ = 1 recovers
the specific form of our cost, Eq. (B2). We will prove that
this cost does not exhibit barren plateaus for a sufficiently
shallow alternating layered Ansatz, i.e., U (θ) contains blocks,
W , acting on alternating pairs of qubits [70]. To do so, we first
recall the following theorem from Ref. [70]:

Theorem 21 (Adapted from Theorem 2 in Ref. [70]). Con-
sider a trainable parameter, θ l in a block, W of an alternating
layered Ansatz (denoted U (θ)). Let Var[∂lC] be the variance
of an m-local cost function, C with respect to θ l . If each
block in U (θ) forms a local 2-design, then Var[∂lC] is lower
bounded by

GN (K, k) � Var[∂lC], (E4)

GN (K, k) = 2m(k+1)−1

(22m − 1)2(2m + 1)K+k

∑
j∈ jL

∑
(p,p′ )∈pLB

p′�p

× c2
j DHS[ρp,p′ , Tr(ρp,p′ )1/dρ(p,p′ )

]DHS

× [O j, Tr(O j )1/dO j ]. (E5)

jL are the set of j indices in the forward light cone LB of the
block W and ρp,p′ is the partial trace of the input state, ρ, down
to the subsystems Sp, Sp+1, . . . , Sp′ . dM denotes the dimension
of a matrix M.

Sp in the above represents the qubit subsystem in which
W acts. First, the operators O j are all single-qubit projectors
(m = 1 local), |ψ〉〈ψ |, so we have

DHS

(
O j, Tr(O j )

1

d

)
= DHS

(
|ψ〉〈ψ |, Tr[|ψ〉〈ψ |]1

2

)
=
√

Tr

[(
|ψ〉〈ψ | − 1

2

)(
|ψ〉〈ψ | − 1

2

)†]
, (E6)
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=
√

Tr

[
|ψ〉〈ψ | − |ψ〉〈ψ |

2
− |ψ〉〈ψ |

2
+ 1

4

]

=
√

Tr
(1

4

)
= 1√

2
. (E7)

So G(K, k) simplifies to

GN (K, k) = 2k

3K+k+2
√

2N2

∑
j∈ jL

∑
(p,p′ )∈pLB

p′�p

DHS(ρp,p′ ,1/dρ(p,p′ )
).

(E8)

If we now define SP to be the subsystems from p to p′, the
reduced state of ρ in SP will be one of either |ψ〉〈ψ |⊗|P|,
|0〉〈0 |⊗|P| or |ψ〉〈ψ |⊗q|0〉〈0 |⊗|P|−q for some q < |P| where
we denote |P| to be the number of qubits in the reduced
subsystem SP. Since these are all pure states, we can com-

pute DHS(ρp,p′ ,1/dρ(p,p′ )
) =
√

1 − 1/dρ(p,p′ )
. Lower bounding

the sum over j by 1 and
√

1 − 1/dρ(p,p′ )
by 1/

√
2 (dρ(p,p′ )

is at

least 2) gives

2k

3K+k+22N2
� GN (K, k). (E9)

Finally, by choosing K ∈ O[log(N )], we have that k, K + k ∈
O[log(N )] and so Gn(K, k) ∈ �[1/poly(N )]. Since we have
that if G(K, k) vanishes no faster than �[1/poly(N )], then so
does the variance of the gradient and so will not require ex-
ponential resources to estimate. As a result, we can formalize
the following corollary:

Corollary 3. [Absence of Barren Plateau in Local Cost]
Given the local VarQlone cost function, CL (Eq. (B2)) in
M → N cloning, and a hardware-efficient fixed structure
Ansatz, U (θ), made up of alternating blocks, W , with a depth
O[log(N )], where each block forms a local 2-design. Then the
variance of the gradient of CL with respect to a parameter, θl

can be lower bounded as

GN := min[GN (K, k)] � Var[∂lC],

GN (K, k) ∈ �[1/poly(N )]. (E10)

One final thing to note is that the Ansatz we choose in
Fig. 9, does not form an exact local 2-design, but the same
Ansatz is used in Ref. [70]) and is sufficient to exhibit a cost
function-dependent barren plateau.

2. Variable structure Ansätze

Variations of the variable structure Ansatz approach have
been proposed in Refs. [88,95] which could be easily in-
corporated, and we leave such investigation to future work.
The approach of Ref. [71] (which we adopt) fixes the length,
l , of the circuit sequence to be used, and as mentioned in
the main text contains parameterized single-qubit gates, and
unparameterized entangling gates, which we chose to be CZ

for simplicity. For example, with a three-qubit chip, we have
an example gatepool:

G = {R0
z (θ ), R1

z (θ ), R2
z (θ ), R0

x (θ ), R1
x (θ ), R2

x (θ ),

× R0
y (θ ), R1

y (θ ), R2
y (θ ), CZ0,1, CZ1,2, CZ0,2

}
. (E11)

We use the CZ gate as the entangler for two reasons. The first
is that CZ is a native entangling gate on the Rigetti hardware.
The second is that it simplifies our problem slightly, since it
is symmetric on the control and target qubit, we do not need
to worry about the ordering of the qubits: CZi, j = CZ j,i. The
fixed angle Rx(±π/2) and continuous angle Rz(θ ) gates are
also native on the Rigetti hardware and we add the Ry gate
for completeness, which can be compiled into the above as
follows, Ry(θ ) = Rx(π/2)Rz(θ )Rx(−π/2). The unitary to be
learned is given by

Ug(θ) = Ug1 (θ1)Ug2 (θ2) · · ·Ugl (θl ), (E12)

where each gate is from the above set G. The sequence, g :=
[g1, . . . , gl ], in Eq. (11) in the main text and Eq. (E12) above,
corresponds to the indices of the gates in an ordered version of
G. So using G in Eq. (E11) as an example, g = [0, 6, 3, 2, 10]
would give the unitary:

Ug(θ) = R0
z (θ1)R1

y (θ2)R0
x (θ3)R2

z (θ4)CZ0,1 (E13)

and θ := [θ1, θ2, θ3, θ4, 0] The procedure of
Refs. [71,88,95,114] is intentionally flexible, and the gateset
above Eq. (E15) can be swapped with any native gateset to fit
on a particular quantum hardware.

At the beginning of the procedure, the gate sequence is
chosen randomly (a random sequence, g), and also the param-
eters (θ) therein.6

The optimization procedure proceeds over a number of
epochs and iterations. In each iteration, g is perturbed by
altering d gates, giter → giter+1. The probability of changing
d gates is given by 1/2d , and the probability of doing nothing
(i.e., giter = giter+1) is

Pr(d = 0) = 1 −
l∑

d=1

1

2d
= 2 − 1 − 1

2l

1 − 1
2

− 1

2l
. (E14)

The epochs correspond to optimization of the parameters θ

using gradient descent with the Adam optimizer, as through-
out the main text. We typically set the maximum number of
epochs to be 100 and iterations to be 50 in all this work. After
each iteration, the best cost, Cbest

t for a chosen cost: either the
local, Eq. (B2) (t = L), the global, Eq. (B3) (t = G), squared,
Eq. (B1) (t = sq) or some other choice, is updated, if that
iteration has found a circuit with a lower cost. As in Ref. [71],
we repeatedly compress the sequence by removing redundant
gates (e.g., combining Ugi (θi ) and Ugi+1 (θi+1) if gi = gi + 1),
and adding random gates to keep the sequence length fixed at
gl .

Figure 10 illustrates some results from this protocol. We
find that with an increasing sequence length, the procedure
is more likely to find circuits which achieve the minimum
cost, and is able to first do so with a circuit with between 25
and 30 gates from the above gateset in Eq. (E15). We also
plot the results achieved in a particular run of the protocol
in Fig. 10(b). As the circuit learns, it is able to subsequently
lower Cbest

t , until it eventually finds a circuit capable of achiev-
ing the optimal cost for the problem.

6If some information is known about the problem beforehand, this
could be used to initialize the sequence to improve performance.
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FIG. 10. (a) Cbest
L as a function of sequence length, l in achieving the same task as Fig. 2(b), where the Bob’s and Eve’s clones appear in

qubits 1 and 2. As l increases, the number of runs which successfully approach the theoretical minimum increases. Error bars shown mean and
standard deviations for the minimum costs achieved over 20 independent runs with each sequence length. (b) Cost achieved for 50 iterations
of the structure learning protocols, using a sequence length of l = 35. Each line corresponds to a slightly different circuit structure, g. Early
iterations (darker lines) are not able to find the minimum, but eventually, a circuit is found which has this capacity. For each g, θ is trained for
100 epochs of gradient descent, using the Adam optimizer. If an iteration has not converged close enough to Cbest

L by 30 epochs, the iteration is
ended.

a. Phase-covariant cloning

To begin, we will detail the procedure used to create
Fig. 2. As a reminder, this is 1 → 2 cloning of phase-covariant
states [Eq. (E1)] using the variable structure Ansätz described
above. Here we allow three qubits (two output clones plus one
ancilla) in the circuit. We also allow a fully connected (FC)
gateset pool for this problem given by the following (indices
represent qubits of the Aspen-8 sublattice):

GPC = {R2
z (θ ), R3

z (θ ), R4
z (θ ), R2

x (θ ), R3
x (θ ), R4

x (θ ),

× R2
y (θ ), R3

y (θ ), R4
y (θ ), CZ2,3, CZ3,4, CZ2,4

}
. (E15)

Let us now discuss in greater detail the observations which
can be drawn from Fig. 2. First, we notice that the ideal
circuit in Fig. 2(b) suffers a degradation in performance when
implemented on the QPU since it requires six entangling gates
as it is attempting to transfer the information across the circuit.
Furthermore, since the Aspen-8 chip does not have any three
qubit loops in its topology, it is necessary for the compiler to
insert SWAP gates.

Next we compare the ideal circuit to two examples learned
by VarQlone. First, we force the qubit clones to appear in
registers 2 and 3 [demonstrated in Fig. 2(c)] exactly as in
Fig. 2(b). Second, we allow the clones to appear instead in
registers 1 and 2 [demonstrated in Fig. 2(d), the circuit labeled
“Rev.” (“Reverse”)]. The ability to make such a subtle change
clearly demonstrates the advantage of our flexible approach.
We notice that the restriction imposed in Fig. 2(c) results in
only slightly improved performance over the ideal. However,
by allowing the clones to appear in registers 1 and 2, Var-
Qlone is able to find much more conservative circuits, having
fewer entangling gates, and are directly implementable on a
linear topology. This gives a significant improvement in the
cloning fidelities, of about 15% when the circuit is run on the
QPU, as observed in Fig. 2(a). For all results shown using
a variable structure Ansatz, we use the forest-benchmarking
library [134] to reconstruct the output density matrix in order
to mitigate the effect of quantum noise.

Local vs global fidelities. As a final remark on this exper-
iment, we can investigate the difference between the global
and local fidelities achieved by the circuits VarQlone [i.e., in
Fig. 2(c)] finds, versus the ideal one [shown in Fig. 2(b)].
Recall that in Appendix B 3 d, we showed that the “ideal”
circuit achieves both the optimal local and global fidelities for
this problem:

Fig. 2(b) ⇒
{

F (b)
B = F (b)

E = F opt
L = 1

2

(
1 + 1√

2

) ≈ 0.853

F (b)
G = F opt

G = 1
8

(
1 + √

2
)2 ≈ 0.72

.

(E16)

In contrast, our learned circuit [Fig. 2(c)] maximizes the local
fidelity, but in order to gain an advantage in circuit depth,
compromises with respect to the global fidelity:

Fig. 2(b) ⇒
{

F (c)
B ≈ F (c)

E ≈ F opt
L = 0.85

F (c)
G ≈ 0.638 < F opt

G

. (E17)

3. State-dependent cloning

Here we present the results of VarQlone when learning to
clone the states used in the two coin-flipping protocols above.
First, we focus on the states used in the original protocol, P1

for 1 → 2 cloning, and then move to the four-state protocol,
P2. In the latter we also extend from 1 → 2 cloning to 1 → 3
and 2 → 4. These extensions will allow us to probe certain
features of VarQlone, in particular explicit symmetry in the
cost functions. In all cases, we use the variable structure
Ansatz, and once a suitable candidate has been found, the so-
lution is manually optimized further. The learned circuits used
to produce the figures in this section are given in Appendix F.

a. Cloning P1 states

As a reminder, the two states used in this protocol are

|φ0〉 := |φ0,0〉 = cos
( π

18

)
|0〉 + sin

( π

18

)
|1〉, (E18)

|φ1〉 := |φ0,1〉 = cos
( π

18

)
|0〉 − sin

( π

18

)
|1〉. (E19)
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FIG. 11. Cloning attacks and numerical results for the protocol, P2.(a) The two cloning-based attacks we consider. In attack model I (left),
Bob measures both output states with a set of fixed projective measurements, defined relative to the cloner output states, |ψ1→2〉a,x and guesses
Alice’s bit, a. In attack model II, Bob keeps one clone for either testing Alice later or to send back the deposit qubit requested by Alice. He
uses then the other local clone to discriminate and guess a. (b) The fidelities achieved cloning the each state, {|φx,a〉} used in P2 with VarQlone.
These numerics relate to scenario 1 from attack model II (see Appendix D 3 c). Each panel (1–4) shows both simulated (QVM, red circles)
and on Rigetti hardware (QPU, orange crosses). We indicate the fidelities of the each clone received by Alice and Bob. For the QVM (QPU)
results, 256 (3) samples of each state are used to generate statistics. Violin plots show complete distribution of outcomes and error bars show
the means and standard deviations. Inset (i) shows the connectivity we allow in VarQlone for this example. The corresponding learned circuit
is shown in Appendix F.

The fidelities achieved by the VarQlone learned circuit can
be seen in Fig. 3 using the gate pool [Eq. (13)] which allows
a linear entangling connectivity. A deviation from the optimal
fidelity is observed in the simulated case, partly due to to-
mographic errors in reconstructing the cloned states. We note
that the corresponding circuit for Fig. 3 actually used only
two qubits (see Appendix F). This is because while VarQlone
was allowed to use the ancilla, it chose not in this case by
applying only identity gates to it. This mimics the behavior
seen in the previous example of phase-covariant cloning. As
such, we only use the two qubits shown in the inset (i) of the
figure when running on the QPU to improve performance.

Now, returning to the attack on P1 above, we can compute
the success probabilities using these fidelities. For illustration,
let us return to the example in Eq. (D6), where instead the
cloned state is now produced from our VarQlone circuit, ρ0

c →
ρ0

VarQlone.
Theorem 22. [VarQlone Attack Bias on P1]
Bob can achieve a bias of ε ≈ 0.29 using a state-dependent

VarQlone attack on the protocol, P1, with a single copy of
Alice’s state.

Theorem 22 can be proven by computing the success prob-
ability as in Appendix D 2:

PVarQlone
succ,P1

= 1
2 + 1

4 Tr
∣∣ρ1 − |φ1〉〈φ1| ⊗ ρ0

VarQlone

∣∣ ≈ 0.804
(E20)

The state ρ1 = |φ0〉〈φ0| ⊗ |φ1〉〈φ1| as in Eq. (D6). Here we
have a higher probability for Bob to correctly guess Alice’s
bit, a, but correspondingly the detection probability by Alice
is higher than in the ideal case, due to a lower local fidelity of
F VarQlone

L = 0.985.

b. Cloning P2 states

Next, we turn to the family of states used in the four-state
protocol, which are

|φx,a〉 =
{∣∣π

8 x,0

〉 = cos
(

π
8

)|0〉 + (−1)x sin
(

π
8

)|1〉∣∣π
8 x,1

〉 = sin
(

π
8

)|0〉 + (−1)x⊕1 cos
(

π
8

)|1〉 . (E21)

1 → 2 Cloning: First, we repeat the exercise from above
with the same scenario, using the same gateset and subset of
the Aspen-8 lattice (GP1→2

2
= GP1→2

1
). We use the local cost,

Eq. (B2), to train the model, with a sequence length of 35
gates. The results are seen in Fig. 11(b) both on the QVM and
the QPU. We note that the solution exhibits some small degree
of asymmetry in the output states, due to the form of the local
cost function. This asymmetry is especially pronounced as we
scale the problem size and try to produce N output clones,
which we discuss in the next section.

Now, we can relate the performance of the VarQlone cloner
to the attacks discussed in Appendix D 3. We do this by
explicitly analyzing the output states produced in the circuits
used to achieve fidelities shown in Fig. 11(b) and following
the derivation in Appendix D for Theorem 23 and Theorem
24:

Theorem 23. [VarQlone Cloning Attack (I) Bias on P2]
Using a cloning attack on the protocol, P2, (in attack model I)
Bob can achieve a bias:

εi
P2,VarQlone ≈ 0.345. (E22)

Similarly, we have the bias which can be achieved with
attack II:

Theorem 24. [VarQlone Cloning Attack (II) Bias on P2]
Using a cloning attack on the protocol, P2, (in attack model
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FIG. 12. Sample complexity of VarQlone using the squared cost. We begin with a random initialization of the structure learned circuit in
Fig. 2(c) and optimize the parameters using different sizes in the training-text set, and different minibatch sizes. All of the following using
a train-test split of 20%, and we denote the tuple (i, j, k) as i = number of training samples, j = number of test samples, k = batch size.
(a) (1, 1, 1), (b) (4, 1, 2), (c) (8, 2, 5), (d) (16, 4, 8) (e) (40, 10, 15), (f) (80, 20, 20).

II) Bob can achieve a bias:

εII
P2,VarQlone = 0.241. (E23)

The discrepancy between these results and the ideal biases
are primarily due to the small degree of asymmetry induced
by the heuristics of VarQlone. However, we emphasize that
these biases can now be achieved constructively.

1 → 3 and 2 → 4 Cloning: Finally, we extend the above
to the more general scenario of M → N cloning, taking
M = 1, 2 and N = 3, 4. These examples are illustrative since

they demonstrate strengths of the squared local cost function
[Eq. (B1)] over the local cost function [Eq. (B2)]. In particu-
lar, we find the local cost function does not enforce symmetry
strongly enough in the output clones, and using only the local
cost function, suboptimal solutions are found. We particu-
larly observed this in the example of 2 → 4 cloning, where
VarQlone tended to take a shortcut by allowing one of the
input states to fly through the circuit (resulting in nearly 100%
fidelity for that clone), and then attempt to perform 1 → 3
cloning with the remaining input state. By strongly enforcing

FIG. 13. Comparison between the local [Eq. (B2)] and squared [Eq. (B1)] cost functions for 2 → 4 cloning. (a) The nearest-neighbor (NN)
and (b) a fully connected (FC) entanglement connectivity allowed in the variable structure Ansatz. Again, we use the family of states in the
protocol P2. Plots show the mean and standard deviation of the optimal fidelities found by VarQlone over 10 independent runs (10 random
initial circuit structures). A sequence length of 35 is used for 1 → 3 and 40 for 2 → 4, with 50 iterations of the variable structure Ansatz
search in both cases. Here we use the same experiment hyperparameters as in Fig. 4.
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FIG. 14. Two qubit circuits to clone phase-covariant states, without ancilla. (a) Optimal circuit from Ref. [136], (b) circuit learned by
VarQlone. In it can be checked that the ideal circuit in (a) can be compiled to also use two CZ plus single-qubit gates, so VarQlone has found
something close to optimal. The average fidelities for B, E for the circuit in (b) is F B,PC

L,VarQlone ≈ 0.854 and F E ,PC
L,VarQlone ≈ 0.851, respectively, over

256 input samples, |ψ〉A (comparing to the ideal fidelity of F PC
L,opt = 0.853).

symmetry in the output clones using the squared cost, this can
be avoided as we demonstrate explicitly in Appendix E 5.

We also test two connectivities in these examples, a fully
connected (FC) and a nearest-neighbor (NN) architecture as
allowed by the following gatesets:

GNN
P1→3

2
= {Ri

z(θ ), Ri
x(θ ), Ri

y(θ ), CZ2,3, CZ3,4, CZ4,5
}
,

∀i ∈ {2, 3, 4, 5}, (E24)

GFC
P1→3

2
= {Ri

z(θ ), Ri
x(θ ), Ri

y(θ ), CZ2,3, CZ2,4,

× CZ2,5, CZ3,4, CZ3,5, CZ4,5
}
, ∀i ∈ {2, 3, 4, 5}.

(E25)

Note that for 1 → 3 (2 → 4) cloning, we actually use four
(five) qubits, with one being an ancilla. The results of these
experiments are given in Fig. 4. We use the following hyperpa-
rameters for this experiment: (1) a sequence length of l = 35
for 1 → 3, and l = 40 for 1 → 4 with 50 iterations over g in
both cases, and (2) the Adam optimizer with an initial learning
rate of ηinit = 0.05, 3) 50 training samples. In all cases, we use
the squared cost function, Csq, to train and its gradients.

4. Training sample complexity

Here we study the sample complexity of the training pro-
cedure by retraining the continuous parameters of the learned
circuit [Fig. 2(b)] starting from a random initialization of the
parameters, θ (illustrated in Fig. 12). As expected, as the
number of training samples increases [i.e., the number of
random choices of the phase parameter, η, in Eq. (3)], the
generalization error (difference between training and test er-
ror) approaches zero. This is not surprising, since the training
set will eventually cover all states on the equator of the Bloch
sphere.

5. Local cost function comparison

In Fig. 13 we demonstrate the weakness of the local cost
function, CL, in not enforcing symmetry strongly enough in
the problem output, and how the squared cost function, Csq

FIG. 15. Circuit learned by VarQlone in to clone states,
|φ0〉, |φ1〉, with an overlap s = cos(π/9) in the protocol, P1. For
example, ρA is the clone sent back to Alice, while ρB is kept by Bob.

can alleviate this, for 2 → 4 cloning specifically. Here we
show the optimal fidelities found by VarQlone with a variable
structure Ansatz, starting from a random structure. The local
cost tends towards local minima, where one of the initial states
(ρ1

θ ) ends up with high fidelity, while the last qubit (ρ4
θ ) has a

low fidelity. This is alleviated with the squared cost function
which is clearly more symmetric, on average, in the output fi-
delities. This is observed for both circuit connectivities we try
(although a NN architecture is less able to transfer information
across the circuit for a fixed depth).

APPENDIX F: VARQLONE LEARNED CIRCUITS

Here we give the explicit circuits learned by VarQlone
and which give the results in the main text. We mention as
above that these are only representative examples, and many
alternatives were also found in each case.

1. Ancilla-free phase-covariant cloning

The circuits found in Fig. 2 to clone phase-covariant states
are slightly more general than we may wish to use. In particu-
lar, the circuit Fig. 2(b) also has the ability to clone universal
states, due to the addition of the ancilla, which can be used as
a resource. However, it is known that phase-covariant cloning
can be implemented economically, i.e., without the ancilla
[16,135].7 As such, we could compare against a shorter depth
circuit which also does not use the ancilla. For example, the
circuit from Ref. [136] shown in Fig. 14(a) is also able to
achieve the optimal cloning fidelities (∼0.85). An example
VarQlone learned circuit for this task can be seen in Fig. 14(b)
which has two CZ gates. We note that this ideal circuit can
be compiled to also use two CZ gates, so in this case Var-
Qlone finds a circuit which is approximately comparable up
to single-qubit rotations.

2. Mirror phase-covariant cloning

As mentioned in the main text, a variation of phase-
covariant cloning exists called mirror phase-covariant cloning
[77]. Here given states of the form

|ψ (θ, η)〉 = cos(θ )|0〉 + eiη sin(θ )|1〉, (F1)

mirror cloning refers to the adversary having knowledge of
|〈Z〉|, or equivalently known sin(θ ) (in contrast to known 〈Z〉
(or θ ) in the case of phase-covariant cloning.

7Although as discussed above in Appendix C, the economical ver-
sion does not provide the optimal attack on related protocols.
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FIG. 16. Circuits learned by VarQlone to clone states from the protocol, P2 for (a) 1 → 2, (b) 1 → 3, and (c) 2 → 4 cloning. These specific
circuits produce the fidelities in Fig. 11(b) for 1 → 2, (using the local cost function), and in Fig. 4 for 1 → 3 and 2 → 4 (using the squared
cost function). We allow an ancilla for all circuits, and ρk indicates the qubit which will be the kth output clone.

Reference [77] provided optimal circuits for this family
of states, which we show in Eq. (F2). However, while this
circuit uses only four entangling gates, comparable to circuits

(d) in Fig. 2 it still does not contain a fully nearest neighbor
connectivity, and so hardware performance would suffer due
to the need for SWAP operation:

|ψ(θ, η)〉 • H • H

|0〉 H • H • H

|0〉 R
γ(θ)
y • H • H •

γ(θ) := 2 cos−1

(√
1
2

+
cos2 θ

2
√

2 − 4 cos2 θ + 3 cos4 θ

)
(F2)

Interestingly, Ref. [77] also demonstrates a circuit to
perform optimal mirror cloning, which incorporates a Hamil-
tonian evolution. This insight may be useful in future versions
of VarQlone on quantum hardware platforms where the under-
lying Hamiltonians and their evolutions are accessible to the
architecture search gate pool.

3. State-dependent cloning circuits

Figure 15 shows the circuit used to achieve the fidelities
in the attack on P1 in the main text. In training, we still
allowed an ancilla to aid the cloning, but the example in

Fig. 15 did not make use of it (in other words, VarQlone
only applied gates which resolved to the identity on the an-
cilla), so we remove it to improve hardware performance.
This repeats the behavior seen for the circuits learned in
phase-covariant cloning. We mention again, that some of
the learned circuits did make use of the ancilla with similar
performance.

Figure 16 shows the circuits learned by VarQlone and
approximately clone all four states in Eq. (E21) in the pro-
tocol, P2, for 1 → 2, 1 → 3 and 2 → 4 cloning. These are
the specific circuits used to produce the fidelities in Fig. 11(b)
and Fig. 4.
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