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The bacteriology of pleural infection (TORPIDS): an exploratory 
metagenomics analysis through next generation sequencing
Nikolaos I Kanellakis*, John M Wrightson*, Stephen Gerry, Nicholas Ilott, John P Corcoran, Eihab O Bedawi, Rachelle Asciak, Andrey Nezhentsev, 
Anand Sundaralingam, Rob J Hallifax, Greta M Economides, Lucy R Bland, Elizabeth Daly, Xuan Yao, Nick A Maskell, Robert F Miller, 
Derrick W Crook, Timothy S C Hinks, Tao Dong, Ioannis Psallidas, Najib M Rahman

Summary
Background Pleural infection is a common and severe disease with high morbidity and mortality worldwide. The 
knowledge of pleural infection bacteriology remains incomplete, as pathogen detection methods based on culture 
have insufficient sensitivity and are biased to selected microbes. We designed a study with the aim to discover and 
investigate the total microbiome of pleural infection and assess the correlation between bacterial patterns and 1-year 
survival of patients.

Methods We assessed 243 pleural fluid samples from the PILOT study, a prospective observational study on pleural 
infection, with 16S rRNA next generation sequencing. 20 pleural fluid samples from patients with pleural effusion 
due to a non-infectious cause and ten PCR-grade water samples were used as controls. Downstream analysis was 
done with the DADA2 pipeline. We applied multivariate Cox regression analyses to investigate the association 
between bacterial patterns and 1-year survival of patients with pleural infection.

Findings Pleural infection was predominately polymicrobial (192 [79%] of 243 samples), with diverse bacterial 
frequencies observed in monomicrobial and polymicrobial disease and in both community-acquired and hospital-
acquired infection. Mixed anaerobes and other Gram-negative bacteria predominated in community-acquired 
polymicrobial infection whereas Streptococcus pneumoniae prevailed in monomicrobial cases. The presence of 
anaerobes (hazard ratio 0·46, 95% CI 0·24–0·86, p=0·015) or bacteria of the Streptococcus anginosus group (0·43, 
0·19–0·97, p=0·043) was associated with better patient survival, whereas the presence (5·80, 2·37–14·21, p<0·0001) 
or dominance (3·97, 1·20–13·08, p=0·024) of Staphylococcus aureus was linked with lower survival. Moreover, 
dominance of Enterobacteriaceae was associated with higher risk of death (2·26, 1·03–4·93, p=0·041).

Interpretation Pleural infection is a predominantly polymicrobial infection, explaining the requirement for broad 
spectrum antibiotic cover in most individuals. High mortality infection associated with S aureus and Enterobacteriaceae 
favours more aggressive, with a narrower spectrum, antibiotic strategies.
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Pleural infection is a severe and complex disease with 
considerable morbidity and mortality worldwide.1 Long 
hospital admissions and requirement for invasive 
treatments drive pleural infection health-care costs.1–3

The mainstay of pleural infection treatment is prompt 
drainage of the pleural effusion and initiation of 
antimicrobial therapy.1 Antibiotics are usually started 
empirically with broad-spectrum coverage. Knowledge of 
the predominant organisms causing pleural infection is 
pivotal to achieving optimal antimicrobial coverage. 
However, focused and narrow-spectrum antibiotics are 
not routinely used in pleural infection because the yield 
from the current gold standard of pathogen identification 
(culture-based pathogen detection) is between 40% 
and 60%, due to previous receipt of antimicrobials or to 
nutritionally fastidious microorganisms.4–6

Culture-independent nucleic acid amplification has been 
developed as a reliable alternative method for pathogen 
detection. A previous study compared conventional culture 
of pleural fluid and capillary (Sanger) sequencing of the 
bacterial 16S rRNA gene.7 Next generation sequencing 
(NGS) of the 16S rRNA gene has been used to characterise 
the total bacteriome of complex human infections and to 
elucidate the bacterial interactions within biofilms.8,9 To our 
knowledge, only one pleural infection metagenomics study 
has used 16S rRNA NGS.10

The small number of samples, the use of insensitive 
tests with inadequate sequencing depth and poor 
clinical-pathological correlation has to date hampered 
our capacity to study pleural infection bacteriology. 
Therefore, knowledge of the landscape of pleural 
infection microbiology remains incomplete. A better 
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understanding of the total pleural infection microbiome 
could lead to optimised clinical management and reduce 
hospital stay, complications from antibiotic use and 
health-care costs.

Our study (The Oxford Pleural Infection Metagenomics 
Studies, TORPIDS) used 16S rRNA NGS analysis of 
pleural fluid samples from the PILOT study.11 Our 
primary aims were to characterise the identified microbes 
and their abundance in pleural infection and investigate 
the association between high-fidelity bacterial patterns 
and 1-year survival in patients with pleural infection. 
Moreover, we assessed the association of bacterial 
patterns with the duration of hospitalisation and need for 
surgery.

Methods
Study design and samples
TORPIDS was a prospective follow-up study of the 
PILOT trial. 263 pleural fluid specimens were subjected 
to bacterial DNA extraction (50214, Qiagen, Hilden, 
Germany) followed by 16S rRNA NGS (MiSeq, Illumina, 
San Diego, CA, USA). 243 of these samples were from 
adult patients with confirmed pleural infection and 
20 were from patients with a pleural effusion from a 
non-infectious cause (negative control group, appendix 1 
pp 6–7). To estimate the background contamination, 
we applied the same methods to ten non-template 
control samples (negative control group, PCR-grade 
water, 17 000–10 Qiagen, Hilden, Germany; appendix 1 
pp 16–17).

For the pleural infection group, we used pleural fluid 
specimens and clinical data prospectively collected at 
enrolment for the PILOT clinical trial11 (appendix 1 p 6). 
Pleural fluids were cultured for pathogen detection upon 
collection at the recruitment centres. The specimens used 
were from the participating UK centres because of 
limitations on obtaining clinical samples from other 
countries. Patients were recruited on identical clinical and 
laboratory criteria between May 1, 2013, and Jan 1, 2017. 
Evidence of infection was assessed by the recruiting 
physician on the basis of fever, elevated peripheral blood 
white-cell count, or elevated serum inflammatory markers 
(C-reactive protein). Detailed inclusion and exclusion 
criteria are described in appendix 1 (p 3).

For the negative control group (20 pleural fluids and 
ten non-template H2O), patients did not have clinical 
or biochemical evidence of infection or systemic 
inflammation at the time of pleural aspiration. Negative 
control pleural fluid samples were selected from the 
Oxford Radcliffe Pleural Biobank, which is a prospective 
collection of pleural fluid and blood and pleural biopsy 
specimens.

Ethical and regulatory approval for the study was 
obtained from the London—Brighton & Sussex Research 
Ethics Committee (18/LO/1308). The trial is registered 
with ClinicalTrials.gov, NCT04569110.

Analysis of 16S rRNA NGS data
We used the FastQC12 pipeline for quality assessment and 
the DADA213 pipeline for downstream analyses of the 

Research in context

Evidence before this study
We searched PubMed on Oct 28, 2021, for published systematic 
reviews, clinical and preclinical studies, and meta-analysis 
articles on the topic of pleural infection microbiology with the 
keywords “pleural infection” AND “microbiology” AND “pleural 
effusion” AND “16S rRNA”, with no language restrictions. 
We found 41 published studies that fulfilled these criteria, 
of which 17 were case reports. The remaining 24 studies had 
small numbers of samples or used insensitive techniques for 
pathogen detection. We found only one study where 16S rRNA 
next generation sequencing was used in a total of 64 samples. 
Pleural infection is a severe and complex disease with increasing 
incidence—knowledge of causative bacteriology remains 
incomplete. The association between bacterial patterns and 
important clinical outcomes including mortality, duration of 
hospitalisation, and need for surgery is unclear.

Added value of this study
To our knowledge, this is the largest translational metagenomics 
study of pleural infection in adults to date combining high-
throughput discovery with high-quality prospective clinical data. 
Pleural fluid samples from the largest observational study in 
pleural infection were subjected to 16S rRNA next generation 

sequencing to characterise the complete microbial landscape. 
The identified bacterial patterns were associated with clinically 
important outcomes. Pleural infection was predominately 
polymicrobial, with mixed anaerobes and other Gram-negative 
bacteria dominating community-acquired polymicrobial 
infection, whereas Streptococcus pneumoniae dominated in 
monomicrobial cases. Infections with anaerobes and bacteria of 
the Streptococcus anginosus group were associated with better 
survival, whereas Staphylococcus aureus and Enterobacteriaceae 
were linked with higher mortality.

Implications of all the available evidence
Knowledge of the underlying biology of pleural infection and 
bacterial patterns has the potential to improve patients’ clinical 
management and potentially shorten hospital stay, minimise 
complications from antibiotic use, and reduce health-care 
costs. Understanding the crosstalk between host and pathogen 
cells and the interactions between bacteria to form biofilms 
might contribute to developing non-antibiotic-based 
treatment options. The establishment and use of a 
culture-independent method for pathogen identification 
could lead to informed and faster patient stratification 
to the most appropriate treatment.
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raw 16S rRNA NGS data. Amplicon sequence variants 
were classified taxonomically and were removed if the 
phylum was missing or if they were identified only in 
samples of the negative control group. Amplicon 
sequence variants with the same taxonomy were merged, 
and those with fewer than 100 reads were removed. The 
abundance of each bacterium in each sample was 
calculated as the number of reads of bacterium X in 
sample Y divided by the total number of reads of sample 
Y, and then multiplied by 100. Bacteria with less than 1% 
abundance were removed. Bacteria present in the 
negative cohort were removed from each of the PILOT 
samples if their abundance was lower than 10% in the 
PILOT samples (appendix 1 pp 16–17). Detailed methods 
are described in appendix 1 (pp 3–4).

Classification of the identified bacteria
We classified the identified bacteria into nine different 
groups: anaerobic, Enterobacteriaceae, Staphylococcus 
aureus, Streptococcus anginosus group, Streptococcus 
pneumoniae, Mycobacterium, other Gram-positive bacteria, 
other Gram-negative bacteria, and not available. Bacteria 
related to Enterobacteriaceae, S aureus, S anginosus group, 
S pneumoniae, and Mycobacterium were classified into the 
corresponding groups. The remaining pathogens that 
were strictly anaerobic were classified as anaerobic, and 
the rest were classified either as other Gram positive or 
other Gram negative. One bacterium with incomplete 
taxonomy, identified in one sample, was classified as not 
available.

Sample classification
To explore the association between outcomes and species 
abundance, we classified samples into one of five groups 
on the basis of the abundance of the dominant pathogen 
(appendix 1 p 8): a monomicrobial group for samples in 
which the dominant pathogen represented 100% of 
the sequenced bacterial reads (MM group) and four 
polymicrobial groups for samples in which the dominant 
pathogen had an abundance between 1% and fewer than 
25% of reads (PM1 group), 25% and fewer than 40% of 
reads (PM2 group), 40% and fewer than 60% of reads 
(PM3 group), and 60% and fewer than 100% of reads 
(PM4 group). These four distinct polymicrobial groups 
were assigned to explore the association of levels of 
polymicrobiality with outcome and pathogen.

Unsupervised hierarchical clustering, correlation, and 
microbiological distance analyses
To study the association between bacteria and to identify 
bacterial patterns, we did an unsupervised hierarchical 
clustering analysis, using the Euclidean distance and the 
complete-linkage method, with the Pheatmap R package 
used for graph plotting. Additionally, Uniform Manifold 
Approximation and Projection (UMAP) analysis was 
performed.14 To investigate the correlation between the 
different samples and further compare the bacterial 

patterns, we did a correlation analysis using the 
Spearman method, with the corrplot R package used for 
graph plotting. To investigate the β diversity (variation of 
microbiology between samples), we did a microbiological 
distance analysis using the weighted UniFrac15 method, 
with the pheatmap R package used for graph plotting.

Outcomes
The primary outcomes of the study were the 
characterisation of microbes and their abundance in 
pleural infections and the association between bacterial 
patterns and 1-year survival. Secondary outcomes were the 
associations of bacterial patterns with the duration of 
hospitalisation and 3-month need for surgery, of dental 
hygiene with dominance of anaerobes, and of bacterial 
patterns with community-acquired and hospital-acquired 
infections. Another secondary outcome was a comparison 
of molecular versus culture-based techniques for bacterial 
identification.

Statistical analysis
We analysed 1-year mortality outcomes using multivariable 
Cox regression analyses adjusted for the RAPID score16 as 
a continuous variable and graphically presented with 
Kaplan-Meier plots. The RAPID score predicts survival for 
patients with pleural infection by use of age, urea and 
albumin concentrations, hospital-acquired infection, and 
non-purulence.11,16 The need for surgery was treated as a 
binary variable and analysed with multivariate logistical 
regression, adjusting for the RAPID score16 as a continuous 
variable. We analysed the length-of-stay outcome using 
univariate Fine and Gray regression analyses to account 
for the competing risk of death, and we plotted the 
cumulative incidence. In the multivariable regression 
analyses, patients with missing data for the RAPID score 
were excluded, resulting in the exclusion of 33 patients. 
We did a logistical regression to assess the association 
between dental hygiene and dominance in anaerobes. 
Hazard ratios (HR) with 95% CIs are reported. For the 
comparison of the bacterial patterns between community-
acquired and hospital-acquired infection, we used the 
Shapiro-Wilk and Mann–Whitney–Wilcoxon tests to assess 
normality and significance. P values lower or equal to 0·05 
were considered significant. A specific power analysis was 
not done for the purposes of this metagenomic study. 
However, it was previously done for the PILOT11 clinical 
study to show robustness of the RAPID criteria, which that 
study did. Analyses were done with R (version 3).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
In total, we identified 245 different bacterial species from 
243 PILOT study samples (table 1). Anaerobic bacteria 
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exhibited the highest mean abundance (33·5% of all 
bacterial reads, SD 38·2) followed by other Gram-negative 
bacteria (27·5%, 34·0) and bacteria of the S anginosus 
group (11·0%, 25·8). Species of the genera Fusobacterium, 
Prevotella, Porphyromonas, and Parvimonas, which have all 
been reported in the oral cavity and dental microbiome,10,17 
were the most abundant anaerobic bacteria. Anaerobic 
bacteria were detected in 165 (68%) of 243 PILOT 
samples and other Gram-negative bacteria were detected 
in 143 (59%) samples, whereas 70 (29%) samples were 
positive for S anginosus group bacteria. Other Gram-
positive bacteria were identified in 73 (30%) samples, 
albeit with low abundance (6·9%, SD 19·9). 
Enterobacteriaceae were present in 52 (21%) samples and 
showed a mean abundance of 8·0% (23·9), with 
Escherichia coli and Klebsiella spp being the most common. 
S pneumoniae was detected in 31 (13%) samples, with a 
mean abundance of 10·5% (29·4).

Most pleural infection samples were polymicrobial 
(figure 1A): 16S rRNA NGS detected two or more 
pathogens in 192 (79%, PM1 to PM4 groups) of 
243 samples, and a single pathogen in the other 51 samples 
(21%, MM group). We detected diverse patterns of 
polymicrobial pleural infection; polymicrobial groups 
showed greater species richness (α diversity) compared 
with that of the MM group (appendix 1 p 8). Unsupervised 
hierarchical clustering, correlation analyses, and UMAP 
detected diverse clusters of samples (figure 1B, 
appendix 1 pp 18–19). The projection showed a closer 
clustering of samples dominated by S pneumoniae. 
Additionally, we observed two clusters of samples 
dominated by anaerobic bacteria, the first distant and the 
second close to samples dominated by other Gram-
negative bacteria (appendix 1 p 18). Moreover, distance 
analysis (β diversity) showed different patterns of 
microbiological communities between the samples 
(appendix 1 p 20).

Of 243 pleural fluid samples from the PILOT study, 
221 (91%) were from patients with a community-acquired 
infection, 17 (7%) were from those with hospital-
acquired infection and five (2%) had an infection 
of unknown source. We detected diverse bacterial 
patterns in community-acquired and hospital-acquired 
pleural infection, as previously described.7,18 Compared 
with hospital-acquired pleural infection, community-
acquired infection showed a higher abundance of 
S pneumoniae (p=0·049). Patients with hospital-acquired 
pleural infection showed a three-times (p=0·043) higher 
abundance of Enterobacteriaceae and five-times 
(p=0·0060) higher abundance of S aureus (appendix 1 
pp 21–22, appendix 2). The abundance of anaerobic 
(p=0·30) and other Gram-negative (p=0·48) bacteria was 
similar in patients with community-acquired and hospital-
acquired pleural infection. We identified 233 different 
pathogens in samples from community-acquired pleural 
infection, showing greater species richness than that of 
hospital-acquired infection, with 55 different pathogens 
(figure 2, appendix 1 pp 9–10; appendix 2). We detected 
no significant differences in the number of identified 
pathogens per sample between community-acquired 
(median 4·0, IQR 2·0–8·0) and hospital-acquired (5·0, 
2·0–8·0) pleural infection (p=0·65).

We identified distinct and different bacterial patterns 
in patients with polymicrobial (174 [79%]) and 
monomicrobial (47 [21%]) community-acquired pleural 
infection (figure 3). Anaerobic (mean 40·9%, SD 37·7) 
and other Gram-negative (32·1%, 33·3) bacteria were the 
most abundant pathogens in PM groups (figure 3A). Of 
the 174 samples from PM groups, 16S rRNA NGS 
detected anaerobic bacteria in 148 (85%) samples and 
other Gram-negative bacteria in 126 (72%) samples 
(figure 3B). Overall, of the total 1089 bacteria detected in 
the PM groups, 413 (38%) were anaerobic and 
436 (40%) were other Gram-negative bacteria (figure 3C). 
Additionally, of the bacteria detected in the PM groups, 
111 (10%) were other Gram-positive bacteria, which were 
identified in 60 (27%) of the PM group samples; however, 
their abundance was low (mean 6·4%, SD 16·8). 
PM groups showed a species richness of 230 different 
pathogens.

S pneumoniae was the most abundant pathogen 
(mean 40·4%, SD 49·6) in the MM group, by contrast 
with all PM groups, which showed a low abundance of 
S pneumoniae (3·8%, 16). In the MM group, the mean 
abundance was 19·1% (39·8) for the S anginosus group 
and 12·8% (33·7) for Enterobacteriaceae. The MM group 
showed the lowest species richness, with 12 different 
bacterial pathogens identified by 16S rRNA NGS 
(appendix 1 pp 9, 23–24).

Conventional, culture-based pathogen detection was 
successful in 55 (22%) of 243 samples (appendix 1 p 6), 
which is lower than that reported in clinical practice and 
might be due to previous use of antibiotics.1 No pathogen 
was identified by culture in 188 (78%) of 243 samples. Of 

Number of 
pathogens

Mean 
abundance

Number of 
samples

Anaerobic 55 33·5% (38·2) 165

Enterobacteriaceae 14 8·0% (23·9) 52

Staphylococcus aureus 1 2·6% (13·4) 12

Streptococcus anginosus 
group*

3 11·0% (25·8) 70

Streptococcus pneumoniae 1 10·5% (29·4) 31

Other Gram-positive 59 6·9% (19·9) 73

Other Gram-negative 110 27·5% (34·0) 143

Mycobacterium tuberculosis 1 0 (0·3) 3

Not available 1 0 (0·1) 1

The detected pathogens were classified into nine groups. The table presents the 
number of pathogens, mean relative abundance, and number of samples for each 
bacterial group. *Consisting of S anginosus, Streptococcus intermedius, and 
Streptococcus constellatus.

Table 1: Overall pleural infection bacterial microbiology as identified by 
16S rRNA next generation sequencing

See Online for appendix 2
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Figure 1: Pleural infection is 
predominately a 
polymicrobial disease
(A) The histograms show the 
counts of detected pathogens 
in each sample within each of 
the five groups, based on 
dominant pathogen 
abundance. (B) Heatmap of 
unsupervised hierarchical 
clustering using the 
Bray-Curtis distance and the 
complete-linkage method; the 
colour of the first column 
denotes the bacterial class of 
the most abundant pathogen 
in the sample; each row is a 
sample and each column is a 
pathogen group; the colour of 
each cell represents the 
abundance (proportion of 
bacterial reads) of each 
pathogen group in each 
sample; red represents high 
and dark blue low abundance.
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those samples in which a pathogen was positively 
identified by culture, one pathogen was detected in 
49 (89%) of 55 samples and two pathogens in six (11%). 
The yield was lower (mean 1·1 pathogens, SD 0·3) 
compared with 16S rRNA NGS detection, where the 
mean was 3·2 (2·8) pathogens per sample.

Conventional culture identified bacteria of the S anginosus 
group as the most frequently identified pathogen (15 [27%] 
of 55 samples), followed by Enterobacteriaceae (12 [22%] 

samples) and anaerobes (nine [16%] samples). The 
molecular technique detected anaerobes in 22 (40%) 
samples, other Gram-negative bacteria in 20 (36%) 
samples, and S anginosus group in 18 (33%) samples 
(appendix 1 pp 11, 25–27).

A comparison of conventional culture with 16S rRNA 
NGS showed that 16S rRNA NGS identified the pathogen 

Figure 2: Community-acquired and hospital-acquired pleural infections show distinct bacterial patterns
Phylogeny trees of community-acquired (A) and hospital-acquired (B) pleural infections. The colours of the circles 
represent the pathogen class and the size represents their relative abundance. NA=not available.

Figure 3: Monomicrobial and polymicrobial community-acquired pleural 
infections exhibit diverse bacterial patterns
Individual dots are joined by a line exclusively to aid readability. (A) Line plot showing 
the average abundance of each pathogen class per group for community-acquired 
pleural infections. (B) Line plot showing the frequency (%) of samples containing 
pathogens of each bacterial class per sample group. (C) Line plot presenting the 
frequency (%) of each bacterial class per sample group. NA=not available.
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detected by culture in 48 (87%) of 55 samples. In 
seven (13%) samples, 16S rRNA NGS did not corroborate 
culture findings (appendix 1 p 25). However, for five of 
these seven samples, 16S rRNA NGS detected a 
bacterium with the same taxonomy (up to the genus 
level) as the one identified by culture; qPCR assays 
confirmed the 16S rRNA NGS results (appendix 1 p 28).

We sought to investigate the association between the 
presence of a bacterial group and patient 1-year survival 
(table 2, appendix 1 pp 29–30). We did a multivariate Cox 
regression analysis adjusting for the RAPID score 
factors, and bacteria were found to be independent 
predictors of mortality. The presence of anaerobes 
(HR 0·46, 95% CI 0·24–0·86, p=0·015) and bacteria of 
the S anginosus group (0·43, 0·19–0·97, p=0·043) was 
associated with better 1-year survival compared with 
their absence. The presence of S aureus was associated 
with significantly poorer survival (5·80, 2·37–14·21, 
p<0·0001). No survival differences were detected for 
other bacterial groups. We examined samples grouped 
on the basis of the dominant pathogen and 1-year survival 
using a multivariate Cox regression analysis adjusting 
for the RAPID score factors. Dominance of S aureus 
(3·97, 1·20–13·08, p=0·024) and Enterobacteriaceae 
(2·26, 1·03–4·93, p=0·041) were independently 
associated with a poorer survival than that of samples in 
which they were not dominant. As previously 
shown,7 hospital-acquired pleural infection had higher 
mortality than community-acquired pleural infection 
(3·50, 1·54–7·93, p=0·003; table 2, appendix 1 p 31).

We detected no significant relationship between the 
presence of a bacterial group and the requirement for 
surgery within 3 months of diagnosis or duration of 
hospitalisation (appendix 1 pp 12–13). No association was 
detected between a crude measure of dental hygiene 
(clinically reported dental status) and predominance of 
anaerobes (appendix 1 p 14).

Discussion
In this study, we used 16S rRNA NGS to discover 
and rigorously investigate the total microbiome of 
pleural infection and correlate bacterial patterns 
with prospectively collected and documented clinical 
outcomes. Our findings suggest that pleural infection is 
predominately polymicrobial, distinct microbial patterns 
exist in both monobacterial and polybacterial disease, 
and the type of bacterial cause is an independent 
predictor of 1-year survival outcomes.

The incidence of polymicrobial pleural infection has 
previously been estimated at approximately 23%;19 
however, this is likely to be an underestimate. Previous 
studies relied on conventional culture-dependent pathogen 
detection methods, which have high false-negative rates. 
Several NGS-based metagenomics studies have indicated 
that human polymicrobial infections are common.20,21

Previous reports based on cultures suggest that aerobic 
Gram-positive bacteria are the dominant pathogens 

in community-acquired pleural infection.19 Our data 
contrast with this and showed that anaerobes and Gram-
negative bacteria, detected by 16S rRNA NGS, had the 
highest abundance. This difference might be explained 
by the fact that anaerobic bacteria are harder to culture 
with conventional methods and might indicate that the 
hypoxic environment of the pleural space benefits 
anaerobic growth.

Increasing evidence exists that bacterial biofilm 
matrices act as scaffolds that facilitate the attachment of 
specific bacteria while impeding others.22 S pneumoniae 
was the most prevalent pathogen in community-acquired 
monomicrobial infections—indicating that S pneumoniae 
biofilms might not favour symbiosis with other bacterial 
species due to strong competition, or that they might not 
require symbiosis due to sufficient intrinsic virulence 
factors. By contrast, community-acquired polymicrobial 
groups were characterised by a prevalent mixture of 
other Gram-negative and anaerobic bacteria, suggesting 
possible complex bacterial crosstalk within biofilms and 
an active process of bacterial co-aggregation in the 
pathogenesis and evolution of pleural infection.

The mixed pattern of bacterial species within individual 
pleural infection bacterial niches might point to their 
cause. The most abundant pleural anaerobic pathogens 
identified in our study, and in a previous study, are 
commonly found in the oral cavity and dental 
microbiome.10 Members of the S anginosus group are part 
of the normal oral flora, and S pneumoniae is known to 

Hazard ratio 
(95% CI)

p value

Presence vs absence of

Anaerobes 0·46 (0·24–0·86) 0·015

Enterobacteriaceae 1·50 (0·56–2·36) 0·70

Other Gram-negative 0·64 (0·34–1·19) 0·16

Other Gram-positive 0·99 (0·51–1·93) 0·97

Staphylococcus aureus 5·80 (2·37–14·21) <0·0001

Streptococcus anginosus group* 0·43 (0·19–0·97) 0·043

Streptococcus pneumoniae 1·00 (0·39–2·56) 1·00

Dominance of

Anaerobes 0·64 (0·29–1·42) 0·27

Enterobacteriaceae 2·26 (1·03–4·93) 0·041

Other Gram-negative 1·06 (0·54–2·11) 0·86

Other Gram-positive 1·39 (0·43–4·51) 0·58

Staphylococcus aureus 3·97 (1·20–13·08) 0·024

Streptococcus anginosus group* 0·15 (0·02–1·10) 0·062

Streptococcus pneumoniae 1·11 (0·39–3·12) 0·84

Hospital-acquired vs community-
acquired pleural infection

3·50 (1·54–7·93) 0·0038

Hazard ratios of 1-year death (multivariate Cox regression analysis adjusted for 
the factors of the RAPID score) comparing the presence versus the absence of each 
bacterial group, the dominance of each bacterial group against the rest, and 
hospital-acquired versus community acquired pleural infection. *Consisting of 
S anginosus, Streptococcus intermedius, and Streptococcus constellatus.

Table 2: Cox regression analysis of 1-year risk of mortality
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colonise the upper respiratory tract. Combined, these 
data suggest that aspiration of oropharyngeal and oral 
and dental pathogens might play a substantial role in the 
aetio-pathogenesis of pleural infection.

The presence of anaerobic and S anginosus group 
bacteria were associated with significantly better survival, 
whereas survival with S aureus infection was poorer, 
and these results were independent of the only 
known predictive score for pleural infection survival 
(RAPID).11,16 Patients with a dominance of S aureus and 
Enterobacteriaceae in samples were at higher risk of 
death, perhaps due to these bacteria being more resistant 
to antibiotics. This suggests a need for more focused 
treatment in these patients.

We observed a greater species richness (α diversity) in 
samples from patients with community-acquired pleural 
infection compared with those with hospital-acquired 
disease. This could be explained by exposure of pathogens 
in the health-care setting to a wider range of antibiotics 
or disinfectants, resulting in a stronger selection pressure 
than that faced in community settings.

A comparison of culture and 16S rRNA NGS showed 
that 16S rRNA NGS had a better yield and shorter 
turnaround time for results. Whereas pathogen detection 
in pleural fluid by culture is limited to one or two 
species, NGS has the potential to identify the complete 
microbiome.23 However, quality assurance protocols are 
required. US Food and Drug Administration 
guidelines provide regulatory guidance for NGS-based 
pathogen diagnostics.24 Workflows specifically designed 
for microbiome analysis are available,13,25 yet it remains a 
challenge to clinically interpret metagenomic data.9 
Standardised methods for integration of NGS meta
genomic information into clinical practice are not widely 
available9,26 but are being rapidly developed.27 Emerging 
long-read sequencing technologies hold the promise of 
allowing accurate diagnosis at the species level.28 The cost 
of routine 16S rRNA NGS testing might be prohibiting 
for some centres, but PCR-based pathogen detection 
panels with lower cost are readily available and clinically 
validated.29

The strengths of our study include its objective design, 
a large number of well characterised samples, and its 
link to relevant prospectively collected and highly 
complete clinical data.11 16S rRNA NGS is an unbiased 
discovery strategy with the ability to resolve sample 
polymicrobiality.

Our study also has several limitations. 16S rRNA NGS 
does not always have optimal resolution up to the species 
level (ie, it cannot fully differentiate the bacteria of the S 
anginosus group) and cannot differentiate the pathogens 
that are driving the disease from bystanding bacteria. 
Available pleural fluid specimens were all from the UK 
recruitment centres participating in the PILOT study. 
Geographical location has been associated with infectious 
pathogens in pleural infection.19 The cohort of the PILOT 
trial were adults, and thus a separate study is required to 

investigate paediatric pleural infection. The role of 
viruses was not explored in this study. Finally, due to the 
processing procedure of clinical samples, we cannot 
comment on detection of intracellular pathogens 
although, epidemiologically, these have previously only 
rarely been described in pleural infection.7

In conclusion, our metagenomic assessment of pleural 
infection samples showed frequent polymicrobiality and 
clear association of 1-year survival with the type of 
bacterial cause. Future studies should focus on the 
relationship between early diagnostics with metagenomic 
techniques and the effect on clinical outcomes and the 
association between radiology and the microbiome.
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