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A B S T R A C T   

Investing in the communication infrastructure transition requires significant scientific consideration of chal-
lenges, prioritisation, risks and uncertainties. To address these challenges, a bottom-up approach was used to 
demonstrate the future of wireless network transmission and deployment. This study developed an agent-based 
model to explore the future deployment of non-standalone 5G networks, synthesizing multi-dimensional data 
visualization. In particular, this research took the UK as an example to investigate the spatiotemporal dynamic 
characteristics of 5G evolution, and further analysed the energy consumption and carbon footprint of 5G net-
works, as well as the consequent change in the operating expenses pattern. The simulation results show that 700 
MHz and 26 GHz will play an important role in 5G deployment in the UK, which allow base stations to meet 
short-term and long-term data traffic demands respectively. Furthermore, due to the geopolitical restrictions and 
embargos, telecommunications may face additional costs of £0.63bn to £1.19bn when deploying 5G radio access 
networks. Network densification may cause some environmental and economic problems. Take a medium de-
mand scenario as an example, it is found that the electricity consumed by the 5G radio access network will 
account for more than 2.1% of the total electricity generation, and indirectly lead to 990,404 tonnes carbon 
emissions in 2030.   

1. Introduction 

Being connected has become a defining feature of the modern 
economy and a significant trend of the 21st century. Cisco forecasts that 
by 2023, nearly two-thirds of the global population will have Internet 
access, and the number of devices connected to networks will be more 
than three times the global population (Cisco, 2020). However, current 
internet speeds can only take us so far and severely restrict economic 
development. To unlock a digital data-driven economy, the UK Gov-
ernment has set an ambitious agenda for building world-digital infra-
structure (UK Government, 2017). The fifth generation technology 
standard for wireless cellular networks, or 5G for short, is the next 
generation of wireless cellular network or mobile network, which is 
capable of ultra-fast data speeds, and low latency, and has been began 
deploying worldwide in 2019 (DCMS, 2017). Communication networks 
are generally composed of three key parts, core network, bearer 
network, and radio access network. Compared with early communica-
tion networks, 5G networks will require more antennas, greater band-
width and higher base station density (Alsharif and Nordin, 2017). 
According to Metcalfe’s law (Madureira et al., 2013), the value of a 

network is equal to the square of the number of nodes in the network, 
and the value of the network is proportional to the square of the number 
of connected users. Therefore, with respect to social impacts, 5G is not 
simply 4G plus 1G, but will more revolutionary and of higher value. It 
will not only provide infrastructure support for the deep integration of 
cross-domain, all-round, and multi-level industries, but also fully release 
the magnification, superposition, and multiplication effects of digital 
applications on economic and social development. However, the total 
power consumption of a single 5G base station is about four times that of 
a single 4G base station and considering the high density the overall 
power consumption of 5G networks may be 12 times that of 4G networks 
(Chih-Lin et al., 2020). Such energy consumption cannot be tolerated 
because it will cause corresponding environmental and economic 
problems. The construction of a new generation of wireless cellular 
networks is also costly, that often exceed billions of pounds. The tech-
nical complexity of 5G makes its implementation cost even higher. This 
also implies that upgrading the existing network to 5G will not be a 
once-off action, but a step-by-step evolutionary process, from a socio-
technical perspective. The transition from 4G to 5G is not only a tech-
nological change, but also a competition for deployment and operations 
management. Countries who fail to adapt will likely lose first-mover 
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advantage, while Mobile Network Operators (MNOs) who fail to adapt 
will likely lose market share. Currently, the deployment of 5G networks 
is about to transition from policy-led to technology-driven (Fig. 1). In 
the near future, it will experience a transition to business-led, and then a 
follow-up transition to market-driven. 

Previous research topics on the diffusion of 5G network technology 
mostly focused on the relationship between policy incentives and the 
development of 5G technology, that is, transition from policy-led to 
business-led (in Fig. 1). They provided little understanding of the dy-
namics of 5G deployment from a socio-technical perspective. The 5G 
system is integral and hierarchical. There are interactions amongst its 
various components, and their behavioural relationship is nonlinear. 
Each component cannot be separated from the 5G system as a whole to 
study separately and then superimposed to get the whole, but must be 
studied using a complex system method. To investigate the future 
development and potential energy impact of 5G, this study focuses on 
modelling the development of 5G base stations in the UK in the next ten 
years by developing an agent-based model (ABM) and assess its eco-
nomic and environmental impact. The specific advantages of using an 
ABM include the abilities 1) to model location, which is critical to end- 
users at a postcode level, the base stations interact (noise and in-
terferences) in a spatial dimension; 2) to incorporate socio-political 

variables and technical mechanisms in simulation – which are essen-
tial to 5G deployment. Specifically, a novel 5G diffusion planning 
framework incorporating spatial interactions and socio-techno-political 
factors via an ABM is developed to answer the research questions:  

• How does the deployment strategy need to change for best economic 
performance (i.e. cheaper energy)?  

• What is overall cost to 5G deployment of geopolitical restrictions?  
• What is the energy cost and carbon footprint of the UK’s 5G 

deployment strategy? 

The rest paper constructed as follows. Section 2 reviews the past 
literature and Section 3 introduces the research design and specific 
methods. In Section 4 simulation results are presented and in Section 5 
their implications for policy are discussed. In the conclusion, the key 
points are summarised. 

2. Literature review 

Understanding the spatiotemporal dynamic characteristics of 5G 
deployment can greatly help decision-makers formulate strategic plans 
and recommend least-regrets configuration plans in different regions. To 

Nomenclature 

Abbreviations 
4G 4th generation communication technology 
5G 5th generation communication technology 
ABM Agent-based model 
AR Augmented reality 
BB Baseband 
CapEx Capital expenses 
CIFUS Committee on Foreign Investment in the US 
eMBB Enhanced broadband 
GHG Greenhouse gas 
GHz Gigahertz 
ICT Information and communication technology 
IoT Internet of Thing 
LTE Long term evolution 
Mbps Million bits per second 
MHZ Megahertz 
MIMO Multiple input multiple output 
mmWave Millimetre wave 
MNO Mobile network operator 
MS Mains supply 
Ofcom The Office of Communications 
O&M Operation and maintenance 
OpEx Operating expenses 
PA Power amplifier 
PDF Probability distribution function 
RAN Radio access network 
RF Radio frequency 
TRX Multiple transceivers 
VR Virtual reality 

Symbols 
A active days per month, days 
B average busy hours per day, h 
BW bandwidth of the serving cell, MHz 
C spectral efficiency, bps/Hz 
Dx,t total population in postcode x in year t, Number of people 
f spectrum band, MHz 
Gi antenna gain of serving cell, dBi 

Gm antenna gain of inter cell, dBi 
h fading loss factor, MHz 
Im total interference from the inter cells, W 
N average power of the noise and interference over the 

bandwidth, W 
n path loss factor, - 
No thermal noise at a receiver, dBm 
NTRX number of transceivers, - 
P load-depend energy consumption, W 
PBB BB power consumption, W 
Pfull power consumption at full load, W 
Pidle power consumption at idle state, W 
Pout antenna element output power, W 
PPA PA power amplifier, W 
PRF RF power consumption, W 
Pr,i the desired received signal power by user, W 
Pt monthly data consumption per capita in year t, GB 
Pt,i transmit power from the serving cells, W 
Pt,m transmit power from the inter cells, W 
P0 power consumption at the minimum non-zero output 

power, W 
r distance from a receiver to serving cells, m 
Ri distance between the user and the serving cell, m 
Rm distance between the user and the inter cell, m 
Rx,t required data traffic rate in postcode x in year t, Mbps 
S average received signal power over the bandwidth, W 
SINR signal to interference and noise ratio, dB 
St smartphone penetration rate in year t, % 
T throughout, Mbps 
Ut required data traffic rate per capita in year t, Mbps/per- 

capita 
Δp slope of the load-dependant power consumption, - 
η bandwidth efficiency, % 
ηPA PA power efficiency, % 
λ base station density, - 
σcool loss factor incurred by active cooling, % 
σDC loss factor incurred by DC-DC power supply, % 
σfeed feeder loss, dB 
σMS loss factor incurred by mains supply, %  
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this end, Oughton and Russell (2020a) developed a decision-support 
model which can quantify the performance of digital infrastructure 
strategies for mobile digital communications. Based on the model, they 
undertook a supply-driven and demand-driven investment analysis 
using a case study of the Netherlands, and estimated the traffic threshold 
delivered per user from integrating 5G spectrum bands on the existing 
Dutch macrocell network (Oughton et al., 2019); explored the cost, 
coverage and rollout implications of 5G networks across Britain, by 
extrapolating 4G characteristics for the period 2020–2030 (Oughton and 
Frias, 2018); conducted scenarios-based assessment of 5G infrastructure 
strategies in relation to mobile traffic growth using Britain as a case 
study example (Oughton et al., 2018); and particularly analysed the 
marginal impact of population growth on total demand for 5G in a UK 
growth corridor - the Oxford-Cambridge Arc (Oughton and Russell, 
2020b). Furthermore, from a temporal perspective alone, Ghoul and Jia 
(Ghoul and Jia, 2017) proposed a new pricing model to be consistent 
with the growth of mobile broadband, and they found that the reuse of 
existing 4G base stations have a large impact on reducing costs when a 
denser 5G macro base stations deployed. However, this study did not 
explain how the evolution of changes of 5G deployment in spatial 
development. For a spatial perspective alone, Frias et al. (Frias et al., 
2017) assessed the perceived value of a particular spectrum according to 
the impact that the spectrum could have in decreasing rollout costs. 
They found that adding spectrum with similar propagation character-
istics to a coverage-constrained network is of no value. Apart from these 
research, other previous studies on 5G deployment were mainly con-
ducted from either theoretical or non-spatiotemporal perspective, and 
random processes were usually used to construct networks for assess-
ment. For example, Haddaji et al. (2018) proposed a novel method of 
‘BackHauling-as-a-Service’ for 5G network planning and total cost of 
ownership analysis, in which they used a stochastic geometry model 
(Voronoi Tessellation) to define the backhauling zones within a 
geographical area. Not only that, given radio channel conditions and 
interference, stochastic geometric models can be also used for 
system-level performance analysis. Martin-Vega et al. (2015) analysing 
a hierarchical backhaul and the Radio Access Network of a Hyper-Dense 
Heterogeneous network, in which they used a stochastic geometry 
model (Poisson Tree) to define the traffic concentrators, base stations 
and users (i.e. nodes of Poisson Tree). In addition, machine learning and 
artificial intelligence can also be used in wireless cellular network 

planning. Aondoakaa et al. (2018) developed a meta-heuristic algorithm 
to provide an optimisation framework for the cost-effective design of 5G 
base station networks. However, this framework was mainly used to 
support the decisions about the optimal base station topology in a 5G 
mobile network, but it did not consider the changes in spatiotemporal 
development. 

Besides technical aspects, the rollout rhythm of 5G networks is 
largely affected by exogenous factors, such as policies, the economy, and 
the market. For example, due to the trade war between China and the 
United State (US), the Committee on Foreign Investment in the US 
(CFIUS) has strengthened its measures to protect core semiconductors 
and 5G technology. Therefore, world-wide 5G rollout in the US could be 
slowed down by CFIUS regulations (Crabb, 2019). Following the US 
government’s expressed concerns about the safety of its equipment, 
Huawei has been banned from competing for further UK 5G infra-
structure contracts. Oxford Economics (Worthington, 2019) pointed out 
that restricting a key supplier of 5G infrastructure from helping to build 
a country’s network would increase that UK’s 5G investment costs by 
between 8% and 29% over the next decade. 5G deployment is not only 
expensive for equipment, but also for spectrum resources. In 2018, the 
UK completed the first auction of 5G spectrum bands, i.e. 2.3 GHz and 
3.4 GHz. The four major mobile network operators (MNOs) (EE, Voda-
fone, O2, Three) spent a total of nearly £1billion (OFCOM, 2018). The 
UK is expected to complete the auction of 700 MHz and 3.6–3.8 GHz 
spectrum bands in 2021 (OFCOM, 2020), and the final transaction price 
will also be an astronomical figure. Therefore, MNOs participating in 5G 
deployment will bear huge investment risks. Affected by economics of 
scale (Katz and Berry, 2014), MNOs are often not keen to invest in 
low-income regions due to CapEx and OpEx as well as scarcity of elec-
tricity from the grid make these regions cannot make much profits. 
Therefore, this profit-orientated deployment pattern may cause 5G to be 
mainly deployed in urban areas (Chiaraviglio et al., 2017b). As a result, 
the positive aspects brought about by 5G technology may be ‘urban’ in 
nature (Rao and Prasad, 2018). Oughton and Frias (2018) found that 
90% of the population is covered with 5G by 2027 if the 
business-as-usual, but coverage is unlikely to reach the final 10% due to 
exponentially increasing costs. Neokosmidis et al. (2017) assessed multi 
socio-techno-economic factors that affect the adoption and deployment 
of 5G networks and found that the weights of the criteria are the per-
formance (0.36), business (0.2), acceptance (0.18), flexibility (0.17), 

Fig. 1. The rollout rhythm of 5G networks.  
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and technology (0.09). With the transition of 5G deployment from 
service-driven to market-driven, market demand has been driving the 
development of mobile networks towards the ecosystem. More and more 
people completely rely on their mobile devices either for work or 
entertainment, and mobile broadband data traffic has also begun to 
explode (Trestian et al., 2017). This is mainly due to the rise of 
data-hungry applications on smartphones such as TikTok and YouTube. 
The launch of more similar applications in the future will further push 
customers to embrace the 5G technologies in the market. Apart from 
that, 5G is the foundation access technology for Internet of Things (IoT) 
(Borkar and Pande, 2016), the demand for some key services such as 
smart cities, smart medicine, augmented reality (AR) and virtual reality 
(VR), is accelerating the adoption and deployment of 5G. 

Currently, the information and communication technology (ICT) 
sector consumes about 4.7% of global electricity production (Gelenbe 
and Caseau, 2015) As 5G is envisaged as a key technology enabling IoT 
to address the challenge of rising mobile data demand, power con-
sumption from the information and communication technology sector is 
forecast to increase significantly by 2030 (Mowla et al., 2017). When the 
5G deployment transitions to commercial drive, the energy consumption 
problem will gradually become prominent. Many researches have been 
conducted to reduce the energy consumption of wireless cellular net-
works. Auer et al. (2011) proposed an evaluation framework to quantify 
the energy efficiency of a wireless cellular network and assess the power 
consumption of various base station types under different traffic loads. 
Base stations are considered to be the main source of energy consump-
tion (Hasan et al., 2011). At present, the typical power and peak power 
of a base station are about 6 kW and 9 kW, respectively, and they will 
increase to 14 kW and 19 kW with the application of the millimetre wave 
and 5G new technologies in the existing frequency band (Huawei, 
2020). Not only that, 5G base stations will also be deployed at a higher 
density (Andreev et al., 2019), which means the energy consumption of 
5G networks will increase rapidly in the next decade. More importantly, 
the ever-increasing power consumption may challenge the future power 
infrastructure, so there is an urgent need to build a green 5G network to 
improve energy efficiency (Abrol and Jha, 2016). Many approaches 
have been proposed to improve the energy efficiency of 5G networks. 
Buzzi et al. (2016) grouped the approaches into four broad categories, 
including resource allocation (Zappone and Jorswieck, 2015), network 
planning and deployment (Niu et al., 2010; Oh et al., 2013), energy 
harvesting and transfer (Mukhlif et al., 2018), and hardware solutions 
(Han et al., 2011; Rost et al., 2014). More recently, Alamu et al. (2020) 
conducted a comprehensive review and outlook on energy efficiency 
techniques in ultra-dense wireless heterogeneous networks and intro-
duced another two categories of approaches: optimisation of radio 
transmission process (Alamu et al., 2020), base station sleeping strategy 
(Chang et al., 2020). However, previous studies on energy consumption 
are either for local networks or for a single base station, so there is a lack 
of comprehensive analysis of the energy consumption characteristics of 
5G networks at the national level. 

3. Methodology 

The ABM method was selected in the study, as it allows us to model 
the interactions between multiple and diverse participants, each of 
whom makes decisions based on their circumstances and what they are 
assumed to know (Grubic et al., 2020; Rinaldi et al., 2001; Varga et al., 
2014). Furthermore, ABM is increasingly being used to model and 
simulate wireless cellular networks (Laghari and Niazi, 2016; Papazo-
glou et al., 2013). The deployment of a generation of telecommunication 
infrastructure usually spans a decade, where the combination of policy, 
technology and socio-economic uncertainty is highly dynamic and 
complex. In order to address these challenges, in this paper an ABM 
framework developed by Chappin and Dijkema) (2010) is employed to 
support our research, since it is specifically used for modelling infra-
structure system transitions. The framework consists of five main 

elements: system representation, exogenous scenarios, transition as-
semblages, system evolutions and impact assessment (Fig. 2). Our pre-
vious work (Grubic et al., 2020) had described the connotation of each 
elements in detail which will not to be repeated here. The objectives of 
this study are to simulate spatio-temporal dynamics of 5G base station 
diffusion by replicating political and technical features of real world, 
and visualizing the related economic and environmental impacts over 
time. Section 3.1 to 3.4 mainly focus on the development of an ex-ante 
5G ABM, and Section 3.5 explores how to employ the related ABM re-
sults to analyse the environmental impacts. 

3.1. System representation 

An ABM can be defined as a collection of heterogenous, intelligent 
and interacting agents which operate and exist in an environment, 
which in turn is made up of agents (Crooks and Heppenstall, 2012). In 
broad outline, the proposed ABM in this study is design-orientated 
instead of operational, which simulates the future deployment of 5G 
base stations to meet end-users’ demand in the UK context. The whole 
system evolution starts from very urban to very rural areas. The in-
vestment agent implements the deployment strategies in each area 
under certain policies. The collective 5G system functionality depends 
on each individual base station’s functionality, as well as the coupling 
dynamics in between. Due to the characteristics of base station agents, 
one base station agent capacity in one area is influenced by local base 
station agents as well as ones in the adjacent areas, because the sur-
rounding base station agents can cause interferences. It means that 
deploying a new base station agent can influence all surrounding base 
station capacity (both for itself area and adjacent areas), which in-
fluences other areas’ deployment decisions, then the whole year 
deployment pattern consequently changes as the budget is constrained. 
In each time step, the investment agent is responsible for calculating the 
demand per area, iteratively deploying UK base stations in turn. After 
characterizing ABM, this part introduces system areas and boundaries, 
investment agent characteristics, base station agent technical 
configurations. 

3.1.1. System boundaries 
In defining the system boundaries, the geomatics of legacy wireless 

cellular networks and the demographics in the UK, which covers En-
gland, Scotland and Wales of more than 9000 postcode areas, was fol-
lowed. Northern Ireland is not included because its demographic 
information is not available at a postcode level. In order to analyse the 
regional characteristics of 5G deployment, such as local income level 
and population density, the UK’s regions were classified into three 
geotypes (Analysis Mason, 2010): urban, suburban, and rural areas. 
Then the demographic information from the most recent UK Census 
(“UK Census Data,” 2011) and the Administrative Division data (“UK 
Administrative Division,” 2019) were embedded into each postcode to 
create a geodemographic database. 

3.1.2. The base station agent 
Each base station agent is a basic unit providing communication 

services for end-users, and its capacity not only depends on its own 
configuration but also the interactions from nearby base stations. This 
subsection firstly introduces the types of base station agent, spectrum 
frequency and UK coverage background, followed by elaborating ca-
pacity and dynamic interactions with nearby base stations. 

Base station types: The most pertinent communication infrastruc-
ture, i.e. Radio Access Networks (RAN) (Auer et al., 2011), components 
considered in this study include Macrocells and Microcells. Unlike 
Picocells and Femtocells, these cells are the regular based stations that 
provide coverage to a large area with inter distance from hundreds of 
meters to several kilometres, as illustrated in Fig. 3. They are usually 
installed by the mobile network operator (MNO) in a planned manner to 
ensure and/or improve outdoor cellular coverage. More importantly, 
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Fig. 2. A framework for evaluating 5G network system transitions with agent-based models (adapted from (Chappin and Dijkema, 2010)).  
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these base stations (also known as site, cell) consume approximately 
80% of the energy required for cellular network operation (Fehske et al., 
2011). Please see Table 1 for more specifications of different types of 
base stations. 

Spectrum frequency: All mobile data travel through base stations on 
a frequency band, with characteristics that higher frequency bands 
could carry data further than others and lower frequency bands are 
better at passing through walls and other obstacles. The deployment of 
base stations and the selection of frequency bands often consider local 
geographical conditions and communication technologies to maximize 
coverage while considering cost performance, as illustrated in Fig. 3. 
The frequency spectrum used for civil communications is a limited 
resource, controlled by the government and licensed to major MNOs. In 
the UK MNOs strive to have frequency resources through bidding in 
order to deploy their own cellular networks. For example, as shown in 
Fig. 4, the frequency bands of 900 MHz, 1800 MHz and 2100 MHz, have 
primarily been using for 2G and/or 3G services; and 800 MHz, 1400 
MHz, 2100 MHz, 2300 MHz and 2600 MHz have been using for 4G 
services. In general, low-frequency bands (<1000 MHz) mainly support 
improved coverage and user experience; mid-frequency bands (sub-6 
GHz, usually between 1000 MHz and 6000 MHz) meet the increasing 
capacity demand for mobile services; and high-frequency bands (≥26 
GHz, mmWave) make delay unnoticeable. Ofcom1 has revealed its 
strategies to provide more spectrum resources to deployment 5G net-
works, that is, first 5G spectrum auction held in 2019 had licensed 3400 
MHz to four major MNOs, and the planned second auction in early 2021 
will open up to the much-anticipated frequency bands of 700 MHz. 

UK coverage background: Approximately 144,000 base stations 
belonging to the four major MNOs (EE, Vodafone, O2 and Three) were 
mapped into the created geodemographic database (Boswarva, 2017). 
amongst these base stations, a total of 42,136 sectored Macrocells of 4G 
networks have screened out with detailed location and configuration 
information (Oughton and Frias, 2018), as visualised in Fig. 5, if needed 
they can be upgraded to 5G to save money and space. Therefore, the 
current distribution of Macrocells is likely to form the basis for 5G 
deployment. Furthermore, the detail geotype data characteristics are 
listed in Table 2. 

Base station capacity and interactions: In reality mobile devices in 

an area will receive signals from different cellular cells, as shown in 
Fig. 6, and an interference signal (purple dash line) modifies a desired 
signal (green solid line) in a disruptive manner, as it travels along a 
communication channel between its source and received, thereby 
reducing spectral efficiency. 

In quantifying the changes to communication capacity from 5G 
deployment, a theorem in information theory proposed by Shannon and 
Hartley (Gokhale, 2004) was applied in this study. The theorem estab-
lishes the channel capacity of a communication link (Eq. (1)), a bound 
on the maximum amount of error-free information per time unit that can 
be transmitted with a specified bandwidth in the presence of the noise 
interference. 

C =
∑min(nT ,nR)

k=1
BWlog2

(

1+
S
N

)

(Eq. 1) 

Where C is a theoretical upper bound of the channel capacity, bits per 
second; nT and nR denote the number of transmit and receive antennas 
respectively (configuration details see Section 3.3 paragraph 1), BW is 
the bandwidth of the channel, Hz; S is the average received signal power 
over the bandwidth, W; N is the average power of the noise and inter-
ference over the bandwidth, W; therefor, S

N is defined as the signal to 
interference and noise ratio (SINR). For a system with M cells, the SINR 
of the serving cell (i) can be expressed as follows (Eq. (2)): 

SINRi =
Pr,i

∑M
m∕=iIm + No

(Eq. 2) 

Where No is the thermal noise at a receiver, 100 dBm ("Thermal 
Noise Power Calculator.,” 2020); Pr,i is the desired received signal power 
by user; Im is the total interference from the inter cells. It should be 
emphasised that the interactions (interferences) from inter-cells in 
adjacent postcode also be considered, which means building new cells in 
one postcode inevitably influence nearby existing base station capacity, 
then further influence the deployment decisions of adjacent areas. 
Therefore, deploying dense cells may lead to a high noise level in a 
heterogenous network. Pr,i and Im can be further expressed as Eq. (3) and 
Eq. (4) (Ali et al., 2016): 

Pr,i = Pt,ihiGiR− n
i (Eq. 3)  

Im =
∑M

m∕=i

Pt,mhmGmR− n
m (Eq. 4) 

Where Pt,m is the transmit power from the inter cells; Ri is the dis-
tance between the user and the serving cell; Rm is the distance between 
the user and the inter cell; n is the path loss factor, 2 assumed; Gi and Gm 
are the antenna gain of serving cell and inter cell (considering beam-
forming technology), respectively, 6 dBi (Matalatala et al., 2017); h is 
the fading loss depending on geotypes, which can be expressed as Eq. (5) 
(OFCOM, 2012): 

h =

{
4.2 + 1.3log10(f ), urban
3.5 + 1.3log10(f ), other (Eq. 5) 

Note: the geotypes can significantly influence the fading loss, sub-
urban and rural areas have less adverse impact on base station capacity. 

Fig. 3. Network architecture site types (5 G Infrastructure Requirements in the UK, 2016).  

Table 1 
Specifications of different types of base stations.  

Type Coverage 
radius 

Power 
consumption 

Application scenario 

Macrocell 1 – 10 km 3 kW – 10kW Main wide area radio coverage 
Microcell 300 – 1000 

m 
150 W – 
300kW 

Infill radio coverage and additional 
capacity (e.g. urban and suburban) 

Picocell Limited 15 W – 50W Localised coverage (e.g. inside 
buildings) 

Femtocell Limited 10 W – 30W Coverage improvement (e.g. home 
or small business premises)  

1 The Office of Communications, UK 
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Where f is the spectrum band, MHz. Assuming that mobile devices 
are randomly distributed in a postcode area, Eq. (6) was used to calcu-
late the throughput (T, Mbps) of the serving cell (Ali et al., 2016): 

T = ηBW
∫+∞

− ∞

Ci f (r)dr (Eq. 6) 

Where η is the bandwidth efficiency, 90% assumed; and fR(r) is the 
probability distribution function, which can be further expressed as Eq. 
(7) (AlAmmouri et al., 2018): 

f (r) = 2πλrexp
(
− πλr2) (Eq. 7) 

Where r is the distance from a receiver to serving cells; λ is base 
station density. With network densification, the corresponding noise and 
interference are growing. To reduce the CapEx, the optimal (minimal) 
number of base stations in a postcode will be found. Therefore, the 
traffic capacity in postcode x can be abstracted as a function (Eq. (8)): 

Traffic capacity (x) = F (λ, geotype, configurations) (Eq. 8)  

3.1.3. The investment agent 
At present, UK MNOs are investing approximately £2bn per year 

(“UK spectrum usage and Demand” 2020) for upgrade and expand 
wireless cellular networks, excluding spectrum costs. Therefore, in-
vestment agent in year t can be expressed as follow (Eq. (9)): 

Investment (t) = {
x, 0 < x < £2bn

£2bn (Eq. 9) 

Investment (t) is the expense in year t, when x is less than 2 billion, it 
indicated the requirement of entire UK is satisfied; otherwise, it means 
the investment is insufficient. 

3.2. Exogenous scenarios 

An exogenous scenario is a collection of variables that influences 
system demand. More specifically, exogenous scenario parameters are 
those related to the data flow characteristics and wireless access devices. 
They were identified during the brainstorming discussions with experts 
and scholars from the telecommunications industry (see 
Acknowledgements). 

3.2.1. Demographic change 
The growing population is challenging the current mobile network 

capacity, which forces the MNOs to deploy the new-generation tech-
nology to improve wireless cellular networks. According to the estimates 
and projections of the Office for National Statistics (“Overview of the UK 
population,” 2019; “UK Census Data,” 2011), the UK population will 
grow steadily and reach over 70 million people by 2030 (see Fig. 7). 
However, population growth rates in different regions are not incon-
sistent. Fig. 8 shows the UK population growth rate by postcode. It is 
foreseeable that in the near future, there will be greater population 
growth in Greater London, Midlands, as well as the administrative and 
economic capital of Scotland and Wales. In order to reflect the impact of 
this factor in the analysis, the population growth rate of each adminis-
trative region was further embedded in the created geodemographic 

Fig. 4. Spectrum bands used by major MNOs in the UK.  
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database to predict the current year’s population as the systems evolves. 

3.2.2. Density of mobile clients 
With the rapid development of smart mobile technology, mobile 

devices and wireless terminals have greatly replaced the PC clients and 
become the core trend of the IT industry. It is foreseeable an explosive 

growth of mobile client Apps and the accompanying further popularity 
of mobile clients. amongst mobile clients, smartphone currently account 
for about 95% of mobile data consumption, and it is expected that this 
share will continue to increase in the coming decades. As shown in 
Fig. 9, after the rapid development of the smartphone penetration rate in 
the UK, the growth rate has slowed down in 2018, but it is expected to 
continue to grow steadily at a slow growth rate of about 1%, i.e. 64,000 
people per year, and will exceed 90% by 2030. 

3.2.3. Mobile data growth 
Since 2010 Ofcom publishes an annual statistical survey of de-

velopments in the communications sector of a previous year (OFCOM, n. 
d.), including per-capita mobile data consumption as shown in Fig. 10. 
The 2019 edition is the most recently published statistical survey. Over 
the past eight years, per-capita mobile data consumption has been 
increasing more than 30 times. The rapid increase in data consumption 

Fig. 5. Macrocells distribution across the UK.  

Table 2 
Geotype data characteristics.  

Geotype Criterion, 
people/km2 

Area, 
km2 

Population, 
% 

4G 
coverage, 
% 

Site 
count 

Urban > 7959 461 8.4 100 2888 
Suburban > 782 16,421 62.1 100 19,997 
Rural 0 – 782 215,233 29.5 86.8 18,848  
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mainly benefits from the upgrading of communication infrastructure, 
especially 4G networks, and higher mobile broadband speeds, which has 
promoted the use of data killer applications (such as TikTok and You-
Tube) on smartphones. Due to the uncertainty of policy impact on Apps, 

we envisioned three mobile data growth scenarios, that is, high-demand, 
medium (business as usual), and low-demand. Considering that the 
growth rate of data demand conforms to the population growth (Alamu 
et al., 2020), a logistic curve (Eq. (10)) was used to forecast mobile data 

Fig. 6. Schematic diagram of noise and interference signal in a postcode area.  

Fig. 7. UK population estimates and projections (source: (“Overview of the UK population,” 2019)).  
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growth. 

P(t) =
KP0ert

K + P0(ert − 1)
(Eq.10)  

where, t represents the number of years from 2010, and other co-
efficients are as follows:    

Low Medium High    
K 15.5483 25.9011 44.767    
P0 0.1333 0.1432 0.1491    
r 0.4675 0.4456 0.4329    

When the curve changes from concave to convex, the rate of change 
of growth will change from positive to negative. The turning points of 

the three scenarios are in the 2024, 2026, and 2028. After determining 
the monthly per-capita mobile data consumption, Eq. (11) was further 
used to calculate the data traffic demand (Rx,t, Mbps) of a postcode area 
in year t. 

Rx,t = Dx,t × St × Ut (Eq. 11) 

Where Dx,t represents the total population of a postcode area x in 
year t; St represents the smartphone penetration rate (Fig. 9) in year t; Ut 
represents the peak data traffic demand (Mbps/per-capita) and can be 
calculated following Eq. (12). 

Ut = Pt × 1024 × 8 ×
1
A
×

B
24

×
1

3600
(Eq. 12) 

Where Pt is the monthly data consumption per capita (Fig. 10); A and 

Fig. 8. UK population growth rate differs at a postcode level (source: (“Overview of the UK population,” 2019)).  
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B are the active days (30 days assumed) per month and average busy 
hour (4 h assumed) per day, respectively. Then, the total data traffic 
demand (Mbps) in year t can be expressed as Eq. (13), and will be further 
embedded into the geodemographic database. 

Total Demandt =
∑x

x=1
Rx,t (Eq. 13)  

3.3. Design variables for transition assemblages 

A transition assemblage can be understood as investigation and 

design of technical configurations, policies, regulations, and investment 
strategies and their implementation, which will lead to infrastructure 
transitions (Chappin and Dijkema, 2010). 

In this study, we mainly focused on the commercial 5G non- 
standalone networks,2 and the configurations (transmit and receive 
antennas, spectrum frequency and bandwidth) defined in this part has a 
decisive impact on base station capacity (see Eq.1). In terms of key 

Fig. 9. UK smartphone penetration rate (source: estimate (Statista, 2018); projection (Statista, 2019); extension by linear interpolation).  

Fig. 10. UK mobile data growth (source: estimate (OFCOM, n.d.)).  

2 The non-standalone (NSA) mode of 5G NR refers to an option of 5G NR 
deployment that depends on the control plane of an existing 4G LTE network 
for control functions. 
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features of 5G, enhanced mobile broadband (eMBB) and multiple input 
multiple output (MIMO) were took into consideration, and an 8T8R (8 
transmit antennas and 8 receive antennas) MIMO system was assumed to 
be used in all 5G base stations. From the current distribution of wireless 
cellular network base stations (Boswarva, 2017), it can be seen that 
some areas of the UK are still not covered by 4G services. In order to 
make full use of spectrum resources, the networks in these areas will first 
be upgraded with Macrocells integrated with two 4G frequency bands of 
800 MHz and 2600 MHz. On the other hand, for those areas covered by 
4G services, or after those uncovered areas being covered by 4G services, 
the newly available spectrum for the UK’s MNOs (40 MHz @700 MHz 
and 150 MHz @3400 MHz, see Fig. 4) will be deployed on to the existing 
Macrocells, and then the same spectrum deployment to new Microcells 
where necessary if demand is not met. In the choice of available fre-
quency bands, lower frequency bands are prioritised to ensure coverage 
while minimizing delivery costs. 

On the other hand, the launch of the new spectrum will also signif-
icant affect 5G deployment progress. Due to the impact of the epidemic, 
the UK’s original auction date for the new spectrum (700 MHz) in early 
2020 has been postponed, maybe closer to November 2021 that Ofcom 
says (“Next UK 5 G spectrum auction is still 6 to 18 months away,” 
2020), though the specific date for the launch of the new spectrum re-
mains uncertain. Furthermore, Europe has agreed to harmonise fre-
quencies in the 26GHz band (mmWave) and it is believe to be the key 
enabler of future 5G services in capacity (“5 G Frequencies in the UK,” 
2020). Although there is no timetable to enable millimetre waves in the 
UK, the development of the digital economy will accelerate the arrival of 
mmWave has been widely accepted. In view of these information, in this 
study we assumed that 700 MHz band together with the licensed 3400 
MHz band will be used first to upgrade 4G Marcocells; and the enabling 
of mmWave was driven by demand instead, for government 
decision-making reference. 

3.3.1. Deployment priority 
For the deployment of 5G by upgrading existing Macrocells, the four 

major MNOs in the UK have launched a deployment plan in 2019 (Jones 
and Comfort, 2019), and given priority to capital cities, i.e. London, 
Glasgow, and Cardiff, sorting by the population density of the city. The 
upgrade in this study is based on the principle that the higher the pop-
ulation density, the higher the priority. In addition, two infrastructure 
sharing agreements between the joint venture companies (O2 and 
Vodafone; EE and Three) were considered in the system evolution, it is 
assumed that each company domains the same market share. For Mac-
rocells, they can be shared between the joint venture companies and the 
Microcells can be accessed by the four companies. 

3.3.2. Equipment price trend 
During the 5G deployment, the cost of purchase and upgrade 5G is 

dynamically changing with time. Table 3 was used as the annual budget 
for 5G deployment across the UK in this study and a 3% depreciation 

rate was assumed. It is worth to be noted that, in fact, the annual 
available budget of an MNO highly relies on its cash flow. Connecting 
the developed model to actual cash flow can further improve the accu-
racy of model predictions. 

3.3.3. Geopolitical restrictions and embargo 
Another important factor worth noting is that the UK government 

has withdrawn its decision to not restrict a key supplier from intervening 
in 5G networks. Therefore, MNOs may face additional costs of up to 2 
billions of pounds and bear the consequences of lagging behind other 
European countries in 5G technology for three years (Assembly 
Research, 2020). Also considering that Oxford Economics’ analysis 
(Worthington, 2019) that of a 8% - 29% increased investment costs in 
the next decade, we set a premium rate of 18.5% in the CapEx model (see 
Table 4) to reflect how the policy of restricting a key supplier will affect 
the CapEx. 

3.4. System evolution 

By reacting to the exogenous scenarios and transition assemblages, 
the agents, the constituent elements of ABMs (e.g. postcode areas, 
technical systems, policies and regulations variables), drive the evolu-
tion of the system. Agents are modelled as interdependent and their 
aggregate behaviour emerges as the collective operation of the whole 
system from the interaction amongst many numbers of subsystems. In 
this study, the system evolution occurs as postcode area agents deploy 
5G Macro- or Microcells, which in turn brings changes to infrastructure 
capacity and consumption. Therefore, understanding the system evolu-
tion entails answering the following questions, which will allow the 
designed ABM to run a virtual evolution of the system.  

1) What factors determine deployment strategy?  
2) How do they interact and influence each other? 

3.4.1. Factors determining deployment progress 
The ABM is a demand-driven model, which is significantly influ-

enced by a combination of parameters listed in Table 5. The full evo-
lution system and interactions amongst different elements is shown in 
Fig. 11. Exogenous factors initially determine the demand of each 
postcode, while transition parameters and control variables are some 
fixed parameters determine characteristics of postcodes, base station 
capacity, maximum investment budget. As can been seen from Section 
3.1, investment agent will be responsible for upgrading and purchase 5G 
equipment, the UK policies has constrained the annual maximum in-
vestment within 2 billion pounds. While investing 5G deployment, the 
transition variables affected the annual price of Macrocell and Microcell 
strategies. The UK government has withdrawn its decision to not restrict 
a key supplier from intervening in 5G networks, the premium of the 
equipment will also be taken into account in the model. On the other 
hand, the policies regulated the spectrum frequency and bandwidth in 
base stations. 40 MHz @700 MHz, 20 MHz @800 MHz, 40 MHz @2600 
MHz and 150 MHz @3400 MHz will be used in Macrocells, whereas 150 
MHz @3400 MHz and 200 MHz @26 GHz will be approved to embed 
into Microcells. In actual deployment, the deployment priority is defined 
when investment is not sufficient for entire UK, postcodes with higher 

Table 3 
Capital expense (CapEx) by deployment strategy*.  

Cost 
description 

Upgrade to 4G 
Macrocells, £ 

Upgrade 4G 
Macrocells to 5G, 
£ 

Set up 5G 
Microcells, £ 

Base station 122,700 (OFCOM, 
2015) 

15,000 (OFCOM, 
2015) 

2500 (5G-NORMA, 
2015) 

civil works and 
installation 

18,000 (5 
g-norma, 2015) 

18,000 (5 
g-norma, 2015) 

13,300 (5 g-norma, 
2015) 

fibre backhaul 20,000 (oughton 
and frias, 2018) 

– 20,000 (oughton 
and frias, 2018) 

Metro & Core 
upgrade 

7890 (Oughton 
and Russell, 
2020b) 

3250 (Oughton 
and Russell, 
2020b) 

1350 (5G-NORMA, 
2015)  

* Depreciation rate: 3%. 

Table 4 
CapEx for unrestricted and restricted deployment strategies*.   

Upgrade to 4G LTE 
Macrocells, £ 

Upgrade 4G 
Macrocells to 5G, £ 

Set up 5G 
Microcells, £ 

Unrestricted 148,590 36,250 17,150 
Restricted 176,079 42,956 20,323  

* Market share of the key supplier: 35% (“UK Ban on Huawei’s 5 G Equipment 
Increases Telecoms’ Capex,” 2020). 
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population density will be firstly developed. In terms of behaviours of 
base station agents, it can be defined as follows:  

• Upgrade existing Macrocell to 4G Macrocell. It is reported that there 
are 13.2% of rural areas across the UK (see Table 2) are not covered 
by 4G services, thus, the model will firstly check the area 4G 
coverage. The existing Macrocells in these areas will be installed 
with 20 MHz @800 MHz and 40 MHz @2600 MHz carriers if not 
fully covered with 4G.  

• Upgrade existing Macrocell to 5G Macrocell (see Table 2 and Fig. 4). 
After ensuring ubiquitous 4G services in the local area, the legacy 
Macrocells will be embedded with new spectrum resources (40 MHz 
@700 MHz and 150 MHz @3400 MHz) to meet the increasing 
demand.  

• Building new 5G Microcell. The newly built 5G Microcell (150 MHz 
@3400 MHz and 200 MHz @26 GHz) can be a supplement to the 
local capacity if the 5G Macrocell cannot meet the demand. 

3.4.2. Translating considerations into an ABM design 
The ABM in this study was developed via Python®. The deployment 

of base stations is following the pseudo-code as illustrated in Table 6. 
The flow charts are composed of transition and state elements. When 
certain conditions are met, a transition to a new state will be triggered. 
Triggering factors involve arrival of information, elapse of time and 

meeting a given criteria. 
The ABM is a demand-driven model based on the bottom-up ap-

proaches, the model variables and details of algorithm has been shown 
in Table 5 and Table 6, respectively. More specifically, the model starts 
with building the UK postcode level visualised map database based on 
OpenStreetMap3 and GeoJSON,4 following by inputting the de-
mographic information and legacy Macrocells, which is the descried 
geodemographic database above (see Section 3.1.1). At the same time, 
the exogenous factor which is created to CSV file also be appended to the 
geodemographic database (see Section 3.2). Next, the associated tran-
sition assemblages (technical system, spectrum policies, deployment 
priority, investment strategy, infrastructure sharing agreements and cost 
model) will be initialised (see Section 3.3), before the cellular network 
deployment. Macrocell and Microcell are used to meet the growing 
traffic demand during the system evolution, and the deployment strat-
egy making coded into the model is a multi-choice decision-making 

process, characterised in Section 3.4.1 base station behaviours. The 
annual deployment starts from the postcode with high population den-
sity. In each step, the newly built base station agents alter the capacity of 
in their local postcode spatial area, as well as cause interferences to 
nearby base stations on adjacent areas. In this way, the ABM updates the 
changed capacity of influenced areas. Even though the previous 
deployment has satisfied one area’s demand, a new deployment can 
break the trade-off, then new base stations must be built to satisfy this 
unbalanced postcode in priority. The algorithm is a double loop struc-
ture: the first loop will run a ten-year deployment (ten times in total) 
between 2021 and 2030. The second loop is conditional, it ends until one 
of two situations is met: 1) all postcodes’ demand are satisfied; 2) annual 
investment budget has run out. Once the network deployment 
completed at that year, the newly built base station information (co-
ordinates, cost and capacity) will be exported for impact assessment. 
Meanwhile, the information will be synchronized to the geodemo-
graphic database for the program iteration, and each iteration can 
obtain the deployment details at that year. As a result, 5G deployment 
information can be visualized in both spatial and temporal dimension. 

Table 5 
Variables of the 5G ABM.  

Type Variable Operational ranges / specifications 

Exogenous 
scenarios 

Demographic change See Fig. 7 and Fig. 8 in Section 3.2.1 
Density of mobile 
clients 

See Fig. 9 in Section 3.2.2 

Mobile data growth See Fig. 10 in Section 3.2.3    

Design Deployment priority Sorting by city population density ( 
Section 3.3.1) 

Equipment price See Table 3 in Section 3.3.2 
Geopolitical 
restrictions 

Premium rate of 18.5% (Section 3.3.3)    

Assessment Energy consumption  
Carbon footprint  
Operating expense   

Fig. 11. Factors determining deployment progress.  

3 An open source map library accessed at: https://github.com/openstreetmap  
4 GeoJSON is an open standard format designed for representing simple 

geographical features. 
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3.5. Impact assessment 

The main objective of the impact assessment is to gain insights on the 
potential impact of 5G deployment on energy consumption and carbon 
footprint, and operating expense (OpEx) in the context of identified 
policies and scenarios. 

3.5.1. Energy consumption 
In general, a base station consists of composed of multiple trans-

ceivers (TRX), and each of them serves one transmit antenna element. A 
TRX comprises a power amplifier (PA), a small-signal radio frequency 
(RF) transceiver, a baseband (BB) unit, a DC-DC power supply unit, a 
mains supply (MS) unit, an active cooling system. Assuming that the 
power consumption of a base station is proportional to the number of 
transceivers (NTRX) (Auer et al., 2011), the load-dependant energy 
consumption (P) can be can be calculated as follows (Eq. (14)): 

P = NTRX
PPA + PRF + PBB

(1 − σDC)(1 − σMS)(1 − σcool)
(Eq. 14)  

where σDC, σMS, and σcool represent the loss factors incurred by DC-DC 
power supply, mains supply and active cooling, respectively; PPA can 
be expressed as (Eq. (15)): 

PPA =
Pout

ηPA
(
1 − σfeed

) (Eq. 15)  

where ηPA represents the PA power efficiency; σfeed represents the feeder 
loss; and Pout is the antenna element output power, which linearly 
changes with the actual data traffic load (Auer et al., 2011), varying 
between 0 and the Pout at maximum load (Pmax). Therefore, Eq.15 can be 
rewritten in the form of a linear equation of P with respect to Pout (Eq. 
(16)): 

P = ΔpPout + NTRXP0, (0<Pout ≤ Pmax) (Eq. 16) 

Where Δp is the slope of the load-dependant power consumption and 
can be determined by the power consumptions under full-load (Pfull) and 
idle state (Pidle), respectively; and P0 is the power consumption at the 

minimum non-zero output power. In reality, not all subscribers are al-
ways active, and Pout varies with data traffic load. The real-time Pout can 
be obtained by multiplying the Pfull by a normalised data traffic load. A 
typical daily normalised data traffic load profile is shown in Fig. 12 and 
it was used in this study. Other base station technical parameters used in 
energy consumption calculation are listed in Table 7. 

3.5.2. Carbon footprint 
An industrial sector’s carbon footprint can be measured by under-

taking a carbon emissions assessment. Once the size of a carbon foot-
print is known, a strategy can be devised to reduce it, for example, by 
technological developments, energy efficiency improvements. However, 
calculating the carbon footprint of an industry sector is a complex task, 
and there is a set of standards for tracking greenhouse gas (GHG) 
emissions across scopes within the value chain (Greenhouse Gas Pro-
tocol, 2020). In this study, we focus on Indirect Emissions, from the 
generation of purchased electricity. 

The energy mix for electricity generation in the UK has undergone 
tremendous changes in the past few decades. Since 2012, the share of 
coal has fallen sharply, and completely replaced by an increase in the 
consumption of natural gas and other renewable resources in 2020, such 
as wind, solar, and bioenergy (CarbonBrief, 2019). In order to quanti-
tively assess the carbon footprint with 5G deployment, the projected UK 
electricity mix (Fig. 13) was used in this study. The associated CO2 
emission by fuel is listed in Table 8. It should be noted that most of the 
UK’s imported electricity comes from France (CarbonBrief, 2019), via 
the 2 GW electricity interconnector between the two countries. The 
carbon intensity of electricity traded with France was taken into account 
to calculate the associated CO2 emission of electricity excise. 

In addition, energy taxes in UK are levied within the framework of 
the 2003 European Union Energy Tax Directive. Climate Change Levy 
(OECD, 2019), the one main taxes on energy use within this framework, 
applies to electricity supplied to businesses and the public sector. 
Although originally electricity generated from renewables other than 
hydro, including biofuels and waste was not taxed, but this exemption 
was phased out from 1 August 2015. According to Taxing Energy Use 
2019, a nominal carbon tax rate is GBP 18.00 per tonne of CO2. This 
means that MNOs of operating 5G networks not only need to pay high 
electricity bills, but they may also need to pay high electricity excise tax. 

3.5.3. Operating expense (OpEx) 
Generally, OpEx consists of the annual operation and maintenance 

(O&M) costs, site lease costs, the leased lines per backhaul link, and 
energy costs (Table 9). The annual O&M costs were assumed as to 10% 
of the CapEx of that year (Chatzimichail, 2014). Other data mainly came 
from Ofcom MCT model (Ofcom, 2020b) and 5G Norma (5G-NORMA, 
2020). In terms of energy costs, the nominal price (£0.12/kWh) appli-
cable to extra-large non-domestic consumers was used in this study 
(“Gas and electricity prices in the non-domestic sector,” 2020). 

4. Results and analysis 

This study developed an ABM based communication infrastructure 
evolution framework and methods, synthesising multi-dimensional data 
visualisation with bottom-up approaches. By running the developed 
model, we obtained the quantitative results of the spatiotemporal evo-
lution of 5G deployment in different scenarios, and further analysed the 
energy consumption and carbon footprint of the 5G network, as well as 
the subsequent change in the OpEx pattern. 

4.1. Spatiotemporal evolution 

The 5G deployment was carried out under three hypothetical data 
demand scenarios, i.e. low-demand, medium-demand (business-as- 
usual), high-demand. Therefore, before analysing the spatiotemporal 
deployment characteristics of base stations, we first predicted the 

Table 6 
The pseudo-code of 5G ABM.  

Algorithm: 5G agent-based model 

Input: 
- mobile user density in each postcode matrix Xn×4, // postcode, area, number of 
users, and mobile user density 
- base station density in each postcode matrix Yn×4, // postcode, area, number of 4G 
base station, and base station density 
- annual investment AI. // fixed to £2bn 

Output: predicted postcode level base station density matrix BSn×3 × 10. // postcode, 
number of macrocells, number of microcells in a year from 2021 to 2030  

1 Initialize local capacity of each postcode C = (c1, …, cn);  
2 local demand of each postcode D = (d1, …, dn);  
3 for year ← 1:10 do  
4 sort the user density of each postcode, update the matrix Xn×4  

5 update all di (1 ≤ i ≤ n) according to Eq. (11) to (12).  
6 update all ci (1 ≤ i ≤ n) according to Eq. (1) to (7).  
7 annual expense e ← 0  
8 while (e < AI or ∀di <ci) do  
9 for p ← 0 to length [Xn×4]  
10 if (dp ≤ cp) then  
11 continue;  
12 else  
13 calculate cost by executing deployment strategy (see Section 3.4.1)  
14 update the optimal number of base stations bp (see Section 3.1.2)  
15 e ← e + cost  
16 update all ci (1 ≤ i ≤ n) according to Eq. (1) to (7)  
17 end if  
18 end for  
19 end while  
20 return BSn×3 × 10  

21 end for  
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demand for data capacity. 

4.1.1. Demand for data traffic rate 
Fig. 14 shows the growth in total demand for data capacity over the 

next ten years in the UK. If business-as-usual (medium), demand will 
grow from less than 5 Tbps in 2021 to more than 16 Tbps in 2030. In a 
high-demand scenario, the demand is even reach 24 Tbps; even in a low- 
demand scenario, the demand will still be 8.8 Tbps. It can be seen from 
Eq. (12) that the exogenous scenario parameters of population size, 
smartphone penetration rate and monthly data consumption are all first- 
power variables of the total demand function of data capacity. 
Comparing Fig. 7, Fig. 9 and Fig. 10, monthly data consumption has a 
decisive effect on demand growth as the magnitude of its variation is 
significantly larger than that of other exogenous scenario parameters. 

In general, these predictions are consistent with Oughton’s pre-
dictions for the region of Oxford–Cambridge Arc (Oughton and Russell, 
2020b). For example, in their study in medium scenario the demand for 
Oxford, Luton, and Cambridge are expected to reach 400 Mbps/km2, 

700 Mbps/km2, 400 Mbps/km2 in 2030, respectively. However, it 
should be noted that they only considered 30% market share, but this 
study considered 100% market share. If as pro-rata prediction, our re-
sults are 340 Mbps/km2, 740 Mbps/km2, 510 Mbps/km2 in these areas, 
respectively. Fig. 15 completely shows the data traffic density distri-
bution across the UK, and locally enlarged shows the Greater London 
area, in three scenarios reflecting the underlying demographic charac-
teristics of each postcode area. In all scenarios, the higher demand re-
gions are mainly concentrated on the south and midlands of England, 
whereas the demand of Scotland and Wales is not significant. This can be 
primarily attributed to the relative low population density in Scotland 
and Wales. Compared to low-income rural areas, there is a higher de-
mand in administrative and economic capital areas, e.g. Greater London, 
Glasgow, Edinburg and Cardiff. This tendency can be particularly 
magnified in the low-demand scenario. In addition, the demand density 
for inner London is significantly higher than outside, and it noted that 
three boroughs – Westminster, Islington and Tower Hamlets which 
possess the highest density, especially for the Tower Hamlets, its de-
mand even exceeds 5000 Mbps/km2 in the high-demand scenario. These 
results are of vital importance to decision-makers, as MNOs who fail to 
satisfy customers’ demand will be likely to lose market share. 

4.1.2. Spatiotemporal rollout of base stations 
In terms of deployment, no doubt the newly deployed base stations 

increase consistently with the demand in each year. As shown in Fig. 16, 
the number of Microcells is significantly larger than that of Macrocells in 
all scenarios. It is projected that in the low, medium and high demand 
scenarios, the deployment of 360,000, 550,000, and 790,000 microcells 
will need to be completed respectively by the end of 2030. In general, 
most of the capacity is provided by the Microcells in the 5G network, 
with a limited number of Macrocells only as a supplement. Take the 
medium scenario (business-as-usual) as an example, it is found that all 
areas in the UK will be fully covered with 4G services after 2025, and the 
upgradation of vast majority of 4G Macrocell to 5G. Furthermore, 700 

Fig. 12. Daily normalised data traffic load profile.  

Table 7 
Base station technical parameters.  

Technical parameter Macrocell Microcell 

PA power efficiency (ηPA),% 31.1 22.8 
Feeder loss (σfeed), dB − 3.0 0.0 
RF power consumption (PRF), W 12.9 6.5 
BB power consumption (PBB), W 29.6 27.3 
Loss factor incurred by DC-DC power supply (σDC),% 7.5 7.5 
Loss factor incurred by mains supply (σMS),% 9.0 9.0 
Loss factor incurred by active cooling (σcool),% 10.0 0.0 
Number of sectors per cell 3 1 
Number of antennas per cell 8T8R 8T8R 
Number of carriers per cell 2 2 
Power consumption at full load (Pfull), W 10,800 1157 
Power consumption at idle state (Pidle), W 6000 864  
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MHz and 3400 MHz spectrum resources can play an important role at 
the beginning of the deployment, because the basic demand at that time 
can be met by upgrading Macrocells. Due to the limited number of 
legacy Macrocells, ultra-large demand can be achieved by deploying 
Microcells embedded in 3400 MHz and 26 GHz. 

Fig. 17 shows the annual CapEx on base stations delayed by geotype. 
Overall, to complete 5G deployment, if business as usual (medium-de-
mand) UK needs to invest £13.1 bn in the next ten years, and it needs to 
invest £9.9 bn and £16.8 bn in low- and high-demand scenarios 
respectively. It is expected that more than 90% of the total CapEx of 
MNOs will go to suburban and rural areas to meet growing demand, 
while the total investment in densely populated urban areas is much 
less. By the end of 2021, the demand for data capacity will be met in 
urban, suburban and some rural areas. However, due to budget 

limitation on CapEx, 5G deployment in many rural areas will be delayed. 
Noted that in 2022, due to relatively mild demand growth in 2021 those 
regions where 5G have been deployed still have capacity margin. 
Therefore, most of the CapEx will go to rural areas. As shown in Fig. 17, 
rural areas without 5G coverage by 2022 will be highly dependant on 
Microcells, because legacy Macrocells are poorly deployed in these 
areas. For the areas with Macrocells, the local demand can be met by 
upgrading them to 700 MHz. In the next few years, considering that due 
to the decline in equipment prices, the annual budget can meet the 5G 
deployment needs across the UK. Regarding the political restrictions on 
key suppliers mentioned in Section 3.3, UK MNOs would face additional 
cost of £0.63 bn to £1.19 bn in 5G deployment. Compared with suburban 
and urban areas, rural areas that rely heavily on high investment in-
tensity will be very likely suffer severely delays. 

Fig. 18 shows the spatiotemporal distribution of Microcell density 
across the UK by scenario, which is an indicator of underlying demand 
density. In the next decade, the spatial distribution of Microcell density 
across the UK will change dramatically over time, but the Macrocell 
density will remain static (Fig. 5). The high density of Microcells will be 
mainly located in densely populated urban areas, while the low density 
will be primarily concentrated in small towns and rural areas. The 
reason for the high density of base stations in urban areas is not only due 
to high demand, path fading loss is also an important factor (see Eq. (5)), 
because the dense buildings will severely affect the signal power 
transmission, especially for the high and mid frequency bands. Take the 
high-demand scenario as an example, the Microcell density in most 
areas is between 1 unit/km2 and 5 units/km2. In the future 5G network, 
Microcell has characteristics of large capacity but limited coverage 
radius, which usually leads to excessive resource reservation in areas 
with low-demand density, which may be economically inefficient. 

4.2. Energy consumption 

In the next ten years, the power consumption of cellular network will 
increase with the densification of Microcell and upgrading of Macrocell. 
In terms of the aggregate energy consumption, as shown in Fig. 19, it 

Fig. 13. Shares of the UK electricity mix by fuel between 2020 and 2030 (CarbonBrief, 2019).  

Table 8 
CO2 emissions from electricity generation by fuel (source: 
(Moro and Lonza, 2018)).  

Fuel type CO2 emission, g/kWh 

Gas 500 
Nuclear 29 
Renewables 26 
Import 93  

Table 9 
Operating expense by deployment strategy*.  

Cost description Upgrade to 4G LTE 
Macrocells, £ 

Upgrade 4G 
Macrocells to 5G, £ 

Set up 5G 
Microcells, £ 

O&M costs 17,607 4295 2032 
Site rental costs 5000 5000 5000 
Leased lines per 

backhaul link 
1000 1000 1000 

Energy costs £0.12/kWh  

* Depreciation rate: 3%. 
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grows from 1.8 TWh in 2021 to 8.4 TWh in 2030 in the business-as-usual 
scenario (medium-demand), accounting for approximately 2.1% of the 
total electricity generation in the UK.5 The energy consumption in 2030 
in the low- and high-demand scenarios are 6.6 TWh and 10.5 TWh, 
respectively. The potential increase in energy consumption is not only 
due to the increase in the number of base stations, but also due to the 
increased energy consumption of operating a single base station with 
multi-frequency bands. It is expected that by 2030, most legacy Mac-
rocells will be embedded in more than 4 frequency bands, and those 
frequency bands will coexist for a long time to achieve continuity of 
mobile services. In the early-stage deployment, most of the energy will 
be consumed by the upgraded Macrocells. With the densification of the 
network, the energy consumption caused by Microcell operation will 
gradually exceed that of the Macrocells. 

Fig. 20 further shows the evolution of daily power consumption 
distribution across the UK and the Greater London area in the business- 
as-usual scenario (medium-demand). It can be seen that, the power 
consumption in rural (low-income) areas will increase dramatically over 
time across the UK; in contrast, the power consumption in urban 
(administrative and economic capital) areas will increase dramatically 
in the first two years but no obvious increase in the following years, 
taking Greater London for instance. The reason behind this phenomenon 
is that the mobile network deployment was poor in low-income areas 
before 2020, very few legacy Macrocells were deployed in those areas 
(Fig. 5). Thus, a large number of Microcells need to be built in order to 
meet the traffic demand. As a result, the energy consumption will be 
significantly promoted. 

In addition, to reflect fluctuations in hourly power demand with the 
data traffic rate, visualization was performed. Still taking the business- 
as-usual scenario (medium-demand) for instance, Fig. 21 shows the 
variation in the distribution of power demand for one day across the UK 
and Greater London areas in 2030. The result shows that the minimum 
and maximum power demands will appear at 6AM-9AM and 9PM-0AM, 

respectively. However, large cities with ultra-dense base stations (e.g. 
Greater London) maintain a high-level power demand all the time. 
Specifically, some regions in London Zone 1 reach over 200 kW/km2, 
which will likely pose a threat to the local power infrastructure. Similar 
results can be observed in other densely populated urban areas, such as 
Birmingham, Manchester, and Glasgow. 

4.3. Indirect carbon emissions 

Fig. 22 shows the annual indirect carbon emissions of 5G network 
operations. By 2030, in the low-, medium- and high-demand scenarios, 
the indirect carbon emissions from 5G network operations will be 
795,347, 990,404 and 1260,532 tonnes respectively. From 2021 to 
2028, carbon emissions will increase with the densification of the 
network. However, due to reduced gas use for electricity generation, 
there will be some decline after 2028. Although the UK’s electricity 
structure is expected to be dominated by renewable energy, but in the 
next ten years, the carbon emissions caused by natural gas will still be in 
a leading position. These indirect carbon emissions will require UK 
MNOs to pay up to £15–25 million per year in climate change levy 
(Fig. 23), which may adversely affect their profits. With the increasing 
emphasis on sustainability, reducing the use of dirty electricity may be 
an effective way to reduce carbon emissions and related climate change 
taxes. 

4.4. Operating expenses (OpEx) pattern 

Fig. 24 breaks down annual operating expenditures by scenario 
based on the four expenditure types. In all scenarios, the overall trend of 
OpEx is to increase with the increase in traffic demand. By 2030, mobile 
operators in the UK will spend 3.4 - 6.5 billion pounds a year to operate 
5G base stations. Due to the deployment of dense microcells, site leasing 
costs account for about half of operating expenses. Compared with 4G 
networks, the ratio of site rental costs, fibre backhaul, and O&M costs 
may not change much. However, as a single base station integrates 
multiple frequency bands, energy consumption costs will increase 
significantly. As shown in Fig. 25, site rent, O&M and energy 

Fig. 14. Total demand for data capacity.  

5 The total electricity generation in 2030 in the UK is estimated to 393 TWh 
(OFCOM, 2012) 
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consumption account for approximately 50%, 23%, and 20% of OpEx, 
respectively. In contrast, fibre backhaul expenditure is less than 10% of 
total operating expenditure. 

5. Discussion based on the above results 

5.1. The significance of spectrum resources for 5G deployment 

Both 700 MHz and 26 GHz will play an important role in 5G 
deployment in the UK, because they will enable base stations to meet 

short-term and long-term data traffic demands respectively. For 
example, due to the relatively low data traffic demands in the initial 
stage of deployment, the 700 MHz frequency band can be integrated into 
the Macrocell to meet the primary demands of many regions (see 
Fig. 16). The use of this frequency band is considered to be a cost- 
effective way to maximize the coverage of 5G services due to its good 
propagation characteristics. MNOs should tend to adopt this strategy in 
the initial stage, because the low frequency band allows them to cover 
more areas with fewer base stations. Under normal circumstances, by 
the end of 2022, more than 50% of Macrocells in the UK will be 

Fig. 15. Data traffic density distribution across the UK and the Greater London area.  

Fig. 16. Annual number of base stations deployed by type.  
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upgraded. A study conducted by Kassem and Marina (Kassem and 
Marina, 2015) also pointed out that it is possible to achieve wider 
coverage and less investment by using the 700 MHz frequency band in 
rural areas, roads and railway lines, because lower frequency bands 
require fewer base stations to be deployed. Taking into account the 
growth of data traffic demand in the next few years, only upgrading the 
Macrocell cannot meet all local needs, especially for ultra-densely 
populated urban areas. Therefore, it is necessary to build a new type 
of Microcell embedded in 26 GHz mmWave to achieve ultra-fast speed 
and negligible latency. These features will help unlock the digital 
economy (Vu et al., 2017). Therefore, the early arrival of new spectrum 

resources can greatly accelerate 5G deployment in the UK. 

5.2. 5G network deployment regional priority 

For business- and profit-driven MNOs, they are reluctant to invest in 
low-income areas because of small profits but huge investments. The 
population density in rural areas is low, and the establishment of 
ubiquitous 5G networks in rural areas generates very little income per 
square kilometre (Chiaraviglio et al., 2017a). In contrast, the profits in 
urban areas are more considerable, so it is more in the interest of MNOs 
to prioritise the deployment of 5G in urban areas. First, only 30% of the 

Fig. 17. Annual CapEx on base stations deployed by geotype.  

Fig. 18. Microcell density distribution across the UK and the Greater London area.  
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Fig. 19. Annual energy consumption of 5G networks across the UK.  

Fig. 20. Daily power consumption distribution across the UK and the Greater London area.  

Fig. 21. Power demand variation in a day across the UK and the Greater London area in 2030.  
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UK population lives in rural areas, but these areas account for more than 
90% of the total area of the UK (see Table 2). In order to provide a 
ubiquitous mobile service, a dense 5G cellular network is required. 
However, the poor deployment of 4G networks in rural areas has been 
reflected in the legacy Macrocell density distribution (see Fig. 5). 

Therefore, only by upgrading the Macrocell cannot meet the data traffic 
demand of these areas, it needs to build a large number of Microcells to 
increase local capacity. Microcells embedded with high-frequency and 
mid-frequency bands can usually only cover a small area (the maximum 
radius of 5G Microcell is 200 m), which leads to overprovisioning in 

Fig. 22. Annual indirect carbon emissions.  

Fig. 23. Annual climate change levy.  

Fig. 24. Annual operating expenses (OpEx).  

Fig. 25. Breakdown of operating expenses in 2030.  
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rural areas. As a result, due to economic inefficiencies, mobile network 
operators will be reluctant to invest in these areas. On the contrary, due 
to the large number of legacy 4G Macrocells that can be directly 
upgraded to 5G, it may be more cost-effective to deploy 5G in urban 
areas. The demand in these areas is relatively concentrated, so the 
installation of 5G Microcell may be more suitable for the demand dis-
tribution model in urban areas (see Fig. 18). 

Furthermore, the 5G equipment will be more expensive than before 
due to the expulsion of the key supplier, and this effect can be signifi-
cantly magnified in high-demand scenario (£1.19 bn extra cost). Small 
towns and rural areas across the UK will be severely affected as those 
areas account for most of CapEx. Due to the economic recession caused 
by the pandemic, the budget for 5G deployment may drop in the next 
few years. If MNOs want to build a ubiquitous cellular network in a short 
time, then the sudden increase of CapEx will challenge their cash flow. 
Therefore, MNOs might need to cherry-pick some major urban areas to 
deploy 5G but put other areas on the waiting list. In addition, 5G tech-
nology is actually ‘urban’ in nature. The high performance of 5G relies 
on an extremely complex architecture (Chiaraviglio et al., 2017a; Pal-
attella et al., 2016), which consists of Macrocells, Microcells, fibre 
backhaul, computing nodes and large data centres. Therefore, 
high-performance deployment in rural areas at this stage is unviable 
economically and technologically. Also, this study did not consider the 
radical change – ultra-reliable low latency of 5G, because the technology 
is still under development. However, low latency communications will 
allow a series of new use cases that are closely related to ‘urban’ rather 
than ‘rural’, such as smart cities, autonomous driving, and telemedicine. 

5.3. The challenges associated with high energy consumption 

The 5G power consumption across the UK is expected to rise 
dramatically (see Fig. 19), which may bring about some economic and 
environmental issues. Therefore, there is an urgent need to improve the 
energy efficiency of 5G networks. In order to meet the high energy de-
mand in the future, the distribution network requires significant in-
vestment, as its original design principles make it unable to meet the 
largest peak demand in the future (5 G Infrastructure Association, 2020). 
Distribution network operators should give priority to the upgrade of 
distribution networks in large cities, because since the initial stage of 5G 
deployment, the demand for electricity there will be high. 

Nevertheless, the overall energy usage by 5G base stations needs to 
be reduced as it will account for approximately 2%− 3% of total UK’s 
energy consumption in 2030. Energy costs account for 19% - 23% of 
RAN OpEx, which will seriously affect MNOs’ mainstream profits. GSMA 
(2020) also came up with a consistent estimate and pointed out that the 
future 5G energy cost will account for 20%− 40% of the network OpEx. 
Due to the large number of base stations, maintaining 5G networks will 
bring potential growth in energy. The improvement of energy efficiency 
can not only alleviate the pressure on the power infrastructure, but also 
reduce the OpEx in terms of energy consumption. 

5.4. To use green electricity to reduce indirect carbon emissions 

The 5G specification of 3GPP requires that energy consumption be 
reduced by 90% (3GPP, 2020). Although the use of natural gas has been 
reduced in the past decade, carbon emissions are still mainly from 
gas-fired power generation (see Fig. 22). Substituting renewable energy 
for natural gas in electricity production can significantly reduce carbon 
emissions, which is obvious from 2028 to 2030. Therefore, MNOs should 
increasingly shift their energy procurement from carbon sources to 
green renewable technologies and alternative energy sources. For 
example, IRENA (International Renewable Energy Agency, 2018) found 
that renewable energy is currently the cheapest source of power gen-
eration in many parts of the world, and investment in renewable energy 
can be more cost-effective than conventional energy. At the meantime, 
the cost of wind turbines has fallen by 37% to 56%, and the cost of solar 

photovoltaics (PVs) has decreased significantly in the past ten years, and 
it is expected that the cost will be further reduced by 50% in the next five 
years (International Renewable Energy Agency, 2017). 

6. Conclusion 

This study took the UK as an example to study the spatiotemporal 
deployment of 5G networks in the next ten years, as well as the asso-
ciated energy consumption from economic and environmental per-
spectives. A novel agent-based model was developed based on digital 
infrastructure evolution framework, synthesizing multi-dimensional 
data visualisation with bottom-up approaches. The simulation results 
show that high-demand regions are mainly concentrated in urban areas, 
but most of the capital expenses (CapEx) are spent on suburban and rural 
areas. As far as the political ban on major suppliers is concerned, the 
additional costs faced by mobile operators in the UK in 5G deployment 
are as high as 630 million pounds to 1.19 billion pounds, which will 
seriously affect 5G deployment in rural areas. In addition, most of the 
power consumption in 5G networks is contributed by Microcells rather 
than Macrocells, and those increasing base stations will challenge the 
local power infrastructure. The ever-increasing energy costs brought 
about by 5G networks pose a huge challenge to the profitability of 
MNOs. Based on these results four implications for decision-makers were 
identified. 

The first argues that 700 MHz and 26 GHz frequency bands will play 
an important role in 5G deployment in the UK, which enables base 
stations to meet short- and long-term demand. In order to accelerate the 
5G development, the launch of the two spectrum resources should be 
actively promoted. The second implication is that MNOs cannot tolerate 
the cost of establishing a ubiquitous 5G cellular network in a short 
period of time. Hence, Therefore, 5G networks should be deployed first 
in administrative and economic capital areas. The third meaning of the 
policy indicates that the traditional power distribution network cannot 
meet future electricity demand. At the meantime, the ever-increasing 
energy costs of 5G networks will seriously affect MNO’s profits. There-
fore, there is an urgent need to improve the energy efficiency of base 
stations. The fourth implication for policy states that compared with 
traditional fuel sources, the use of renewable technologies in 5G net-
works is not only environmentally friendly, but also cost-effective. 
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