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Abstract
Educational technologies in mathematics typically focus on fostering either procedural 
knowledge by means of structured tasks or, less often, conceptual knowledge by means 
of exploratory tasks. However, both types of knowledge are needed for complete domain 
knowledge that persists over time and supports subsequent learning. We investigated in two 
quasi-experimental studies whether a combination of an exploratory learning environment, 
providing exploratory tasks, and an intelligent tutoring system, providing structured tasks, 
fosters procedural and conceptual knowledge more than the intelligent tutoring system 
alone. Participants were 121 students from the UK (aged 8–10 years old) and 151 students 
from Germany (aged 10–12  years old) who were studying equivalent fractions. Results 
confirmed that students learning with a combination of exploratory and structured tasks 
gained more conceptual knowledge and equal procedural knowledge compared to students 
learning with structured tasks only. This supports the use of different but complementary 
educational technologies, interleaving exploratory and structured tasks, to achieve a “com-
bination effect” that fosters robust fractions knowledge.
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Introduction

Two commonly distinguished types of mathematical knowledge are conceptual and proce-
dural knowledge (Anderson, 1987; Hiebert, 1986; Rittle-Johnson et al., 2001; Star & Styl-
ianides, 2013). Both develop at the same time (Canobi et al., 2003; LeFevre et al., 2006), 
develop iteratively and evolve in a relationship of mutual dependence (Baroody et al., 2007; 
Rittle-Johnson & Koedinger, 2009; Rittle-Johnson et al., 2015), with increases in concep-
tual knowledge leading, in a virtuous circle, to parallel gains in procedural knowledge and 
vice versa. It is therefore somewhat surprising that prior work in the learning sciences and 
particularly educational technology has primarily focused on fostering either procedural 
knowledge or conceptual knowledge, rather than both. In contrast, the work reported here 
investigates whether a combination of tasks from different types of educational technology 
can be used to foster both conceptual and procedural fractions knowledge.

As we review in more detail in section ‘Background’, the educational technologies com-
monly known as intelligent tutoring systems (ITSs) typically decompose problems into 
sequences of steps and provide adaptive feedback. This is thought to primarily foster proce-
dural knowledge, that is knowing how and when to apply a rule in order to solve a problem 
(Anderson, 1987; Mousavinasab et al., 2018; Rittle-Johnson & Alibali, 1999; Rittle-John-
son et al., 2001). Exploratory learning environments (ELEs), on the other hand, typically 
encourage the construction of knowledge and self-explanation through the manipulation of 
designed objects, tools and representations. This is thought to primarily foster conceptual 
knowledge, that is implicit or explicit understanding about underlying principles and struc-
tures of a domain (Rittle-Johnson & Alibali, 1999).

Both types of technologies, ITS and ELE, have important limitations. Early ITSs have 
been criticised for focusing excessively on automatizing procedures without ensuring an 
understanding of the underlying concepts, which may result in learners applying proce-
dures inaccurately to problems based on shared surface elements (Jonassen & Reeves, 
1996). ELEs, on the other hand, often fail to realize their promise because unguided or 
minimally-guided exploration places too-heavy cognitive demands on the learner (Kirsch-
ner et al., 2006).

Various attempts have been made to address these weaknesses. For example, some ITSs 
have been extended to include collaborative activities (e.g. Diziol et  al., 2010), worked 
examples (e.g. Mathan & Koedinger, 2002), or reflective prompts (e.g. Rau et al., 2012) 
in order to promote sense-making and conceptual understanding. Conversely, for ELEs, 
Mavrikis et al. (2013) establish pedagogically-grounded requirements for providing intel-
ligent support (i.e. guidance) while students undertake exploratory activities (Noss et al., 
2012); while, more recently, Basu et al. (2017) investigated the use of adaptive scaffolding 
(i.e. an alternative approach to guidance) in learning-by-modelling tasks.

Each of these modifications aim to enhance one type of educational technology, an 
ITS or an ELE, so that the particular technology is better able to support the acquisition 
of both types of knowledge, procedural and conceptual. Against this background, in the 
studies reported in this paper, we asked whether the combined effect of the two types of 
educational technology, ITS and ELE, is greater than the sum of their individual effects. 
In other words, does combining the two technologies in one learning platform, leveraging 
both sets of individual strengths, have a synergistic outcome for both types of knowledge? 
We explored this question in the context of the interdisciplinary EU-funded project iTalk-
2Learn, which developed an adaptive digital learning platform that enables the sequenc-
ing of content from two types of systems, an ITS and an ELE, based on the student’s 
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interactions including speech (see http://​www.​italk​2learn.​eu). To facilitate experimenta-
tion, iTalk2Learn focused on fractions, because this mathematical topic is known to be an 
important predictor for future mathematics performance (Siegler et al., 2012) and because 
its introduction in early years often poses challenges for students (Charalambous & Pitta-
Pantazi, 2007).

In the following section, we discuss how these two types of educational technology, ITS 
and ELE, support either procedural knowledge acquisition or conceptual knowledge acqui-
sition, respectively. We then present data from two quasi-experimental studies testing our 
research hypothesis using the iTalk2Learn platform, in Germany and the UK, and discuss 
the evidence that they provide for the effectiveness of combining exploratory learning with 
structured practice to foster robust learning.

Background

Intelligent tutoring systems

As the name suggests, intelligent tutoring systems (ITSs) are a type of educational technol-
ogy designed for one-on-one, adaptive tutoring supported by feedback and hints (VanLehn, 
2011). They typically involve a user-interface that presents students with instructional 
materials together with opportunities to answer structured questions, often breaking down 
each question into several steps to avoid student failure. A common classroom implementa-
tion of such systems involves them in blended learning instructional models with the aspi-
ration of supporting personalised learning (Karam et al., 2016; Phillips et al., 2020). Of rel-
evance to our research, one goal of such implementations is to support students practising 
procedural skills. Cognitive tutors are a particular type of ITSs (VanLehn, 2006) that sup-
port “guided learning by doing” with a mastery-based instructional approach (Kulik et al., 
1990), and involve “model tracing” and “knowledge tracing”, two tutoring techniques that 
allow adaptive support of students’ learning. Model tracing assumes that a cognitive skill 
can be modelled as a set of independent if-then production rules, and supports students at 
the level of single problem-solving steps. Knowledge tracing tracks each individual stu-
dent’s knowledge, in order to select which production rule and hence which task the student 
should experience next (Anderson et al., 1995; Koedinger, 2002; Koedinger et al., 1997).

One limitation of most ITSs is that they do not provide constructivist opportunities for 
the learner to self-construct knowledge, which are typically more effective than step-by-
step learning for the development of conceptual knowledge (Doroudi et  al., 2015). This 
has the risk of resulting in the student having little understanding of what is behind the 
procedures, how and why they work, and why one may want to learn them. There are, 
however, some ITSs that were specifically developed to foster sense-making, which will 
be discussed in section ‘Combining exploratory learning with structured practice tasks’. 
A second limitation of ITSs is that their adaptive support is usually based on pure perfor-
mance indicators. The learners’ process or interaction data, on the other hand, is only rarely 
exploited to provide adaptive support within common ITSs (Mousavinasab et  al., 2018). 
However, to identify individual learning needs and, thus, to allow for individually tailored 
learning, adaptive support should rely on a variety of different parameters. A third limita-
tion of ITSs is that, drawing on the SAMR model of educational technologies (Hamilton 
et al., 2016), they typically only seek to “substitute” for standard teaching or to “augment” 
it. In other words, the ITSs usually operate only at the lower levels of the SAMR model, 

http://www.italk2learn.eu
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reinforcing—while automating—step-by-step instructionist teaching practices. In particu-
lar, although ITSs are the archetypal “personalised learning” technologies, while they do 
personalise student learning pathways, they typically do not personalise student learning 
outcomes (they do not enable students to achieve their personal learning goals; Holmes 
et al., 2018).

Exploratory learning environments

Exploratory learning environments (ELEs) are virtual environments that are designed to 
promote learning by discovery. They provide learners with opportunities to explore or 
experiment with a range of possibilities within a certain domain. There are different types 
of ELEs ranging from games to simulators, virtual labs, and open-ended learning environ-
ments, all of which usually target STEM subjects. In mathematics, in particular, ELEs ena-
ble the construction of some mathematical representation or abstract idea and are designed 
to empower learners to interact not only with the available objects, but also to explore their 
relationships and to investigate the underlying representations that enforce these relation-
ships (Hoyles, 1993; Noss & Hoyles, 1996; Thompson, 1987). Using these tools, learn-
ers can explore mathematical objects from different but interlinked perspectives while the 
relationships that are key for mathematical understanding are highlighted, which helps the 
learner appreciate the various complexities. In this sense, ELEs can address the higher lev-
els of the SAMR model (allowing for task redefinition and the creation of new tasks previ-
ously inconceivable) (Hamilton et al., 2016; Holmes et al., 2019).

Thus, ELEs may be a solution to a key limitation mentioned earlier of ITS, specifically 
their focus on procedural learning. However, the exploration at the heart of ELEs typically 
places high cognitive demands on the learner and, without guidance, may not be successful 
in fostering learning (Kirschner et al., 2006). To address this limitation, recent work has 
explored how to provide support in order to reduce the onerous cognitive demands expe-
rienced by some students in ELEs. In particular, intelligent components that provide feed-
back to support the student’s interaction with the learning environment, encourage goal-
orientation, and exploit particular learning opportunities, have been incorporated in ELEs 
(e.g. Holmes et al., 2015; Mavrikis et al., 2013; Noss et al., 2012) and other open-ended 
environments (e.g. Basu et al., 2017; Bunt et al., 2004).

Combining exploratory learning with structured practice tasks

With a few noteworthy exceptions (e.g. Rittle-Johnson et al., 2015; Star, 2005; Wang et al., 
2013), the interdependence of procedural and conceptual knowledge has not received much 
attention. From a theoretical standpoint, the conceptual/procedural knowledge distinction is 
sometimes considered too coarse. For example, Star (2005) and de Jong & Ferguson-Hes-
sler (1996) called for distinguishing between knowledge type and qualities, and Baroody 
et al. (2007) present a continuum of knowledge types and qualities, together with a further 
justification for their interdependencies. In short, in the field of mathematics education, the 
few studies that have examined the procedural/conceptual distinction have provided some 
useful evidence, but their application in educational technology contexts remains limited.

Similarly, research investigating the combination of exploratory learning and structured 
practice tasks is scarce. Either the combination of exploratory learning and structured prac-
tice tasks has not been compared to the separate approaches, or the outcomes were incon-
clusive (which might be due to the specific characteristics of the tasks or environments).
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For example, Holmes (2013) designed a digital games-based learning environment for 
children who were low-attaining in mathematics. It offered opportunities for the children to 
self-construct solutions to authentic but covert numeracy problems (i.e. exploratory learn-
ing) followed immediately by structured practice to consolidate what they had learned. 
However, this work did not compare the outcomes of this combination with either explora-
tory learning or structured practice alone.

Corbett et al. (2013) report a study where students learned about genetics with an ITS. 
One condition provided a block of scaffolded reasoning problems aimed at eliciting sense-
making, followed by a block where students solved problems to foster procedural knowl-
edge. This combination led to better performance on transfer and preparation for future 
learning tasks than a condition where students only solved problems. However, the prob-
lem-solving condition led to better performance on problem-solving tasks than the combi-
nation condition.

Doroudi et  al. (2017) report a study with Fractions Tutor comparing five conditions, 
out of which two are of particular interest in the context of this paper. One condition prac-
tised the application of procedures. A combination condition also solved problems aimed 
at sense-making and fluency-building. However, the authors did not find a significant per-
formance difference between these conditions; possibly because problem selection was not 
adaptive but instead based on a spiral curriculum.

Finally, Rittle-Johnson and Koedinger (2009) investigated iterative lesson sequencing 
(lessons that alternate in focusing on concepts or procedures) within an ITS. They found 
that the iterative lesson sequence fostered procedural knowledge more effectively than a 
concepts-before-procedures sequence, and that there was no difference for the acquisi-
tion of conceptual knowledge. However, the lessons that focused on concepts were heavily 
structured and did not provide the affordances for discovery that ELEs typically offer.

In summary, while there is theoretical and some empirical support for combining 
exploratory learning with structured practice to promote both procedural and concep-
tual learning, the empirical evidence has been inconclusive. One reason may be that the 
hypothesis has previously been tested by combining exploratory learning with structured 
practice within a single educational technology. It has not yet been tested whether combin-
ing different but complementary educational technologies (ITS and ELE) that are designed 
specifically to support the acquisition of either procedural knowledge or conceptual knowl-
edge can foster both types of knowledge. It was the goal of the work reported in this paper 
to investigate this possibility.

Materials

iTalk2Learn platform

For the purposes of this research, the iTalk2Learn platform was configured in two paral-
lel versions, English and German, both of which combined an ELE delivering exploratory 
tasks and an ITS delivering structured tasks. The English iTalk2Learn platform includes 
an ELE, Fractions Lab (Hansen et al., 2016), which was developed within the iTalk2Learn 
project, and a commercially available ITS, Maths Whizz (www.​whizz.​com). The German 
iTalk2Learn platform includes the same ELE, Fractions Lab, but translated into German, 
and an ITS called Fractions-Tutor (Rau et al., 2012, 2013), also translated into German. 
More details about these are provided below.

http://www.whizz.com
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The pedagogy of the iTalk2Learn platform is based on an adaptive approach that uses 
a variety of inputs (e.g. screen/mouse action within the ELE, amount of feedback mes-
sages provided, and speech during reflective tasks) to sequence activities. In its default ver-
sion iTalk2Learn combines the ELE and ITS activities. Building on previous research and 
theory in the field (Grawemeyer et al., 2017; Mazziotti et al., 2015), the pedagogical inter-
vention model of iTalk2learn specifies that students begin their session in the ELE, where 
they engage with an exploratory task (c.f. also a recent meta-analysis Sinha & Kapur, 
2021 that favours engaging in problem solving followed by instruction akin to the model 
described here). While students undertake tasks, a Student Needs Assessment (SNA) com-
ponent draws on the various inputs to determine whether the student is under-, over-, or 
appropriately challenged by the task and thus to identify the next task appropriate for them 
[based on an assessment of task difficulty by mathematics education experts and a set of 
rules, (Mazziotti et al., 2015)]. For example, if the student receives several supportive feed-
back messages, the system infers that the student is overly challenged, and they are given 
a less challenging exploratory task on the same concept. On the other hand, if the student 
is determined to be appropriately challenged, the Student Needs Assessment (SNA) com-
ponent switches to the ITS where they are given a structured practice task (see Fig. 1). The 
first structured practice task that the student experiences in the ITS is mapped as closely 
as possible to the fine-grain goal of the completed task in the ELE (e.g. fraction partition-
ing to find its equivalent); while the next task in the ITS stays within the same fine-grain 
goal but increases the level of challenge (as determined by mathematics education experts). 
Students undertake a fixed sequence of ITS tasks until the SNA component determines 
that they are under-challenged, or until they have completed five structured practice tasks, 
whichever comes first, in which case they are returned to the ELE.

While engaging in the iTalk2Learn system, students receive Task-Independent Sup-
port (TIS), which is based on a Bayesian Network trained from past data. Positive affective 
states such as enjoyment are known to contribute towards constructive learning while neg-
ative ones such as frustration or boredom can inhibit learning (Kort et al., 2001). Accord-
ingly, the Task-Independent Support aims to change a student’s negative affective state into 
a positive affective state by adapting the feedback to the student’s current affective state 
(which was inferred from the student’s speech and interaction data such as whether or not 
feedback previously given had been followed). Task-Independent Support includes affect 
boosts (e.g. “Well done. You’re working really hard!”) and talk-aloud prompts (e.g. “Please 
explain what you are doing.”). Grawemeyer et al. (2015, 2017) describe the Task-Independ-
ent Support in more detail.

The next section describes the learning environments in more detail, together with 
the tasks and the adaptive support provided by them. Tasks were chosen by mathematics 

Fig. 1   A visual representation of the pedagogical intervention model of iTalk2Learn 
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education experts, based on a mathematics education theory of fractions learning (Hansen 
et al., 2014) that takes into account misconceptions and errors that are typical for learners 
at the beginning of formal fractions instruction.

Fractions lab

Fractions Lab is the ELE developed by the iTalk2Learn project, which was used both in 
Germany (in German) and the UK (in English). It provides exploratory tasks that aim to 
help the student develop conceptual knowledge of fractions. In the Fractions Lab interface 
(see Fig. 2), a learning task is displayed at the top of the screen. Students can choose from 
a range of graphical fraction representations (from the right-hand side menu)—number 
lines, rectangles, sets and liquid measures—which they manipulate in order to solve the 
given task. For example, they can change the fraction’s numerator or denominator, and find 
an equivalent fraction. An example task is shown in Fig. 2, which served both to introduce 
the student to the available Fractions Lab functionality, and to introduce them to the idea 
of fractions equivalence with representations (Hansen et al., 2015).

To ameliorate the cognitive demands on the students associated with exploratory learn-
ing, Fractions Lab also provides students with Task-Dependent Support (TDS), in addi-
tion to the Task-Independent Support provided by the iTalk2Learn system, that varies by 
type and by method of delivery. The type of Task-Dependent Support is determined based 
on a rule-based system, operationalized according to two dimensions: the purpose of the 
feedback, depending on the task-specific needs of the student, and the level of feedback, 

Fig. 2   The ELE (exploratory learning environment) used both in the German study (in German) and in the 
UK study (in English, as shown): Fractions Lab 
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depending on the cognitive needs of the student (Holmes et al., 2015). Six feedback pur-
poses were identified, each of which is triggered by a particular student response: Polya 
(understanding the problem, formulating goals and devising a plan, drawing on Polya, 
1945), e.g. “Read the task again, and explain how you are going to tackle it.”; instruction 
(next step), e.g. “You can use the arrow buttons to change the fraction.”; instruction (prob-
lem solving) (addressing misconceptions), e.g. “The denominator is the bottom part of the 
fraction.”; instruction (opportunity for higher-level work), e.g. “You could now use the par-
tition tool to make an equivalent fraction.”; affirmation, e.g. “The way that you worked 
that out was excellent. Well done.”; and reflection, e.g. “Please explain why you made the 
denominator 12.”

The second dimension, type of Task-Dependent Support, comprises four levels designed 
to address different levels of cognitive need (Holmes et al., 2015). As noted above, a par-
ticular student response in Fractions Lab triggers some feedback. Thereafter, if the same 
student response is repeated, the next level of feedback is triggered. The four levels of feed-
back are: Socratic (which emphasizes the benefits of open questioning to encourage stu-
dents to think about and verbalize possible solutions), e.g. “Have you changed the numera-
tor or denominator?”; guidance (to remind students of key domain-specific rules and the 
system’s affordances), e.g. “The denominator is the bottom part of the fraction.”; didactic-
conceptual (a possible next step in terms of the fractions concept currently being explored), 
e.g. “Check that the denominator in your fraction is correct.”; and didactic-procedural 
(the next step that needs to be undertaken in order to move forward), e.g. “Check that the 
denominator, the bottom part of your fraction, is 12.”. This rarely-delivered final proce-
dural feedback operates as a backstop, ensuring that the student is not left floundering.

The method of Task-Dependent Support delivery is based on a Bayesian network, 
trained on previous data, that predicts whether the adaptation of the presentation of the 
feedback can improve a student’s affective state (Grawemeyer et al., 2015, 2017). In Frac-
tions Lab, the feedback can be presented in either a low-interruptive way (by highlighting 
a light bulb at the top of the interface that indicates feedback is available that the student 
might or might not choose to access), or in a high-interruptive way (by providing a pop-up 
window that has to be dismissed before the student can proceed). The presentation of the 
feedback most likely to enhance the affective state of the student is inferred from the stu-
dent’s current affective state and whether or not they followed the previous feedback.

Maths Whizz

Maths Whizz, the ITS used in the UK study, is an English commercial system that pro-
vides mostly structured practice tasks (see Fig. 3). In Maths Whizz, each task is deliv-
ered in three stages. First, an instruction of how procedurally to complete the following 
tasks successfully; second, an interactive task with guided instruction and immediate 
feedback; and third a short test. The tasks use a range of graphical representations 
such as circles, rectangles, number lines, liquid measures, symbols and sets of objects 
within contexts that the students may be familiar with (e.g. a fairground). In addition 
to the Task-Independent Support provided by the iTalk2Learn system, Maths Whizz 
provides Task-Dependent Support when an incorrect answer is entered, in the form of a 
hint that encourages the student to elaborate and reflect on their problem-solving strat-
egies before having another attempt (e.g. “Remember: you do not add the denomina-
tors. Add the numerators. Denominators stay the same”). Up to three hints are offered 
per question, at which point a student receives the correct answer. Correct answers are 
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rewarded with a celebratory response. Following a set of tasks, a short test requires 
students to demonstrate their understanding without Task-Dependent Support, but with 
corrective feedback. 

Fractions Tutor

Fractions Tutor, the ITS used in the German study, is a web-based Cognitive Tutor 
for learning fractions (Rau et al., 2012, 2013) that enables students to solve fractions 
problems step-by-step, while receiving immediate feedback (on the steps) or asking for 
on-demand next-step hints. The version of Fractions Tutor used in this study had pre-
viously been translated into German.

Content is presented on the same page and revealed step-by-step while students 
solve the problem (for an example, see Fig. 4). The exercises use a range of graphical 
representations such as circles, number lines, and symbols. In addition to the Task-
Independent Support provided by the iTalk2Learn system, Fractions Tutor functionali-
ties allow students to ask for hints (i.e. to receive Task-Dependent Support) on up to 
three different levels: clarification, e.g. “Before you know what fraction of the whole 
cake you won, you need to divide the circle into equally sized pieces.”; conceptual, 
e.g. “The pieces are part of the same cake. Therefore, you keep the same denominator 
in the sum fraction.”; and explicit instruction, e.g. “Please divide the circle into four 
pieces.” (Rau et al., 2013).

Fig. 3   The ITS (structured practice environment) used in the UK study: Maths Whizz 
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Experimental design and participants

The two studies reported in this paper were undertaken in Germany and the UK, and 
focused on the learning of fractions. Both studies involved data from two experimental 
conditions:

ITS & ELE:	� The full iTalk2Learn platform, incorporating both the structured practice 
(ITS) and exploratory learning (ELE) technologies.

ITS only:	� The iTalk2Learn platform limited to the structured practice technology 
(ITS) only (i.e. no exploratory learning).

Participants in both countries were students who were just about to start, or were at 
the beginning of, formal fractions instruction. Fractions are taught earlier in the cur-
riculum in the UK than in Germany, therefore the UK participants were slightly younger 
than the German participants. The parents or carers of participating school students pro-
vided informed consent for their child’s involvement in the study; while, having been 
informed that they could withdraw from the study at any time without consequence 
and without having to give any reason, the students provided verbal assent for their 
involvement.

Participants in the study in Germany were fifth and sixth grade secondary school 
students aged between 10 and 12 years from four schools in suburban areas. Due to the 
readily observable differences in learning tasks between the conditions (i.e. that stu-
dents would be able to observe what their near neighbours were doing), it was not feasi-
ble to run multiple conditions in the same classroom. Accordingly, the studies were run 
in a Pretest–posttest Non-equivalent Groups quasi-experimental design: students par-
ticipated within their class, and classes within schools were randomly assigned to one of 

Fig. 4   The ITS (structured practice environment) used in the German study: Fractions Tutor 
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the conditions. Class sizes varied, and, due to a technical failure, data was lost for one 
class of 33 students assigned to the ITS only condition, resulting in the following distri-
bution across conditions: NITS & ELE = 100, and NITS only = 51.

Participants in the study in the UK were Year 4 and Year 5 primary school students 
aged between 8 and 10 years from three schools. The schools were from rural, suburban, 
and inner-city areas. Three groups per grade per school were randomly assigned to one 
of the conditions; while seven participating students did not complete the study and are 
excluded from the analysis. This resulted in the following distribution: NITS & ELE = 61 and 
NITS only = 60.

Dependent measures

Dependent measures were derived from an online fractions test, designed to differentiate 
between conceptual and procedural items (see Fig. 5), which was completed by the stu-
dents before and after they interacted with the system. The test was administered to the UK 
students in English, while students in Germany received a German translation of the test.

Two isomorphic versions of the test instrument were designed (written in English and 
translated to German). Students were randomly allocated one version at the first time of 
measurement and the other version at the second time of measurement. Two subscales with 
three items each were constructed to measure procedural knowledge (see questions 22, 24, 
and 25 in Fig. 5) and conceptual knowledge (see questions 20, 21, and 23 in Fig. 5). The 
procedural knowledge items required simple computations using numerical representations 
of fractions, without the need to transition between different types of representations. They 
can be solved with a basic conceptual understanding of fractions (expanding fractions to 
share the same denominator). Conceptual items, on the other hand, can be solved without 
computations, but require an elaborated conceptual understanding of fractions: Students 
need to interpret non-numerical representations of fractions such as number lines or rectan-
gles, transition between numerical and symbolic representations, and even compare differ-
ent symbolic representations (e.g. question 23 in Fig. 5). The students received one point 
for each correctly-answered item and consequently obtained two aggregated scores, one 

Fig. 5   Extract from the online fractions test (English version) undertaken by the participants
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per subscale (i.e., scores are summed across three items per subscale and can vary between 
0 and 3).

Internal consistency for the procedural scores at pre-test was αUK = .40, αGermany = .07, 
and at post-testαUK = .53, αGermany = .36. Internal consistency for the conceptual scores at 
pre-test was αUK = .40, αGermany = − .03, and at post-test αUK = .36, αGermany = − .06. Note 
that the α values may be relatively low due to a combination of the small number of ques-
tions and the heterogeneity of the items (this issue is further considered in the discussion 
section below).

Other instruments

The study also involved two questionnaires, each of which was administered in the appro-
priate language via a browser window: one on attitudes to learning, mathematics and 
fractions; the other a user-experience questionnaire. However, as neither questionnaire is 
included in the analysis reported in this paper, no further details will be given here.

Procedure

Individual sessions were run with groups of up to 15 students in the UK, who interacted 
with the English version of the iTalk2Learn platform, and up to 30 students in Germany, 
who interacted with the German version of the iTalk2Learn platform. Half the groups in 
each country were allocated to the ITS only (structured practice only) condition, and the 
other half allocated to the ITS & ELE (structured practice and exploratory learning) con-
dition. With the exception of the experimental condition and the language version of the 
platform, the sessions were the same for each group. In particular, learning, practising and 
testing time were held constant between groups.

The full session for all groups lasted approximately 90 min including breaks. During the 
first 10 min, the students were introduced to the study and to the iTalk2Learn platform with 
the ITS and ELE components being introduced depending on the experimental condition. 
To ensure that the introduction was as standardised as possible, it was scripted and deliv-
ered by the same researchers in both conditions. The students were then asked to complete 
the attitudes questionnaire (see section ‘Other instruments’ above) and then the online frac-
tions test (see section ‘Dependent measures’ above), one after the other in a browser win-
dow. The students all completed the test within the given 10 min.

Students then worked with the iTalk2Learn platform for approximately 40 min. In the 
ITS only condition students received tasks based on a fixed sequence during this time (var-
ying from 8 to 12 tasks in total). This sequence was similar to the ITS sequence in the ITS 
& ELE condition (but obviously with more procedural knowledge practice opportunities). 
In the ELE & ITS condition, tasks alternated between exploratory learning and structured 
practice tasks as described in section ‘Materials’ (again for a total of 40 min). Based on 
previous studies and further discussions with the teachers of the cohorts of this study, we 
had estimated that an average student would spend about half the time on the ELE tasks 
in this condition. Indeed, there was only a small variation across students (mean time on 
ELE tasks: 19.85 min; SD 0.004) with the rest of the time on ITS tasks (varying from 5 to 
9 tasks in total).

During this main experimental period, the researchers adopted a strict intervention pro-
tocol that specified the allowable interactions and prompts. In particular, technical sup-
port was provided where needed, but no support was given for the fractions tasks. In the 
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last 30 min of the session, the students were asked to complete the final instruments. The 
online fractions test (see section ‘Dependent measures’ above) was presented followed 
by the user-experience questionnaire (see section ‘Other instruments’ above), one after 
the other in a browser window. Students were given twenty minutes in total for these two 
instruments, and all of them finished the test within time.

Analyses

We investigated whether the combination of ITS and ELE can foster both procedural and 
conceptual knowledge by performing multivariate ANOVAs to account for the use of two 
dependent measures and possible alpha-error-inflation. To investigate differential effects 
of the conditions on procedural versus conceptual scores, we followed up with univariate 
ANOVAs. We did not treat country as an independent variable, but rather ran the analyses 
separately for the UK and Germany. All analyses were performed using SPSS v.27.

Results

Table 1 presents scores on the online fractions knowledge test for the conceptual and pro-
cedural subscales. There was a medium correlation between these subscales on the post-
test, r(151) = .25 in Germany and r(121) = .26 in the UK, both p < .01. In both countries, 
descriptively speaking, there were medium effects on both conceptual and procedural 
scores for the ITS & ELE condition, while in the ITS-only condition, effects on the concep-
tual scores were negative (see however the 95% confidence intervals which include zero) 
and effects on the procedural scores were low (Cohen, 1988).

Two-way, 2 (condition: ITS & ELE or ITS only) × 2 (time of measurement: pre-test or 
post-test) multivariate ANOVAs with repeated measures on the time variable and concep-
tual and procedural subscale scores as the two dependent measures were conducted for 
each country separately. We found significant effects for each factor and their interaction. 
Overall, analyses showed statistically significant learning gains from pre- to post-test, using 
Pillai’s trace for participants from both Germany (see Table 2).

Table 1   Scores on online fractions knowledge test

Scores are summed across three items per subscale and can vary between 0 and 3

Subscale Country Condition Pre-test Post-test Effect size

M SD M SD d 95% CI

Conceptual Germany ITS & ELE 0.79 0.74 1.21 0.69 0.59 [.30, .87]
ITS only 0.73 0.63 0.53 0.64 − 0.32 [− .71, .07]

UK ITS & ELE 1.00 0.95 1.52 0.85 0.58 [.22, .94]
ITS only 0.88 0.92 0.70 0.77 − 0.21 [− .57, .15]

Procedural Germany ITS & ELE 0.95 0.80 1.42 0.94 0.54 [.26, .82]
ITS only 0.69 0.65 0.90 0.85 0.28 [− .11, .67]

UK ITS & ELE 1.33 0.96 1.97 1.02 0.65 [.28, 1.01]
ITS only 1.47 1.02 1.87 1.07 0.38 [.02, .74]
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In summary, students in both countries and in both conditions showed learning gains, 
but importantly these learning gains were stronger for the ITS & ELE condition, with a 
medium effect size (Cohen, 1988), in both countries. This interaction is now investigated 
further for each subscale separately, using univariate ANOVAs.

Follow-up univariate analyses (Table 2) showed statistically significant learning gains 
on the procedural scores for participants from both Germany and the UK, but no over-
all learning gains on the conceptual scores for participants from either Germany or the 
UK. We could not detect a significant effect of the conditions on the procedural learning 
gain for participants from either Germany or the UK. However, on the conceptual scores 
(Table 2), analyses did show statistically significant effects of conditions on learning gains 
for participants from both Germany, and the UK.

In summary, while the results were similar in both countries, with students in both con-
ditions showing significant learning gains on the procedural scores, only students in the ITS 
& ELE condition showed significant learning gains on the conceptual scores, a medium 
effect size (Cohen, 1988). The decrease in conceptual scores in the ITS only condition does 
not statistically differ from zero (the 95% confidence interval of the effect indicates that 
even a small increase is similarly likely).

Discussion

Robust learning in mathematics depends on the acquisition of different types of mathemati-
cal knowledge (procedural and conceptual knowledge), each of which requires a different 
type of learning opportunity and support. Yet, learning systems developed for mathematics 
education are usually focused on only one type of knowledge, not on both: typically, they 
either focus on developing procedural knowledge by providing structured practice tasks 
(ITSs), or they focus on developing conceptual knowledge by providing exploratory tasks 
(ELEs). This limitation, providing only opportunities to learn one type of mathematical 

Table 2   Multivariate and univariate effects on procedural and conceptual scores

*p < .001

Multivariate effects Germany United Kingdom

V F(2,148) �
2

p
V F(2,118) �

2

p

Time of measurement .117 9.834* .117 .277 22.643* .277
Condition .132 11.274* .132 .133 9.025* .133
Time of measurement* condition .109 9.068* .109 .144 7.604* .114

Univariate effects on procedural scores F(1,149) F(1,119)

Time of measurement 18.552* .111 16.337* .265
Condition 10.618* .067 .013 .000
Time of measurement* condition 2.552 .017 2.279 .019

Univariate effects on conceptual scores

Time of measurement 2.206 .015 3.078 .025
Condition 16.465* .100 13.999* .105
Time of measurement* condition 16.697* .101 13.245* .100
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knowledge, negatively impacts on robust learning and invites criticism of educational tech-
nology applied in mathematics education.

In the research reported in this paper, we investigated how this limitation may be over-
come by combining the two types of educational technologies in one intervention: an ITS 
to support the acquisition of procedural knowledge, and an ELE to support the acquisition 
of conceptual knowledge. For the ITS, we used two state-of-the-art and well-established 
systems: Fractions Tutor (in Germany) and Maths Whizz (in the UK). For the ELE, we 
used Fractions Lab, which was developed especially for this project.

Our two studies (in Germany and the UK) both provided clear evidence that the combi-
nation of these two types of educational technologies, ELE (to foster primarily conceptual 
knowledge) and ITS (to foster primarily procedural knowledge) in one learning environ-
ment, promotes conceptual and procedural fractions knowledge more than ITS alone. In 
fact, despite the students in the combination condition (ITS & ELE) using the ITS for only 
around half the time that they used it in the ITS only condition, and therefore had less 
opportunities to repeat structured practice on certain topics, procedural learning was not 
compromised. Instead, in addition to gaining more conceptual knowledge of fractions, stu-
dents who used both the ELE and ITS also gained more procedural knowledge of fractions.

Despite the contextual differences between the two studies, carried out in Germany and 
the UK (e.g. the different student ages and the different ITSs), the results were remarkably 
consistent across the two countries. This indicates, on the one hand, that our results are of 
sound external validity and, on the other hand, that the “combination effect” emerges unaf-
fected by contextual factors.

Based on the outcomes of our study reported here, we can only speculate on the reasons 
for the “combination effect”. Possibly the “combination effect” is analogous to the “multi-
plier effect”, in which small changes in one factor can lead to disproportionate outcomes. 
In other words, perhaps the opportunities afforded to the student to explore fractions helped 
them better understand (‘multiplied’ their understanding of) the procedures that they were 
practising; while the practice helped them consolidate the concepts. This is in line with the 
iterative model of knowledge development, in which Rittle-Johnson et al. (2015) underline 
the reciprocal dependency of both types of knowledge, and thus warrants further research.

Although the clear procedural and conceptual learning gains observed in the ITS & ELE 
condition are promising, as in most studies conducted in naturalist contexts there are some 
limitations that need to be acknowledged. First, the contexts in which we deployed the two 
ITSs (Maths Whizz and Fractions Tutor) were quite different to those in which they are 
usually deployed, and the participating students had not worked with them before. Second, 
the intervention was of short duration, meaning that the participating students were given 
only a limited time to study very specific learning content. This was a consequence of con-
ducting the studies in school classrooms for the purpose of increasing external validity, 
which placed constraints on the available intervention time.

Third, a more conceptual issue is the fact that it is challenging to measure the con-
structs of procedural versus conceptual knowledge independently (Jones et al, 2019; Sch-
neider & Stern, 2010). This was particularly noticeable in the German sample, in which 
the conceptual scores were not internally consistent. This could be due to the low number 
of items, but also to the way items were constructed: solving items within one scale does 
not always require the same knowledge pieces; there is only a partial overlap. There may 
even be an overlap between scales: some basic conceptual knowledge was required to solve 
both the procedural and the conceptual items. This highlights the need to investigate the 
dimensional structure of procedural versus conceptual knowledge and to develop a valid 
and standardised measure. That said, reliability was large enough to detect an effect of 
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condition on the conceptual scores in Germany. So while there remains some ambiguity 
in what construct or constructs the scores are representing, the clear result patterns overall 
and their replication in two different countries do provide substantive first evidence of a 
noteworthy effect.

Fourth, we cannot be certain that the size of the combination effect was the same for 
both ITS. We did not investigate this because we cannot assume measurement invariance. 
Indeed, it is likely that cultural differences, and perhaps even the differences in student age, 
make direct comparisons between the ITS invalid. The evidence our study provided for a 
combination effect is therefore limited to a replication of the effect in two different con-
texts, not its size.

Future work, therefore, should look more into the components that make this ‘combina-
tion effect’ possible and follow-up questions that emerge from this study. For example, is 
the order of exploratory tasks followed by structured practice tasks essential for realising a 
worthwhile “combination effect”? A recent meta-analysis of problem solving followed by 
instruction seems to support this (Sinha & Kapur, 2021). But what would be the impact if 
the order were reversed? Similarly, further exploration is needed to explore emerging ques-
tions around the impact of time on task and optimal balancing of the sequencing suggested 
by the Student Needs Assessment (SNA) component, given students’ individual trajecto-
ries. In this study, we have kept the overall interaction time with the platform the same for 
experimental (internal validity) and practical (to fit with classroom timetabling) reasons. 
Thanks to the SNA and the feedback provision within each task, there was little variation 
overall in what the students covered in the given time within each condition. As such we 
did not treat time as an independent variable. Similarly, exploring the individual pathways 
was out of scope of this paper since the knowledge components covered by the different 
tasks were quite difficult to separate. However, in a longer intervention and with more top-
ics to be covered the results could vary significantly.

Importantly, for a larger study it will be essential to develop ways to measure accu-
rately conceptual understanding and procedural learning gains in this context (c.f. recent 
work that advocates comparative judgement as an instrument for measuring conceptual 
understanding in randomised controlled trials; Jones et al., 2019). Collecting data from an 
ELE only condition, perhaps with some other appropriate instruction to compensate for the 
inevitable lack of procedural knowledge, would also allow teasing apart whether the com-
bination effect is not due only to practicing with the ELE but indeed from the combination 
of ELE and ITS.

Conclusions

The study reported in this paper provides clear evidence that using two types of educa-
tional technologies (ITS and ELE) to combine in one intervention two types of educa-
tional tasks (structured practice and exploratory learning) in order to foster both procedural 
and conceptual knowledge, is effective and warrants further research. Furthermore, this 
“combination effect” stresses the need for fostering procedural and conceptual knowledge 
jointly, and supports the notion that, the two types of knowledge are reciprocally dependent 
(Baroody et al., 2007; Rittle-Johnson et al., 2015).

These findings also speak to broader debates in the field of educational technology, 
recast due to the growing attention being given to Artificial Intelligence (AI) and its 
advances. It should be noted that the ELE in this study was not what might be called a 
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“bare-bones” ELE (an ELE without any AI-driven support), but an ELE that incorporated 
by design a comprehensive system of automatic feedback i.e. feedback that responded 
automatically to student interactions. In any case, concerns about the role of AI, big com-
panies and data in society apply to education as well (Williamson, 2019). ITS in particular 
are criticised as incorporating a retrograde pedagogy and operating only at the lower levels 
of the SAMR model, reinforcing the step-by-step instructional, behaviourist paradigm with 
limited student agency (Herold, 2017; Holmes et al., 2018, 2019)—a set of limitations that 
AI-supported ELEs at least partly address.

While our study has shown that the combination of exploratory learning supported by 
AI-driven feedback and structured practice can support classroom learning, the effective-
ness or success of any classroom technology depends on the classroom pedagogy and how 
the technology is integrated (du Boulay, 2019), as well as on what is understood by “effec-
tiveness” and “success” in educational contexts. As such, what remains to be discussed, 
and what should guide future work beyond validation or replication studies, is how these 
findings might have implications for classroom practices and, more broadly, the EdTech 
industry. Most commercially available educational technologies developed to support stu-
dent learning are either ITSs by design or have mainly ITS features geared towards practic-
ing procedural knowledge (Holmes et al., 2019). Notable exceptions for mathematics edu-
cation (such as the exploratory environment Geogebra https://​www.​geoge​bra.​org) require 
extensive support on behalf of the teacher. We postulate that the beneficial combination 
of structured tasks and exploratory learning might open up new possibilities for teaching 
and learning in class (i.e. it might transform existing practice) and, thus, might increase the 
likelihood of integration in the classroom. Teachers can take advantage of the combina-
tion effect in their classrooms by combining educational technologies or even engage their 
students with non-technology-based exploratory learning activities before using an ITS to 
consolidate what the students have learned. Such a possibility warrants further research.

In the meantime, our results also suggest that the EdTech industry might usefully either 
develop more standalone ELE technologies or incorporate ELE features in their existing 
products. Research has shown that teachers’ technology acceptance and adoption depend 
on how useful they perceive this technology in terms of both supporting students in their 
individual learning processes and achieving specific learning goals more effectively (e.g. 
Bray & Tangney, 2017; Hew & Brush, 2007; Holmes, 2013; McCulloch et  al., 2018; 
Scherer et  al., 2019). For example, in their interview study with early-career secondary 
mathematics teachers, McCulloch et al. (2018) found that teachers not only seek to pro-
vide additional opportunities for their students to practise mathematical procedures, but 
also aim to facilitate their students’ sensemaking of mathematical ideas, and, thus, they 
are open to using ELEs. However, if particular technologies are going to engage teachers’ 
interest and, hence, be used extensively in classrooms, perhaps in addition to surpassing 
teachers’ acceptance thresholds (being seen to benefit the students without impacting nega-
tively on the teachers’ workloads), they also need to be seen to be somewhat exciting or at 
least intriguing. In other words, as suggested by Bray and Tagney’s guidelines (2017), the 
technology has to be potentially transformative of (rather than simply enhancing) existing 
classroom practices and student learning—as we have demonstrated to be possible with a 
judicious combination of AI-driven ELE and ITS.

Acknowledgements  We would like to thank all our iTalk2Learn colleagues and partners for their contribu-
tions and support.

Funding  The research reported here received funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement No. 318051—iTalk2Learn project.

https://www.geogebra.org


	 M. Mavrikis et al.

1 3

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Ethical approval  The research was approved by the Ethics Committee of University College London in UK 
and followed the ethical standards of the British. Educational Research Association (BERA) and the German 
Psychological Society (DGPs).

Informed consent  The parents or carers of participating school students provided informed consent for their 
child’s involvement in the study; while, having been informed that they could withdraw from the study at 
any time without consequence and without having to give any reason, the students provided verbal assent for 
their involvement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem situations. Psychological 
Review, 94(2), 192–210. https://​doi.​org/​10.​1037/​0033-​295X.​94.2.​192

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. 
The Journal of the Learning Sciences, 4(2), 167–207.

Baroody, A. J., Feil, Y., & Johnson, A. R. (2007). Research commentary: An alternative reconceptualiza-
tion of procedural and conceptual knowledge. Journal for Research in Mathematics Education, 38(2), 
115–131. https://​doi.​org/​10.​2307/​30034​952

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding in a compu-
tational thinking-based science learning environment. User Modeling and User-Adapted Interaction, 
27(1), 5–53. https://​doi.​org/​10.​1007/​s11257-​017-​9187-0

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research—A systematic 
review of recent trends. Computers & Education, 114, 255–273. https://​doi.​org/​10.​1016/j.​compe​du.​
2017.​07.​004

Bunt, A., Conati, C., & Muldner, K. (2004). Scaffolding self-explanation to improve learning in explora-
tory learning environments. In International conference on intelligent tutoring systems (pp. 656–667). 
Springer.

Canobi, K. H., Reeve, R. A., & Pattison, P. E. (2003). Patterns of knowledge in children’s addition. Develop-
mental Psychology, 39(3), 521–534. https://​doi.​org/​10.​1037/​0012-​1649.​39.3.​521

Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on a theoretical model to study students’ under-
standings of fractions. Educational Studies in Mathematics, 64(3), 293–316. https://​doi.​org/​10.​1007/​
s10649-​006-​9036-2

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
Corbett, A., MacLaren, B., Wagner, A., Kauffman, L., Mitchell, A., & Baker, R. S. J. d. (2013). Differential 

impact of learning activities designed to support robust learning in the genetics cognitive tutor. In H. 
C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial intelligence in education (Vol. 7926, pp. 
319–328). Springer Berlin Heidelberg. https://​doi.​org/​10.​1007/​978-3-​642-​39112-5_​33

de Jong, T., & Ferguson-Hessler, M. G. (1996). Types and qualities of knowledge. Educational Psycholo-
gist, 31(2), 105–113. https://​doi.​org/​10.​1207/​s1532​6985e​p3102_2

Diziol, D., Walker, E., Rummel, N., & Koedinger, K. R. (2010). Using intelligent tutor technology to imple-
ment adaptive support for student collaboration. Educational Psychology Review, 22(1), 89–102. 
https://​doi.​org/​10.​1007/​s10648-​009-​9116-9

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1037/0033-295X.94.2.192
https://doi.org/10.2307/30034952
https://doi.org/10.1007/s11257-017-9187-0
https://doi.org/10.1016/j.compedu.2017.07.004
https://doi.org/10.1016/j.compedu.2017.07.004
https://doi.org/10.1037/0012-1649.39.3.521
https://doi.org/10.1007/s10649-006-9036-2
https://doi.org/10.1007/s10649-006-9036-2
https://doi.org/10.1007/978-3-642-39112-5_33
https://doi.org/10.1207/s15326985ep3102_2
https://doi.org/10.1007/s10648-009-9116-9


Combining exploratory learning with structured practice…

1 3

Doroudi, S., Aleven, V., & Brunskill, E. (2017). Robust evaluation matrix: Towards a more principled 
offline exploration of instructional policies. In C. Urrea, J. Reich, & C. Thille (Eds.), Proceedings of 
the fourth (2017) ACM conference on learning @ scale -L@S ’17 (pp. 3–12). ACM Press. https://​doi.​
org/​10.​1145/​30514​57.​30514​63

Doroudi, S., Holstein, K., Aleven, V., & Brunskill, E. (2015). Towards understanding how to leverage sense-
making, induction and refinement, and fluency to improve robust learning. In O. C. Santos, J. G. Boti-
cario, C. Romero, M. Pecheniskiy, A. Merceron, P. Mitros, & M. Desmarais (Eds.), Proceedings of the 
8th international conference on educational data mining (pp. 376–379).

du Boulay, B. (2019). Escape from the Skinner Box: The case for contemporary intelligent learning environ-
ments. British Journal of Educational Technology. https://​doi.​org/​10.​1111/​bjet.​12860

Grawemeyer, B., Holmes, W., Gutiérrez-Santos, S., Hansen, A., Loibl, K., & Mavrikis, M. (2015). Light-
bulb moment? Towards adaptive presentation of feedback based on students’ affective state. In Pro-
ceedings of the 20th international conference on intelligent user interfaces (pp. 400–404). ACM. 
https://​doi.​org/​10.​1145/​26780​25.​27013​77

Grawemeyer, B., Mavrikis, M., Holmes, W., Gutiérrez-Santos, S., Wiedmann, M., & Rummel, N. (2017). 
Affective learning: Improving engagement and enhancing learning with affect-aware feedback. User 
Modeling and User-Adapted Interaction, 27(1), 119–158. https://​doi.​org/​10.​1007/​s11257-​017-​9188-z

Hamilton, E. R., Rosenberg, J. M., & Akcaoglu, M. (2016). The substitution augmentation modification 
redefinition (SAMR) model: A critical review and suggestions for its use. TechTrends, 60(5), 433–441. 
https://​doi.​org/​10.​1007/​s11528-​016-​0091-y

Hansen, A., Mavrikis, M., & Geraniou, E. (2016). Supporting teachers’ technological pedagogical content 
knowledge of fractions through co-designing a virtual manipulative. Journal of Mathematics Teacher 
Education, 19(2–3), 205–226. https://​doi.​org/​10.​1007/​s10857-​016-​9344-0

Hansen, A., Mavrikis, M., Holmes, W., & Geranious, E. (2015). Designing interactive representations for 
learning fraction equivalence. In Paper presented at the 12th international conference on technology 
in mathematics teaching (pp. 395-402). Retrieved from https://​www.​resea​rchga​te.​net/​profi​le/​Alice-​
Hansen-​4/​publi​cation/​29032​4702_​Desig​ning_​inter​active_​repre​senta​tions_​for_​learn​ing_​fract​ion_​equiv​
alence/​links/​56962​1d708​ae425​c6898​b47e/​Desig​ningi​ntera​ctive-​repre​senta​tions-​for-​learn​ing-​fract​ion-​
equiv​alence.​pdf

Hansen, A., Mavrikis, M., Holmes, W., Grawemeyer, B., Mazziotti, C., Mubeen, J., & Koshkarbayeva, A. 
(2014). Report on learning tasks and cognitive models (iTalk2Learn deliverable 1.2). Retrieved from 
http://​www.​italk​2learn.​com/​deliv​erabl​es-​and-​publi​catio​ns/​deliv​erabl​es/

Herold, B. (2017). The case(s) against personalized learning. Education Week, 37, 4–5.
Hew, K. F., & Brush, T. (2007). Integrating technology into K-12 teaching and learning: Current knowledge 

gaps and recommendations for future research. Education Technology Research & Development, 55, 
223–252. https://​doi.​org/​10.​1007/​s11423-​006-​9022-5

Hiebert, J. (Ed.). (1986). Conceptual and procedural knowledge: The case of mathematics. Routledge. 
https://​www.​routl​edge.​com/​Conce​ptual-​and-​Proce​dural-​Knowl​edge-​The-​Case-​of-​Mathe​matics/​Hiebe​
rt/p/​book/​97808​98595​567

Holmes, W. (2013). Level up! A design-based investigation of a prototype digital game for children who are 
low-attaining in mathematics (Unpublished doctoral dissertation). University of Oxford.

Holmes, W., Anastopoulou, S., Schaumburg, H., & Mavrikis, M. (2018). Technology-enhanced personal-
ised learning: Untangling the evidence. Robert Bosch Stiftung GmbH. http://​www.​studie-​perso​nalis​
iertes-​lernen.​de/​en/

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education. Promise and implications 
for teaching and learning. Center for Curriculum Redesign.

Holmes, W., Mavrikis, M., Hansen, A., & Grawemeyer, B. (2015). Purpose and level of feedback in an 
exploratory learning environment for fractions. In C. Conati, N. Heffernan, A. Mitrovic, & M. F. Ver-
dejo (Eds.), Lecture notes in computer science. Artificial intelligence in education (Vol. 9112, pp. 620–
623). Springer International Publishing. https://​doi.​org/​10.​1007/​978-3-​319-​19773-9_​76

Hoyles, C. (1993). Microworlds/schoolworlds: The transformation of an innovation. In C. Keitel, & K. Ruth-
ven (Eds.), Learning from computers: Mathematics education and technology (pp. 1–17). Springer 
Berlin Heidelberg. https://​doi.​org/​10.​1007/​978-3-​642-​78542-9_1

Jonassen, D. H., & Reeves, T. C. (1996). Learning with technology: Using computers as cognitive tools. 
In D. H. Jonassen (Ed.) Handbook of research for educational communications and technology (pp. 
693–719). Association for Communications and Technology.

Jones, I., Bisson, M., Gilmore, C., & Inglis, M. (2019). Measuring conceptual understanding in randomised 
controlled trials: Can comparative judgement help? British Educational Research Journal, 45(3), 662–
680. https://​doi.​org/​10.​1002/​berj.​3519

https://doi.org/10.1145/3051457.3051463
https://doi.org/10.1145/3051457.3051463
https://doi.org/10.1111/bjet.12860
https://doi.org/10.1145/2678025.2701377
https://doi.org/10.1007/s11257-017-9188-z
https://doi.org/10.1007/s11528-016-0091-y
https://doi.org/10.1007/s10857-016-9344-0
https://www.researchgate.net/profile/Alice-Hansen-4/publication/290324702_Designing_interactive_representations_for_learning_fraction_equivalence/links/569621d708ae425c6898b47e/Designinginteractive-representations-for-learning-fraction-equivalence.pdf
https://www.researchgate.net/profile/Alice-Hansen-4/publication/290324702_Designing_interactive_representations_for_learning_fraction_equivalence/links/569621d708ae425c6898b47e/Designinginteractive-representations-for-learning-fraction-equivalence.pdf
https://www.researchgate.net/profile/Alice-Hansen-4/publication/290324702_Designing_interactive_representations_for_learning_fraction_equivalence/links/569621d708ae425c6898b47e/Designinginteractive-representations-for-learning-fraction-equivalence.pdf
https://www.researchgate.net/profile/Alice-Hansen-4/publication/290324702_Designing_interactive_representations_for_learning_fraction_equivalence/links/569621d708ae425c6898b47e/Designinginteractive-representations-for-learning-fraction-equivalence.pdf
http://www.italk2learn.com/deliverables-and-publications/deliverables/
https://doi.org/10.1007/s11423-006-9022-5
https://www.routledge.com/Conceptual-and-Procedural-Knowledge-The-Case-of-Mathematics/Hiebert/p/book/9780898595567
https://www.routledge.com/Conceptual-and-Procedural-Knowledge-The-Case-of-Mathematics/Hiebert/p/book/9780898595567
http://www.studie-personalisiertes-lernen.de/en/
http://www.studie-personalisiertes-lernen.de/en/
https://doi.org/10.1007/978-3-319-19773-9_76
https://doi.org/10.1007/978-3-642-78542-9_1
https://doi.org/10.1002/berj.3519


	 M. Mavrikis et al.

1 3

Karam, R., Pane, J. F., Griffin, B. A., Robyn, A., Phillips, A., & Daugherty, L. (2016). Examining the imple-
mentation of technology-based blended algebra I curriculum at scale. Education Technology, Research 
& Development, 65(2), 399–425. https://​doi.​org/​10.​1007/​s11423-​016-​9498-6

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not 
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75–86.

Koedinger, K. R. (2002). Toward evidence for instructional design principles: Examples from cognitive 
tutor math 6. In D. S. Mewborn, P. Sztajn, D. Y. White, H. G. Wiegel, R. L. Bryant, & K. Nooney 
(Eds.), Proceedings of the annual meeting [of the] North American chapter of the international group 
for the psychology of mathematics education (24th, Athens, Georgia, October 26–29, 2002) (Vol. 1–4, 
pp. 21–29). Retrieved from https://​files.​eric.​ed.​gov/​fullt​ext/​ED471​749.​pdf

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school 
in the big city. International Journal of Artificial Intelligence in Education (IJAIED), 8, 30–42.

Kort, B., Reilly, R., & Picard, R. W. (2001). An affective model of interplay between emotions and learning: 
Reengineering educational pedagogy-building a learning companion. In Proceedings IEEE interna-
tional conference on advanced learning technologies (pp.43–46). https://​doi.​org/​10.​1109/​ICALT.​2001.​
943850

Kulik, C.-L.C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). Effectiveness of mastery learning programs: 
A meta-analysis. Review of Educational Research, 60(2), 265–299. https://​doi.​org/​10.​3102/​00346​
54306​00022​65

LeFevre, J.-A., Smith-Chant, B. L., Fast, L., Skwarchuk, S.-L., Sargla, E., Arnup, J. S., Penner-Wilger, M., 
Bisanz, J., & Kamawar, D. (2006). What counts as knowing? The development of conceptual and pro-
cedural knowledge of counting from kindergarten through Grade 2. Journal of Experimental Child 
Psychology, 93(4), 285–303. https://​doi.​org/​10.​1016/j.​jecp.​2005.​11.​002

Mathan, S. A., & Koedinger, K. R. (2002). An empirical assessment of comprehension fostering features in an 
intelligent tutoring system. In S. A. Cerri, G. Gouardères, & F. Paraguaçu (Eds.), Vol. 2363. Lecture notes 
in computer science, intelligent tutoring systems. 6th international conference, ITS 2002, Biarritz, France 
and San Sebastián, Spain, June 2–7, 2002: proceedings (Vol. 2363, pp. 330–343). Springer Berlin Heidel-
berg. https://​doi.​org/​10.​1007/3-​540-​47987-2_​37

Mavrikis, M., Gutierrez-Santos, S., Geraniou, E., & Noss, R. (2013). Design requirements, student perception 
indicators and validation metrics for intelligent exploratory learning environments. Personal and Ubiqui-
tous Computing, 17(8), 1605–1620. https://​doi.​org/​10.​1007/​s00779-​012-​0524-3

Mazziotti, C., Holmes, W., Wiedmann, M., Loibl, K., Rummel, N., Mavrikis, M., Hansen, A., & Grawemeyer, 
B. (2015). Robust student knowledge: Adapting to individual student needs as they explore the concepts 
and practice the procedures of fractions. In M. Mavrikis, et al. (Eds), Proceedings of the workshops at the 
17th international conference on artificial intelligence in education (Vol. 2, S. 32–40). Springer Interna-
tional Publishing.

McCulloch, A. W., Hollebrands, K., Lee, H., Harrison, T., & Mutlu, A. (2018). Factors that influence secondary 
mathematics teachers’ integration of technology in mathematics lessons. Computers & Education, 123, 
26–40.

Mousavinasab, E., Zarifsanaiey, N., Kalhori, S. R. N., Rakhshan, M., Keikha, L., & Saeedi, M. G. (2018). Intel-
ligent tutoring systems: A systematic review of characteristics, applications, and evaluation methods. 
Interactive Learning Environments. https://​doi.​org/​10.​1080/​10494​820.​2018.​15582​57

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers (Vol. 
17). Springer Science & Business Media.

Noss, R., Poulovassilis, A., Geraniou, E., Gutiérrez-Santos, S., Hoyles, C., Kahn, K., Magoulas, G. D., & 
Mavrikis, M. (2012). The design of a system to support exploratory learning of algebraic generalisation. 
Computers & Education, 59(1), 63–81. https://​doi.​org/​10.​1016/j.​compe​du.​2011.​09.​021

Phillips, A., Pane, J. F., Reumann-Moore, R., & Shenbanjo, O. (2020). Implementing an adaptive intelligent 
tutoring system as an instructional supplement. Education Technology, Research & Development. https://​
doi.​org/​10.​1007/​s11423-​020-​09745-w

Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.
Rau, M. A., Aleven, V., & Rummel, N. (2013). Interleaved practice in multi-dimensional learning tasks: Which 

dimension should we interleave? Learning and Instruction, 23, 98–114. https://​doi.​org/​10.​1016/j.​learn​instr​
uc.​2012.​07.​003

Rau, M. A., Aleven, V., Rummel, N., & Rohrbach, S. (2012). Sense making alone doesn’t do it: Fluency matters 
too! ITS support for robust learning with multiple representations. In S. A. Cerri, W. J. Clancey, G. Papa-
dourakis, & K. Panourgia (Eds.), Intelligent tutoring systems (Vol. 7315, pp. 174–184). Springer Berlin 
Heidelberg. https://​doi.​org/​10.​1007/​978-3-​642-​30950-2_​23

https://doi.org/10.1007/s11423-016-9498-6
https://files.eric.ed.gov/fulltext/ED471749.pdf
https://doi.org/10.1109/ICALT.2001.943850
https://doi.org/10.1109/ICALT.2001.943850
https://doi.org/10.3102/00346543060002265
https://doi.org/10.3102/00346543060002265
https://doi.org/10.1016/j.jecp.2005.11.002
https://doi.org/10.1007/3-540-47987-2_37
https://doi.org/10.1007/s00779-012-0524-3
https://doi.org/10.1080/10494820.2018.1558257
https://doi.org/10.1016/j.compedu.2011.09.021
https://doi.org/10.1007/s11423-020-09745-w
https://doi.org/10.1007/s11423-020-09745-w
https://doi.org/10.1016/j.learninstruc.2012.07.003
https://doi.org/10.1016/j.learninstruc.2012.07.003
https://doi.org/10.1007/978-3-642-30950-2_23


Combining exploratory learning with structured practice…

1 3

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one 
lead to the other? Journal of Educational Psychology, 91(1), 175–189. https://​doi.​org/​10.​1037/​0022-​0663.​
91.1.​175

Rittle-Johnson, B., & Koedinger, K. (2009). Iterating between lessons on concepts and procedures can improve 
mathematics knowledge. British Journal of Educational Psychology, 79(3), 483–500.

Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between 
procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27(4), 587–597. 
https://​doi.​org/​10.​1007/​s10648-​015-​9302-x

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and proce-
dural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346–362. 
https://​doi.​org/​10.​1037/​0022-​0663.​93.2.​346

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic 
structural equation modeling approach to explaining teachers’ adoption of digital technology in educa-
tion. Computers & Education, 128, 13–35. https://​doi.​org/​10.​1016/j.​compe​du.​2018.​09.​009

Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: 
A multimethod approach. Developmental Psychology, 46(1), 178–192. https://​doi.​org/​10.​1037/​a0016​701

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Susperreguy, M. I., & 
Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23(7), 
691–697. https://​doi.​org/​10.​1177/​09567​97612​440101

Sinha, T., & Kapur, M. (2021). When problem solving followed by instruction works: Evidence for productive 
failure. Review of Educational Research. https://​doi.​org/​10.​3102/​00346​54321​10191​05

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 
36, 404–411.

Star, J. R., & Stylianides, G. J. (2013). Procedural and conceptual knowledge: Exploring the gap between 
knowledge type and knowledge quality. Canadian Journal Science, Mathematics and Technology Educa-
tion, 13, 169–181. https://​doi.​org/​10.​1080/​14926​156.​2013.​784828

Thompson, P. W. (1987). Mathematical microworlds and intelligent computer-assisted instruction. In G. P. 
Kearsley (Ed.), Artificial intelligence and instruction: Applications and methods (pp. 83–109). Addison-
Wesley Longman Publishing.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Educa-
tion, 16(3), 227–265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutor-
ing systems. Educational Psychologist, 46(4), 197–221. https://​doi.​org/​10.​1080/​00461​520.​2011.​611369

Wang, M., Wu, B., Kinshuk, Chen, N.-S., & Spector, J. M. (2013). Connecting problem-solving and knowl-
edge-construction processes in a visualization-based learning environment. Computers & Education, 68, 
293–306. https://​doi.​org/​10.​1016/j.​compe​du.​2013.​05.​004

Williamson, B. (2019). Policy networks, performance metrics and platform markets: Charting the expanding 
data infrastructure of higher education. British Journal of Educational Technology, 50, 1–16. https://​doi.​
org/​10.​1111/​bjet.​12849

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Manolis Mavrikis  is Professor in Artificial Intelligence and Analytics in Education at UCL Knowledge Lab, 
and a Turing Fellow at The Alan Turing Institute. He holds am MSc with distinction in Informatics and 
Ph.D. in Artificial Intelligence in Education from the University of Edinburgh. His research interests and 
experience are in employing learning analytics to help teachers, schools, education ministries or researchers 
develop an awareness and understanding of the processes involved in learning, and on designing evidence-
based intelligent technologies that provide direct feedback to learners, such as the work presented in this 
paper. Manolis is currently the Director of the Education and Technology master’s at UCL and one of the 
editors of the British Journal of Educational Technology.

Nikol Rummel  is a Full Professor and head of the Educational Psychology Lab in the Institute of Educa-
tional Research at Ruhr-University Bochum, Germany. She is also an Adjunct Professor in the Human–
Computer Interaction Institute at Carnegie Mellon University, Pittsburgh,USA. Dr. Rummel was (2016–
2017) president of the International Society of the Learning Sciences (ISLS). She is Associate Editor of the 
International Journal of Computer-Supported Collaborative Learning, and Editorial Board member of the 
Journal of the Learning Sciences, of the International Journal of Artificial Intelligence in Education, and of 

https://doi.org/10.1037/0022-0663.91.1.175
https://doi.org/10.1037/0022-0663.91.1.175
https://doi.org/10.1007/s10648-015-9302-x
https://doi.org/10.1037/0022-0663.93.2.346
https://doi.org/10.1016/j.compedu.2018.09.009
https://doi.org/10.1037/a0016701
https://doi.org/10.1177/0956797612440101
https://doi.org/10.3102/00346543211019105
https://doi.org/10.1080/14926156.2013.784828
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1016/j.compedu.2013.05.004
https://doi.org/10.1111/bjet.12849
https://doi.org/10.1111/bjet.12849


	 M. Mavrikis et al.

1 3

Learning and Instruction. Her research published in numerous journal articles and book chapters focuses on 
developing and evaluating instructional support for learning in computer-supported settings, with an empha-
sis on CSCL and on adaptive learning support, in particular.

Michael Wiedmann  (Dr. phil., University of Freiburg) is Research Manager for research and transfer at the 
University of Education Freiburg. In his role as a researcher in the Educational Psychology Lab in the Insti-
tute of Educational Research at Ruhr-Universität Bochum, Germany, he contributed to the summative evalu-
ation in the iTalk2Learn project. He is interested in technology-enhanced learning, fostering excellent edu-
cational research and research utilization.

Katharina Loibl  is Junior Professor in Interdisciplinary Research on Learning and Instruction at University 
of Education Freiburg. In her role as a researcher in the Educational Psychology Lab in the Institute of 
Educational Research at Ruhr-Universität Bochum, Germany, she contributed to the summative evaluation 
in the iTalk2Learn project and supported the data collection and analysis presented in this paper. She is 
interested in cognitive learning mechanisms of instructional designs, problem solving and inquiry learning, 
and diagnostic judgments of teachers.

Wayne Holmes  (PhD, University of Oxford) is a learning sciences and innovation researcher who teaches at 
University College London, and is a consultant researcher on Artificial Intelligence (AI) and education for 
UNESCO and for IRCAI (the International Research Centre for Artificial Intelligence). Wayne takes a criti-
cal studies approach to the connections between AI and education, and their ethical and social implications. 
Recent publications include “Artificial Intelligence in Education. Promise and Implications for Teaching and 
Learning.” (2019), “Ethics of AI in Education: Towards a Community-Wide Framework.” (2021), and, for 
UNESCO, “AI and Education: Guidance for Policy-makers.” (2021).


	Combining exploratory learning with structured practice educational technologies to foster both conceptual and procedural fractions knowledge
	Abstract
	Introduction
	Background
	Intelligent tutoring systems
	Exploratory learning environments
	Combining exploratory learning with structured practice tasks

	Materials
	iTalk2Learn platform
	Fractions lab
	Maths Whizz
	Fractions Tutor

	Experimental design and participants
	Dependent measures
	Other instruments
	Procedure
	Analyses

	Results
	Discussion
	Conclusions
	Acknowledgements 
	References




