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Machine learning is an important artificial intelligence technique that is widely applied in cancer diagno-
sis and detection. More recently, with the rise of personalised and precision medicine, there is a growing
trend towards machine learning applications for prognosis prediction. However, to date, building reliable
prediction models of cancer outcomes in everyday clinical practice is still a hurdle. In this work, we inte-
grate genomic, clinical and demographic data of lung adenocarcinoma (LUAD) and squamous cell carci-
noma (LUSC) patients from The Cancer Genome Atlas (TCGA) and introduce copy number variation (CNV)
and mutation information of 15 selected genes to generate predictive models for recurrence and surviv-
ability. We compare the accuracy and benefits of three well-established machine learning algorithms:
decision tree methods, neural networks and support vector machines. Although the accuracy of predic-
tive models using the decision tree method has no significant advantage, the tree models reveal the most
important predictors among genomic information (e.g. KRAS, EGFR, TP53), clinical status (e.g. TNM stage
and radiotherapy) and demographics (e.g. age and gender) and how they influence the prediction of
recurrence and survivability for both early stage LUAD and LUSC. The machine learning models have
the potential to help clinicians to make personalised decisions on aspects such as follow-up timeline
and to assist with personalised planning of future social care needs.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Lung cancer is the most commonly diagnosed cancer globally
and the leading cause of cancer death in both sexes combined
with an estimated 1.6 million deaths in 2018 [1]. Approximately
85% of patients have a group of histological subtypes collectively
known as non-small cell lung cancer (NSCLC), of which lung ade-
nocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)
are the most common subtypes [2]. Lobar resection is the stan-
dard curative modality for early-stage (Stage I and II) and
selected Stage III NSCLC [3]. Although the treatment of NSCLC
has made great progress in the past few decades, the five-year
survival rate has not improved significantly due to the initial
diagnosis at a late stage. Moreover, the recurrence after surgery
usually occurs very rapidly: 50–90% occur two years after sur-
gery, and 90–95% of patients occur within five years [4]. Cur-
rently, the popularity of computed tomography has
significantly increased the rate of early screening for lung cancer
[5]. However, there is still a lack of a systematic and objective
approach for better diagnosis and treatment of NSCLC. The pre-
sent study aims to integrate genomic, clinical, diagnostic and
demographic data to generate a full picture of patients in order
to develop a risk prediction model for the overall survival and
recurrence status for NSCLC.

The identification of individuals’ overall survival and relapse
requires an accurate and robust predictive model. Machine learn-
ing (ML) techniques can discover and identify patterns and rela-
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tionships between various variables from complex datasets so as
to predict effectively future outcomes of many cancers. ML has
been widely applied to cancer prognosis and prediction [6–14].
It has been reported that ML methods can be used to substan-
tially (15–25%) improve the accuracy of predicting cancer suscep-
tibility, recurrence and mortality [6]. In NSCLC, most previous
predictive models for lung cancer have been developed based
on risk factors such as tobacco smoking history, family history
of lung cancer and occupational exposures [15–17]. However,
these conventional risk factors generally do not provide enough
information to make robust predictions or prognoses [6]. With
the rapid development of genomic, proteomic and imaging tech-
nologies, more specific molecular scale information about the
tumour and the patient have been discovered as powerful indica-
tors of cancer prognosis and prediction [18,19]. In addition to
well-known biomarkers of KRAS and EGFR, new genomic
biomarkers, such as somatic mutations in ALK, ERBB2, TP53 have
been demonstrated to be associated with lung cancer risk,
response or prognosis [20–22]. As proteomic biomarkers, 17 cir-
culating inflammatory proteins have demonstrated clinical utility
in lung cancer prognosis [23–26]. Most recently, many research-
ers have analysed the quantitative features from radiological
images and correlated the radiomic biomarkers with lung cancer
prognosis and mutation status [27–30].

All the emerging biomarkers act as new pieces of the lung can-
cer puzzle. Ideally, for accurate and robust prediction of an individ-
ual’s cancer prognosis, all pieces need to fit into the puzzle to
generate the full picture of the patient. This means integrating
carefully all histological, clinical, demographic, genomic, pro-
teomic, metabolic and radiomic information to come up with a rea-
sonable prognosis. Chen et al. [31] attempted to assess the survival
prediction of NSCLC patients through the use of artificial neural
networks (ANNs) with 10 selected genes expression as well as clin-
ical and demographic data (sex, age, T stage and N stage). Hanai
et al. [32] applied ANNs to construct a prognostic model for 125
NSCLC patients with 12 clinico-pathological variables (age, sex,
smoking index, tumor size, p factor, pT, pN, stage, histology) and
5 immunohistochemical variables (p27 percentage, p27 intensity,
p53, cyclin D1, retinoblastoma). Hsia et al [33] investigated the
survival time in advanced lung cancer patients using ANNs from
the genetic polymorphism of the p21 and p53 genes in conjunction
with patients’ general data (gender, age, disease type and period of
lung cancer, chemical diagnosis, treatment type of chemical diag-
nosis, smoking habit). Marchevsky et al. [34] predicted the survival
of Stage I and II NSCLC patients using clinical-pathological (age,
sex, cell type, stage, tumour grade, smoking history) and immuno-
histochemical variables (c-erbB-3, bcl-2, Glut1, Glut3, retinoblas-
toma gene and p53).

The objective of our present study was to develop a risk pre-
diction model using ML methods to predict overall survival and
recurrence status for NSCLC using The Cancer Genome Atlas
(TCGA) cohorts. The distinctive features of the work include inte-
grating genomic, clinical and demographic data and introducing
both copy number variation (CNV) and mutation information of
a broader set of genes (15) to predict overall survival and recur-
rence status for both LUAD and LUSC patients. The 15 selected
genes (TP53, STK11, KRAS, KEAP1, EGFR, SMARCA4, CDKN2A,
BRAF, RB1, PIK3CA, NF1, ERBB2, HRAS, NRAS, AKT1) for construct-
ing the predictive model were chosen based on reports of their
significance for NSCLC [35,36]. Mutations in a number of these
genes may contribute to NSCLC and represent potential therapeu-
tic targets for these tumours. For example, targeted antibody
therapies for lung cancer with mutant EGFR oncogenes include
necitumumab (Portrazza, Eli Lilly and Co.), cetuximab (Erbitux,
Eli Lilly and Co.) and amivantamab-vmjw (Rybrevant, Janssen
Biotech).
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2. Data and methods

2.1. TCGA data description

TCGA is the largest public pan-cancer biology database, which is
available from the TCGA Data Portal at https://tcga-data.nci.nih.-
gov/tcga/. TCGA database includes genomic, transcriptomic, and
epigenetic data for 33 human cancer types represented with more
than 11,000 individual samples. In this work, we focus on NSCLC
with two major subtypes: LUAD and LUSC. Altogether, we collected
511 representative samples of LUAD and 487 LUSC for which geno-
mic, clinical and demographic data are available for both subtypes.
Demographic data includes Age, Gender and Race. Clinical data
includes Cancer Stage, TNM Stage, History of Prior Cancer Diagno-
sis, Overall Survival and Recurrence Status. Genomic data includes
mutation and CNV information of 15 genes: TP53, STK11, KRAS,
KEAP1, EGFR, SMARCA4, CDKN2A, BRAF, RB1, PIK3CA, NF1, ERBB2,
HRAS, NRAS and AKT1. Among the NSCLC data, only Age and Over-
all Survival are two numerical variables. According to the average
value, the Age and the Overall Survival variables were transformed
into two categories, namely < or � 65 years and < or � 3 years
respectively. For the clinical cancer stage variables (Cancer Stage
and TNM Stage), we only consider the major stages from I to IV
but not the subdivision stages like IA, IB. Fig. 1 summarize the
TCGA data used in this work.
2.2. Analysis of variance (ANOVA)

ANOVA is a procedure for determining whether variation in the
response variable arises within or among different population
groups. In this work, one-way analysis of variance is used to deter-
mine whether there are any statistically significant differences
between the means of NSCLC factors. The level of statistical signif-
icance is expressed as the p-value, which is the probability of
observing the sample results given that the null hypothesis is true.
Usually, a p-value threshold of 0.05 can be considered as statisti-
cally significant.
2.3. Decision trees (DTs)

DTs are important, well-established machine learning tech-
niques, which have been used for a wide range of applications,
especially for classification problems [37,38].

In this work, a popular decision tree algorithm, CART (classifica-
tion and regression tree), was applied to construct binary trees
[39]. The Gini index was used as the splitting rule for CART. If costs
of misclassification are not specified, the Gini index is defined as:

g tð Þ ¼
X

j–i

p jjtð Þp ijtð Þ ð1Þ

If costs of misclassification are specified, then the Gini index is
defined as:

g tð Þ ¼
X

j–i

C ijjð Þp jjtð Þp ijtð Þ ð2Þ

where the sum extends over all k categories. p j=tð Þ is the probability
of category j at the node t and C i=jð Þ is the probability of misclassi-
fying a category j case as category i.

IG fð Þ ¼
Xm

i¼1

f i 1� f ið Þ ¼
Xm

i¼1

f i �
Xm

i¼1

f2i ¼ 1�
Xm

i¼1

f2i ð3Þ

The tree structure has been optimized based on the best accu-
racy found using 10-fold cross-validation in MATLAB (R2017).
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Fig. 1. Demographic, genomic and clinical profiles of TCGA dataset for non-small cell lung cancer (418 LUAD and 382 LUSC patients).
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2.4. Artificial neural networks (ANNs)

ANNs are a set of algorithms, to simulate the functioning of a
human brain, that are designed to recognize patterns, which result
in data-driven models that can interpret effectively patterns in
multivariate data from non-linear systems [40].

In this study, a common neural network algorithm, the feedfor-
ward neural network (FFNN) [41,42], was applied to construct a
model with one hidden layer of 20 neurons using MATLAB
(R2017). The maximum number of epochs for training was set to
1000. To prevent the trained network model from over-training,
the training procedure stopped if the validation performance
degraded for 10 consecutive epochs. The optimal trained network
with the best validation performance was selected. The training
function used in this work was the Levenberg-Marquardt algo-
rithm which was designed to solve non-linear least squares prob-
lems [43]. The Levenberg-Marquardt algorithm uses the Jacobian
matrix in the following Newton-like update:
xkþ1 ¼ xk � ½JT J þ lI��1
JTe ð4Þ
where J is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is a
vector of network errors. If the scalar l is zero, this is just Newton’s
method, using the approximate Hessian matrix. If l is large, this
becomes gradient descent with a small step size. Thus, l is
decreased after each successful and is increased only when a tenta-
tive step would increase the performance function.
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2.5. Support vector machines (SVMs)

SVMs are supervised learning methods in machine learning
algorithms for classification and regression analysis [44].

Least-squares support vector machine (LS-SVM) [45] was used
to construct non-linear classification models in this work using
MATLAB (R2017). In this work, the optimal regression line
(y ¼ w �uðxÞ þ b) was found by minimizing the object function in
Equation (5) while w and b are the regression weight coefficients
and the bias terms of the final model.

Q ¼ 1
2
wTwþ 1

2
C
XN

i¼1

e2i ð5Þ

ei is the error tolerance of the model. In this work, two param-
eters, u and r2, required by implementation of LS-SVM were set as
5 and 2 accordingly.

A summary of the pros and cons of the three machine learning
approaches compared in this analysis is provided in Table 1.

2.6. K-fold cross-validation

K-fold cross-validation is a widely used technique for assessing
the robustness of a model [46]. In k-fold cross-validation, the orig-
inal sample is randomly partitioned into k equal size subsets. Of
the k subsets, a single subset is retained as the validation data
for testing the model, and the remaining k-1 subsets are used as
training data. The cross-validation process is then repeated k times
(the folds) and the k results from the folds can be averaged to pro-



Table 1
Comparison of machine learning methods.

Methods Pros Cons

Decision tree � Easy to understand
� Efficient training
� Can be used for classification or regression
� Order of training instances has no effect on training
� Pruning can deal with the problem of overfitting

� Classes must be mutually exclusive
� Final decision tree dependent upon order of attribute selection
� Errors in training set can result in overly complex decision trees
� Missing values for an attribute make it unclear about which branch to take when
that attribute is tested

Neural network � Can be used for classification or regression
� Able to represent Boolean functions
� Tolerant of noisy inputs
� Instances can be classified by more than one output

� Difficult to understand structure of algorithm
� Too many attributes can result in overfitting
� Optimal network structure can only be determined by experimentation

Support vector
machine

� Models nonlinear class boundaries
� Overfitting is unlikely to occur
� Computational complexity reduced to quadratic opti-
mization problem

� Easy to control complexity of decision rule and fre-
quency of error

� Training is slow compared to decision trees
� Difficult to determine optimal parameters when training data is not linearly
separable

� Difficult to understand structure of algorithm
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duce a single estimation. The advantage of this method over
repeated random sub-sampling is that all observations are used
for both training and validation and each observation is used for
validation exactly once. In this work, 10-fold cross-validation was
applied for all three machine learning methods for estimating the
prediction error.
3. Results and discussion

This section presents insights from machine learning methods
on identification and prediction of key factors for recurrence and
survivability of LUSC and LUAD. Variance analysis is used to reveal
the factors with significant influence on recurrence and survivabil-
ity. These findings are compared with previous studies for corrob-
oration. Three common ML methods (decision trees, neural
networks and support vector machines) are applied for building
predictive models and their performance is compared in terms of
their ability to accurately predict recurrence and survivability of
LUSC and LUAD.
3.1. Analysis of variance on recurrence risk and survivability for NSCLC

The matrix of p-values for all one-way ANOVA tests for two sub-
types of NSCLC, (a) LUAD and (b) LUSC, are shown in Fig. 2. The p-
value matrix reveals the statistically significant impact of copy
number variation types (amplification or deletion) between the
15 genes investigated in the work. The signalling pathways
involved in the development of lung cancer can explain this obser-
vation. The key gene mutations in these pathways are correlated
with each other. Therefore, the expression of each key transcrip-
tion factor may cause a series of downstream factors and cross-
protein changes [47–50]. A similar result [51] reveals that the
miR-3151 gene (miRNA gene family) is driven by BRAF-
independent mechanisms while the TP53 gene could act as a
downstream effector of miR-3151. This finding provided evidence
for a causal link between BRAF mutations and TP53.

Statistically significant demographic, clinical and genomic fac-
tors for recurrence and overall survival of NSCLC are indicated in
Table 2. From the demographic data, race was identified as a signif-
icant factor for both LUSC recurrence and overall survivability,
with patients of white race having a lower recurrence rate but also
a lower survival rate compared to patients of other races. The influ-
ence of race on incidence and survival of NSCLC has been attributed
to the diversity in inherited genetic variations and an accumulation
of somatic genetic events [52,53]. LUSC overall survivability was
also found to be influenced by gender with female patients tending
to have higher survival rates than male. This observation is rein-
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forced by other works [54,55]. The mechanism leading to the dif-
ference between genders is still unknown, but endocrine factors
are believed to play an important role [56,57]. It is worth noting
that no significant difference was found in the different age groups
(<65 and � 65) for either recurrence rate or survival rate for LUSC
and LUAD, although age is a well-known risk factor for develop-
ment and progression of cancer [58].

Regarding clinical predictors, cancer stage, N stage and radio-
therapy were found to be significant factors for recurrence for both
LUAD and LUSC. T stage was identified as a significant factor for
recurrence for both LUAD and LUSC but as a significant factor for
survival for LUSC only. The analysis indicated that M stage was a
significant factor for survival for LUSC only. As is well known, the
current cancer staging and TNM staging system for lung cancer
are both essential for predicting prognosis and selecting appropri-
ate treatment; it is derived by the International Association for the
Study of Lung Cancer from a database of 94,708 patients from 46
sites across 19 countries [59,60]. Usually, patients with a high can-
cer stage or TNM stage have a poor prognosis and high recurrence
risk [60]. This work found that patients with adjuvant radiotherapy
had a significantly higher recurrence rate for both LUAD and LUSC.
This observation can be explained by the fact that radiotherapy is
usually given to the patients in the advanced or terminal stage
before or after surgery due to the high relapse rate [61].

Table 2 also highlights the significant genomic factors. The anal-
ysis indicates that the EGFR and KRAS copy number variation can
have a significant impact on survival rate for LUSC and LUAD
respectively while the mutation status of NF1, ERBB2, STK11,
TP53, KEAP1 and SMARCA4 can be significant factors. EGFR muta-
tions have been used as the basis for targeted therapies such as
EGFR tyrosine kinase inhibitors (EGFR-TKIs) and antibodies. The
EGFR pathway is one of the recently discovered pathways that
can promote lung cancer. Mutations in the EGFR gene can lead to
an increase in the degree of malignancy of lung cancer. There is a
significant association between sensitivity to EGFR TKIs and the
types of EGFR mutations [62]. Globally, KRAS mutant tumours
are the most common potential overlapping molecular subtypes
in non-small cell lung cancer [63]. From a clinical point of view,
KRAS-mutant lung cancer is usually associated with a worse over-
all survival rate than KRAS wild-type tumours, especially in
advanced cancers [64,65]. However, other studies in the early stage
[66] or late group [67] were inconsistent in confirming this poor
survival; therefore, the prognostic significance of KRAS mutation
status in lung cancer remains a controversial topic. However,
recent biologic findings in KRAS, coupled with the advent of
immunotherapy, may lead to the development of effective thera-
peutic strategies and optimal therapeutic stratification of the
KRAS-mutant NSCLC in the near future [68,69]. With regard to



Fig. 2. The p-value matrix for all ANOVA tests two subtypes of NSCLC for (a) LUAD and (b) LUSC. cnv = copy number variation, mut = mutation.
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Table 2
Significant demographic, clinical and genomic factors for recurrence and overall survival of non-small cell lung cancer.

Significant factors LUSC LUAD

Recurrence Overall Survival Recurrence Overall Survival

Yes
(%)

P Sig. �3y
(%)

P Sig. Yes
(%)

P Sig. �3y
(%)

P Sig.

Demographic Age <65 20.5 0.830 27.6 0.450 26.9 0.642 12.8 0.640
�65 21.5 31.4 29.1 18.2

Gender Female 16.5 0.199 41.0 0.029 * 29.6 0.486 14.9 0.580
Male 23.0 27.5 26.3 16.7

Race Other 30.4 0.034 * 53.8 8E-05 *** 32.9 0.331 20.0 0.222
White 18.7 26.1 27.0 14.8

Clinical Cancer stage I 15.9 0.001 ** 37.2 0.140 13.2 4E-15 *** 5.8 0.137
II 20.2 22.9 38.8 25.0
III 40.9 36.4 46.2 28.1
IV 33.3 0.00 78.9 72.7

M stage M0 20.4 0.563 35.9 3E-04 *** 27.2 0.523 13.1 0.790
M1 33.3 0.00 78.9 72.7
Mx 23.3 9.10 21.7 24.3

T stage T1 13.2 0.025 * 34.2 0.027 * 17.3 1E-05 *** 10.0 0.278
T2 22.9 35.7 31.0 16.0
T3 21.2 11.9 41.4 32.0
T4 50.0 16.7 54.5 20.0

N stage N0 16.7 0.008 ** 29.6 0.117 18.8 8E-06 *** 10.1 0.788
N1 25.9 30.3 45.3 26.9
N2 47.8 57.1 46.7 29.6
N3 —— —— 50.0 28.1
Nx 0.00 50.0 —— 72.7

Radio-Therapy No 19.6 0.044 * 31.5 0.845 23.3 1E-07 *** 13.3 0.485
Yes 34.3 29.6 59.2 37.9

Genomic EGFR
CNV

A 18.1 0.143 40.0 0.012 * 30.0 0.496 16.1 0.199
D 21.6 9.10 21.4 8.3
N 25.2 26.0 26.8 16.8

KRAS
CNV

A 23.8 0.231 30.4 0.398 30.5 0.657 16.0 0.026 *
D 20.8 10.5 24.7 13.8
N 18.1 35.5 27.9 16.4

NF1
mutation

No 18.6 0.001 ** 29.2 0.024 * 27.2 0.297 14.7 0.124
Yes 41.7 50.0 34.9 23.5

ERBB2
mutation

No 20.1 0.004 ** 31.0 0.418 28.5 0.321 16.1 0.267
Yes 62.5 50.0 12.5 0.0

STK11
mutation

No 21.1 0.851 31.3 0.939 26.2 0.017 * 14.8 0.080
Yes 25.0 33.3 43.9 25.0

TP53
mutation

No 22.2 0.774 19.2 0.007 ** 23.1 0.013 * 13.6 0.982
Yes 20.8 36.0 34.8 19.1

KEAP1
mutation

No 20.6 0.440 30.7 0.570 26.1 0.043 * 15.5 0.160
Yes 26.7 37.5 39.0 17.1

SMARCA4
mutation

No 20.6 0.313 30.5 0.14 26.7 0.037 * 15.4 0.594
Yes 31.2 38.5 44.8 21.1

Note: P refers to the p-value of ANOVA analysis that indicates the statistical significance of each factor. Sig. refers to the significance level of p-value: 0.01 < p < 0.05 (*),
0.001 < p < 0.01(**), p < 0.001(***).

Table 3
Summary of machine learning training datasets used for recurrence risk for LUAD and
LUSC.

Class
labels

Description No. of
records

LUSC LUAD

High risk tumour recurrence after initial resection
treatment

49 64

Low risk no tumour recurrence after initial resection
treatment

227 231
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other gene mutations highlighted in this work, such as NF1, ERBB2,
STK11, TP53, KEAP1 and SMARCA4, they also play important roles
in various pathways associated with the metastasis or overall sur-
vival [70–72]. However, there is still a lack of effective inhibitors to
block their expression.

3.2. Early stage (Stage I & II) NSCLC recurrence risk prediction

In the NSCLC dataset, there are 276 records of early stage LUSC
and 295 records of early stage LUAD with recurrence information.
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In order to build up a predictive model with machine learning
methods, some pre-processing work of NSCLC data is necessary.
First, patient records with null values or missing values have been
removed from the training dataset. Second, a set of class labels
have been given to the records of training dataset since all the
machine learning methods applied in this work are supervised
learning methods. According to the recurrence status, each patient
record was classified into one of two groups: High risk and Low
risk. Table 3 summarises the number of records under each classi-
fication in the training dataset of the recurrence risk for LUSC and
LUAD.

To compare the performance of different machine learning
methods (CART, FFNNs and LS-SVM), for prediction of early stage
NSCLC recurrence risk, the receiver operating characteristic (ROC)
curve for each method was generated for LUAD and LUSC respec-
tively (Fig. 3(a) and (b)). The ROC curve is a common method to
demonstrate the diagnostic ability of a binary classifier system
by plotting the true positive rate against the false positive rate at
various threshold settings. The threshold refers to a boundary
between the classes of a classifier system [73]. The diagonal line
from the bottom left to the top right in a ROC curve represents ran-



Fig. 3. Receiver operating characteristic (ROC) curve of performance comparison of NSCLC recurrence risk models using different machine learning algorithms for (a) LUAD
and (b) LUSC recurrence risk prediction. Decision tree (CART) model for (c) LUAD and (d) LUSC recurrence risk prediction.

Table 4
Summary of machine learning training datasets used for survivability for LUAD and
LUSC.

Class
labels

Description No. of
records

LUSC LUAD

Good overall survival � 3 years after initial resection
treatment

75 68

Poor overall survival < 3 years after initial resection
treatment

167 181
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dom guessing. The point in the upper left corner, (0, 1), represents
the best possible prediction method with 100% sensitivity and
100% selectivity. To compare the average performance of different
classifiers, it is common to calculate the area under the ROC curve
(AUC) as an average performance indicator. AUC is a portion of the
area of the unit square therefore its value is between 0 (worst per-
formance) and 1 (perfect performance). From the ROC curves, it
shows that the decision tree models have the best performance
in recurrence prediction for both LUAD and LUSC with AUC values
1817
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of 0.82 in both cases. The LS-SVM and the FFNN models have sim-
ilar performance (AUC = 0.72–0.75).

The CART models in Fig. 3(c) and (d) revealed the key factors on
recurrence risk for LUAD and LUSC accordingly. Furthermore, from
top to bottom along the branch to each leaf node of the tree, the
‘‘if-then” rules can be generated to describe and predict whether
a patient has a high or low risk of recurrence. For example, in
Fig. 4. Receiver operating characteristic (ROC) curve of performance comparison of NSCL
(b) LUSC survivability prediction. Decision tree (CART) model for (c) LUAD and (d) LUSC

1818
Fig. 3(c), the left branch of the tree indicates that if a LUAD patient
is in N0 stage, with adjuvant radiation therapy treatment experi-
ence and has CNV in KRAS (either in deletion or amplification),
then the recurrence risk is low. From the predicted models, N stage
and M stage are two important determinants of recurrence risk for
both cancer subtypes, which reinforce the ANOVA analysis results
in Section 4.1. As discussed before, the TNM staging indicates the
C survivability models using different machine learning algorithms for (a) LUAD and
survivability prediction.
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level of disease progression and the malignant potential of the pri-
mary lung cancer. However, the TNM staging system may reach
the limit of its usefulness in recurrence risk prediction since even
patients with disease at the same stage exhibit wide variations in
their incidence of recurrence after curative resection [74]. The
decision tree models indicated that gender in demographics as
well as N stage and M stage in clinical status are the common
recurrence risk for both LUAD and LUSC. Adjuvant radiation ther-
apy is more effective in LUAD rather than LUSC. For LUSC recur-
rence risk, the CNV types in KRAS, TP53 and NRAS play
important roles. For LUAD recurrence risk, mutation in NF1, ERBB2
and TP53 and CNV types in EGFR and RB1 are important. The pre-
dictive models in this work have the potential to help clinicians to
accurately predict the cases in which disease is likely to recur and
to make personalised clinical approach schedule and follow-up
timeline.
3.3. Early stage (Stage I & II) NSCLC survivability prediction

In the NSCLC dataset, there are 242 records of early stage LUSC
and 249 records of early stage LUAD with survivability informa-
tion. The pre-processing work of survivability training dataset is
the same as recurrence risk prediction mentioned before. Accord-
ing to the overall survival length after initial resection treatment,
each patient record was classified into one of two groups: Good
and Poor. The summary of training dataset of the survivability is
shown in Table 4.

The ROC curves for the three machine learning methods are
shown in Fig. 4 (a) and (b) for LUAD and LUSC respectively. From
the ROC curves, it shows that the decision tree model has the best
performance in survivability prediction for LUAD with the AUC val-
ues as 0.767 while the neural network is slightly better than deci-
sion tree in LUSC survivability prediction with the AUC values as
0.837 and 0.815 respectively.

The decision tree models in Fig. 4(c) and (d) revealed the key
factors for survivability for LUAD and LUSC accordingly. Similar
to the results in Fig. 4, from top to bottom along the branch to each
leaf node of the tree, the ‘‘if-then” rules can be generated to
describe and predict whether a patient is in good or poor surviv-
ability. Although the TNM stage plays an important role in surviv-
ability for both cancer subtypes, the decision tree models in this
work revealed that M stage in clinical status is the common impac-
tor of survivability of early stage NSCLC. Age and N stage are more
important for LUAD rather than LUSC while T stage is more impor-
tant for LUSC rather than LUAD. For genomics information, the CNV
types in HRAS, CDKN2A, RB1 and NRAS play important roles in
LUAD survivability while the mutation status in CDKN2A and KRAS
as well as CNV types in EGFR are important in LUSC survivability.
The potential of the tree models in this work offers support for
clinicians to predict the individual survivability and to assist with
personalised planning of future social and care needs.
4. Conclusion

The major contribution of this work is the construction of a
more complete portrait of NSCLC patients by integrating genomic,
clinical and demographic data when building predictive models
using machine-learning methods. By comparing these three meth-
ods, CART tree models demonstrate good predictive performance
and advantages in understandable tree-like graphs that can gener-
ate the rules to predict recurrence and survivability for LUSC and
LUAD. The key factors and if-then rules revealed by the tree models
can provide clinicians with a better understanding of recurrence
risk and overall survivability of early stage NSCLC. The results of
1819
this work also have the potential to help clinicians to make person-
alised decisions on tailored treatment and follow-up plans.
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