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A B S T R A C T

Flood incidents can massively damage and disrupt a city economic or governing core. However, flood risk can be
mitigated through event planning and city-wide preparation to reduce damage. For, governments, firms, and
civilians to make such preparations, flood susceptibility predictions are required. To predict flood susceptibility
nine environmental related factors have been identified. They are elevation, slope, curvature, topographical
wetness index (TWI), Euclidean distance from a river, land-cover, stream power index (SPI), soil type and pre-
cipitation. This work will use these environmental related factors alongside Sentinel-1 satellite imagery in a model
intercomparison study to back-predict flood susceptibility in Jakarta for the January 2020 historic flood event
across 260 key locations. For each location, this study uses current environmental conditions to predict flood
status in the following month. Considering the imbalance between instances of flooded and non-flooded condi-
tions, the Synthetic Minority Oversampling Technique (SMOTE) has been implemented to balance both classes in
the training set. This work compares predictions from artificial neural networks (ANN), k-Nearest Neighbors
algorithms (k-NN) and Support Vector Machines (SVM) against a random baseline. The effects of the SMOTE are
also assessed by training each model on balanced and imbalanced datasets. The ANN is found to be superior to the
other machine learning models.
1. Introduction

When compared to other meteorologically driven natural disasters,
flooding is one of the most disastrous phenomena as it can lead to
massive damage to both properties and fatalities worldwide (Hinkel,
2020; Tehrany et al., 2015). Indonesia is a country that has significant
flood risk in most of its provinces, with the islands of Java, Bali, and
Sumatera as the largest at-risk areas (Bappenas, 2010). Jakarta, officially
called Special Capital Region of Jakarta, is the capital city of Indonesia
and is located on Java Island. Jakarta has a population of over 10 million
inhabitants (as of 2019) within a 662.2 km2 area, as a result Jakarta is the
most densely populated province in Indonesia (BPS Jakarta, 2019).

Jakarta has been known to flood since the 5th century AD (Widya-
ningrum, 2019) andmodern Jakarta is still at risk due to being located on a
deltaic plain crisscrossed by 13 natural rivers and more than 1400 km of
man-made waterways. About 40 percent of the city is below sea level,
which contributes to flood risk (Baker, 2012). A range of factors including
climate change accelerated sea-level rise, extreme meteorological events,
along with land subsidence from multiple causes are worsening the flood
risk in Jakarta (Abidin et al., 2011; World Bank, 2019).
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On January 1, 2020, Jakarta was hit by the most intense rainfall event
(peaking at 377 mm/day) since records began in 1866 (BMKG, 2020).
This several-day rainfall event resulted in widespread flooding causing
16 deaths, and displacing more than 30,000 people (BNPB, 2020). The
severity of the flood event caught city officials off-guard, with the huge
number of affected persons paralyzing Indonesia's main economic and
political hub. Therefore, to mitigate such incidents and allow a timely
preparation, it is paramount to develop an ability to predict and evaluate
the areas of Jakarta that are most susceptible to flooding.

In recent years, machine-learning models, particularly artificial neu-
ral networks (ANN), have been increasingly used for flood susceptibility
modelling. Previous research has used precipitation and other environ-
mental factors as input to ANNs and to output water levels and an
inferred flood map (Kia et al., 2012). Although the previously mentioned
flood events were mainly caused by the heavy rainfall (BMKG, 2020), a
range of researchers have proven that several other factors have
contributed to the disastrous flooding in the area. These include eleva-
tion, curvature, stream power index (SPI), topographic wetness index
(TWI), soil type, distance from rivers, and others (Kia et al., 2012; Teh-
rany et al., 2015).
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There are several factors that could cause flood which have been used
as both fixed and temporal attributes to predict flood susceptibility.
However, it is still unknown if those factors combined and inputted into
an ANN model will be able to create a reliable result that could predict
flood susceptibility in Jakarta. Therefore, the authors of this work seek to
develop a suite of machine learning models that uses as inputs these
environmental factors to predict flood susceptibility in Jakarta but in a
novel manner with a temporal aspect.

A novel experimental methodology is used to predict flood suscepti-
bility. Commonly used environmental flood risk factors (Tehrany et al.,
2015; Shahabi, 2020) have been used in classification tasks to predict
flood susceptibility for multiple areas using all historical flooding. The
novel addition is that unlike these flood susceptibility studies; a rainfall
time series has been included allowing susceptibility predictions across
each area for each month. This temporal element is similar to the study of
Kia et al. (2012), which utilizes the same environmental flood risk factors
and a rainfall time series in a regression task to predict a flow hydrograph
at the bottom of the study area when using an ANN. These flow pre-
dictions can then be converted to a river stage (water height) reading and
then used to infer flooded areas through ‘bathtub approaches’ in a
Geographic Information System (GIS). This approach is not possible in
the Jakarta study area due to the shortage of gauging data (Kure et al.,
2013) and insufficient lead times for predictions based on upstream
water levels (Miyamoto et al., 2012). Therefore, this study uses ANNs,
and other MLs to skip the prediction of the hydrograph and go straight to
predicting whether an area was flooded or not.

This work aims to create a tool which can be used to prioritize allo-
cation of flood defense resources for city officials and inform civilians of
flood risk when extreme rainfall is forecasted. This research will also aim
to find an optimal model through comparing: ANNs, k-NN, and SVM
models against a random baseline. Novel approaches such as those pre-
sented in this work are encouraged in natural hazard susceptibility
modelling (Chen et al., 2019a) as there is no universal consensus about
what the best modelling tool is (Chen et al., 2019b). An overview of
models previously employed in flood susceptibility studies can be found
in Islam et al. (2021). The work comprises three key topics; the
Fig. 1. Raster image
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environmental flood risk factors in the study area, Sentinel-1 Synthetic
Aperture Radar (SAR) imagery used to monitor floods, and the machine
learning models used to predict flood susceptibility.

2. Material and methods

2.1. Environmental flood risk factors

The environmental flood risk factors can be divided according to their
temporally static or varying natures. The eight static factors identified in
similar studies (Kia et al., 2012; Tehrany et al., 2015; Vojtek, 2019) are
(see Fig. 1 for the maps produced for each attribute): elevation, slope,
curvature, stream power index (SPI), topographic wetness index (TWI),
distance from river, land cover and soil type. The main temporally var-
iable factor determining flood-susceptibility is precipitation recorded as
daily time steps (Bappenas, 2010).

Elevation. It is a key factor in determining whether land is suscep-
tible of flooding. Data source is the National DEM (see Table 1 for de-
tails). Regions at higher elevations are less likely flooded when compared
to those at lower elevations (Botzen et al., 2012). Globally, regions with
low-lying areas flood much more frequently, with average annual risk of
large flood at around 4.9% for cities that are up to 10 m above sea level
(Kocornik-Mina, 2016). This is a much higher average annual chance of
flooding than cities located above 10 mamsl which only have a 1.3%
chance of flooding each year (Kocornik-Mina, 2016).

Slope Degree. It is calculated as the first-order derivative of elevation
and it is another key terrain-derived factor affecting flood risk (Tehrany
et al., 2015). As ground slopes increase and runoff travels faster downhill
this results in a decrease in the time available for surface infiltration
(Schillaci et al., 2015). The decrease in surface infiltration allows more
runoff to enter the rivers and drainage systems and can be the most
critical factor in determining flood risk (Vojtek, 2019).

Slope Curvature. The curvature of the slope, the second order de-
rivative of elevation, plays an important part in determining flood sus-
ceptibility. Curvature contains information on the erosive characteristics
of water that include topography-controlled runoff conditions and it has
for fix attributes.



Table 1
Summary of Environmental Factors.

Factor Description Source

Elevation Terrain profile represented as
height above reference datum.

2015 Jakarta DEM from
Jakarta's Regional Disaster
Relief Agency (BPBD)
Geoportal.

Slope Degree The first-order derivative of
elevation.

Derived from Jakarta DEM.

Slope Curvature The second order derivative of
elevation.

Derived from Jakarta DEM.

TWI A metric of moisture likelihood
based on the principle of
upstream contributing area.

Derived from Jakarta DEM.

TWI ¼ ln
α

tanβ
α (m2m-1) is the local upslope
area draining through a certain
point per unit contour length.
tanβ (radian) is the local slope
gradients. (Kirkby and Beven,
1979; Moore et al., 1991).

SPI A metric of water flow strength
for erosive processes.

Derived from Jakarta DEM.

SPI ¼ α� tanβ
α and tanβ same as above

Dist. from River Euclidean planar distance. Derived from Jakarta River
Map from BPBD Geoportal.

LC Categorizing the Global Land
Cover Characterization (GLCC)
types in the study area.

USGS, https://www.usgs
.gov/special-topics/land-use-
land-cover-modeling.

Soil Type Soil Units in the Jakarta region,
Inceptisol; Oxisol; Ultisol;
Entisol; Histosol.

FAO Digital soil map report,
polygons rasterized, scale
1:5000000.

Precipitation
Time Series

Jakarta monthly average rainfall
November 2015 until December
2020.

Indonesian Agency of
Meteorology, Climatology
and Geophysics (BMKG)
database.

Fig. 2. Sentinel-1 (mean) Jan 2020.
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been found to be positively correlated with flood susceptibility in similar
studies (e.g., Mind'je et al., 2019).

Stream Power Index. The stream power index (SPI) is a metric of
water flow strength for erosive processes. SPI is determined by processes
of catchment hydrology, hydraulic channel-geometry and water's con-
servation of mass, shear stress, flood interval, climate, and bedrock
erodibility among others (Irawan et al., 2021). The SPI will be estimated
based on the slope at each location and the contributing upstream area.

Topographical Wetness Index. The topographic wetness index
(TWI) is a metric of moisture likelihood based on the principle of up-
stream contributing area. The TWI is calculated through spatially
distributed terrain models or by using contours derived from these
models. The TWI is also proven to be an early-stage indicator of flood-
prone areas in residential development planning (Pourali et al., 2016).
More advanced applications of the TWI include a calculation method
using a maximum likelihood estimation procedure (Motevalli and Vafa-
khah, 2016). In this study, the TWI was shown to be a useful light weight
alternative to hydraulic modelling as a high correlation between TWI
with flood depth from a hydraulic model were observed (Motevalli and
Vafakhah, 2016).

Distance from rivers. Across natural catchments, the distance from
rivers or waterbodies has been proven to be the most dominating factor
that influences flood-susceptibility (Giovannettone et al., 2018). In ur-
banized catchments with more complex drainage, the distance from
waterbodies is still the second-most important factor behind elevation
(Giovannettone et al., 2018). The flood susceptibility mechanism relates
to the planar distance the waterbody must grow by to encroach on land,
where the closer to an area is to a river or a body of water, the more likely
that area is to flood (Glenn et al., 2012).

Land Use Land Cover. The Global Land Cover Characterization
(GLCC) is another factor potentially linked to flood susceptibility. The
data source is the United States Geological Survey (USGS) global land
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cover product at 1 km spatial resolution, accessed from: http://earth
explorer.usgs.gov/. Flood likelihood and areas of high vegetation den-
sity have been noted to be negatively correlated (Tehrany et al., 2015).
Vegetated areas have higher interception and infiltration rates of rain-
water resulting in less surface runoff. Conversely non-vegetated areas
tend to have higher surface runoff and therefore greater flood suscepti-
bility (Lee et al., 2012). Cases of vegetation decrease, or urbanization,
have been proven to be positively correlated to flood frequency and
damage costs (Adnan et al., 2020).

Soil Type. Working on the same principle of controlling runoff rates,
the soil type is another important factor affecting flood susceptibility.
The data source is the FAO Soil Map of the World at 1:5,000,000 scale.
The project was completed over a span of twenty years and uses the Soil
taxonomy framework to classify soil units, accessed from: https://www.
fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-so
il-map-of-the-world/en/. In the Jakarta study area however, the flood
mechanism soil type exerts is through the differing subsidence rates of
different soils (Abidin et al., 2011). Natural consolidation of alluvial soils
coupled with heavy loads due to construction results in highly com-
pressed soil during subsidence (Abidin et al., 2011). In addition to
reducing elevation, the compression of sediments results in less infiltra-
tion (Herda Adeline et al., 2020) and therefore greater likelihood of
flooding (van Leeuwen et al., 2019).

Precipitation Time Series. Differing from the aforementioned eight
factors, the final factor of precipitation is a temporal factor. According to
Indonesian National Atlas (ANI), Java has the most extreme precipitation
rates of up to 400mm/month (Bappenas, 2010). As mentioned earlier the
January 2020 floods occurred during the most extreme rainfall in the city
since 1866 (BMKG, 2020). Furthermore, monthly rainfall intensity in
Jakarta has increased 100 mm from 1900 to 1970. These monthly in-
creases have been consistent throughout the year, as well as during peak
rainfall seasons (Bappenas, 2010). Finally in pluvial and fluvial flooding,
the rate of water input to the system drives the response from the
catchment. Therefore, rainfall intensity has been included as a time series
rather than as a ‘static’ yearly/decadal average.

The temporally fixed environmental flood risk factors for the study
area are displayed in Figs. 1 and 2.

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.usgs.gov/special-topics/land-use-land-cover-modeling
https://www.usgs.gov/special-topics/land-use-land-cover-modeling
https://www.usgs.gov/special-topics/land-use-land-cover-modeling
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2.2. Sentinel-1 imagery

Imagery from the Sentinel-1 C-band radar imaging satellite has been
used to provide flood extent information during the January 2020 flood
event. This active remote sensing system provides regular coverage
through both day and night, and it is not affected by atmospheric pro-
cesses such as cloud cover and so has been widely used to monitor flood
events (Conde and Munoz, 2019; Tsyganskaya et al., 2019; Martinis
et al., 2018; Qiu et al., 2021).

The Sentinel-1 imagery has been sourced through Google Earth En-
gine (GEE, Gorelick, 2017). Using the GEE cloud platform's data cata-
logue allows rapid and computational light access to the study area.
These characteristics mean that GEE is suitable for emergency response
applications, and it has been used in a range of formats in flood response
systems (Cheng-Chien et al., 2018; De Vries, 2020; Pourghasemi et al.,
2021).

Sentinel-1 imagery has been included as an input variable because
could be used by the model as a proxy to sense the overall presence of
water across the study area. This is through soil moisture of non-
urbanized areas, vegetation intensity, and in terms of prevalence of
open bodies of water. Antecedent soil moisture, or channel-capacity
conditions are particularly important in determining the response of an
area during successive rainfall events (Truckenbrodt et al., 2019).
Sentinel-1 scenes of each month were averaged and as a result the value
for each individual pixel is different.
2.3. Machine learning models for classification

Machine learning (ML) is a group of computational algorithms and
statistical models which are designed to learn from their environment
(Naqa and Murphy, 2015). Under a supervised learning paradigm, a
model learns to improve its performance at a given task through expe-
rience. The following models are commonly used in predictive classifi-
cation tasks and a brief overview of their learning mechanisms are
provided. These models are Support Vector Machines (SVMs), k-Nearest
Neighbors algorithms (k-NNs), and Artificial Neural Networks (ANNs).

2.3.1. Support Vector Machines
SVM is a model suitable for two-class classification problems and is

based on the principle of the minimization of structural risk (Belousov
et al., 2002). SVMs aim to create a hyper-plane to separate the two classes
in a n-dimensional space, as determined by n-attributes (Marjanovi�c
et al., 2011). The SVM can be mathematically represented below as a
primal optimization problem (Chang and Lin, 2011):

minw;b;ε
1
2
wTwþ C

Xl

i¼1

εi

subject to yiðwTΦðxiÞ þ b Þ � 1� εi;
εi � 0; i ¼ 1;…; l;

Where the y 2 ℝt response vector can assume values�1 or 1.ΦðxiÞmaps
each attribute, xi 2 ℝn, into a higher dimensional space. C � 0 is the
penalty parameter on the error term.

In addition to finding a maximum margin of separation between
classes (Pradhan, 2013), a unique advantage of the SVM is that a toler-
ance on misclassification can be specified for non-linearly separable
problems. This width of the soft margin tolerance is a tunable cost (C)
parameter where decision boundaries with narrower margins utilize
fewer data points (support vectors) to separate the two classes.

Another way of solving non-linear problems is by employing a non-
linear kernels in SVMs to plot non-linear decision boundaries (Cao
et al., 2008). By replacing the xTi xj term with a kernel function, kðxTi xjÞ,
218
the data can be mapped into a higher dimensional space. One such ker-
nels which has been found to be successful in many problem domains is
the Radial Basis Function (RBF) kernel (Yao et al., 2008), where ðxTi xjÞ ¼
expðγ

�����xi � xj
��j2Þ. The RBF kernel has a tunable parameter (γ) controlling

the kernel width and sphere of influence of individual data points upon
the decision boundary (Chang and Lin, 2011).

2.3.2. k-Nearest Neighbors Algorithms
k-NN models simply classify new data points according to the most

similar data point observed during training. Multiple neighboring points
can be used to measure similarity through a distance weighted score or
majority voting (Cunningham and Delany, 2007). The probability of a
new instance belonging to a class corresponds with the proportion of
k-nearest neighboring points with each class label, as shown below with
Ω0 being the set of k-nearest neighbors to x (Aristizabal et al., 2020).

PðY ¼ yjX¼ xÞ¼ 1
k

Xk

jεΩ0

I
�
yj ¼ y

�

where I
�
yj ¼ y

� ¼
�
0 when yj 6¼ y
1 when yj ¼ y

The tunable hyperparameter k, the number of neighboring data points
to consult, is commonly determined by using the square root of N, where
N is the number of points in the dataset. The other hyperparameter that
needs to be tuned is the distance metric used to find the nearest data
points. Four distance metrics have been tested. They are the Euclidean,
Manhattan, Cosine, and Minkowski distances. An overview of these
metrics is provided in Alfeilat et al. (2019).

2.3.3. Artificial Neural Networks
ANNs are complex ML models which are comprised of networks of

interconnected nodes (or neurons). Each neuron takes a vector of feature
values as input. Then, it multipies a column-verctor of weights to this
input vector and adds an additional weight named bias. Finally, the result
of this multiplication is input to an activation function and its result
returned as output. In a network of connected neurons information flows
between each neuron from the model inputs to the model classification
output. By incorporating multiple neurons to build networks of arbitrary
width and depth, ANNs of arbitrary complexity can be built in response to
the complexity of the problem. The network structure is only one of the
tunable hyperparameters (Atkinson and Tatnall, 1997). Other hyper-
parameters include the activation function used within each neuron to
combine the inputs into an output (Kia et al., 2012). The Sigmoid func-
tion is commonly used (Bishop, 1994). Other activation functions which
were tested during hyperparameter-tuning include the; Identity, Logistic,
ReLU, and Tanh functions (Agatonovic-Kustrin and Beresford, 2000).

The weights for each neurons are learned during training through
backpropagation. Two more hyperparameters of an ANN are the learning
rate and the α regularization term. The learning rate controls the size of
the update to neuron weights during training (Gurney, 1997). The α
regularization term constrains the size of the weights to prevent over-
fitting to the training data (Gurney, 1997).

ANNs are favored in a range of problem domains due to their robust
capability in modelling nonlinear relationships between explanatory
variables and target variables (Kia et al., 2012). The ANN differs from the
other two ML models as an ANN, when having many layers, can learn
new features automatically (deep learning). The SVM and k-NN models
treat each data point's attributes as a vector with equal weight assigned to
each. This means that these two learners can suffer from the curse of
dimensionality (Bellman, 1958) but also cannot make context-aware
predictions that ANNs can. This is where in different contexts and
areas of the parameter space, different attributes can have differing levels
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of importance on the final prediction (Anderson-Bell et al., 2021; James
et al., 2021).
2.4. Methodology

2.4.1. Experiment design
The models take as input the environmental factors flood risk factors

for each month (T) and will make predictions as to whether a location
flooded or did not flood in the following month (T þ 1). The input at-
tributes span from November 2014–November 2020 and the label attri-
butes span from December 2014–December 2020.

As computational resource is limited, rather than running the model
for every grid cell in the study area for five years, the modelling has been
undertaken at the polygonal administrative unit of the village. Jakarta is
comprised of 260 administrative village units as displayed in Fig. 3.

To prove that the models are better than random, they will be
compared against a random baseline, i.e., that randomly guesses whether
a location was flooded or not. This model represents the theoretical worst
performance a ML model can attain on a binary classification task.

2.4.2. Data preparation
Because only monthly precipitation data is available the modelling

has been undertaken at the monthly timestep. Choosing this unit allowed
the inclusion of composite Sentinel-1 images as acquisition dates varied
for each month in each year. For each calendar month between
November 2014 and December 2020, available Sentinel-1 scenes have
been averaged to monthly composites. Because of the strong meteoro-
logical signal of the Monsoon season in Jakarta (BMKG, 2021), each
month can be broadly typified as in the ‘dry season’ (May–September) or
‘rainy season’ (October–April).

The labels for the dataset were provided through private communi-
cation with the BMKG. Each administrative village area is classified as
flooded or not flooded in each month. The centroids of the 260 Villages
were matched up with the static environmental flood risk factors to
assign attributes to each village. The temporal rainfall values and spatio-
temporal composite Sentinel-1 values at each village centroid were
added to create a monthly time series for each village. The 10-attribute
time series for each village has been combined into a single dataset
with an example shown below.
Fig. 3. Distribution of the 260 villages in the study area. Each dot is a poly-
gon centroid.
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As the models used cannot handle missing values, records which did
not have full attribute values have been dropped. This has led to un-
derrepresentation in 2014 where only two months (November and
December) contained full data. This resulted in a slightly smaller dataset
(~ 0.08%).

We examined variable collinearity and only a moderate correlation
(0.63) was noted between variables. Temporal autocorrelation was not
assessed as the models used both temporal and fixed variables to make
their predictions.

As raw values range dramatically between attributes, min-max
scaling has been used for all models to improve model performances,
particularly for the ANN. This is needed as the gradient descent algorithm
converges much faster when feature scaling or normalization is imple-
mented (Ioffe, 2015).

2.4.3. Model training
The final dataset of 18,965 records (in Table 2 we show two samples)

has been divided into three sets of: training, validation, and test sets. The
training and validation sets are randomly sampled from records of the 73
months between 2014 and 2019 and comprise of 67.93% and 16.98% of
the full dataset. The test set has been created from records in the 12
months of 2020, which represents 15.08% of the full dataset.

As floods do not happen every day, the combined training and vali-
dation datasets contains an imbalance with significantly more instances of
the non-flood class (91.15%), than the flood class (8.85%). As highly
imbalanced training datasets produced biased classifiers (Jiawei et al.,
2012) the Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla
et al., 2002) was implemented to oversample the minority class to the
same prevalence as the majority class. SMOTE firstly identifies examples of
the minority class that are nearby in the attribute feature space. Secondly
SMOTE draws lines between them, and samples new synthetic points along
these lines. New examples are generated as a combination of two chosen
examples. A downside of this approach is the potential creation of
ambiguous examples should the two classes overlap in the attribute feature
space. For more information see Chawla et al. (2002).

All SVM and k-NN model hyperparameters have been tuned via a grid
search using a 5-fold cross validation combining the training and vali-
dation set. As ANNs take longer to train, the tuning of their hyper-
parameters has been performed by using the validation set. See Table 3
and 4 for the details about the tuned hyperparameters.

2.4.4. Performance metrics
Given the sparsity of the natural phenomenon we want to predict –

the dataset contains far fewer flood instances (positive class) than non-
flood instances (negative class) – we evaluated our classifiers using
Precision, Recall and the F1-Score.

The F1-Score is the harmonic mean of Precision and Recall with
0 being the worst value and 1 the best value. Precision is defined as the
proportion of predicted positive samples that are true positive. Recall is
proportion of true positive that have been correctly predicted as positive
class.

Following we report the equations used to compute Precision, Recall
and the F1-Score, where we consider as the positive class the flood in-
stances:

Precision ¼ TP
TPþ FP

;

Recall ¼ TP
TPþ FN

;

F1� Score ¼ 2TP
2TPþ FPþ FN

¼ 2
Precision * Recall
Precisionþ Recall

;

where TP, FN and FP are the true positives, false negatives, and false
positives.



Table 2
Two example records in the dataset for two different villages taken during November 2014.

Long Lat Year Mon. Alt. Slope Curv. SPI TWI Soil Riv. Dist. LULC Rain-fall Sentinel-1 Flood

xx xx 2014 11 12 2.5 0.8 0.2 89 3 913 13 0.6 13.45 1
xx xx 2014 11 9 8.9 0.3 �1.1 �44 3 1319 13 0.6 16.83 0

Table 3
List of tuned hyperparameters.

Model Tuned Hyperparameters

k-NN � Weight: uniform, distance
� Number of neighbors: range 1–11
� Distance Metric: Euclidean, Manhattan, cosine, Minkowski

SVM � Kernel: linear, RBF
� C: range 1–11

ANN � Hidden layer sizes
� Maximum epochs
� Activation function
� Learning rate: Adaptive or Fixed

Table 4
The optimal hyperparameters used in each model.

Tuned Hyper parameters implements

Dataset Imbalanced Training data Balance training data
k-NN � Weight: distance � Weight: distance

� Number of neighbors: 1 � Number of neighbors: 4
� Distance Metric: cosine � Distance Metric: Manhattan

SVM � Kernel: linear, RBF � Kernel: linear, RBF
� C: 9 � C: 10

ANN � Hidden layer sizes: 1 hidden layer of 20 nodes
� Maximum epochs: 400
� Activation function: logistic sigmoid
� Optimizer: Adam
� Alpha: 0.01
� Learning rate: Adaptive

Table 5
Model performances. Note that the test set is never oversampled.

Imbalanced Sets Balanced Sets (with
SMOTE)

Model Metric Train Valid. Test Train Valid. Test

Random P – – 0.15 – – 0.15
R – – 0.52 – – 0.52
F1 – _ 0.24 – – 0.24

k-NN P 1.00 0.33 0.56 1.00 0.87 0.32
R 1.00 0.31 0.01 1.00 0.96 0.02
F1 1.00 0.32 0.02 1.00 0.92 0.03

SVM P 0.73 0.92 0.00 0.77 0.76 0.00
R 0.03 0.05 0.00 0.86 0.86 0.00
F1 0.06 0.09 0.00 0.81 0.80 0.00

ANN P 0.00 0.00 0.00 0.94 0.67 0.37
R 0.00 0.00 0.00 0.66 0.75 0.59
F1 0.00 0.00 0.00 0.75 0.71 0.45
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3. Results

The following results are reported on models trained on both the
original imbalanced dataset and the balanced dataset using SMOTE. This
has been done to assess the effect of SMOTE on the three models. Model
results are presented on the training, validation, and test sets. The results
for the random baselines have also been presented alongside.

In Table 5, we observe that the performance of all models using the
imbalanced dataset is poor. In particular, both SVM and ANN are unable
to generalize and learn to predict always that there is no flood. When
trained on the balanced dataset, the ANN was found to performs the
highest (0.45 F1) and the only model to perform better than the random
classifier (0.24 F1).

4. Discussion

The effects of the SMOTE to rebalance the training datasets is
important when predicting floods. The effect of this technique is clear
when comparing the ANN trained with the imbalanced set vs. the
balanced set. However, this contrasts with the SVM and k-NN models in
which rebalancing the training data did not have any significant effect.
The k-NN model performed minimally better in predicting flood when
trained on the rebalanced data, while the k-NNmodel's score for the non-
flood class remained the same. In the SVM model the scores for both
classes remained unchanged when training on the balanced dataset.

The difference in performance we observe between the validation and
test sets could be attributed to the fact that the validation set consists of
datapoint between 2014 and 2019, while the test set consists only of
datapoints in 2020. Another reason for this difference in performance
could be attributed to the fact that the rainfall and flooding in the year
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2020 was higher than experienced previously. ML models struggle to
extrapolate outside of their known range of their training data if the data
distribution used for testing is different from the one used for training.
Should ML models be used in a real scenario, it is important to recognize
this limitation and retrain the model periodically.

Overall, only the ANN was able to perform better than random when
predicting floods demonstrating that by using this model we could pre-
dict which villages are susceptible to flooding in the upcoming month.
The novel nature of this work unfortunately limits its comparability to
the wider literature. While the environmental input factors used are
common throughout the ML flood susceptibility literature (e.g., Kia,
et al., 2012; Shahabi, 2020; Tehrany et al., 2015) the setup of predicting
flood susceptibility classification across time is novel. The higher per-
formance of the ANN is suspected to be due to the complexity of the
classification problem faced:

Firstly, the problem is non-linear and suited to a mixed-effects model
where the relationships between input variables and output vary across
space (each village) and across time (month during the monsoon cycle).
Secondly, when predicting flood status in month T þ 1 using environ-
mental flood risk factors in month T, the strength of the relationship to
the following month's flood status will vary depending on the month's
position in the monsoon cycle. In months heading towards the monsoon
peak the same volume of rainfall would be expected to be correlated with
greater flooding than the same rainfall volume in a month heading to-
wards the dry season peak.

The model might be improved in the future; this exercise offered an
overview of the ANN application with selected attributes that are strictly
related with floods in an area that suffered in the past for similar events.
In Jakarta, the flood is predicted yearly with flooding risk rating all the
villages together. The data shows that all villages have a medium risk for
all month in year 2020. Using a model that can give predictions for each
of the village on a monthly basis, government, firms, civilians can be on
alert and prepare the disaster recovery plan.

5. Conclusions

A flood susceptibility study comparing k-NN, SVM, and ANN models
was undertaken for the Jakarta study area. The model was trained on
2014–2019 monthly data and tested on 2020 data across Jakarta's 260
administrative villages. Two sets of models' groups were ran using the
original dataset and the rebalanced dataset with SMOTE.
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This analysis shows the importance of rebalancing the dataset. The
best scores were obtained in the ANN model. The SVM and k-NN models
performed similarly poorly across both imbalanced and balanced data-
sets. The novelty of the approaches used in this study limits its compa-
rability to the literature but the context-specific spatial and temporal
patterns within the problem are theorized to be the reason why the ANN
model had the highest performance. The SVM and k-NN models are
suspected to suffer from the curse of dimensionality.

Further work could examine a spatial breakdown of the models'
performance to identify if some villages consistently perform worse than
others. Similarly, a temporal breakdown could be undertaken to examine
months or seasons of poorer performance.
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